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1. Introduction

Given a multi-dimensional Brownian motion B = (B;) and a proper (p, y)-semiconvex func-
tion ¢ (for the definition the reader is referred to Definition 11 from the next section) defined over
a possibly non-convex domain Dom(¢) and a random variable £ independent of B, which takes
its values in the closure of Dom(g), we are interested in the following multi-valued stochastic
differential equations (also called stochastic variational inequality) driven by the Fréchet subdif-
ferential operator 0~ ¢:

t !
Xt—f—Kt:S—i—/F(s,Xs)ds—f—/G(s,Xs)st, t>0,

0 0
dK; (@) € 3~ ¢ (X; (w)) (dr).

(D

However, in order to study the above system, we shall first solve the following deterministic
counterpart of the above equation. Given a continuous function m : Ry — R? and an initial value
xo € Dom(g) we look for a pair of continuous functions (x, k) : Ry — R24 such that

t
x(t)+k(t):xo+/f(s,x(s))ds+m(t), t>0, 2
0

dk(t) € 0" ¢ (x (1)) (dt)

(for the notation dk (t) € 3~ ¢ (x (¢)) (dt) see Definition 11 and Remark 15).
With the particular choice of f =0 and ¢ as convexity indicator function of a closed domain
E CRY,

0, ifxekFE,

p(x)=1g (x):= too. ifx¢E.
equation (2) turns out to be just the Skorohod problem, i.e., a reflection problem, associated
to the data xg, m and E. For this reason we will refer to equation (1) as Skorohod equa-
tion.

The existence of solutions for both the Skorohod equation (2) and for the stochastic equa-
tion (1), has been well studied by different authors for the case, where ¢ is a convex function. In
this case 9~ ¢ becomes a maximal monotone operator and the domain Dom(¢) in which the so-
Iution is kept is convex. By replacing d ¢ by a general maximal monotone operator A, E. Cépa
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generalized in [14] the above equation in the finite dimensional case, while A. Rdgcanu [32]
investigated the infinite dimensional case.

Deterministic variational inequalities with regular inputs, i.e., deterministic equations of
type (2), with convex ¢ and m = 0 have been well studied and the corresponding results have
by now become classical. As concerns the non-convex framework, the reader is referred to
A. Marino, M. Tosques [26], M. Degiovanni, A. Marino, M. Tosques [19], A. Marino, C. Sac-
con, M. Tosques [25] or R. Rossi, G. Savaré [36,37]. They used the concept of ¢-convexity
(see, e.g., [26, Definition 4.1]) and they provide the existence, uniqueness and continuous de-
pendence on the initial data of the solutions for the evolution equation of type (2) in the case
m=0, f=0(or f(t,x(t)) = f () in [37]). We specify that our notion of (p, y)-semiconvex
function corresponds to the particular case of a ¢-convex function of order r = 1 with
¢ (x,y,0(x),9(y),a) = p+ yl|a|. This particular form was required by the presence of the
singular input dm /dt.

Related to our problem is the research on non-convex differential inclusions, see, e.g., F. Pa-
palini [30], T. Cardinali, G. Colombo, F. Papalini, M. Tosques [10] and A. Cernea, V. Staicu [15].
In [15] it is proved the existence of a solution for the Cauchy problem

X' €—=0"9p(x)+ F )+ f(t,x), x(0)=uxo,

where ¢ is a ¢-convex function of order r = 2, F is an upper semicontinuous and cyclically
monotone multifunction and f is a Carathéodory function.

The particular case of a reflection problem, i.e., with ¢ = Ir, was extended to that of moving
domains E (t), t > 0, by considering the following problem (which solution is called sweeping
process):

X' () + Negoy (x(@®)> f(t,x(@), t>0,
x (0) = xo,

where Ng() (x (1)) = 07 g (x (¢)) is the external normal cone to E (¢) in x (¢).

This problem was introduced by J.J. Moreau (see [29]) for the case f =0 and convex sets
E (1), t > 0, and it has been intensively studied since then by several authors; see, e.g., C. Cas-
taing [11], M.D.P. Monteiro Marques [28]. For the case of a sweeping process without the
assumption of convexity on the sets E (), t > 0, we refer to [ 3,4,16,18]. The extension to the case
f # 0 was considered, e.g., in C. Castaing, M.D.P. Monteiro Marques [12] and J.F. Edmond, and
L. Thibault [21] (see also the references therein). Another extension was made in [27] and [34]
by considering the quasivariational sweeping process

X' (1) + Negx@y (x(1))30, >0,
x (0) = xo.

The works mentioned above concern the case with vanishing driving force m = 0. Let us discuss
now the case of equation (2) with singular input dm /dt. The associated reflection problem with
singular input dm /dt has been investigated by A.V. Skorohod in [39] and [40] (for the particular
case of £ = [0, 00)), by H. Tanaka in [41] (for a general convex domain E), and by P.-L. Lions
and A.S. Sznitman in [24] and Y. Saisho in [38] for a non-convex domains. Generalizations from
the reflection problem (with d¢ = d/Eg) to the case of d¢ for a general convex function ¢, and
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even to the case of a maximal monotone operator A, were discussed by A. Riscanu in [32],
V. Barbu and A. Régcanu in [2] and by E. Cépa in [13] and [14].

Concerning the stochastic equations, we shall mention the papers [24] by P.-L. Lions and
A.S. Sznitman and [38] by Y. Saisho, but also [20] by P. Dupuis and H. Ishii for stochastic
differential equations with reflecting boundary conditions. On the other hand, A. Rascanu [32],
I. Asiminoaei and A. Rédgcanu [1] as well as A. Bensoussan and A. Rascanu [5] studied stochastic
variational inequalities (1) in the convex case.

More recently, A.M. Gassous, A. Rdscanu and E. Rotenstein obtained in [22] existence and
uniqueness results for stochastic variational inequalities with oblique subgradients. More pre-
cisely, in their equation the direction of reflection at the boundary of the convex domain differs
from the normal direction, an effect which is caused by the presence of a multiplicative Lipschitz
matrix acting on the subdifferential operator. In the authors’ approach it turned out to be crucial
to pass first by a study of the Skorohod problem with generalized reflection.

The objective of the present work is twofold: We generalize both the (non-)convex reflec-
tion problem as well as convex variational inequalities to non-convex variational inequalities.
Some studies in this direction have been made already by A. Ragcanu and E. Rotenstein in [33]:
a non-convex setup for multivalued (deterministic) differential equations driven by oblique sub-
gradients has been established and the uniqueness and the local existence of the solution has been
proven.

Our approach here in the present manuscript is heavily based on an a priori discussion of
the generalized Skorohod problem (2) with f =0 and a (p, y)-semiconvex ¢. We give useful a
priori estimates and prove the existence and the uniqueness of a solution (x, k) for the generalized
Skorohod problem:

x(@)+k(®)=xo+m(), =0, 3)
dk (1) €9~ ¢ (x (1)) (d1),
where xo € Dom (¢), the input m is a continuous function starting from zero, and 9~ ¢ is the
Fréchet subdifferential of a proper, lower semicontinuous and (p, y)-semiconvex function ¢.
Here the set Dom (¢) is not necessarily convex, but however two assumptions are required:

1. Dom (¢) satisfies the uniform exterior ball condition (see Definition 1);
2. Dom (¢) satisfies the (y, 8, o)-shifted uniform interior ball condition, i.e.

there are some suitable constants y > 0 and §, ¢ > 0 such that, for all y € Dom (¢), there are
some Ay, € (0, 1] and vy € R4, |vy| <1 with i, — (|vy| +)»y)2)/ > ¢ and

E(x =+ vy, Ay) C Dom(¢), forall x € Dom (¢) ﬂE(y, 8).

We observe that this condition is fulfilled if, in particular, the domain Dom (¢) satisfies the uni-
form interior drop condition (see Definition 5). It is worth pointing out that the shifted uniform
interior ball condition is comparable with assumption (5) of P-L. Lions, A.S. Sznitman [24]
(or Condition (B) from [38]) (see the Remarks 20-21).

The applicationm +— x : C ([0, T1; IRd) —C ([O, T1; [Rd), which associates to the input func-
tion m the solution x of (3), will be proven to be continuous. This allows to derive the existence
of a solution to the associated stochastic equation with additive noise M = (M;):

Please cite this article in press as: R. Buckdahn et al., Stochastic variational inequalities on non-convex domains, J.
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Xi (@) + Ki () =& (0) + M; (w), 1 20, 0 € Q,

dK; (w) € 979 (X; (w)) (d1). @
After having the existence, the uniqueness and properties for the equations (3) and (4), we will
be able to extend the study to the more general equations (2) and (1), where f (respectively F)
is continuous, satisfies a one-sided Lipschitz condition with respect to the second variable and a
boundedness assumption.

The article is organized as it follows: The next section is devoted to a recall of such basic no-
tions as those of as a semiconvex set, a (p, y)-semiconvex function or a Fréchet subdifferential.
Some notions, like for instance that of a (p, y)-semiconvex function, are illustrated by an exam-
ple. In Section 3 we give the definition of the solution to the generalized Skorohod problem (3),
we prove the existence and the uniqueness of a solution (x, k) and we give some useful a priori
estimations. Moreover, we extend equation (3) to the stochastic case (4). Section 4 is devoted to
the proof of the both main results of Section 3. Finally, the Sections 5 and 6 study the extension
of the results established in Section 3 to the equations (2) and (1). Appendix A is devoted to
important auxiliary results such as applications of Fatou’s Lemma, some complements concern-
ing tightness in C (|R+; R4 ) or a very useful forward stochastic inequality, which are used in our
approach.

2. Preliminaries

We introduce first some definitions and results concerning the notions of normal cone, uniform
exterior ball conditions, semiconvex sets, (o, y)-semiconvex functions and Fréchet subdifferen-
tial of a function.

Here and everywhere below E will be a nonempty closed subset of R?. Let Ng (x) be the
closed external normal cone of E at x € Bd(FE) i.e.

d 5
Ng (x) = {u € RY : fim SEX O _ |u|},
SN0 )

where dg (z) := inf{|z — x| : x € E} is the distance of a point z € R? to E.

Definition 1. Let ryp > 0. We say that E satisfies the ry-uniform exterior ball condition (we write
it ro-UEBC for brevity) if

B(x+u,rg) NE=@, where B (x,r) denotes the ball from RY of center x and radius r
or equivalently if
NEg (x) #{0} forall x € Bd(E)
and
forall x € BA(E) and u € Ng (x) such that |u| = rg it holds thatdg (x +u) =rg.

We remark that for all v € Ng (x) with |v| < rg we also have dg (x + v) = |v].

Please cite this article in press as: R. Buckdahn et al., Stochastic variational inequalities on non-convex domains, J.
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Definition 2. Let ¥ > 0. A set E is y-semiconvex if for all x € Bd (E) there exists x € RI~ {0}
such that

(f.y—x)<y|#[ly—x*. V¥yeE.
We have the following equivalence:

Lemma 3. (See [31, Lemma 6.47].) Let ro > 0. The set E satisfies the ro-UEBC if and only if E
is 2170—semiconvex.

For a given z € R? we denote by I1g (z) the set of elements x € E such that dg (z) = |z — x]|.
Obviously, I1g (z) is nonempty since E is nonempty and closed. Moreover, under the rp-uniform
exterior ball condition, it follows that the set I1g (z) is a singleton for all z such that dg (z) < rp.
In this case 7 (z) will denote the unique element of I1g (z) and it is called the projection of z
on E. We recall the following well-known property of the projection.

Lemma 4. Let the ro-UEBC be satisfied, € € (0,ry) and U, (E) := {y eRY:dp (y) < 8} denot-
ing the closed e-neighborhood of E.
Then:

o the closed external normal cone of E at x is given by

A Lo 2
Ne @)= i8:(#y—x)= —|§|ly 2", Yy € E
ro

e the projection T restricted to U, (E) is Lipschitz with Lipschitz constant L =ro/ (ro — €);

and
o the function d% () is of class C'on U, (E) with

VB @ =2 -m @) and - ()€ Ng (rE (), Ve €Ue (B).

Let us introduce now the notion of drop of vertex x and running direction v.
Letx,ve [Rd, r > 0. The set

D, (v,r) :=conv{x,§(x+v,r)}={x+t(u—x):u€§(x+v,r), te[O,l]}

i_s called (v, r)-drop of vertex x and running direction v. Remark that if |[v| <r, then Dy (v,7) =
B(x+wv,r).

Definition 5. The set E C R? satisfies the uniform interior drop condition if there exist g, hg > 0
such that for all x € E there exists v, € R? with |vy| < ho and

Dy (vy,r0) CE

(we also say that E satisfies the uniform interior (hq, o)-drop condition).

Please cite this article in press as: R. Buckdahn et al., Stochastic variational inequalities on non-convex domains, J.
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Remark 6. It is easy to see that if there exists ro > 0 such that E€ satisfies the ro-UEBC, then E
satisfies the uniform interior (4, ro)-drop condition.

Indeed let x € Bd (E€) = Bd (E) and u, € Ngc (x) with |uy| =rg.

Then

Dy (ux,r9/2) C Dy (uy,10) ZE(X—FL{)C,F()) CE.

It is easy to see that, for any x € int (E), there exists a direction v, € R< such that |vx| < rp and
D, (v, r9/2) CE.

We state below that the drop condition implies a weaker condition, but is not equivalent with
this (for the proof see Proposition 4.35 in [31]).

Proposition 7. Let the set E be as above with Int (E) # (. If set E satisfies the uniform interior
(ho, ro)-drop condition then E satisfies the shifted uniform interior ball condition, which means
that there exist y > 0 and §,0 > 0, and for every y € E there exist Ay € (0,1] and v, € R4,
|vy‘ <1 such that

@ dy=(v|+2)%y 2o,

_ _ 5
(i) B(x+vy,Ay)CE, VYxeENB(y59) ©)

(this condition will be called (y, §, 0)-SUIBC).

Example 8. Let E be a set for which there exists a function ¢ € Cg ([Rd) such that

(i) E={xeR:¢(x)=<0},
(i) Int(E)={x eR?: ¢ (x) <0},
(iii) BA(E)={x €R?:¢(x) =0} and [V¢ (x)| =1, Vx € Bd(E).

Then the set E satisfies the uniform exterior ball condition and the uniform interior drop condi-
tion.

Indeed, using the definition of E we see that, for x € Bd(E), the gradient V¢ (x) is a
unit normal vector to the boundary, pointing towards the exterior of E. Therefore, for any
x € Bd(E), the normal cone is given by Ng (x) = {c¢V¢ (x) : ¢ = 0} and Ngc (x) = {—cVe (x) :
c>0}.

Since ¢ (y) <0=¢ (x),forall y € E, x € Bd(E),

1

(V¢(X),y—X)=¢>(y)—¢(X)—/(V¢(X+/\(y—X))—V¢(X),y—X)dk

0
<Mly—x>=M|V$ (x)|ly — x|,

which means, using Definition 2 and Lemma 3, that E satisfies ﬁ—UEBC.
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Since ¢ (y) >0=¢ (x), forall y € E°, x € Bd(E),

1

<—V¢<x>,y—x>=—¢<y>+/<V¢(x+x(y—x))—w)(x),y—x)dx
0
<Mly—x>=M|-V¢ )|y — x|,

which yields that E€ satisfies ﬁ—UEBC and consequently (see Remark 6) E satisfies the uni-
form interior drop condition.

If E denotes a closed subset of R¥ let E. be the e-interior of E, i.e.
={x € E:dgc (x) > ¢}.

Example 9. Let E C RY be a closed convex set with nonempty interior. If there exists ro > 0 such
that (the ro-interior of E) Ey; # @ and ho = sup,g dEr0 (z) < oo (in particular if E is a bounded
closed convex set with nonempty interior), then E satisfies the uniform interior (hg, rg)-drop
condition.

Moreover for every 0 < § < 2(1+h 5 A 1, E satisfies (y, 8§, 0)-SUIBC with Ay =0 =4.

For the proof, let y € E, § the projection of y on the set E,; and v, = 1+h0 (y y) Hence
]y—y‘ < hy, vy‘ <1 and for all x eEﬂB(y,S)

B (x+vy,8) CB(y+ vy, — 0) cconv {y, B (5,70)} = Dy (5 — y.r0) C E.

’

14+h

Let ¢: R — (—00, +00] be a function with domain defined by
Dom (¢) := {v eR? o (v) < +oo} .

We recall now the definition of the Fréchet subdifferential (for this kind of subdifferential oper-
ator see, e.g., [26] and the monograph [35, cap. VIII]):

Definition 10. The Fréchet subdifferential 0~ ¢ is defined by:

a1) "¢ (x) =0, if x ¢ Dom (¢p) and

ap) for x € Dom (¢),

P —9x)— (% y—x)
ly — x|

3" (x)={% eR?: liminf > 0.
y—>Xx

Taking into account this definition we will say that ¢ is proper if the domain Dom (¢) # ¢
and has no isolated points.
We set

Dom (8_(p) = {x eRY: 97 (x) # (/]} ,
3 ¢={(x,%): xeDom(07¢), £ €0 @ (x)}.

Please cite this article in press as: R. Buckdahn et al., Stochastic variational inequalities on non-convex domains, J.
Differential Equations (2015), http://dx.doi.org/10.1016/j.jde.2015.08.023

© 0O N O O A WO N =


Original text:
Inserted Text:
\cite {ro-we/97}, cap. VIII


© 0O N o o~ WO N =

JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.9 (1-44)

R. Buckdahn et al. / J. Differential Equations eee (eeee) eee—eee

In the particular case of the indicator function of the closed set E,

0, ifxekE,

¢ (x)=1g (x) :Zi too. ifx¢E,

the function ¢ is lower semicontinuous and the Fréchet subdifferential becomes

X,y —x
0 I (x)={)2e[Rd: lim sup wfo}.
y—x, yeE ly — x|

Moreover, in this particular case we deduce that, for any closed subset E of a Hilbert space,
0" Ig (x) = Ng (x)

(for the proof see Colombo and Goncharov [17]).

9

(6)

Definition 11. Let p, y > 0. The function ¢ : R — (—o0, +00] is said to be (p, ¥ )-semiconvex

function if

a;) Dom (¢) is y-semiconvex,

a2) Dom (37 ¢) # 0,

a3) Forall (x,£) € 9"¢ and y € R?:

foy—x)+to@ <o+ (p+v|8])ly—x.

Remark 12. Let E be a nonempty closed subset of RY. We have:

1. Ig is (0, y)-semiconvex iff E is y-semiconvex (see (6) and Definitions 2 and 11; we also
mention that in the definition of y-semiconvexity we can take x € E, but in this case X should

be taken 0).

2. Ig is (0, y)-semiconvex (or, see [26, Definition 4.1], ¢-convex of order r = 1 with
o(x,y,0(x),9(y),a) =y |a|) iff there ¢xist §, u > 0 such that x = dg (x) + |x|2 is

convex on B (y, §), for any y € E (see [31, Lemma 6.47]).

3. A convex function is also (o, y)-semiconvex function, for any p, y > 0 (see Definition 11

and the definition of the subdifferential of a convex function).

4. If E is convex, then E is y-semiconvex for any y > 0 (see the supporting hyperplane Theo-

rem 4.1.6 from [7]).

5. If E has nonempty interior and is O-semiconvex, then E is convex (see Definition 2 and

[8, Exercise 2.27]).

6. If ¢ : RY — (—o0, +00] is a (p, y)-semiconvex function, then there ¢xist a,b € R4 and

¢ € R such that

oM +aly?+bly*+c=>0, forallyeR?

Indeed, by Definition 11, we have, for a fixed (xo, )20) €d pia=p+y |)?0
|%0| and ¢ = a |xo|? + (%0, x0) — @ (x0).

,b=2al|xo| +
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Example 13. If the bounded set E satisfies the ro-UEBC and g € c! ([Rd) (org:RY—> Risa
convex function), then ¢ : R — (—00, +00] given by

o(x):=1pgx)+gx)

is a lower semicontinuous and (2L70 ﬁ)-semiconvex function, where |Vg (x)| < L, for any
x € E (or |0g (x)| < L, for any x € E). Moreover

lp(x)—eWMI<Llx—yl|, Vx,y€Dom(p)=E.

In order to define the solution for the deterministic problem envisaged by our work it is nec-
essary to introduce the bounded variation function space.

Let T >0, k:[0,T] — R4 and D be the set of the partitions of the interval [0, T'].

Set

n—1
Satk) =Y Ik(tiy1) — k(1)
i=0
and
$kdr = sup Sa(k), (7)
AeD

where A:0=rmy<t1<---<t,=T.
Write

BV([0,T1;RY) = {k: [0, T]—> R? : $k$7 < oo}

The space BV ([0, T']; RY) equipped with the norm || k| |BV([0,T];[R<1) := |k (0)]+ ¢$k$ 7 is a Banach
space.
Moreover, we have the duality

(€10, T1; R)* = {k € BV([0, T1; R?) : k(0) = 0}

given by the Riemann—Stieltjes integral

T
(y,k)'—>f<y(l),dk(t))-
0

We will say that a function k € BV ,c(R4; [Rd) if, forevery T > 0, k € BV([0, T]; [Rd).

Please cite this article in press as: R. Buckdahn et al., Stochastic variational inequalities on non-convex domains, J.
Differential Equations (2015), http://dx.doi.org/10.1016/j.jde.2015.08.023

© 0O N O O A WO N =

33


Original text:
Inserted Text:
satisfy


© 0O N o o~ WO N =

JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.11 (1-44)
R. Buckdahn et al. / J. Differential Equations eee (eeee) eee—eee 11

3. Generalized Skorohod problem

The aim of this section is to prove the existence and uniqueness result for the following deter-
ministic Cauchy type differential equation:

dx(t)+0 @ x @) (dt)y>dm (), t>0,

8
x(0)=xo, ®)
where
(i) xo €Dom(p), ©)
(i) meC (R RY), m(0)=0,
and
¢ :R? — (—o00, +00] is a proper lower semicontinuous
and (p, y) -semiconvex function. (10)

Definition 14 (Generalized Skorohod problem). A pair (x, k) of continuous functions x,k :
R, — R?, is a solution of equation (8) if

(j) x()eDom(p), Y£>0and ¢ (x () €L} (Ry),
(i) k€BVioe (Re3RY), k(0) =0,

Ui x@®)+k@=xo+m(@), Vt>0,

(Gv) YO<s<t, Vy:Ry — R? continuous:

' t t 11
f<y(r)—x(r>,dk(r)>+f¢<x<r>>drsfmy(r))dr

N N N

t
+/|y<r)—x(r)|2<pdr+yd$k¢r).

In this case the pair (x, k) is said to be the solution of the generalized Skorohod problem
(8_<p; X0, m) (denoted by (x, k) =SP (8_g0; X0, m)).

If ¢ = Ig then 0"¢ = Ng and we say that (x, k) is solution of the Skorohod problem
(E; xo, m) and we write (x, k) = SP (E; xo, m).

Remark 15. The notation
dk (1) € 9" ¢ (x (1)) (d1)
means that x, k : Ry — R? are continuous functions satisfying conditions (11-}, jj, jv).
The next result provides an equivalent condition for (11-jv) and will be used later in the proof

of the continuity of the mapping (xg, m) — (x, k) =SP (8_<p; X0, m) and for the main existence
result in the stochastic case.
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Lemma 16. We suppose that ¢ satisfies assumption (10) and let x, k : R;. — R? be two continu-
ous functions satisfying (11- ], jj). Then the pair (x, k) satisfies (11-jv) if and only if there exists
a continuous increasing function A : Ry — R, such that

(jv/) YO <s <t Vy: Ry — R? continuous:
t

t t
/<y(r)—x<r>,dk<r>>+f¢<x<r>>drsfmy(r))dr

N s s

t
+f|y(r> —x(r)*dA, . (12)
S
Proof. We only need to prove that (12) = (11-jv).
Denote
Qr:=r+ Tk, + A,

andletA,n:Ry — [0,1]and 6 : R — R9 with |6 (r)| <1, for any r € R4, be some measurable
functions (given by the Radon—Nikodym’s theorem) such that

dk(r)=60@r)dQ,, dr=A(r)dQ, and dA,=n(r)dQ,.

Clearly d $k¢, =10 (r)|d Q. From (12) we deduce that, for all r € R, ¢ > 0 and z € Dom (¢)

t+e¢ t+e t4-e

/<z—x(r>,e<r>>er+/go(x(r))Mr)ersmz)/A(r)er

r—& 1—& e t—e¢
+/|z—x(r)lzn(r)er
t—e

and therefore

t+e tt+e tte t+e

(Z,/Q(V)dQﬁ—/(X(r),G(r))erJr/w(X(V))K(r)erSw(z)/k(r)er
t—e t—¢ t—e t—e
t+e t+e t+e
+|Z|2/n(r)er—2<z,/X(r)n(r)er>+/Ix(r)lzn(r)er. 13)
t—¢ t—e t—¢e
1
Multiplying by ———— and using the Lebesgue—Besicovitch differentiation theorem,

O(t—e,t+¢))

we deduce, passing to the limit in the seven above integrals, that there exists 'y C Ry with
fFu dQ, =0, such that for all z € Dom (¢) and r € R4 \ Iy

E=x(r), 0 +exENAF) Q@A) +lz—x ).
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Hence, from the definition of the Fréchet subdifferential we obtain

0(r)e B_Iw(x ), Vrelx\I

and
o)
—— €0 ¢(x(r), Vre®Ri~Ty\Ty,
A(r)
where ') = {r > 0: 4 (r) =0} with [, dr = [, 2 (r)dQ, =0.
Since IW is (0, y)-semiconvex,

(Y () =x(),0m)) <y10Mly () =x ()P, VreTa\T.

On the other hand, since ¢ is a (p, y)-semiconvex function, we have for any continuous y :
Ry — RY,

0 0
@) —x@, %Hw(w» e+ —x P (p+y %()

Vre(Re~T)\Ty.

Therefore (with the convention 0 - (4-00) = 0) we deduce that, for all r e Ry Iy,

(y(@)=x(),0)+ox@)A(r) =@y )r(r)
+1y () —x (N (02 () + 7 16 (F)]) .

Integrating on [s, ] with respect to the measure d O, we infer that (11-jv) holds. O
Lemma 17. If dk (t) € 0~ ¢ (x (¢)) (dt) and dk (t)yed ¢ ()? (t)) (dt), then forall 0 < s <t¢:

t

[ v =5 (20dr+vasis, +yasks,)
t

+/(x(r)—£(r),dk(r)—dl%(r))zo. (14)

N

Proof. The conclusion follows from (11-jv) written for (x, k) with y = x and for (x, k) with
y=x. 0O

Notation 18. Let ||x||;;. ;1 := sup |x;| and x|, := x|l
rels,t]

Theorem 19 (Uniqueness). Let assumptions (9) and (10) be satisfied. If (x, k) = S’P(a_go; X0, m)
and (£, k) = SP(0~¢; X9, m) then forall t > 0:
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Jx =22 <2( ro — ol + m — |+ 2 o — ], 1k — 1,
-exp(8pt +4y $kd, +4y Lk b0 . (15)
In particular the uniqueness of the problem SP (8_<p; X0, m) follows.

Proof. We clearly have

Jx (1) —m (1) = & (0) + 10 (0)]* = |x0 — o]
t

t
~|—2/(m(r) —m(r),dk(r) —dk(r)) =2 | (x (r) = % (r), dk (r) — dk (r)).
0 0

Using (14) it follows that

Hx) =) =m0 =m0 <|x @) =m@) =2 @)+ @]

< |xo = 2o +2m s, ¢ k — & ¢,

t
+2/ lx (r) —)e(r)|2(2pdr+yd¢k¢,+yd¢1€¢,),
0

which implies, via Gronwall’s inequality, the desired conclusion. O

To derive the uniform boundedness and the continuity of the solution of the generalized Sko-
rohod problem we need to introduce some additional assumptions:

lp(x) —¢ (I <L+Llx—yl, Vx,yecDom/(p) (16)
and
Dom (¢) satisfies the (y, §, o) -shifted uniform interior ball condition a7
(for the definition of (y, §, 0)-SUIBC, see definition (5)).
We mention that assumption (16) is obviously satisfied by the function ¢ given in the Exam-
ple 13.
Using Proposition 7 we see that assumption (17) is fulfilled if we impose that
Dom (¢) satisfies the (%9, rg) -drop condition, (18)
condition which can be more easily visualized.
Note that the lower semicontinuity of ¢ and the assumption (16) clearly yield that the Dom (¢)

is a closed set, and, from the assumption (17) it can be derived that

Int (Dom (¢)) # @.
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Remark 20. Technical condition (5) from assumption (17) will provide an estimate for the to-
tal variation of k (see Lemma 29). On the other hand, assumption (5) from P-L. Lions and
A.S. Sznitman [24] (or [38, Condition (B)]) has the same role (see [24, Lemma 1.2]).

In the particular case ¢ = I, as in [24], it is essentially ysed in the representation of the
bounded variation process k and in our case it is ysed in the subdifferential inequality (11-jv).
Hence assumption (17) is required by the transition from the particular case of the indicator
function to the case of a general convex l.s.c. function ¢.

Remark 21. We notice that assumption (18) is similar to Condition (B’) from [38] (the uniform
interior cone condition). But the running direction from the drop condition (18) is not required
to be uniform with respect to the vertex, like in [38, Condition (B’)].

In order to prove some a priori estimates, let us introduce the following notation: for y €
C ([0, T1; RY) and & > 0 write

By (¢) = ¢ +my (e),
where my, (¢) is the modulus of continuity, given by
my (¢) :=sup{ |y (@) —y(s)|: |t —s| <e, 1,5 €[0, T1}.

The function py : [0, T] — [0, 1y (T')] is a strictly increasing continuous function and therefore
the inverse function u;l 1[0, 1y (T)] — [0, T] is well defined and is also a strictly increasing
continuous function. Using this inverse function let C be a positive constant and

A = 1/1," (8% exp[—C (1 +T + [ImlI)]).
Crm=exp[CA+T+ lmly + Aw)]. (19)
Remark 22. It is easy to prove that, for any compact subset M C C ([0, T]; R4 ),

Aprgi= sup Ay <oo and Cr aq:= sup Cr, < 00. (20)
meM meM

The main results of this section are the following two theorems whose proofs will be given in
the next section:

Theorem 23. Let assumptions (9), (10), (16) and (17) be satisfied. Then there exists a constant C,
depending only on the constants from the assumptions, such that if (x,k) = SP (a_ga; X0, m)
then

(a) ”k”BV([O,T];[Rd) =3kir <Crm,
() xllz < lxol + Crom 1)
(© Ix(@) —x ()| + 3k, — kS <Crom- /M (t—s), VYO<s<t<T.

If moreover m € C ([O, T1; [Rd), X0 € Dom (¢) and (x, 12) = SP(3 @; X9, m), then

Ix = £ll7 + Ik = klir < A(Crom. C1.0) - [ |50 — Fo| + v/llm — tll7 ], (22)

where A is a continuous function.
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We can now derive the following continuity result of the mapping (xo,m) — (x,k) =
SP (8’(/); X0, m)

Corollary 24. Let assumptions (9), (10), (16) and (17) be satisfied. If xo,,xo € Dom (¢),
my,meC ([R+; [Rd), my, (0) =0 and

i) (xn»kn)zsp(a_(P;xOn»mn),
if)  Xxon — X0,
iiiy my —minC([0,T];R?), VT >0,

then

sup $k,37 < o0, VT >0,

nelN*
and there exist x,k € C (|R+; IRd) such that, for any T > 0,

(@ Nxn = xl7 + lkn = kll7 — 0,
(b) (x,k)=SP(8_<p;xo,m).

Proof. Let us fix arbitrary 7 > 0. The set M = {m,m, :n € N*} is a compact subset of
C (10, T1; RY). If Cr is the constant defined by (19), then, using (20), it follows that

Cr.pm = sup Cr,, <00.
veM

Also

A (€) := sup Wy (6) (0, as e (0.
veM

Let a > 0 be such that |xo,| < a. By the estimates established in Theorem 23 we obtain: for all
n,l e N*and foralls,r €[0,T],s <t,

lxnllr +Tkndr <a+Cr pm
[xn () = xp ()] + Tkn®; — $knds S Cropm - VUM (E = 5)

and
lxn — X117+ lkn — killz < Cr ot - [ X0 — X011 + v/ |lmu — myl|7 ]
Therefore there exist x, k, A € C (IR+; R4 ) such that
X, —>x, ky—k, inC(0,T]; [Rd), asn — 00,
and, by Arzela—Ascoli’s theorem, on a subsequence denoted also with 34,3,
thyt — A, in C([0, T]; RY), as n — oo,

where A is an increasing function starting from zero.
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Clearly, the pair (x, k) satisfies (11-7,jj,jjj) and (12), which means, using Lemma 16, that
(x,k) =8P (8‘(,0; X0, m) ]

Theorem 25. Let assumptions (9), (10), (16) and (17) be satisfied.
Then the generalized Skorohod problem

x(+k@)=xo+m (@), >0,
dk (1) € 37 (x (1)) (d1)

has a unique solution (x, k), in the sense of Definition 14 (and we write (x,k) = S'P(Z?‘(p;
X0, m)).

Before giving the proof of the main results, Theorems 23 and 25, let us examine the particular
case of the indicator function of the closed set E (which yields the classical Skorohod problem).

If E satisfies the ro-UEBC, then, by Lemmas 3 and 4 and Definition 11, the set E is
ﬁ-semiconvex and the indicator function /g (x) is a (0, 2170)-semiconvex function. Hence as-
sumptions (10) and (16) are satisfied.

We write the definition of the solution of the Skorohod problem in the case of the indicator
function.

Definition 26 (Skorohod problem). Let E C RY be a set satisfying the ro-UEBC. A pair (x, k) is
a solution of the Skorohod problem if x, k : Ry — R¢ are continuous functions and

() x()€E.
(i) Kk €BVipe (ResRY), k(0)=0,
G x (0 + k(@) =x0+m ().
(jv) YO<s<t<T,VyeC(Ry;E) (23)
t t
f<y<r>—x(r),dk(r>>szifw(r)—x(rnzdum .
ro

S
The following theorem is a consequence of the main existence Theorem 25.

Theorem 27. Let xo € E and m : Ry — R¢ be a continuous function such that m (0) = 0. If E
satisfies the ro-UEBC, for some ro > 0, and the shifted uniform interior ball condition, then there
exists a unique solution of the Skorohod problem, in the sense of Definition 26.

Moreover, each one of the following conditions is equivalent with (23-jv):

t

Tkt = / Lis)eBa(yd Tk
0
() : (24)
k0 = [ naod ks,
0
where ny(sy € Ng (x (5)) and |ny)| =1, d 3k -a.e.,
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and

(V") 3B >O0suchthatVy: Ry — E continuous,
t

t
/ O () —x (), dk () < B / Iy (1) = x (P d $k3, . 25)

N

Proof. The uniqueness is ¢nsured by Theorem 25. For a direct proof it is sufficient to use inequal-
ity (15) and the next one: if (x, k) = SP (E; xo, m) and (x, k) = SP (E; X0, r?z) then from (23)
we get (see also Lemma 17)

. 1 .
(x (@) =X (1), dk (1) — dk (1)) + ™ |x (1) — % (t)|2(d kS +d k) = 0.

The existence is due to Theorem 25 (but, for a direct proof of the existence, with condition
(23-jv) replaced by (24), we refer the reader to [24]).
Proof of (24) = (23-jv): using Lemma 3 we see

t t
f (v (r) — x (), dk () = / (Y () = x () oy $K4 )

N S
t

=/<y (r) = x (r), neleeaeyd $k8,)

N

t
1
<5 / |1y () = x (D Legoyepacerd Tk,
N

t
1
52—/|y<r>—x<r>|2d¢k¢,.
ro

Clearly (23-jv) = (25).
Proof of (25) = (24): let [s, t] be an interval such that x () € Int (E) for all € [s, ¢]. Then
there exists § = &5, > 0 such that

inf d > 6.
relﬂ,z] Ba(E) (x (r)) =
Let A € [0,8] and o € C ([0, T1; R?) such that [la||7 < 1. Setting y (r) = x (r) + et (r) in (25)

we obtain

t t

/(a(r),dk(r))fﬂkfd¢k$r .

N N

Hence, passing to the limit, for A — 0, and taking SUP|g <15 WE deduce the implication:
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x(r)yelnt(E), Vr e[s,t] = k3, — Sk, =0. (26)
Let £ (r) be a measurable function such that |£ ()| =1, d $k¢,-a.e. and

t

k(t):/e(r)d¢k¢, .

0

Since (25) holds for all 0 < s < ¢, we deduce, using the Lebesgue—Besicovitch theorem, that

Bly(r) —x (P = (£(r),y(r) —x(r) =0, d$k$,-ae.,

forany y e C ([0, T]; E).
Therefore, from Lemma 4, we infer that

£(r)e Ng (x(r)), d k3, -ae. 27
We have thus proved inequality (24), since we have (26) and (27). O
4. Generalized Skorohod problem: proofs

In order to prove Theorem 25 let us first prove some auxiliary results.
Let (x,k) = SP (3_(p;xo,m) and y € C (R4+; E), where E = Dom (¢). From (16) and
(11—jv) we have, forall 0 <s <7,

t

t
/<y<r)—x(r),dk(r>>sL(r—s>+L/|y<r>—x(r)|dr

N

t
+ / () —x (O (pdr + yd k3. (28)

Suppose that x () € Int (Dom (¢)) for all r € [s, ¢], and let

0<b=< inf dpqeg) (x ().
rels,t]

Write y (r) = x (r) + Aba (r) witho € C (R+; Rd), lleellis. .y < 1 and 0 < A < 1. Hence the above
inequality becomes, for A = [(1 4 y) (1 + b)z]_1

t

)»b/ (o (r), dk (r)) < (L + Lb) (t — s) + 2> [p (t —5) + ¥ ($k3, — $k8,)]

s

< (L+Lb+22%) (1= 5) + % (53, — $k3,).

Taking the supremum over all « such that ||a||[; ;) < 1 we see that
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2
T (ke = k) = (L+ Lb+320%) (=),

Consequently, the following result is proved:

Lemma 28. Let ¢ such that assumption (16) is satisfied and (x, k) = SP (8_(/7; X0, m) Ifx(r)e
Int (Dom (@), for all r € [s, t], then there exists a positive constant C = C (L, p, y, b) such that

Tk — Tk, <C (1 —s)
where

0<b< inf dpyiE) (x(1)).
rels,t]

More generally we have

Lemma 29. Let ¢ be a (p, y)-semiconvex function and (x,k) = SP (8_<p; X0, m) Assume that
@ satisfies assumption (16) and set Dom (@) satisfies assumption (17). If 0 <s <t and

sup |x (r) —x (s)] <6,

rels,t]
then there exists o > 0 such that

1 3L +4
B, — Pk, = — k() — k()] + L (1 =), (29)

o

Proof. Let us fix arbitrarily o € C (|R+; IRd) such that |l«||(5 ;1 < 1. From assumptions (16)—(17),
if

Yy () :=x () + vxs) +Axx (r), r€ls, ],

then y (r) € E.
Moreover

|y(r) —x ()| =< |Ux(s)| +)‘«x(s) <2
and

lo (y(r)) —¢ (x (r)| =3L.

From (28) we deduce that

t t
)»x(s)_/(a (r),dk(r)) = _/(vx(s)vdk (1) + BL+4p) (t —s)

N N

t

+y/(|Ux(v)| +)\x(s))2d$k$r i

N
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Taking the supremum over all « such that |||, ;) < 1 we see, using also (5), that
o ($ky — $kTy) < |k () =k ()| + BL +4p) (1 —5)
and the lemma follows. O

Proof of Theorem 23. We denote by C, C’, C” generic constants independent of xo, Xo, m, m
and T, but possibly depending on constants L, §, o, p, y provided by the assumptions.

Step 1. Some estimates of the modulus of continuity of the function x.

LetO<s=<tr<T.
Since

x (@) —x(s) —m () +m )| =1k®) = k()| < Tk, — Tk,

it follows that

[x (1) —x ()| < [m () —m(s)| + Tk, — Tk

We clearly have

t

IX(I)—X(S)—M(t)+M(S)I2=2/(m(r)—m(S),dk(r))

N

t

+2/(x(s)—x(r),dk(r)).

N
From (11-jv) written for y (r) = x (s) and (16) we have

t

t
f(x(s)—x(r),dk(r))§L(t—s)+L/|x(s)—x(r)|dr

t
+f|x (s) —x (N2 (pdr + yd tk,) .
Thus, using also the inequality % la)? < |a — ﬂ|2 + |/3|2, we get
1
@O —x &) < |m (1) —m (s)1> +2my, (t —5) ($k$; — $hs) +C (1 —5)

t
+c/|x () — x ()P (dr +d $k3,)

and, by Gronwall’s inequality,
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lx (1) —x (9)|* < [m2, (t — ) +my, (t — ) ($kS, — $kE) + (1 — )]
cexp[C (1 +1—s+ k3, — $kty)], (30)

forallO<s<t<T.

Step 2. Estimates of the differences |x (1) — x (s)| and $k3; — $k$; under the assumption
lx (1) — x (s)] < 6.

LetO<s <r <t <T suchthat |x (t) — x (s)| <§. From (29) we have

Pk — Sk <Clk () — k()| +C(r—5)
=Clx(t)—x(s)—m@)+m(s)|+C({t—ys)
<Clx(@®)—x)|+Cmy t—s)+C (t—5)<CS+ Clp (t —5).

Using the estimate (30), it clearly follows that
X (1) = x ()| < W (t —s)exp[C (L + T + |Im|l7)], forall0<s <t <T,

since (t —s)+my,, (t —s) =Wy (¢t —5)<T +2|m]r.
Henceif 0 <s <t <T and |x (t) — x (s)| < then

lx (1) = x ()| + $k$, — $ky < VM (t =) -exp[C (A +T + |mllp)]. (€29)
Step 3. Adapted time partition and local estimates.
Let the sequence given by (the definition is suggested by [24])

to=Tp=0,

Ty =inf{r € [t9, T] : dpa(e) (x (1)) < 38/4},
t=inf{r € [T1, T]: |x (1) —x (T1)| > §/2},
T, =inf{r € [11, T]: dpace) (x (1)) < 38/4},

t=inf{r € [T;, T]:|x (1) — x (T))| > 8/2)
Tip1 =inf{r € [1;, T]: dac) (x (1)) < 8/4}

Clearly
O0=To=to<Th <t <hh<--<t; <Tiy1<tiy1 <---<T.
Lett; <r <T;41. Then x (r) € Int (E) and dgq(g) (x (r)) > §/4. By Lemma 28 we get

k(1) = k ()] < $k$, — $k$, < C (1 —s) fort; <s <1 < Tryy .
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Alsofort; <s <t <Tjy1:
x (@) —x )| =lk@®) =k +Im @) —m©]<C @ —s)+|m @) —m(s)]
< CHp (F —5)
and then
Ix (1) —x ()] + $k$; — ks = Clm (1 —5) .
On each of the intervals [T}, t;], we have
lx () —x(s)| <8, forallT; <s<t=<t,

and consequently, for all 7; <s <t <{;, inequality (31) holds.
IfT; <s <t; <t < Ty then

lx (1) — x ()] + $k$; — Tk,

< lx (@) —x @)+ $hS; — Tk, + |x (1) — x ()| + Tk, — Tk
< Cn (t — 1) + /W (i —5) - exp[C A+ T + mli7)]

< VMm (t —5) X exp [C/(l + T+ IImIIT)] .

Consequently for all i € N and 7; <s <t < T;11, inequality (31) holds.
Step 4. Getting inequalities (21).

Since u,;l : [O, [T (T)] — [0, T'] is well defined and is a strictly increasing continuous func-
tion, from

$<Ix(t) —x (THI < VM (ti — T;) x exp[C (1 + T + |Im|17)]
< Vb Tis1 =T) -exp[C A+ T + Iml7)],

we deduce that
52
Tip1 — T >, <Z exp[-2C(1+T + ||m||T)]>
> p;l <82 exp [—ZC/ 1+T+ ||m||T)]> > 0.

Hence the bounded increasing sequence (7});>( has a finite number of terms, therefore there
exists j € N* such that T = T;. Then

J
T=Tj=Y (i—Ti-1)>jA,",
i=1

where A, :=1/u,,! (82exp[—C’ (1 + T + |Im||7)]) (see definition (19)).
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Let0<s <t <T.Wehave

J
Sy — ke = (S8 unmyvs = S a7_y)us)

i=1

J
<> (U AT Vs = ATiz) Vs) -exp[C L+ T + ml )]
i=1

< jv/Mu (0 =) -exp[C L+ T + [Imll)]
< T Apy/Mm (t —3) -exp[CA+T + [ml7)]
and consequently
$k$r < T A/ (T) - exp[C 1+ T + |mllp)] <exp[C" (1 +T + limllz + Ap)]
and
lx O] = xo +m (1) — k()] < |xo| + [mll; + $k$; < |x0l + [Imll7 + k7.
Hence there exists a positive constant C = C (L, §, o, p, y) such that, under notations (19),
$k¥r <Crm, and  |lxllz =< |xol + Cr,m,

which is part of conclusion (21).
In order to end the proof of (21) it is sufficient to remark that, forany 0 <s <t <T,

(1) —x ()] < [m}n (t —5) 4+ My (t —5) Crom + (t — s)] cexp[C (1+Crm)]
<CrmWm (t—5).
Step 5. Getting inequality (22).
Since $k$r+ ¢ k $7=Cr,m + Cr s, from inequality (15) we have

[ = £17 < 2[xo = fo|” + [m = | +2 |m — ]| 1k~ &ir]
-exp [4y 2t + Sk + Sk $1)]
< A% (Crom Cr) [ 50— %[> + |m ] ]

~

(where A is a continuous function) and the conclusion follows since k —k = xg — Xo +m — m —

(x=x). ©

Proof of the Theorem 25. Uniqueness was proved in Theorem 19. To prove existence, let
m, € C! ([RJF; IRd) with m,, (0) = 0 be such that |m, —m|; — 0 for all T > 0. Since m, €
C! (|R+; Rd), we deduce, using the results from the papers [19] or [37], that there exists a
unique solution (x,, k,) of the SP (3~ ¢; xo, my), and by Corollary 24 we see that there exist

x,k € C (Ry; RY) such that for all 7 > 0
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Xy, — x|z + lkn — k|l — 0, as n — oo, and
(x, k) =8P (3~ ¢; xo,m),

which completes the proof. O
5. Generalized Skorohod equations
Consider the next (non-convex) variational inequality with singular input (which will be called

generalized Skorohod differential equation):

t
x(t)+k(t)=xo+/f(s,x(s))ds+m(t), t>0,
0

(32)
dk(t) € 0@ (x (1)) (dr)
(for the notation dk (t) € 9~ ¢ (x (¢)) (dt) we recall Remark 15).
We introduce the following supplementary assumptions:
fC,x):Ry— R is measurable, Vx € [Rd, (33)
and there exists u € L}OC (R4+), such that a.e. ¢ > O:
(i) x> f(t x):RY— R?is continuous,
(i) (x—y, ft,x)=fE ) <p@)|x—y? V¥x,y R,
T (34)
(iii) f *(s)ds <00, VT >0,
0
where
¥ :=sup{|f(t x)|:x €Dom(p)}. (35)

Clearly, assumption (34-iii) is satisfied if, as example, f (¢, x) = f (¢) or if Dom (¢) is bounded.

Proposition 30 (Generalized Skorohod equation). Let ¢ : RY — (—o0,00] and f : Ry x R —
RY be such that assumptions (9), (10), (16), (17) and (33), (34) are satisfied.
Then the generalized Skorohod equation (32) has a unique solution.

Proof. Let (x, k) and (X, l%) be two solutions. Then

t

IX(t)—)?(t)IZJrZ/()C(r)—f(r),dk(r)—dlz(r))

0
t t

22/(x () =X (@), f(rx () = f(r, % (M))dr 52/M+ (r) |x (r) = £ (r) Pdr,

0 0
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and using Lemma 17 it follows that
t
NN NNV
ko=@ =2 [ v -5 da.
0

where

t

A, =2pt +y $k8, +y ke +/u«+ (r)dr.
0

Applying a Gronwall’s type inequality, we see that x = X.
Concerning the existence, we shall obtain the solution (x, k) as the limit in C ([0, T1; [Rd) X
C ([0, T]; R4 ) of the sequence (x,, k,),cn+ defined by an approximate Skorohod equation

X, (1) =xo, fort <0,

t
xn(t)+kn(t)=xo+/f(s,xn(s—1/n))ds+m(t), fort >0, (36)
0

dky (1) € 97 ¢ (x, (1)) (d1) .

L %], we can write

Foranyie[]\l,forte[

1
xn (1) + [kn (t) — kn (l/n)] =xn (i/n) + / f(s,xn(s - l/n))ds +m () —m(i/n),
i/n

it

therefore by iteration over the intervals [ﬁ, - ] there exists (via Theorem 25) a unique pair

(xn, kn) = SP (3~ ¢; x0, my), with

t
my (1) = / f(s,x,,(s — l/n))ds +m(t).
0

Let T > 0. If M denotes the set
/\/lzz{m,Z :neN*},

then M is a relatively compact subset of C ([O, T]; [Rd) since it is a bounded and equicontinuous
subset of C ([0, T1; [Rd).
Indeed

T
|mmrsffﬂnm+wa
0
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and, for s <1,

t
1 (1) — (s)|s/f#<r>dr+|m<r)—m(s>|.

Then by Theorem 23 and Remark 22,
lxnll7 + $hkndr < |x0l + Cr .M 37

and forall0 <s <t:

x5 (1) — X, ()] + ¢kn¢t - ¢kn¢s = CT,M\/ Pt (2 —s),

where g (€) :==¢ + sup my,.
meM
Hence, by Arzela—Ascoli’s theorem, the set {x, : n € N*} is a relatively compact subset of

C ([0, T1; RY).
LetxeC ([O, T, [Rd) be such that, along a sequence still denoted by {x, : n € N*},

lx, — x|l — 0, as n — oo.

Then, uniformly with respect to ¢ € [0, T],

t
mn(t)—>[f(s,x(s))ds+m(t), as n — 0o,
0
and
t
kn(t)—>k(t)=x0+/f(s,x(s))ds+m(t)—x(t), asn — oQ.
0

Using Corollary 24 we infer that

(x,k)=SP 3_¢;XO,ff(S,X(S))dS +m
0
i.e. (x, k) is a solution of problem (32). The uniqueness of the solution implies that the whole
sequence (x;, k,) is convergent to that solution (x, k). The proof is completed now. O

Remark 31. As it can be seen in the above proof, assumption (34-ii7) is essential in order to
obtain inequality (37), i.e. the boundedness of the sequence (x,, k; ), defined by (36).
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Remark 32. If we replace assumptions (16), (17) and (34-iii) by the hypotheses
Int (Dom (¢)) #£ ¢

and

T
/fj;(s)ds <00, VR, T >0,
0

where
fh@ =sup{1f@.0l: x| <R},

then, following the calculus from the convex case (see, e.g., Remark 4.15 and Proposition 4.16
from [31]), we deduce

t
é x (£) — uol* + %0 Sk, + %0 / Lf (r, x (r)|dr
0

1
<glx- uoll? + Co + Co llm |7
t t

12 / W () x = wolPdr +2 / W () x — woll? (pdr + yd $k4,), (38)
0 0

where ug € R? and rg € [0, 1) are such that B (ug, ro) C Int (Dom (®).
In the convex case, namely y = 0, this inequality yields the boundedness (21-a, b), but in the
non-convex case (y # 0) we cannot obtain (21-a, b).
Of course, if there exists R > 0 such that Dom (¢) C B (0, R), then ||x||7 < R and from (38)
we obtain $k$1 < C, if y is such that
ro

o<y<—"————.
2(ro + R + |ugl)

If in the above proposition we take ¢ = Ig we get, via Theorem 27,

Corollary 33 (Skorohod equation). Let xo € E and m : Ry — R be a continuous function such
that m (0) = 0. If f satisfies gssumptions (33)-(34) and E satisfies the ro-UEBC (for some
ro > 0) and the shifted uniform interior ball condition, then there exists a unique pair (x,k)
such that:

() x,keCRE), k(0)=0,

() k €BVige (Ry; RY),

Gi) x @) +k@) =xo+ [y f(s.x(s))ds +m (1),

(V) 3k, = [y Leis)eBae)d ks

) k@)= fot nys)d 3k, where nys) € Ng (x (s)) and
Ine)| =1, d tk3;-a.e.

(39)
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6. Non-convex stochastic variational inequalities

In the last section of the paper we will study the following multivalued stochastic differential
equation (also called stochastic variational inequality) considered on a non-convex domain:

t t
Xt+K,=E+/F(s,XS)ds+/G(S,XS)st, t>0,

0 0
dK; (w) € 979 (X; (w)) (d1),

(40)

where ¢ is (p, y)-semiconvex function and {B;:¢ >0} is an R¥-valued Brownian motion
with respect to a stochastic basis (which is supposed to be complete and right-continuous)
(2, F. P, {Fi}iz0)-
First we derive directly from Theorem 25 the existence result in the additive noise case.
Corollary 34. Let (2, F, P, F;, By);>0 be given. If
£ e L°(Q, Fo, P; Dom (p))

and M is a progressively measurable and continuous stochastic process (p.m.c.s.p. for short)
with My = 0, then there exists a unique pair (X, K) of p.m.c.s.p., solution of the problem

Xi (@) + K (0) =8 (@) + M; (w), 120, 0 € Q,
dK; (w) € 37 ¢ (X, (w)) (d1)

(in this case we shall write (X. (w) , K. (w)) =SSP (310; E(w), M. (a))), P-a.s.).
Proof. Let w be arbitrary but fixed. By Theorem 25, the Skorohod problem
(X. (@), K. (@) =SP (3" ¢; £ (w), M. ()
has a unique solution
(X. (@), K. (@) € CR+: R x C(R4: RY).
Since (w, t) — M; (w) is progressively measurable and the mapping
(&, M) — X : Dom (¢) x C([0,1]; RY) — C([0,]; RY)

is continuous for each 0 <t < T, the stochastic process X is progressively measurable. Hence
the conclusion follows. O

The next assumptions will be needed throughout this section:

(A1) (Carathéodory conditions.) The functions F (-, -,-) : 2 x R4 X R - R and G (-,-, ") :
Q x Ry x RT — Rk gre (P, [Rd)—Carathéodoryfunclions, ie.
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F(,,x)and G(-,-,x) arep.m.s.p., ¥ x € R,
F(w,t,-) and G (w,t,-) are continuous function dP Q dt-a.e. 41
(A2) (Boundedness ¢onditions.) For all T > 0:

T T
/ F¥(s)ds <oco and / |G* (5) |?ds < o0, P -a.s., (42)
0 0

where
F* (t) = sup{ |F(t,x)|:x € Dom(tp)},
G* (1) := sup {1G(t, x)| : x € Dom (¢) }

(Az) (Monotonicity and Lipschitz ¢conditions.) There exist |1 € Lllo c(Ry)and t € leo - (R4) with
£ >0, such that dP ® dt-a.e.
() (x—y, F@t,x)—F@,y) <p@lx—y? Vx,yeRd,

4
(i) |G, x) =G, »|<L®)|x—y|, Vx,yeR. @

We define now the notions of strong and weak solutions for the stochastic Skorohod equa-
tion (40).

Definition 35. Let (22, F, P, 7, B;),>o be given. A pair (X, K) : @ x Ry — R? x R of contin-
uous JF;-p.m.c.s.p. is a strong solution of the stochastic Skorohod equation (40) if P-a.s.,

(j) X;€Dom(g), ¥1=0, ¢ (X)€Lj, (Ry),

(i) K. €BVie (Ri:RY),  Ko=0,

t t
) Xt+1<t=s+fF(s,Xs>ds+fG<s,Xs)st, Vi =0,
0 0
(Gv) YO0<s<t, Vy:Ry — R? continuous (44)
t t t
/<y(r>—Xr,dlm+/go(xr>drsf¢<y<r>>dr
S S S

t
+ / () = X, P (pdr + yd $K3,),

which means that
X. (), K. (0)=8P (0" ¢; & (w), M. (w)), P-as.,

where
1 t
M, :/F(S,Xs)ds +/G(S,Xs)st .
0 0

Please cite this article in press as: R. Buckdahn et al., Stochastic variational inequalities on non-convex domains, J.
Differential Equations (2015), http://dx.doi.org/10.1016/j.jde.2015.08.023

© 0O N O O A WO N =

30


Original text:
Inserted Text:
conditions

Original text:
Inserted Text:
conditions


© 0O N o o~ WO N =

JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.31 (1-44)
R. Buckdahn et al. / J. Differential Equations eee (eeee) eee—eee 31

Definition 36. Let F (w,t,x) := f (¢t,x), G (w,t,x) := g(t,x) and & (w) := x¢ (be indepen-
dent of w). If there ¢xist a stochastic basis (2, F, P, F;);>¢, an R*-valued JF:-Brownian motion
(B, :t >0} and a pair (X., K.) : 2 x Ry = R? x R? of p.m.c.s.p. such that

X. (w), K. (w))=SP (87/); x0, M. (a))) , P-as.,

where

t

t
Mz=/f(s,Xs)dS+/g(S’Xs)st,
0

0

then the collection (2, F, P, F, By, X;, K;),> is called a weak solution of the stochastic Sko-
rohod equation (40).

Since the stochastic process K is uniquely determined from (X, B) through equation (44-jjj),
we can also say that X is a strong solution (and respectively (2, F, P, F;, By, X;);>¢ is a weak
solution).

We first give a uniqueness result for strong solutions.

Proposition 37 (Pathwise uniqueness). Let (2, F,P, F;, B;);>o be given and assumptions (9),
(10) and (16) be satisfied. The functions F and G are such that assumptions (A1)—(A3) are
satisfied. Then the stochastic Skorohod equation (40) has at most one strong solution.
Proof. Let (X, K) and ()A( K ) be two solutions corresponding to £ and respectively é Since
dK, €9 ¢ (X)) (dt) and dK, €9 ¢(X,)(dr),
by Lemma 17, for p>1and A >0
(X: = X, (F (1, X dt —dK,) = (F(t, Xdt — dK)))
1 A A
+(5mp +9P2)IG (1, X0) = G(t, X)Pdt <X, = X, %V,

where
l 1
Vi = / [1(s)ds + (Em” +9pA)€* (s)ds +2pds +yd $K &y + yd 3K 35 |-
0

Therefore, by Corollary 51 (from Appendix A), we get
Eliale’ & =Dl = cpuE[1nle -E17],
and the uniqueness follows. O

Remark also that in the case of additive noise (i.e. G does not depend upon X) we have
existence of a strong solution.
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Lemma 38. Let (2, F, P, F;, B);>¢ be given and assumptions (9), (10), (16) and (17) be satis-
fied. The function F is such that assumptions (A1)—(A3) are satisfied.

If
Ee LO(Q, Fo, P; Dom (go))

and M is a p.m.c.s.p. with My = 0, then there exists a unique pair (X, K) of p.m.c.s.p., solution
of the problem

(X. (), K. (0) =8P (3" ¢; & (w), M. (w)), P-as.,

ie.
t
Xi (w) + K (w) =$(w)+/F(w,S,Xs (w)ds +M; (w), t=0,
0
dK; (@) € 37 ¢ (X; (w)) (d1),
P-a.s.

Proof. Applying Corollary 34 to the approximating problem

t
X @)+ K @) =& @)+ [ Fw.s. X0y, @)ds + M, (@), 120,
0
dK" () € ¢ (X" () (dr).

we conclude that there exists a unique solution (X", K") of p.m.c.s.p. The solution (X, K) is
obtained as the limit of the sequence (X", K"), exactly as in the proof of Proposition 30. O

In order to study the general stochastic Skorohod equation (40) we shall consider only the case
when F, G and & are independent of w and, to highlight this, the coefficients will be denoted by
f and g respectively.

Let us consider equation

t

t
Xt+Kt=x0+/f(5»Xs)ds+/g(S,Xs)de, 1=0,
0 0

(45)

dK;(w) € 379 (X; (w)) (d1),

where f: Ry x R - R? and g : Ry x RY — RI*kK,
We recall the definition of f#, g# given as in (35).

Theorem 39. Let assumptions (9), (10), (16) and (17) be satisfied. The functions f and g are
suppose to be (B 1, [Rd)—Carathéodory functions satisfying moreover the boundedness conditions
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[|f# 1P+ 1g% () |4] ds < 0o, YT > 0.

S—

If xo € Dom (@) then equation (45) has a weak solution (2, F, P, F:, X¢, Ky, Bt)i>o0.

Remark 40. Usually, when G is Lipschitz, a fixed point argument is used (based on Banach
contraction theorem). But, in our case this argument doesn’t work even for the drift part F =0,
as it can be seen from inequality (22), we have different order of the estimates in the left and in
the right side of the inequality.

Proof.
Step 1. Approximating sequence.

Let (Q,F.P,FF. B),.,
exists a unique pair (X", K") : Q@ x Ry — R? x R? of ]—"tB-p.m.c.s.p. such that

be a stochastic basis. Applying Lemma 38, we deduce that there

t

Xn+Kn—x0+/f(s XY l/n)ds—{—/‘g(s XY l/n)de, t>0,

; (46)
dK!" (@) €d™ ¢ (X;’ (@) (dt).

Denote

‘ t

M" :/f(s X" 1/n>ds+/g(s XI,,) dBs

0 0

Since
t+e 4
£l o] < [ @) (et wPas)

t+e
+ 4
=&C | sup;po,7] /|f#(s)| ds +Supt€[0,T]/;t “lg* )] ds
t

using Proposition 46, we deduce that the family of laws of {M" : n > 1} is tight on C (|R+; Rd).
Therefore by Theorem 45 forall T > 0

/0o

lim |:sup[P (”M" ”T > N):| =0,
N n>1

and, foralla >0and T > 0,
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lim | supP({mym (¢) >a}) | =0. @7
eNo |:”ZI1) ( )

Recalling the definition

Hpr =& +mym (g),
where m is the modulus of continuity, we see that we can replace in (47) mpys» by Wn.
Step 2. Tightness.

Let T > 0 be arbitrary. We now show that the family of laws of the random variables U" =
(X", K", $K"$) is tight on C ([0, T]; R2+1).
From (21-¢) we deduce that

my» (¢) <G (M")/yn (€), as.,
where G : C ([0, T1; R?) — R and
G () :=Cro=exp[CA+T+|xlr + Bo)],
By :=1/p;! (Sze—C(l-ﬁ—T-i-HxllT))‘
From (20) we see that G is bounded on compact subset of C ([O, T]: R4 ) and therefore by Propo-
sition 47, {U"; n € N*} is tight on C ([0, T']; RY).

Using the Prohorov theorem we see that there exists a subsequence (still denoted with n) such
that

(X",K",TK"],B)— (X,K,V,B) inlaw,asn— oo
on C ([0, TT; [R2d+1+k) and applying the Skorohod theorem, we can choose a probability space
(Q, F, P) and some random quadruples (X", K", V", B"), (X, K, V, B) defined on (22, F,P)
such that
LX", K", V", B")=L(X",K",TK"],B")
L(X,K,V,B)=L(X,K,V,B)

and

X, k"o, By T (XK, V. B), asn — oo, in C([0, T]; R¥+1+5),

From Proposition 49 we deduce that (L_?”, {flxn’K”’V”’Bn }), n>1, and (E, {F > ’V’B}) are
Brownian motions.

Step 3. Passing to the limit.
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Since we also have (X", K", $K"$,B) — (X,K,V,B), in law, then by Corollary 43 we
deduce that forall 0 <s <1, P-a.s.
Xo=x0, Ko=0, X;eDom(p),
IIEII‘_IIEISS‘_/’_VX and OZVOSVYSVt (48)

Moreover, since forall 0 <s < ¢,n € N*

t t t

/w(Xf)drs/<p<y(r>)dr—/(y(r)—Xf,dK;’>

N N N
1

+/ ‘)’(V)—Xﬂz (,Odr+J/dIK”Ir), a.s.,

S

then by Corollary 44 we infer that

t t t
/go(ff,)drs/¢<y<r>>dr—/<y<r>—x,,cum
N S . S
+/ vy () = X, * (odr + ydV,) . (49)

Hence, based on (48) and (52) and Lemma 16 we have
dK, €3¢ (X,) (dr).

Let

t

13
S: (Y, B) :=x0+/f(s, YS)ds—i—/g(s, Y)dBs, t=>0.
0 0

By Proposition 48 it follows
LX", K", V", B", S/(X",B") =L (X", K", TK"],B", S/(X", B"))
Since for every t > 0,
X} +K!—S(X",B")=0, as.,
then by Corollary 43 we have
X"+ K"~ S,(X",B") =0, as.,

and consequently, letting n — oo,
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X, + K, — S;(X,B)=0, as.
Hence we obtain that, P-a.s.,

1 t
)_(,+Kt=x0+/f(s,)_(S)ds+/g(s,)_(s)d1§s, vViel0,T],
0 0

and consequently <§_Z F., P, }'IB’X, X, K,, Bt) is a weak solution. 0O

t>0
Since the stochastic process K is uniquely determined by (X, B) via equation (45), then a
weak solution for the stochastic differential equation is a sextuplet (2, F, P, {F;};50, X, B). We

know that weak existence and pathwise uniqueness implies strong existence (see Theorem 3.55
in [31] or Theorem 1.1 in [23]). Hence we deduce from Theorem 39 and Proposition 37:

Theorem 41. Let assumptions (9), (10), (16) and (17) be satisfied. The functions f and g are

suppose to be (B 1, [Rd)-Carathéodory functions satisfying moreover assumption (A3) and bound-
edness conditions

T
/ [|f# &) 1>+ 1g" () |4] ds < oo, YT > 0.
0

If xo € Dom () then equation (45) has a unique strong solution (X, K;);>.
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Appendix A
A.l1. Applications of Fatou’s Lemma

The next result is a well known consequence of weak convergence of probability measures
(for its proof see, e.g. [31, Proposition 1.22]).

Proposition 42. Let (X, p) be a separable metric space. Let ¢ : X — (—00, 0] be a lower
semicontinuous function. If X and X, are X-valued random variables, for n € N*, such that

. It
(i) X,,ﬂ>X, asn — oo,

and there exists a continuous function o : X — R such that

(i) a)=¢x), VxeX
@) {a (Xp):n € N*} is a uniformly integrable family,
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then the expectations Lo (X) and Lo (X,,) exist for all n € N, and
—o00 < Eg (X) <liminflEe (X,) .
n——+00

For 0 <s <t <T, we denote by $ X3, (similar to (7)) the total variation of X. on [s, t],
that is

n—1

X5 (@) =sup{Z|Xt,-+1 (@) — X, (@)|:neN s=tg<ty<--- <ty =t}
i=0

We also use $ X371 :=$X 30,77
Applying successively Proposition 42 for

o (x)=dF (x (@),
N—1 +
px,y)= (Z Ix (tit1) = x (6)] = g(y)> ;
i=0
where s =1y <] < ... <ty =1 is an arbitrary partition of [s.7], and respectively
pX) =) —x®)",
we get the next result:

Corollary 43. Let s, t be arbitrary fixed such that 0 <s <t <T.Ifg:C ([O, T1; [Rd) — Ry
is a continuous function and X, V, X", V", n € N*, are random variables with values in
C ([0, T1; RY), such that

law

(X", V") — (X, V), asn — oo,
then the following implications hold true:
(a) If X} € F a.s., then X; € F, a.s., whenever F is closed subset of R,
b)) IfEX" s <g (V") as., then $ X5 < g (V), a.s.;
(¢) Ifd=1and X} < X} a.s., then X; < X;, a.s.

Now let us consider the partition

t—s
Ay:s=ro<ri <...<rNy=t, tiy| —Fr =——
and the function g : C ([O, T1; IRd) — [0, 1], defined by
+
g (kv i= (L5 ki) =k (Dl =0 O+ (@) Al
! N-1 +
+ /ﬁﬂ(x (r)dr — Z (x (i), k@riz1) — k@) —m (I/N)(v(@®) —v(s)) | AL
§ i=0
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Applying again the generalization of the Fatou’s Lemma (Proposition 42), it can be proved:

Corollary 44. Let (X, K, V), (X", K", V"), n € N, be C ([0, T1; Rd)z x C ([0, T1; R)-valued
random variables, such that

(X", K", V") _law | (X,K,V)
n—>oo
and for all 0 <s < t, and n € N¥,

IKVLI[ - IKHIS = th - Vsn q.s.

If ¢ : RY — (=00, +00] is a lower semicontinuous function and

13 t
/(p (X7)dr < /(Xf,dK:’) a.s. for all n € N*,
S S
then
3K, — 3K, <V, =V, as.
and
1 1
/(p(Xr)dr 5/(Xr ,dK,), a.s.
S S

A.2. Complements on tightness

If { X/ it> 0}, n € N*, is a family of continuous stochastic processes then the following result
is a consequence of the Arzela—Ascoli theorem (see, e.g., Theorem 7.3 in [6]).
We recall the notations:

X"y :=sup{|X7|:1€[0, T},
myn (g5 [0, T]) :=sup {| X! — X7| : 1,5 €[0,T], |t —s| <s}.

Theorem 45. The family {X" : n € N*} is tight in C(Ry; R?) if and only if, for every T >0,

. . () n _
(0 Jim [z‘;f;w (1% ZNJ =0

G lim |:sup P® (myn (; [0, T]) > a):| =0, Va>D0.
eNO0 | p>1

Moreover, tightness yields that for all T > 0

; (n) n _
[ (1 2 )| <o
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Without using the above theorem, it can be proved the following criterion for tightness which
is well adapted to our needs. The proof can be found in E. Pardoux and A. Réscanu [31] (Propo-
sition 1.53) and we will give the sketch of the proof.

Proposition 46. Let {X pit> O}, n € N*, be a family of R?-valued continuous stochastic pro-
cesses defined on probability space (2, F, P). Suppose that for every T > 0, there exist ¢ > 0
and b € C (Ry) with b(0) =0, such that

() lim [sup [P({!xg|zN})}=o,

N—00 | eN*

(i) [E[IA sup |X{’+S—X;’|°‘:|§g~b(s), Ve>0,n>1,te[0,T].

0<s<e
Then the family {X" : n € N*} is tight in C(Ry; RY).

Proof. We fix e, T > 0. From (), there exists M = M, > 1 such that

sup P({|X2| > M}) < %

neN*

(i—DT

1 £ T
2&—D/a and g; N\ 0 be such that b(e;) < T Let N;, = [;] and t; = Ne

Applying Theorem Arzela—Ascoli we see that the set

Let yx =

Ko ={ze CA0.TERD 2 O] < M,

sup  sup |z<tz-+s)—z(r,->|syk,wcew*}

1<i<Ny O<s<ei

is compact in C([0, T']; RY).
From Markov’s inequality and (jj)

Nk
P(X" ¢ Ke) <PA|XG] > MY+ Y Y P sup |Xiy — X7 |>wnh

kenxi=1  0=s=ek
€ Nksxb(e) £ Ni X & X b(eg)
k k k X &k k
Ly sy Mo,
keN* i=1 k keN* k

The proof is complete now. 0O

Proposition 47. Let g : Ry — Ry be a continuous function satisfying g (0) =0 and G :
C ([R+; [Rd) — R4 be a mapping which is bounded on compact subsets of C ([R+; [Rd). Let X",
Y", n € N*, be random variables with values in C ([R+; [Rd). If {Y" :n € N*} is tight and for all
n € N*
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i) |Xi<G@"), as.
(@) myn (&[0, TD) <G X" g@myn (¢;[0,T)]), a.s., Ve, T >0,

then {X" :n € N*} is tight.

Proof. Let § > 0 be arbitrary. Then there exists a compact set K5 C C ([0, oo[ ; R4 ) such that for
all n e N*

P(Y"¢Ks)<3.

Define Ns = sup G (x). Then

xeKs
P(|X§| > Ns) <.

Let a > 0 be arbitrary. There exists g9 > 0 such that

sup [ (my (e: [0, T1)] < Ni VO<e<g.
xeKs )

Consequently for all n € N*,

P (mx» (6310, T]) > a) <P [g (my» (5[0, T = 5, Y" € Ks]
+P X" ¢ Ks) <4

and the result follows. O
A.3. Itd’s stochastic integral

In this subsection we consider {B; : ¢t > 0} to be a k-dimensional Brownian motion on a
stochastic basis (which is supposed to be complete and right-continuous) (Q, F, P, {.7-",},20).

Let S;[0, T] be the space of p.m.c.s.p. X : Q x [0,T] — R? and Ay (0, T) the space of
pm.c.s.p. X : Q2 x [0, T] — R? such that

T
/|X,|2dt <00, P-as.
0

Write Sy (and Ay) for space of p.m.c.s.p. X : Q x [0, T] — R? such that the restriction of X to
[0, T] belongs to Sy (respectively to Ag).

If X € Sy« and B is an R¥-Brownian motion, then the stochastic process {(X;, B;) :t > 0}
can be seen as a random variable with values in the space C (R, RY*k) x C (R4, RK). The law
of this random variable will be denoted £ (X, B).

Proposition 48. (See Corollary 2.13 in [31].) Let X, X € 8410, T], B, B be two R¥-Brownian
motions and g : Ry x R4 — R¥** be a function such that
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g (-, y) is measurable ¥ y € R,

y > g (t,y) is continuous dt-a.e.
If
L(X, B)=L(X, B)on C(Ry, R™™H),

then

L(X,B,/g(s,Xx)de)=£()A(,1§,/g(s,f(s)d1§s)on C(Ry, RIHk+dy,
0 0

We present now a continuity property of the mapping
T
x.B)— [ X.as.
0

Given B : Q x Ry —> RF and X : © x Ry — R?*K be two stochastic processes, let ]—',B’X be
the natural filtration generated jointly by B and X.
For the proof of the next proposition see Proposition 2.4 in [9] or Proposition 2.14 in [31].

Proposition 49. Let B, B", B":Q x Ry — R* and X, X", X":Qx Ry — RI*k be continuous
stochastic processes such that

(i) B" ~is ]-‘fn’xn -Brownian motion¥ n > 1;
(i) L(B", X")=L(B",X") on C(Ry,RK x R¥*%) foralln > 1;
(iii) fOT }X? — Xs‘zds + sup |an - B,‘ — 0, in probability, as n — oo, for all T > 0.
1€[0,T]

Then (Bn, {f,B)l’Xn }), n>1, and (B, {ftB’X}) are Brownian motions and as n — o0

t

t
sup /X?dB;’ — /Xsst —> 0 in probability. (50)
1€[0,T]

0 0

A.4. A forward stochastic inequality

Let X, X € S4 be two semimartingales defined by

t t
Xz=Xo+K,+/Gsst,t20, f(z=5(o+1&+/ésst,t20, 1)
0 0

where
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O K.Ke Sds .
O K. (@), K. (@) € BVjoe (R RY), Ko (0) = Ko (0) =0, P-as.;
0 G,G € Agxk-

Assume that there exist p > 1 and A > 0 and V a bounded variation p.m.c.s.p., with Vo =0,
such that, as measures on R,

N A 1 ~ ~
(Xi = Xi,dKi = dKi)+ (3mp +9p2) |G = Gil*de <X, = X,[*d V. (52)

Theorem 50. (See Corollary 6.74 in [31].) Let p > 1. If the assumption (52) is satisfied with
A > 1, then there exists a positive constant C, ;. such that for all 6 >0, 0 <t <s:

lle™V (X — DI, PV X, — X, |P

lE‘Ft /2 S p,)» N /2 k)
(1 +8|le= V(X — }A()H[zt,s])p (1 + 82V |X, — Xt|2)P

P-a.s.

In particular for § =0

EF eV (X = X115 ) < Cpae PV IX, — Xi|P,  Pas.,

forall0 <t <s.

As a consequence of the above theorem, since

<1lAr, Vr>0,

1
5(1Ar)§7(1+r2)1/2 <

we obtain:

Corollary 51. If assumption (52) is satisfied with . > 1 and p > 1, then there exists a positive
constant C, ;. depending only on (p, A) such that P-a.s.

i [ialle =00 ] = a1 A le™ = Xoi].

forall0 <t <s.
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