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Summary. We study reflected solutions of the heat equation on the spatial interval 
[-0, 1] with Dirichlet boundary conditions, driven by an additive space-time white 
noise. Roughly speaking, at any point (x, t) where the solution u(x, t) is strictly 
positive it obeys the equation, and at a point (x, t) where u(x, t) is zero we add 
a force in order to prevent it from becoming negative. This can be viewed as an 
extension both of one-dimensional SDEs reflected at 0, and of deterministic 
variational inequalities. An existence and uniqueness result is proved, which relies 
heavily on new results for a deterministic variational inequality. 
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0 Introduction 

The aim of this paper is to study the existence of a pair (u, t/) where u is a continuous 
function of (x, t)~Q-~ [-0, 1] x 1R+, r/is a measure over Q, which satisfy: 

ON ~2U 0 2 ~V 
(i) & ~x 2 + f (u )  = Oxc~t + ~7 

(ii) u(x, O) = Uo(X), u(0, t) = u(1, t) = 0, u(x, t) > 0 
(iii) Ieud  = 0 
where {W(x,  t), (x, t )~ Q} is a Brownian sheet. Condition (iii) implies that the 
support of q is included in {u = 0}. (i) says in particular that wherever u(x, t) > O, 
u solves the white noise driven parabolic SPDE: 

(~U ~2U r ~V 
fff  (x, t) - ~x 2 (x, t) + f ( x ,  t; u(x, t)) = ~ - ~  (x, t) . 

~/is there to "push u upward", so that it remains nonnegative, and (iii) says that the 
pushing is minimal in the sense that no pushing occurs where u(x, t) > 0, since 
u cannot become negative there. 

* Partially supported by DRET under contract 901636/A000/DRET/DS/SR 
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We shall show that the stochastic problem (i), (ii), (iii) is equivalent by trans- 
lation to a deterministic problem with reflection along an irregular boundary 
function. Such deterministic problems with reflection are called "inequations" and 
have been widely studied by several authors, see in particular Bensoussan and 
Lions El], the bibliography therein and Mignot and Puel [6]. 

Most of the present paper is devoted to the proof of an existence and unique- 
ness result for such an inequation. The point is that our boundary function is not 
smooth enough such that we might apply the usual theory of strong solutions, and 
we want both existence and uniqueness, which is not provided by the theory of 
weak solutions (see in particular [6]). 

Note that a similar problem has already been considered in Haussman and 
Pardoux [3], in the case of a different type of driving noise and with a non constant 
diffusion coefficient, using quite different methods. 

The paper is organized as follows. In Sect. 1 we state the results and in Sect. 2 we 
prove them. 

1 Statement of the problem and of the main results 

Our aim is to study an equation of the following type 

~u a2u 6 2 W 
at ax 2 + f ( x ,  t; u(x, t)) = ~ + rl, (1) 

t > 0, x e [ 0 ,  1 ] ,  

with the Dirichlet boundary conditions 

u(0, t) = u(1, t) = 0, t >_- 0 ,  (2) 

and the initial condition 

u(x,O) = Uo(X), xs [0 ,  1] . (3) 

We shall assume in what follows that the function f takes the following form: 

f =  [0, 1] x JR+ x IR ~ ]R 

(A.0) f ( x ,  t, z) =f l (x ,  t) + f2(x, t; z) + f3(x, t; z) 
with the properties that j~ is jointly measurable, 1 < i < 3 and 
(A.1) f i e  0 L2(( 0, 1)x (0, T)),f2(x, t;0) =f3(x, t;0) -= 0; 

T > 0  
(A.2) 3c such that [f2(x, t; z) - f2 (x ,  t; r)] =< clz - r l ,  for all (x, t) in [0, 1] • 
IR+; r, z in IR; 
(A.3) for any (x, t )e[0,  1] • z ~ f ~ ( x ,  t;z) is continuous and nondecreasing, 
and f3 is locally bounded. 

Given ue  C([0, 1] x IR+), we shall consider the mapping (x, t) ~ f ( x ,  t; u(x, 0). 
We shall often below write in short f(u,) for the mapping x --*f(x, t; u(x, t)). 

The initial condition uo(x) will be a continuous and nonnegative function which 
satisfies the Dirichlet boundary conditions on [0, 1]. Set Q = [0, 1] • IR+. We will 
assume that W = { W(x, t), (x, t) e Q} is a two-parameter Wiener process defined on 
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a complete probability space (s ~ ,  P). That means, W is a continuous Gaussian 
process with zero mean and covariance function defined by 

E [ W ( x ,  t ) W ( x ' ,  t ' ) l  = (x  A x ' ) ( t  / ,  t ' )  . 

We will denote by ~-t the o--field generated by the random variables { W(x, s), 
xe[0, 13, se[0, tl}. 

The operator -(d2/dx 2) on L2(0, 1), with the Dirichlet boundary conditions 
will be denoted by A. We will denote by Co ([0, 11) the set of continuous functions 
(p on [0, 1] such that (p(0) = (p(1) = 0, and by C~(D), D open subset oflW, the set of 
functions from D into 1R which are infinitely differentiable and whose support is 
a compact subset of IW. 

The solution to the Eq. (1) will be a pair (u, t/) such that u = {u(x, t), (x, t) ~ Q} is 
a nonnegative and continuous stochastic process which satisfies the equality (1) in 
a weak sense, and t/(dx, dt) is a random measure on Q which forces the process u to 
be nonnegative. 

If the term t/ is omitted then the Eq. (1) becomes a particular case of the 
parabolic stochastic differential equations studied, among others, by Walsh [71, 
Manthey [5] and Buckdahn and Pardoux [2]. 

The Eq. (1) is formal and we have to give a rigorous meaning to the notion of 
solution. This is the purpose of the following definition (we denote here and in the 
sequel by (., .) the scalar product in L2(0, 1)). 

Definition 1.1 A pair (u, t/) is said to be a solution of Eq. (1) if: 
(i) u = {u(x, t), (x, t )e  Q } is a nonnegative, continuous and adapted process (i.e., 

u(x, t) is ~-t-measurable Vt > 0, xe[0 ,  11) with U(0, t) = u(1, t) = 0, t > 0, a.s. 
(ii) t/(dx, dt) is a random measure on (0, 1)xlR+ such that t/((e, 1 -  e)x 

[0, T ] ) <  oo for all e > 0 and T >  0, and t/ is adapted (i.e., t/(B) is ~-~- 
measurable if B c (0, 1) x [0, t]). 

(iii) For all t > 0 and ~be C{((0, 1)) we have 

i t t 1 
(u,, (a) + (u~, Adp)ds + ~ (f(u~), qS)ds = (Uo, q~) + ~ ~ qS(x)dW~,, 

0 0 O 0  

t 1 

+ ~ ~ ~b(x)t/(dx, ds), a.s. 
0 0  

(iv) ~Q udt /=  0. 

(4) 

Remark 1.2 Notice that the condition (iv) is equivalent to saying that the support 
of the measure t/is contained in the set {u = 0}. 

All terms appearing in the Eq. (4) are continuous functions of q~  CC((0, 1)) 
with respect to the topology of the uniform convergence of ~b, ~b' and qS" on compact 
subsets of (0, 1). For the stochastic integral with respect to the two-parameter 
Wiener process this continuity follows from the integration by parts formula: 

t 1 1 

~ ~bdW = - ~  W(x, t)c)'(x)dx. 
O 0  0 

The space C2((0, 1)) is separable for this topology. Consequently in property (iii) 
the almost sure requirement is uniform in t > 0 and qS~CZ((0, 1)). [] 

The main result of this paper is the following. 
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Theorem 1.3 Suppose that f satisfies (A.0), (A.1), (A.2), (A.3) and let Uo e Co([0, 1]) be 
a non-negative function. Then there exists a unique solution (u, tl) of Eq. (1). Further- 
more this solution verifies 

t/((0,1) x { t } ) = 0  for a l l t  >O, and (5) 

T 1  

~ x(1 - x)r/(dx, dt) < oo, for all T > 0 .  (6) 
0 0  

Before giving the proof of this theorem we need to introduce some notations. We 
denote by Gt(x  , y) the fundamental solution of the heat equation with Dirichlet 
boundary condition. That means, for any (p e Co([0, 1]), 

is the unique solution of 

f 

1 

g(x, t) = ~ G,(x, y)q~(y)dy 
0 

g(x, O) = q)(x), 0 <- x <- 1 

g (O, t )=g(1 ,  t ) = O ,  t>=O. 

Define the Gaussian random field 

t 1 i 

v(x, t) = ~ ~ O,_s(x, y )dWs,  + ~ Gt(x, y )uo(y)dy .  (7) 
O 0  0 

It is shown in Walsh [7] that v has a version which is a-H61der continuous for 
any 0 < c~ < �88 Moreover, v satisfies v(x, O) = Uo(X), v(0, t) = v(1, t) = 0, and v is 
a weak solution of the parabolic stochastic differential equation 

c?v ~2v 02 W 
Ot 3X 2 - 3x& " (8) 

That means, it holds that 

t t 1 

(vt, ~) + ~ (vs, A(o)ds = (Uo, qb) + ~ ~ 0(x)dWs, x, (9) 
0 0 0  

for all t > 0 and ~beC2((0, 1)), almost surely. 
The basicingredient in the proof of Theorem 1.3 is the following: making use of 

the change of variable z -- u - v, Theorem 1.3 is easily seen to be a consequence of 
the next deterministic result: 

Theorem 1.4 Let v be a continuous function on Q such that v(x, 0)=Uo(X) and 
v(0, 1) = v(1, t) = O, for all xe[0 ,  1], t > O, and suppose that f satisfies (A.0), (A.1), 
(A.2), (A.3). Then there exists a unique pair (z, tl) such that: 

(i) z is a continuous function on Q verifying z(x, O) = O, 

z(0, t )=z (1 ,  t ) = 0  and z > - v .  

0g ~2g 
& 0x 2 - 0 ,  t > 0 ,  0 < x < l  
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(ii) t / is  a measure on (0, 1) x IR+ such that 

t / ( ( e , l - e ) x [ 0 ,  T ] ) < o o  f o r a l l e > O  and T > 0  

(iii) 
t 1 

(z,, *) + i (z,, A(a)ds + i (f(zs + v,), qb)ds = ~ ~ ~b(x)r/(dx, ds) 
0 0 O 0  

for all t >= O, 43~C2((0, 1)), 
(iv) jo.(z(x, t) + v(x, t))//(dx, dr) = 0. 

Furthermore the measure ~I verifies the properties (5) and (6). 

Remark 1.5 Formally, (i)-(iv) can be rewritten as follows: 

~Z t 
- -  + Azt + f(zr + v,) > 0 & 

Zt ~ - -  "lAt 

& + A z t + f ( z t + v t ) , z ~ + v t  = 0 .  J 

(lO) 

This is a deterministic parabolic inequation, of a type which has been largely 
studied in the literature (see e.g. Bensoussan and Lions [1], Mignot and Puel [-6] 
and the bibliographies therein). Note that the non linear term in the above 
inequality has a very special form. However, if we define: 

f (x ,  t; r) = f ( x ,  t; r + vt(x)) 

and write f(zt) for the mapping 

x -- , f(x,  t; z,(x)) 

we can rewrite our inequality in a more general form: 

L~Z t 
~ + Az, + f(z ,)  > 0 

Zt ~ - -  12 t 

< ) c~t + Az, + f (z , ) ,  z, + v, = O.  t (11) 

(1 1) is a parabolic inequality with the non-smooth obstacle -v (x ,  t). 
There are several existence results in the literature concerning this kind of 

problem. When the obstacle is somewhat smooth, existence and uniqueness of 
a "strong solution" is known. In the case of a more general obstacle, existence 
of a minimal "weak solution" is known. Our situation is somehow intermediate 
between the two situations known in the literature. Our formulation will be "strong 
enough" so that we shall be able to prove existence and uniqueness, although the 
classical theory of strong solutions does not apply. The (apparently new) idea is to 
allow the term which we call r / to  be a measure. 
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Remark 1.6 We have not been able to decide whether t/((0, 1) x [0, T]) is finite or 
infinite. It is clear that t/({(0, e)~ (1 - e ,  1)} x [0, T]) is large (maybe infinite?). 
Indeed, the solution is forced to be zero on the boundary, and it is irregular in x (see 
Walsh [7]), therefore a lot of "pushing by t/" is necessary near the boundary, in 
order to prevent the solution from taking negative values. Note that if we replace 
the zero boundary conditions by strictly positive ones (or if we replace the zero 
level of reflection by a negative one), then it is easy to see that t/((0, 1) x (0, T)) < oe 
a.s., for all T >  0. [] 

2 Proof of Theorem 1.4 

2.1 Reduction of the problem 

In this subsection, we show that it suffices to prove the theorem under the 
assumptions: 
(A. 1') f (  ', "; 0) e (-] r > 0 L2 ((0, 1) • (0, T)); 
(A.2') f - f ( ' , ' ; O )  is locally bounded; 
(A.3') z o f (x ,  t; z) is continuous and nondecreasing, V(x, t)e [0, 1] • IR+. 

Indeed, the result is equivalent to the same result with f replaced by fx + 21, 
where fz(x, t;r)= e-Ztf(x, t;eZtr), and i f f  satisfies (A.1), (A.2), (A.3), and 2 = c, 
fz + 2I satisfies (A.I'), (A.2'), (A.Y). In order to see the equivalence, we first note 
that (iii) is equivalent to the following statement: 

(1) - S (~-~ ,z t )d t+ S (AOt, zt)dt+ ~ o o 

= ~ Odt/, VOeCF((O, 1) x IR+),  
Q 

which for any 2 e IR is equivalent to 

(ix) -- ~ (~-~'e-Ztz~) dt+ ~ (Aot'e-ztzt)dt+ ~ o o 

= ~ Oe-Ztdq, VOe CZ((0, 1) x IR+). 
Q 

Hence (z, q) solves (1) iff 

solves 

(2) 

z~ = e - X % ,  f1 = e -Zr .q  

--~ (~-~'2t) dt+ ~ (AOt'2t)dt+ ~ 0 0 

where vt = e-Atv t . 

= ~ ~Odt~, Y~ e CF((O, 1) •  
Q 
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2.2 Existence o f  a solution 

Step 1. We shall construct a solution by means of the well-known penalization 
method. Fix e > 0 and denote by z" the solution of the equation 

at + Az~ + f(z~ + vt) = ~(z~ + vt)- 

z~(x, 0) = 0 ~ (12) 

/ 

J z~(0, t) = z~(1, t) = O.  

This equation has a unique solution z~e 0 r > o  L2( 0, T, H2(O, 1)) C~ C(Q), see 
e.g. Lions [4]. Using the monotonicity proper ty  o f f  one can show the following 
facts: 
(A) z~(x, t) increases as e decreases to zero. 
(B) Let z ~ and ~" be the solutions corresponding to two different functions v and ~. 
Then we have for any T > 0, 

i jz  ~ - 2~11T ~ 1Iv - ~11T , (13) 

where 

II~pl] r = sup I~o(x,t)l,  q ~ C ( Q ) .  
te [0, T] 
xe [0 ,  1] 

Proof  of  (A) Define Fl(x ,  t; z) = f ( x ,  t; z) - (1/el)z- and Fz(x,  t; z) = f ( x ,  t; z) - 
(1/e2)z-  where ~ < e2. Then F~ and F2 are nondecreasing functions such that 
F~ < Fz. Set t~ = z ~ - z ~'. We want to show that ~ -5_ 0. We have 

3~ + AOt + F2(z~ ~ + vz) -- Fl(z~' + vz) = 0 

~o O. 

Multiplying this equality by ~+ we obtain, for all T > 0, 

, Ot + dt + f (AOt, 0+)  d t +  J" (F2( z~2 + vt) - F l ( z t  1 + vt), 0t+)dt = 0 .  
0 0 0 

It follows from Lemma 6.1, p. 132 in Bensoussan and Lions [1] that ~,+ ffL 2 
(0, T; Hi(0,  1)) and (1"1 denotes the norm in L2(O, 1)): 

) t t2 \ 0t ,~t  + d t =  ~ ]1~ 

T 

j" (AOt, ~ ) d t  = i 8ot+ 2 
o o - -~ - -  x a t .  



84 D. Nualart and E. Pardoux 

Moreover  

(Fz(z~ ~ + vt) -- Fl(z~' + v,), 0 7 )  = (Fz(zQ ~ + vt) - Fz(z~ ~ + vt), 0 +) 

+ (Fz(z~ ~ + vt) - FI(z~ ~ + vt), ~l' +) > O. 

Hence IO+l 2 = 0, t > 0. 

Proof of(B). Set k = ][v - z3]] r ,  and F~(x, t; z) = f ( x ,  t; z) - (1/~)z-. We have 

azf  
0"--[ + Az~ + F~(z~ + vt) = 0 

a2 ~ 
a-7 + Ae~ + V~(~ + r  = 0 

~o = z~o = 0 .  

Therefore 
a 
at (z~ - ~ )  + A(z~ - ~ )  + V~(z~ + vt) - F~(~ + r  = O . 

Define w = (z ' - ~ )  - k. Mult iplying the above equat ion by w + yields 

) o \  & ' w+ dt + oS (Awe, w+)dt  + 

T 

+ S (V~(zf + vt) - V,($; + vt), w+)dt = 0 .  
0 

It holds that  

(F~(z~ + v,) - F~(~ + ~,), w +) > 0 

because on {(x, t); w+(x, t) 4= 0}, z ~ > ~ + k and then z ~ + v > ~ + ~. Conse- 
quently the same computa t ions  as made in the p roof  of  (A) yield w + = 0, hence 
z ~ - U < k. By symmetry  ~ - z ~ < k. 

Step 2. For  any (x, t)~ [0, 1] • IR+, define 

z(x,  t)  = s u p  z~(x, t ) .  
~:>0 

We want  to show that  z ~ C([0,  1] x IR+ ). Let {v,, n ~ N} = C y  ((0, 1) x (IR+ \ {0})) 
satisfy v,(x, t) ~ v(x, t) uniformly on compact  subsets of [0, 1] • ]R+. 

Let z~ denote the solution of  (12) where v has been replaced by v,. F r o m  (B) 
above, 

z .  ll~ = IIv - v,,ilr~ �9 Hz ~ _  , T 

But for each fixed n, z~ T z, as e { 0, where z, is the strong solution of an inequat ion 
with smooth  obstacle, hence - see e.g. Corol lary  2.3, p. 237 of  Bensoussan and 
Lions [1] - z, s C ( [ 0 ,  1 ] ) x  IR+). 

Letting e { 0 in the above inequality yields: 

I t z - z ,  llr < l l v - v ,  ll r ,  T > 0 .  

The desired result follows, by letting n --, oo. 
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Step 3. We have to show that  the function z(x, t) satisfies the condit ions (i)-(iv) of 
Theorem 1.4. Clearly z(x, 0) = 0 and z(0, t) = z(1, t) = 0 for all t > 0. 

Let  0 G C Z ( ( 0 ,  1)x IR+). F rom (12) we obtain 

: ) -- z~, dt + (z~,AOt)dt + 
o (14) 

1~ o 
+ (f(z; + v,), 0t)dt  = -  ~ ((zt + vt)-, 0 J d t .  

0 8 0 

We denote by t/~ the measure (1/e)(z~ + vJ-dxdt on Q. F rom the equality (14) 
we deduce that  t/~ converges in the distr ibutional sense to some distribution on the 
open set (0, 1) • (0, +co).  The limiting distr ibution is nonnegat ive and, therefore, it 
is a measure that  we denote by t/. For  any 0 s CZ ((0, 1)x [0, + co)) we have 

- : ( ~ , z t )  dt+~(AOt,  z t )d t+: ( f ( z t+v t ) ,O t )d t )  
o o o (15) 

= ~ o a t / .  
Q 

Actually the above convergence holds for any infinitely differentiable function 
on (0, t) x /R with compact  suppor t  included in (0, 1) x [0, + co). So r/is a distri- 

but ion on (0, 1) x IR, and hence a measure on (0, 1) x [0, + co). Moreover  it is clear 
from (15) that  t/((e, 1 - e)x [0, T ] )  < co for all e > 0 and T >  0. 

Multiplying the Eq. (14) by e and letting ~ tend to zero, we obtain ~o ((z, + vt)-, 
~ h d t  = 0 for any 0 e C~ ((0, 1) x IR+ ). This implies zt + vt > 0 a.e., and z + v being 
a cont inuous function we obtain z~(x) > v~(x), (x, t ) e [ 0 ,  1] x IR+. 

It only remains to check condit ion (iv). For  each e > 0 the support  of t/~ is 
included in the set { Y +  v __< 0}, which decreases when ~ decreases. Hence the 
suppor t  of t / is  included in {z" + v < 0} for any ~ > 0. 

Therefore  j'(o, :> • T] (Z ~ + v)dt/_-< 0. By the mono tone  convergence theorem 
j'(o, ~) x [o, Ti (Z + v )d t /<  0. Hence j(o, :) • [o. r]( z + v )d t /=  0 for all T > 0. This implies 
(iv) because the measure ~ is concentra ted on (0, 1)x IR+, by definition. 

Step 4. Proof of (5) Let to > 0. For  any 0 < 5 < to we define the function 

1 { ~ ( t - t o + & )  if t o - 5 < t < _ t o  

1 
~ ( t ) =  ~( to+&--t )  if to =< t_-< to + & 

0 otherwise .  

Let r  1)). 
Choosing 0(x,  t) = O~(t)~(x) in (15), we obtain 

to to+& ro+6~ 

- - ~ - :  ~ (q~ ,z t )d t+c  ~-1 j ((~,zt)dt+ ~ Oa(t)(AO, zt)dt 
to  - & to  to  - 

to+& to+b 1 

+ [o O,(t) (f(zt + vt), r  = .[ ~ O~(t)r d t ) .  
to-c~ to-& 0 
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Lett ing ~ tend to zero yields I~oO(X)rl(dxx{to})=O, which implies 
t/((0, 1) x {to}) = 0, for any to > 0. The  same argument  can be used if to = 0. In this 
case one uses the proper ty  z(x, O) = O. 

Step 5. Proof of (6) For  any 6 > 0 we define the following function 

q~(x) = 

0 

1 
? (x  - ,~) 

i f O N x < f o r  1 - 6 < x N l  

i f 6 N x < 2 6  

i f 2 6 N x N 1 - 2 6  

i f l - - 2 6 < x N 1 - - 6 .  

1 

~ ( 1 -  - x )  

Set q~a(x) = x(1 - x)~)a(x). 
We can apply the equali ty (15) to O(x, t) = ~o(x) l[o,r](t) and we obtain 

T T T 1  

(~ '  ZT) "~- f (Adj,, zt)dt + I (dj~,f(zt + vt))dt = 5 ~ q~a(x)t/(dx, d t ) .  
0 0 O 0  

It just remains to prove that  

i sup (A~)a, zt)dt < oo, 
~ > 0  

and this follows from the equality: 

(~S~ 1 ~ [  ~ ) 
- (1 -- 2x)zt(x)dx (A~a, z,) = 2(4~a, zt) - 2 (1 - 2x)zt(x)dx -61-za 

0 

- (z,(6)(1 - 6) - z,(26)2(1 - 26) - z,(1 - 26)2(1 - 26) 

+ z t ( 1  - ~ ) ( 1  - ~ ) ) .  

2.3 Uniqueness of the solution 

Suppose that  (z, t/) and (L t~) are two solutions. Define ~ = z - ~. Then  for any 
infinitely differentiable function ~,: (0, 1) x IR+ --. IR whose support  is contained in 
[6, 1 - 6] x IR+ (for some fi > 0), and for all T > 0, we have 

Ion, i at + S + (I(z, + 
0 ~ x / J t r l / ]  0 T 1 0 (16) 

= ~ f r t)n(dx, dt) - ~ l r t)0(dx, d t ) .  
0 0  0 0 

Fix 6 > 0 and let q~: [0, 1] ~ IR+ be an infinitely differentiable function whose 
suppor t  is contained in [fi, 1 - 6]. 

Let  e: IR ~ IR+ be an infinitely differentiable function, which is symmetric 
(i.e., e(x)= e ( - x ) ) ,  its suppor t  is contained in I ' - 1 ,  +1 ] ,  ~_+~ a(x)dx = 1 and 

/1 n 
it is nonnegat ive definite (i.e., ~ i=1 ~ j = l  e(x~-xj)ylyj  > 0 for any n > 1, 
{xl . . . .  , xn} c IR and { Y l , . . . ,  Yn} c IR). 
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By means of the function e(x) we introduce the approximation of the identity 
e.(x) = ne(nx). 

Define e..,.(x, t) = e.(t)e,.(x) and 

0 . ,  m = [(~m) * ~ . , . d  ~o. 
That means, 

t+(1/n) i ) 
t). , , .(x, t) = ~ ~(y, s)q~(y)e.(t - s)em(x - y ) d y d s  q~(x) , 

(t-(1/n)) + 0 
(17) 

where we assume (I/n) < 6. 
W e  can choose ~ = O.,m in (16). We are going to study the asymptotic 

behaviour of each term as n and m tend to infinity. 

(a) 

(b) 

lim (~. ,m(T),  ~(T)) = t1 ~(T)~o [I 2 (18) 

lim i(8O~t~(t) ~ t ) d t = 0  
n, m---~ oO 0 

(19) 

In fact, we have 

T t+(1/n) ( ) 
= ~ f e'.(t - s) ~ ~(y ,  s)~o(y)~m(x - y )~o(x)~(x ,  t)dxdy d s d t .  

0 (t-(i/n)) + [ 0 ,  1] 2 

The function Fro(s, t) = ~o,112 r s)cp(y)e,.(x - y)~o(x)~(x, t ) d x d y  is symmetric 
(namely, F, . ( s , t )=F , . ( t , s ) ) .  Therefore, the integral Srr( t+(1/") )^Te ' ( t - - s )  J ( t  - ( l / n ) )  + 

F,.(s, t )dsd t  vanishes due to the property Y(s) = - g ( - s ) .  
Hence 

(c) 

T-(1/n) T 

C 
< m  

t~ 

e'~(t -- S)Fm(S, t )dsd t  

lim S S ~9.,m(x, t)~(dx, dt) - ~.,~(x, t)0(dx, dt) 
n, r n ~ o o  \ 0  0 0 0 

T I  T I  

= ~ I ~(x, 0~o(xl2~(dx, at) - I I ~(~, t)~o(~)2~( dx, dr) 
O 0  0 0  

T I  T 1  

= - ~ ~ ~(x, tl~P(x)2tl(dx, dt) - ~ ~ z(x, t)q~(xl20(dx, dr) -< 0 
O0 O0 

(20) 
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where the second equality follows 
~Q (~ + ~ ) d O  = o. 
(d) 

from 

D. Nualart and E. Pardoux 

the properties So (z + v)dt/= 0 and 

T 

lim S (f(z, + v,) - f ( 2 t  + vt), O.,m(t))dt 
n,  m ~  oo 0 

T 
= S (f(zt + v,) - f ( i t  + v,), (zt - 2t)qo2)dt > 0 (21) 

o 

because f is nondecreasing. 
(e) It holds that 

r 1 i i ~(x, t)2((p2)"(x)dxdt. limm~minf ,-~lim o5 (AO,,,,(s), ~s)ds > - ~ o o 

In fact, first notice that 

T T 
lim S (AO,,m(s), 4s)ds = I (AO~(s), 4s)ds, 
n--'m 0 0 

where 

(22) 

t/Im(X't)=( iO ~(y, t)cp(y)e, ,(x-y)dy)~o(x).  

Suppose first that 4 is a smooth function. In this case, integrating by parts and 
using the fact that e is nonnegative definite we obtain 

(AOm(t), ~t) = (A { [(4,~o)* ~,,d ~o }, 4,) = ( (r  * ~m)r 4;) + ( ( (4~o) ,  ~m)r 4;) 

= ( (4;~O)*~m,  ~04;) + ((4t~0')* Era, q~;) + ( (~0)*  ~,., ~0'4;) 

_--> ((4,~0')* ~ ,  ~04;) + ((4,q~)* ~.,, ~0'~;) 

= ( ( ~ , q ~ ' ) *  e . , ,  ~0~;) - -  ((4,~,0)* ~, . ,  ~o"4,) 

- -  ( ( 4 ; 0 ) *  e ~ ,  ~0'4,) - -  ( ( 4 , O ' ) *  em, q~'4~) 

= - -  ((~,~0) * era, q ; '4 , )  - -  ( (4 ,~o')  * era, ~0'~,). 

Approximating 4 by smooth functions we obtain the inequality 

(AO~( t ) ,  4,) >= - ( ( ~ t e )  * em, ~o"4,) - ((~,~o') * era, ~o'4,) , 

and if we let m tend to infinity we get (22). 
Consequently, from the relations (a), (b), (c), (d) and (e) we deduce 

~(x, T)2q~(x)2dx <= dt ~(x, t)2((o2)"(x)dx , (23) 
o o 
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for all T >  0 and any function opeC2((0, 1)). This inequality still holds if (pz is 
a function with compact support such that @2), is a measure. Suppose that 

, F ( x )  = 

f l ( x -  a) if a < x < a + e  8 

1 if a + e < x < b  

l ( b + e  x) i f b < x < b + ~  

0 i f x ~ [ a , b + e ]  ~, 

w h e r e 0 < a < a + e < b < b + e <  1. From (23) we have 
1 T 

~ ~(x, Tl2~o(x)2dx <-_ 
0 0 

Set fi(x) = ~r ~(X, t)2dt. Then 

fi(a) - fl(a + e) -- fi(b) + fi(b + ~) > 0 ,  
that means, 

fl(b + ~) - fi(a + ~) > fl(b) - fi(a) . 

By taking e = b -  a we get 

fl(a + 2e) - fl(a + e) >= fl(a + e) -- fl(a) . 

dt{~(a, t) 2 - ~(a + 5, t) z -- ~(b, t) 2 + ~(b + e, t) 2 } 

(24) 

So, fl(kn+-I ) -  - f l ( ! ) > 0 f o r =  k = 0 , 1 , . . . , n - l ,  because f l ( ~ ) - f i ( 0 ) =  

f i ( ~ ) > O .  O n t h e o t h e r h a n d f l ( l ) = O .  T h e r e f o r e f i ( k ~  1)- - f l ( ! ) - - O f o r a l l  

k and n and this implies fi -= 0. So ~. - 0, and from (16) we deduce t /=  ~ which 
completes the proof of uniqueness. 
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