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1 The exercises

Consider the standard stochastic epidemic model where λ denotes the close contact rate,
I ∼ F the duration of the infectious period which is initiated by 1 infectious individual
and n susceptibles, and assume n is large. Consider the case where the mean infectious
period equals ι = 1 (for example on average one weeks infectious period and the time unit
being one week and λ = 1.5 per week). Consider two different infectious distributions of
the infectious period, for example I ∼ Exp(1), the Markovia SIR model, and I ≡ 1, the
continuous time Reed-Frost model (the mean was already defined to equal 1). Compute
the following quantities for each of the two situations (labelled 1 and 2):

a) The basic reproduction number R0. (3p)

b) The critical vaccination coverage vc (assuming a perfect vaccine). (3p)

c) The probability of a major outbreak. (4p)

And, assuming that a major outbreak occurs:

d) The mean and standard deviation of final number infected Zn. (4p)

e) The exponential growth rate r during initial phase. (4p)

f) The two leading terms of the duration of and epidemic (corresponding to the initial
phase T (n)

Beg, and the end of the epidemic T (n)
End). (4p)

2 The solutions

a) The basic reproduction number, the expected number a typical infective infects during
the early stage of an outbreal, equals λE(I) = λι = λ = 1.5. This is true for both 1 and
2. The fact that λ = R0 will be used below in several places, so keep this in mind.

b) The critical vaccination coverage vc is given by vc = 1− 1/R0 = 1− 1/1.5 = 0.33. This
holds true for both 1 and 2.

c) The probability of a minor outbreak corresponds to the probability of extinction in the
approximating branching process. This probability q was derived in Etienne Pardoux’s
lectures, by conditioning on the number k infected in the first generation, the offspring
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distribution: if k get infected these all start new independent branching processes so the
probability that all go extinct equals qk. The general equation is hence

q =
∞∑
k=0

qkP (X = k).

The offspring distribution X depends on the infectious period distribution I. Given that
I = s, X has a Poisson distribution with mean λs, so X ∼ MixPoi(λI). In situation 2
(cont-time R-F) I ≡ 1 so X ∼ Poi(λ = 1.5). This implies gives the following equation

q =
∞∑
k=0

qk
λke−λ

k!
= ... = e−R0(1−q) = e−1.5(1−q).

If this equation is solved numerically it gives the result that q = 1 − 0.583 = 0.417. So
the answer to c) in situation 2, the probability of a major outbreak, equals 0.583.

As for the first situation, where I ∼ Exp(1) we get P (X = k) =
∫∞
0
P (X = k|I =

s)fI(s)ds =
∫∞
0

(λs)ke−λs

k!
e−sds = ... = 1

1+λ

(
λ

1+λ

)k, i.e. the geometric distribution, which
should not come as a surprise (each time, the event is either infection or recovery, and
the latter has probability 1/(λ+ 1)). We then get

q =
∞∑
k=0

qkP (X = k) = qk
(

λ

λ+ 1

)k
1

λ+ 1
=

1

1 + (1− q)λ
.

As a consequence, the probability of a minor outbreak for the Markovian SIR hence equals
q = 1/λ = 1/R0 = 1/1.5 = 0.67. The probability of a major outbreak is hence only 0.33.
The randomness of the infectious period hence reduces the risk for a major outbreak. It
can actually be proven that having a constant infectious period maximizes the outbreak
probability among all distributions of the infectious period.

d) The total number of infected in a major outbreak is approximately normally dis-
tributed. The mean equals nx where x is the strictly positive solution of the equation
1 − x = e−R0x. When R0 = 1.5 the solution is x = 0.583, so the expected number who
ultimately get infected equals 0.583n, and this is true for both 1 and 2 (and any infectious
period distribution). As for the standard deviation, it was shown in Etienna Pardoux’s
lecture that the variance equals

n
x(1− x)

(1− (1− x)R0)2
(
1 + r2(1− x)R0

)
,

where r2 = V (I)/(E(I))2 is the squarred coefficient of variation of the infectious period.
The Markovian SIR has r = 1 and the continuous time Reed-Frost has r = 0. When
x = 0.583 and R0 = 1.5 we hence get that the variance for the Markovian SIR equals
1.05n, and for the continuous time Reed-Frost 0.649n. The standard deviations are hence
the square rott of these expressions. Randomness in the infectious period hence affect the
randomness in the infectious period somewhat.

e) The exponential growth rate (or decay rate if R < 1) r is the solution to the equation∫∞
0
e−rsβ(s)ds = 1, where β(s) is the rate of infectious contacts s units after infection.

For the standard stochastic epidemic this rate equals λ while being infectious, so β(s) =
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λP (I > s). For the Markovian SIR we hence have β(s) = λe−s/ι = 1.5e−s, and the
solution equals r = λ − 1/ι = 0.5. For the continuous time Reed-Frost model we have
β(s) = λ1(s<ι). The equation then becomes

∫ ι
0
e−rsλds = λ

r
(1− e−rι) = 1. The equation

is hence r/λ = 1 − e−(r/λ)R0 . This is the same equation as for the final size x (with x
replaced by r/λ. When R0 = 1.5 we thus get r/λ = 0.583, so r = 0.874 for the continuous
time Reed-Frost. This epidemic hence grows much quicker. The main reason for this is
that even if the two infectious periods have equal mean ι = 1, the average time of the
infectious contacts are not the same. For the Reed-Frost the mean time to infectious
contact (the mean of the generation time distribution) is of course 0.5 (the generation
time distribution is uniform on [0, 1], whereas for the Markovian SIR it equals 1 (the
generation time distribution is Exp(1)).

f) Finally, the two leading terms for the duration of the SIR (in a fixed community of size
n) is the beginning and the end of the epidemic, and they are of the form T

(n)
Beg = log n/r

and T (n)
End = − log n/rEnd, where rEnd is the (negative) exponential decay rate at the end

of the outbreak which is the solution to the same equation as for the initial growth rate
except that λ is replaced by λ(1 − x) (the infection rate at the end when a fraction 1-x
are still susceptible. For the Markovian SIR the beginning and the end are hence equal
to log n/0.5 and − log n/(−0.375) = log n/0.375. For the continuous time Reed-Frost
the beginning of the epidemic lasts log n/0.874. As for the end this decay rate is the
negative solution to the equation (similar to the beginning but λ replaced by λ(1 − x)):
rEnd/λ = 1 − e−(rEnd/λ)R0(1−x). Since R0(1 − x) < 1 this will give a negative solution.
I don’t hava available softare to obtain this numerically when R0 = 1.5, λ = 1.5 and
x = 0.583, but the duration of the end of the continuous time Reed.Frost epidemic will
be log n/rEnd for this solution.
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