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1 The exercises

Consider the standard stochastic epidemic model where A denotes the close contact rate,
I ~ F the duration of the infectious period which is initiated by 1 infectious individual
and n susceptibles, and assume n is large. Consider the case where the mean infectious
period equals ¢ = 1 (for example on average one weeks infectious period and the time unit
being one week and A\ = 1.5 per week). Consider two different infectious distributions of
the infectious period, for example I ~ Ezp(1), the Markovia SIR model, and I = 1, the
continuous time Reed-Frost model (the mean was already defined to equal 1). Compute
the following quantities for each of the two situations (labelled 1 and 2):

a) The basic reproduction number Ry. (3p)

b) The critical vaccination coverage v, (assuming a perfect vaccine). (3p)

c¢) The probability of a major outbreak. (4p)

And, assuming that a major outbreak occurs:

d) The mean and standard deviation of final number infected Z,. (4p)

e) The exponential growth rate r during initial phase. (4p)

f) The two leading terms of the duration of and epidemic (corresponding to the initial

phase ngg, and the end of the epidemic Tg;)d). (4p)

2 The solutions

a) The basic reproduction number, the expected number a typical infective infects during
the early stage of an outbreal, equals AF(I) = Av = A = 1.5. This is true for both 1 and
2. The fact that A = Ry will be used below in several places, so keep this in mind.

b) The critical vaccination coverage v, is given by v. =1—1/Ry =1—1/1.5 = 0.33. This
holds true for both 1 and 2.
¢) The probability of a minor outbreak corresponds to the probability of extinction in the

approximating branching process. This probability ¢ was derived in Etienne Pardoux’s
lectures, by conditioning on the number £ infected in the first generation, the offspring



distribution: if k get infected these all start new independent branching processes so the
probability that all go extinct equals ¢*. The general equation is hence
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The offspring distribution X depends on the infectious period distribution /. Given that
I = s, X has a Poisson distribution with mean As, so X ~ MizPoi(AI). In situation 2
(cont-time R-F) I =1 so X ~ Poi(A = 1.5). This implies gives the following equation
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If this equation is solved numerically it gives the result that ¢ = 1 — 0.583 = 0.417. So
the answer to c) in situation 2, the probability of a major outbreak, equals 0.583.

As for the first situation, where I ~ Ezp(l) we get P(X = [[CP(X = k| =
s)fi(s)ds = [° % Sds = ... = 1%\ (p%\)k, i.e. the geometrlc dlstrlbutlon, which

should not come as a surprise (each time, the event is either infection or recovery, and
the latter has probability 1/(A+ 1)). We then get
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As a consequence, the probability of a minor outbreak for the Markovian SIR hence equals
g=1/A=1/Ry=1/1.5 =0.67. The probability of a major outbreak is hence only 0.33.
The randomness of the infectious period hence reduces the risk for a major outbreak. It
can actually be proven that having a constant infectious period maximizes the outbreak
probability among all distributions of the infectious period.

d) The total number of infected in a major outbreak is approximately normally dis-
tributed. The mean equals nxz where x is the strictly positive solution of the equation
1 — 2 = e % When Ry, = 1.5 the solution is = 0.583, so the expected number who
ultimately get infected equals 0.583n, and this is true for both 1 and 2 (and any infectious
period distribution). As for the standard deviation, it was shown in Etienna Pardoux’s
lecture that the variance equals
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where 72 = V(I)/(E(I))? is the squarred coefficient of variation of the infectious period.
The Markovian SIR has » = 1 and the continuous time Reed-Frost has »r = 0. When
x = 0.583 and Ry = 1.5 we hence get that the variance for the Markovian SIR equals
1.05n, and for the continuous time Reed-Frost 0.649n. The standard deviations are hence
the square rott of these expressions. Randomness in the infectious period hence affect the
randomness in the infectious period somewhat.

¢) The exponential growth rate (or decay rate if R < 1) r is the solution to the equation
fo e " B(s)ds = 1, where f(s) is the rate of infectious contacts s units after infection.
For the standard stochastic epidemic this rate equals A while being infectious, so 5(s) =

2



AP(I > s). For the Markovian SIR we hence have 3(s) = Ae™*/* = 1.5¢~*, and the
solution equals = A — 1/t = 0.5. For the continuous time Reed-Frost model we have
B(s) = Al(s<,). The equation then becomes [ e™*Ads = 2 (1 —e™™) = 1. The equation
is hence 7/\ = 1 — e~ "/YFo_ This is the same equation as for the final size  (with x
replaced by r/A. When Ry = 1.5 we thus get /A = 0.583, so r = 0.874 for the continuous
time Reed-Frost. This epidemic hence grows much quicker. The main reason for this is
that even if the two infectious periods have equal mean ¢+ = 1, the average time of the
infectious contacts are not the same. For the Reed-Frost the mean time to infectious
contact (the mean of the generation time distribution) is of course 0.5 (the generation
time distribution is uniform on [0, 1], whereas for the Markovian SIR it equals 1 (the
generation time distribution is Exp(1)).

f) Finally, the two leading terms for the duration of the SIR (in a fixed community of size
n) is the beginning and the end of the epidemic, and they are of the form T,(Bz)g =logn/r

and Tg;)d = —logn/rgnq, where rg,q is the (negative) exponential decay rate at the end
of the outbreak which is the solution to the same equation as for the initial growth rate
except that A is replaced by A(1 — z) (the infection rate at the end when a fraction 1-x
are still susceptible. For the Markovian SIR the beginning and the end are hence equal
to logn/0.5 and —logn/(—0.375) = logn/0.375. For the continuous time Reed-Frost
the beginning of the epidemic lasts logn/0.874. As for the end this decay rate is the
negative solution to the equation (similar to the beginning but A replaced by A(1 — x)):
TEna/ A = 1 — e~ rna/NR0(1=2) - GQince Ry(1 — x) < 1 this will give a negative solution.
I don’t hava available softare to obtain this numerically when Ry, = 1.5, A = 1.5 and
x = 0.583, but the duration of the end of the continuous time Reed.Frost epidemic will
be log n/rg,q for this solution.



