The height process of a continuous state branching
process with interaction
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Abstract

For a generalized continuous state branching process with non-vanishing diffusion
part, finite expectation and a directed (“left-to-right”) interaction, we construct the
height process of its forest of genealogical trees. The connection between this height
process and the population size process is given by an extension of the second Ray—
Knight theorem. This paper generalizes earlier work of the two last authors which
was restricted to the case of continuous branching mechanisms. Our approach is
different from that of Berestycki et al. [3]. There the diffusion part of the population
process was allowed to vanish, but the class of interactions was more restricted.
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1 Introduction

The most general continuous state branching processes (CSBP’s) are solutions of SDEs of
the form

¢ t ze topzE o1
Zr =x+ ”y/ Zrdr + \/25/ / W (dr,du) + / / / 2 M (dr, du, dz)
0 0 Jo 0 Jo 0

t VA e’
+/ / / zM(dr,du,dz), t>0,
0o Jo 1

where W (dr,du) is a space-time white noise, M (dr,du,dz) is a Poisson Random Mea-
sure (PRM) on (0, +00)® with intensity dr du(dz) and M (dr,du,dz) = M(dr,du, dz) —
dr dum(dz). The o-finite measure 7 is assumed to be such that (2% A 1)7(dz) is a finite
measure on (0, co).
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We shall assume in this paper that

(1.1) 80, /Ooo(z2 A 2)r(dz) < oo.

The latter condition allows us to write the last two integrals in the above equation as a
single integral with respect to M, namely

¢ t 2z
Zr =x — a/ Zrdr + \/26/ / W (dr, du)
0 0 Jo

t VA oo
+/ / / zM(dr,du,dz), t>0.
0o Jo 0

Moreover, we shall consider a generalized CSBP, where the linear drift —az is replaced by
a nonlinear drift f(z), which in general destroys the branching property, making Z* and
Z*tY — Z* dependent. Specifically, we consider the collection of SDE’s, indexed by x > 0,

Zf:x+/0tf(Zf)dr+\/%/Ot/OﬁW(dr,du)

(1.2)

(1.3) t VA oo
+/ / / zM(dr,du,dz), t>0.
0o Jo 0
We assume
(1.4) feCi(Ry), f(0)=0, f(z) <6, forall z€R,

for some 6 € R. The two assumptions (1.1) and (1.4) will be assumed to hold throughout
this paper, and will not be repeated in the statements.

It follows from Theorem 2.1 in Dawson and Li [5] that equation (1.3) has a unique strong
solution. The introduction of the term fot fOZK W (dr,du) to replace the more traditional
fot \/Z_;”dBT is due to [5]. Its motivation is to have a unified noise driving the equation for
all initial conditions x. In the case of linear f this provides a coupling for the CSBP’s with
different initial conditions. We retain that same coupling here.

Our motivation for considering the SDE (1.3) is to model large populations with a
specific form of interaction. It is shown in Dramé and Pardoux [7] that an appropriately
renormalized sequence of branching processes with interaction converges to the solution of
(1.3).

In this paper we want to describe the height process (Hy) of a forest of genealogical
trees of the population whose total mass process (Z7) satisfies (1.3). We will always write
s for the “exploration time” and ¢ for the “real time”, so that Hy can be thought as the
real time at which an individual lives that is explored at time s.

In this paper we want to describe the height process (Hj) of a forest of genealogical
trees of the population whose total mass process (Z7) satisfies (1.3). We will always write
s for the “exploration time” and ¢ for the “real time”, so that H, can be thought as the real
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time at which an individual lives that is explored at time s. The basic building block for
the construction of H is a spectrally positive Lévy process X (see subsection 3.1), which
due to the assumption § > 0 has a Brownian component. The equations for H and the
accompanying Lévy process X, then with a drift, are

BH, = /O 8 F/(LH(r))dr + \/2BB; + /O 8 /0 N ¢N(dr,dz) — inf X,

0<r<s

s 0o +
—// (z+ inf X, X) N(dr,dz), s>0,
0 0 r<u<s

where L'(s) stands for the local time accumulated by the process H at level t up to time s,

(1.6) X, = /fLHr ))dr +/23B, + // N(dr,dz), s>0,

B is a standard Brownian motion, N is a Poisson random measure on (0, +00)? with mean
measure drw(dz) and N(dr,dz) = N(dr,dz) — drr(dz). We shall see that in the case
f(z) = —ax, a > 0, our formula for H is equivalent to the formulas which appear in
Duquesne and Le Gall [8]. In the general case, we solve the SDE for H with the help of
Girsanov’s theorem. This change of measure introduces the “local time drift” that appears
also in (1.6) for X.

We note that (1.3) and (1.5) go along with a natural linear (left-to-right) ordering of
the (continuum of) individuals that are alive at time ¢, and corresponds to the ordering of
the exploration time s. This results in an individual interaction which acts in a directed
way, and is compatible with the global feedback of the population size on the population
growth that is described by the function f. E.g., for f(z) = —2z2, the population Z' will
experience less downward drift than the population Z2 — Z' ; this is the effect of the
directed “trees under attack” dynamics that was the starting point in Le et al. [9] and
Pardoux and Wakolbinger [12] and was related to (1.3) by the same authors in [13]. The
present work thus extends previous work in case of continuous CSBPs, which started with
the logistic interaction f(z) = az — bz? in [9] and [12], and then described more general
interactions in Ba and Pardoux [1] and in Pardoux [11].

The connection between the height process (H) and the population with total mass
(Z7) will be given by an extension of the second Ray—Knight theorem, Theorem 4.9 below,
which roughly speaking says that if L'(s) denotes the local time accumulated at level ¢
by the process H up to time s, and if S, = inf{s > 0, L%(s) > z}, then {L!(S,), t > 0}
solves the SDE (1.3). In fact, since we do not know a priori whether or not the process
H returns to 0 often enough such that its local time at 0 accumulates mass x (or in other
words whether Z% hits zero in finite time), we will rather consider the process H with an
additional drift g, which modifies the dynamics of H above an arbitrary level a > 0, and
insures that the process H return to 0 after any time s > 0. The intuitive reason why this
works is that, due to the fact that X has independent increments, and the properties of the
Poisson random measure N, the pieces of trajectories of H which accumulate local time
at levels below a interact with the past of H only through the drift, which is a function of

(1.5)
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the local time accumulated at the current level, so in particular it does not depend upon
the behavior of H while it takes values in (a,+00) hence it does not depend upon the
additional drift g,. As a result, for fixed a, we have the Ray—Knight interpretation only
on the time interval [0,a]. In order to make sure that Girsanov’s theorem is applicable,
we start out by replacing f by a function f, which coincides with f on the interval [0, b],
while f, and f; are bounded and the latter is also uniformly continuous. The limit b — oo
leads to a family of probability measures P* a > 0, which admits two projective limits:
one of the laws of (H, X) under P* which gives a unique weak solution of (1.5), (1.6), the
other one of the laws of {LL(S,),0 <t < a,z > 0} under P*, which gives the Ray-Knight
representation of (1.3).

Berestycki, Fittipaldi and Fontbona [3] establish an extended Ray—Knight theorem
in the same situation as ours, except that, while they do not restrict themselves to the
case # > 0, their assumption on the nonlinear interaction f is more restrictive than our
hypothesis (1.4): they assume that f is non positive, concave with a locally Lipschitz
derivative. Their approach is completely different from ours. While they translate the
interaction into a pruning procedure on the forest of trees corresponding to the CSBP, we
consider the process H as the solution of an SDE, with a drift which is [’ evaluated at the
local time of H at time s and at the level H,. This is an extension of the SDE for H in the
case without jumps, as it appears e.g. in [1]. The new difficulty is that each jump of Z*
creates a new sub—forest of trees which must be explored. As a result, H is not a Markov
process. It should remember at which level (i.e. time for the process Z*) a forest of trees
for a certain mass of population was created, and that sub—forest should be completely
explored, before the height process is allowed to go below that level.

We shall need to consider local times of processes which are not necessarily continuous
semi-martingales. This will extend the following definition: If Y is a continuous semi-
martingale, we shall denote by L%(s,Y’), or L*(s) if there is no risk of ambiguity, the local
time accumulated by the process Y at level a up to time s, in the sense that it satisfies

S

1
(1.7) La(s, Y) = lim — 1[a’a+5}(Y,,)d’r’.

e—0 g 0

It then follows from the occupation times formula that for any Borel measurable

g R—=-R,,
| o= [ gaida
0 —00

Our approach to the interactive case is built upon a fresh look at the height processes
H constructed by Duquesne and Le Gall [8], for general CSBP’s. We will give a new
representation of H which allows for an extension to the interactive case, including the
corresponding Ray-Knight representation of the solution Z% of (1.3).

As a matter of fact, a large part of the present paper is concerned with the linear
(CSBP) case, i.e. the case where Z* solves (1.2). In this case, thanks to the assumption
f > 0, the height process obeys (see formula (1.4) in [8])

(1.8) BH, = [{X,; 0 <r <s},
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where 7?, := inf,<,<s X, and |A| denotes the Lebesgue measure of the set A. The first
step of our work will consist in reinterpreting that formula, in a form which will allow the
generalization to a nonlinear function f (i. e. to the case of interaction).

The paper is organized as follows. Section 2 is very short. It makes precise some
properties of the space-time random field {ZF, t > 0,2 > 0}. Section 3 considers the
case without interaction. We first establish preliminary results that are necessary for
the definition of the non-Markovian term in our representation of the height process H,
namely the non-compensated integral w.r.t. N which appears in equation (1.5). We
then study successively the cases 7 = 0 (no jumps), 7 finite, and finally the general case
where 7 satisfies (1.1), and establish the Ray—Knight theorem in a way which is taylored
for the subsequent extension to the interactive case. Section 4 considers the case with the
interaction f. We introduce the SDE for H which has a drift term that depends on the local
time accumulated at the current height. In order to prove the Ray-Knight representation
of the solution of (1.3) in terms of the local time of H, we again treat successively the
cases m = 0 (no jumps), 7 finite, and finally the general case where 7 satisfies (1.1).

2 The population sizes a as random field

The population size process {ZF, t,x > 0} solving (1.3) is an R;—valued random field
indexed by t and z. For each fixed z > 0, {Z7, t > 0} is a jump—diffusion Markov process.
The coupling for various values of x is specified by the two noises W and M driving our
SDE, which are independent of the initial condition z. In the case of equation (1.2), for
any sequence 0 < ry < x9 < --- < x,, the increments 2%, Z%> — 2% . . Z* — Z* 1! are
mutually independent. In fact this is true both concerning the increments of the processes,
and the increments at some fixed value of . This is the branching property. There is no
reason to believe that this independence (or equivalently, the so-called branching property)
still holds when f in (1.3) is non-linear. However, also in this case (Z7) turns out to be a
path-valued Markov process parametrized by x.

Proposition 2.1. Let {ZF, t,x > 0} be the solution of the collection indexed by x of SDEs
(1.3). Then {Z7,t > 0},>0 is a D([0,4+00))-valued Markov process with parameter x.

PROOF For z,y > 0, let V™ := ZF™ — Z#_ Tt is not hard to see that V¥ solves the SDE

' t pvoY
vf’y:y+/ [f(Z7 + Vov) — f(Zf)]err\/?ﬂ/ / W (dr, Z? + du)
0o Jo

0
t Vf;y oo
—I—// / 2M(dr, Z7 + du, dz),
o Jo 0

where the pair of noises (W (dr, Z% + du), M (dr, Z* + du, dz)) is independent of {Z*', 0 <
' < x} and has the same law as the pair (W, M). The independence property follows

(2.1)

from the fact that the restrictions of (W, M) to disjoint sets are independent. Since the



time dependent drift v — f(ZF +v) — f(Z¥) is a function of Z*, and the noise terms are
functions of both the solution V*¥ and noises which are independent of {Z%, 0 < 2’ < z},
we conclude that the condition law of V®¥ given {Z*, 0 < 2/ < x} is a function of Z*.
The result follows. O

3 The case without interaction

Our starting point in this section will be the case f(z) = —az, a > 0 in (1.3), with a
CSBP Z7 solving (1.2), and the corresponding Lévy process X. First we recall some basic
facts about the latter.

3.1 The Lévy process X
The branching mechanism of the CSBP Z% solving (1.2) is given as

(3.1) P(A) = ad + BA2 + /m(e-*z — 1+ A2)m(dz).

The Laplace transform of the associated Lévy process X is given as
(3.2) E (exp(—AX;)) = exp(syp(N)), s,A >0,

with characteristic exponent ¢ = 1), 5. given by (3.1). Our assumptions on S and 7 have
been formulated in (1.1).

Let B be a standard Brownian motion, N be a Poisson random measure on (0, +00)?
with mean measure dsm(dz), where 7 satisfies (1.1), and let N denote the compensated
measure N (dr,dz) = N(dr,dz) — drm(dz). Then X has the representation

(3.3) Xs = —as++/28D; +/ / zN(dr,dz), s>0.
0 Jo

For part of our results, we will assume that X does not drift to 400, which in the presence
of condition (1.1) is equivalent to

(3.4) —a=E(X;) <0.
We note that our standing assumption 5 > 0 implies that
0 dA
(3.5) —— < .
IOV

Indeed, since e™* — 1+ Az > 0, we have 1, g (A) > s 0(A) = @l + B2

Property (3.5) implies continuity of the height process H even in the case 5 = 0, see
Duquesne and Le Gall [8], Theorem 1.4.3. In particular, for the case § > 0 considered in
the present work, the height process H, which is then given by (1.8), is continuous.
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For the remainder of this section we assume that (3.4) holds, so that the Lévy process
X hits —z in finite time a.s., for any z > 0. We are now going to establish properties of X
which will be essential for our representation of the height process. In the next statement,
we shall write fab to mean f(a,b}’ except when b = oo, in which case faoo = f(a,oo)'

Proposition 3.1. For any s >0, 0 < a < b < 0o, we have

E/ / z+ inf X, — X,)"N(dr,dz) / dr/ z+ inf X,)*7w(dz).
0 a r<u<s o<u<r
PROOF FIRST STEP : 7(0,00) < co. In this case, we can write N = >~ d(g, z,), Where

0 < Ry < Ry < --- are stopping times. Let Fy = o{X,, 0 < r < s}. Since Z; is
Fr,~measurable, we have

r<u<s

E/ / 2+ inf X, — X,)"N(dr,dz)
0 Ja

:ZE 1{Ri§8,a<Zi§b}(ZZ'+ inf X, XR)}
i=1 L

R;<u<s

= ZE 1{Ri§s,a<Zi§b}E{(Zi+ 1nf X, — Xg,) ‘fRi}:|

R;<u<s
z:Z¢:|

= ZE 1{R¢Ss,a<Z1~§b}E{(Z+ inf X, — Xg,) ’]:Rz}

- R;<u<s
=1
T—RZ‘7Z—Zi:|

8

0<u<s—r
s b
E/ / E[(z—l— inf Xu)+] N(dr,dz)
0 a 0<u<s—r
s b
_ : +
_/ dr/ E [(2+0§11Lr%fs_rXu) ]W(dz)
/ dr/ {z+ inf Xu)+] 7(dz),
0<u<r

where we have used the strong Markov property of X, for the 4th equality.
SECOND STEP : THE GENERAL CASE. This step is necessary only in the case a = 0, which
we now assume. It follows from the first step that for any k£ > 1,

E/ / z+ inf X, — X,)"N(dr,dz) / dr/ z+ inf X,)w(dz).
o Ji/k r<uss 1/k 0<u<r

We can take the limit in that identity as & — oo, thanks to the monotone convergence
theorem applied to the two expressions. Il

- E 1{R¢<s,a<Zi<b}E{(z+ inf Xu)+}

@
Il
—



Lemma 3.2. For any s,x > 0, we have, with c = (1 — e~ )7}

c
— 1 < <
IP’( ogrlisXT _a:) < (\/%x> A1,

PROOF Let
T, = inf{s >0, inf X, < —:z:}.
0<r<s

Translating Theorem VII.1 from Bertoin [4] written for spectrally negative Lévy processes
into a statement for spectrally positive Lévy processes, we deduce that {T,,, = > 0} is a
subordinator with the Laplace transform
Ee e — o—20),
where ® = 1)~! is the inverse of the Laplace exponent 1.
Combining the Markov inequality applied to the increasing function y — 1 — e™¥ and
the inequality 1 —e™¥ <y, we get

]P’(— inf Xrgx) =P(T, > s)

0<r<s

IN

(1—eH)'E (1 — e*TI/S)
(1 . 6_1)_1 (1 . e—xé(l/s))
(1—e H'o(1/s)a.

IN

As we have already noted, ¥, 5.(A) > apo(A) = aX + BA2 > BA? since a > 0 (see
our assumption (3.4)). Consequently ®(u) < /u/B and ®(1/s) < (8s)~Y/2. The result
follows. U

Proposition 3.3. For any s,z > 0, we have with the constant ¢ from Lemma 3.2

E {(Hogisxr)*} < (2\;%22) Az

PRrROOF It is plain that

E l(z—i— inf XT)+] =

0<r<s

IP’<z+ inf XTZSC) dx

0<r<s

/

:/ IF’(— inf Xng—x)dx
0 0<r<s
J

P (— inf X, < x) dx.

0<r<s

The result now follows from Lemma 3.2. O
Next we establish the



Proposition 3.4. Under condition (3.4), for any s >0 and 0 < a < b < o0,

E/OS dr/ab(z—l— inf X,)*r(dz) < O(s) /ab(z/\ZQ)ﬂ(dz),

o<u<r

with C(s) = (¢\/s/B) Vs and c = /(e — 1).

PrRoOOF We deduce from Proposition 3.3 and Fubini’s Theorem that

s b b s
E/O d?"/a (Z—I—O;IL}ETXU)J“W(dz) S/a ’/T(dZ)/(; (2\/6@,22> A zdr,

from which the result follows. O
We now deduce readily from Propositions 3.1 and 3.4

Corollary 3.5. For any s > 0 and 0 < a < b < oo we have, with C(s) as in Proposition
3.4,

E/OS /ab(z+ inf X, — X,)*N(dr,dz) < C(s) /ab(z/\z2)7r(dz).

r<u<s

Remark 3.6. By Proposition 3.1 and 3.4, the process

s U, = / / (z+ inf X, — X,)"N(dr,dz)
0o Jo rsus
1s well defined. In particular, if m is a finite measure, the process U has only finitely many
Jumps on each bounded interval, so it has a right—continuous modification. We shall from
now on only consider such a modification. In the general case (1.1), the existence of a
right—continuous modification will follow from the fact that X is right—continuous and H
1§ continuous, see Proposition 3.13.

Note however that, if the measure m obeys folzﬂ(dz) = 00, then the process U has
infinite variation. Indeed, the contribution of the total variation of U on the interval [r, s
induced by a jump of size z of X at some time ' € (r,s) is bounded from below by z and
from above by 2z. Consequently the total variation TVy([r,s]) of U on the interval [r, s

satisfies / ) /O T N(dr dz) < TVp(r ) < 2 / s /O C N (),

1t follows from well-known properties of Poisson random measures that f: fooo zN(dr,dz) =
+00 a.s., unless [~ (z A 1)m(dz) < oo.

3.2 The case =0

In this subsection we assume that the Lévy process X is continuous, i.e.
X, =—as+\/26B;, s>0.
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Proposition 3.7. In the case m = 0, we have

H3—1<Xs— inf X,,>, s> 0.

ﬁ 0<r<s

PROOF This result follows readily from (1.8), since r — X, is continuous and increases
from infy<, <, X, to Xj. O

In this case, H is a drifted Brownian motion reflected above 0, and thus a fortiori a
continuous semi-martingale. The next proposition states the second Ray-Knight theorem
for this particular case. Let us define Lf(s) = L'(s, H) and

(3.6) S, =inf{s >0, LO(s, H) > z}.

Proposition 3.8. The process {L'(S;), t > 0} is a CSBP with branching mechanism
Ya,p0, starting from x at time t = 0.

PROOF This is classical, see e.g. Revuz and Yor [15] Chapter XI §2, and Theorem 5.1 in
Ba, Pardoux, Sow [2] for an identification of the constants in our case. O

Remark 3.9. We note that the scaling of the local time of H is such that L'(s, H) =
gﬁt(s, H), where L'(s, H) is the semi-martingale local time as defined in Revuz and Yor
[15] (see Corollary VI.1.9, page 227). Then, from the Tanaka formula, see Theorem VI.1.2
page 222 in [15], and Proposition 3.7, we have

s 1
Hs = / 1HT>UdHT‘ + —LU(S, H)
0 5
1 1
=_—X,+=Ls, H).
5 3 (s, H)

The second equality can be justified as follows. Proposition 3.7 tells that

BdH, = dX,+d(—inf X,).

However it is plain that
1Hs>0 d(— 1I<1f XT) = 0,

since inf,<; X, decreases only when Hy = 0. Consequently

6/ 1HT>0dHr:/ 1HT>0er :X57
0 0

since 1y, <o = 1 for Lebesgue-a.a. r and X s a drifted Brownian motion. We note in
particular that L°(s, H) = —info<,<s X, which is Lévy’s correspondence between the local
time of a reflected BM at the origin and the current minimum of a BM.
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3.3 The case 7 finite

We now suppose that 7 is a finite measure. In that case, in view of condition (1.1), zm(dz)
is also a finite measure, and if we let

o = a+/ z7(dz),
0
we have that

(3.7) X, =+/2B8B;+ P, —d's

where

(3.8) PS:// zN(dr,dz), s>0,
0 Jo

is a compound Poisson process. o
Recall the notation introduced in (1.8). We note that [0,s] > r — X * is increasing.
Denote by AX, its possible jump at time r. It follows readily from (1.8) that

(3'9) B]¥SZZ<X; __368__ :E: ij?ia
0<r<s

which we rewrite as

n
(3.10) BHs = X — mf X, — // (z—|— inf ( Xu—Xr)> N(dr,dz),

r<u<s

hereby using the equality

+
(3.11) // (Zﬂiﬂis Xu—XT)) N(dr,dz) = ) AX,.

0<r<s

As observed in Remark 3.6, the third term on the right-hand side of (3.10) has only finitely
many jumps on each bounded interval and its jumps compensate those of the process X.
This shows that H is continuous. The fact that the last term in (3.10) has bounded
variation shows that H is a semi-martingale. We have thus proved

Proposition 3.10. If the Lévy process X is given by (3.7) and (3.8) with 7 finite, then
the associated height process H is given by (3.10), and it is a continuous semi—martingale.

Recall that the second term on the right of (3.10) reflects the process above 0. We will
explain in words what the third term in (3.10) does. For that purpose, we need to define
for0<r<s

+
X'=X,— inf X, — // (z+ inf ( XU—XU)) N(du,dy),

0<r<s u<v<r
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which is the same as SH,, except that we have stopped the third term at time r. At each
jump time r of X, draw a piece of horizontal line which starts from (r, 5H,), and extends
to r* := inf{s > r, X7 < BH,}. Then pull down X! to X7, and reflect the piece of
trajectory of { X7, < u < r*} above the level of X”_, that is above the “horizontal stick”
which extends from (r, X7_) to (r, XLL)

We are now going to give a new derivation of the Ray—Knight theorem in this case,
since our proof of the corresponding result in the case with interaction will be based upon
the same argument.

Let X be the Lévy process given by (3.2), started in 0 and stopped at the time S,
when first hitting —x. Let the height process H of X be given by (1.8) (or equivalently by

(3.9)), and L'(s) be the local time accumulated by H at height ¢ between times 0 and s.

Proposition 3.11. The process {L'(S;), t > 0} is a CSBP with branching mechanism
VY 1= Yo px, starting from x at time t = 0.

PROOF Let us first recall how we can construct X and S, iteratively from (pieces of)
drifted Brownian motions together with (atoms of) the Poisson process I1 with intensity
dsm(dz). For y > 0 let BY be a BM with drift a — fooo zm(dz) started in y and stopped
when first hitting 0; let us denote this hitting time by S(BY).

The first step in the iteration is X© := —2+B%. Let S be the time at which X © first
hits —x; note that S = S(B~). Consider a Poisson process ITy on [0, S”] x (0, +00) with
intensity dsm(dz). Denote the points of Iy by (s;, 2;)1<i<y. If J = 0, the iteration stops
at step 0. Otherwise each atom (s;, z;) gives rise to the injection of a path B* (defined
on an interval of length S(B*)) into X© as described below for B. Each piece BY that
is injected in the k-th iteration is defined on some interval I, and gives rise to a Poisson
process on I x R, whose points in turn give rise to new injected pieces. This procedure
terminates after finitely many steps, ending in X.

Letm € {1,...,J} be such that H{”) = min{Hs(?) 1 <i < J}. Given that S(B*™) = 8,
take a Poisson process II; with intensity measure dsm(dz) on [Sp,Sm + §] X Ry. Then
transport Il into I, by keeping each point (s;, z;) with s; < s, as it is, and shifting each
point (s;, z;) with s; > s,,, into (s; + 3, z;). Put Iy := Iy + I1;, and keep iterating.

Let H©® be the height process of X given by (3.9) with X instead of X. Inject
B*m into X by defining

Xs(o) Jor 0 < s < s,
X§1) = Xég} + Bim, L for s, <5< s, +S(B),
XOspmy  ofor sy +S(B) <5 < S+ S(B) = 5.

Let H® be the height process of X! given by (3.9) with X instead of X. We note
that HY,) = H ¢ .., = HL), and that (with Ty := HY)) we have LT(H®, i) =
LT (HO), 53(50)) Tz

A key observation is that the reflection of H below T equals the reflection of H©
below Ty, and that Lt(H, S,) = L{(H®, ) for 0 <t < Ty, L' (H, S,) = L (HD, V).

12



Consequently, on {¢t < T1} we have L'(H,S,) = L'(H©®,S”). The height of the lowest
jump of the local time of H is T}, which is measurable with respect to (X IIy). By the
classical Ray-Knight theorem (Proposition 3.8), LY(H, S,) follows before its first jump the
dynamics of a subcritical Feller branching diffusion. Moreover,

5

P(T) > t\X(O)) = exp <_7T(R+)/ {H(O)<t}d8>
0

t
~ exp (—wam / Lv<H<°>,S;°>>dv) ,
0

which Shovvs that the first jump 77 of {L*(S,), t > 0} comes at rate (R, )L*(S,)dt, since

fo L"(H S(O) dv = f LY(H,S,)dv when t < Ty. Also, its size has distribution 7/7(R).
Thus, up to and including Tl, {L'(S;), t > 0} is a CSBP with branching mechanism .

. . 1 . .
Proceeding in the same manner from 7} = H ém) upwards, we arrive at our assertion. [

3.4 The general case

3.4.1 The height process

We now consider the general case, that is 7 satisfies (1.1). Consequently, for any ¢ > 0,
(g, 00) < 0o. We define m(dz) = 1., o0)(2)7(dz), where g, is a sequence of positive reals
which decreases to 0, and

¢% ::¢Quﬂwk~

The corresponding Lévy process X* admits the Lévy-1to decomposition

Xk = —as+/26B, + / /Oo =N (dr, dz)
__(OH_/E 7(dz) 5+\/—B // N(dr,dz).

The last term in the right—hand side is a compound Poisson process. We have

Lemma 3.12. As k — oo, X* — X, in LY(Q), locally uniformly with respect to s.

X

PRrOOF It is plain that

E{Sup \Xr—Xﬂ}:( // 2N(dr, dz)
0<r<s

<9 5/0 2 (d2)

— 0,

sup
0<r<s

13



as k — 0o, where we have used Doob’s inequality. The result follows. ]
Thanks to Proposition 3.10, the height process H* associated to the Lévy process X*
is given by

(3.12) 5H§:X§—Oi<n£ Xf—/ / z+ inf X¥— X)Y*N(dr,dz).
<r<s 0

r<u<s

Under our standing assumption (1.1) we have

Proposition 3.13. For any s > 0, H* — H, in probability, where H is given by either of
the formulas (3.10), (3.9) or (1.8), and is continuous.

PROOF Lemma 3.12 implies that Xf—infogrgs Xff — X —infy<, <, X, in probability, locally
uniformly in s. We now consider the last term in (3.12) and prove pointwise convergence.
It follows from Corollary 3.5 with a = 0 and b = ¢, that

E/O/O z+ inf X, — X,)"N(dr,dz) < C(s )/Oak(z/\zQ)ﬂ(dz),

r<u<s

which clearly tends to 0, as k — oo. From an adaptation of the argument of Proposition
3.1, we deduce that

< 1

(z+ inf (X, — X,))" — (¢ + inf (XF— XF)*

r<u<s r<u<s

(dr,dz)

_ : K+
_E/O dr/sk (z—i—oérul;Xu) (z—l—ogsqu) m(dz)
s 00 +
S]E/ dr/ {(z—i— inf X,V inf Xk>
0 . 0<u<r 0<u<r
0<u<r 0<u<r }W(d'z)’
hence
B + . k yky\+
/ / Z_’_ri%gs (X, — X)) (Z+r£fgs(X“ X)) (dr,dz)
+
(3.13) g/ dr/ E (z+ inf X,V inf X’“) ]
0 . 0<u<r 0<u<r
NE m(dz).
0<u<r 0<u<r

We deduce from Lemma 3.12 that

inf X, — mf Xk

o<u<r 0<u<r

(3.14) E 0,

14



as k — oco. Arguing as in the proof of Proposition 3.3, we obtain

_l’_
(z—i— lan\/lan>]
0<u<r <u<lr
§/ {P (— inf Xugm) (— inf Xk<x)} dx
0 o<u<r 0<u<r
c

:/ P(—{lnf X,V inf Xk
0 o<u<r o<u<r
1 1
<c|d|- O B
<o)+ ()7 = 75
It is plain that the left hand side in the previous chain of inequalities is dominated by z,
hence we have proved that

- c

(ZJFOEE}QTX Vot X ) ] = (\/EZ ) Mz
The right—hand side of (3.15) is dr x 7(dz) - integrable over [0, s] x (0, c0) for any s > 0. It
then follows from (3.14) and the dominated convergence theorem that the left-hand side of
(3.13) tends to 0 as k — co. We can now take the limit in (3.12), yielding the convergence.

It is clear that (3.11) still holds in the general situation, which re—establishes the for-
mulas (3.9) and (1.8). From (3.9) the continuity of H is essentially clear, as claimed in [8].
Let us give a quick explanation. The right continuity follows from the right continuity of
the three terms on the right of (3.9). The left continuity follows from that of the second
term, while the eventual jumps of the first and the third term compensate. O

Note that, under condition (3.5) which is weaker than > 0, Duquesne and Le Gall
8], Sec.1.4.3, prove that H is Holder continuous. We shall not need that property.

We first prove

E

(3.15) E

Lemma 3.14. For any § > 0, there exists a random increasing function ¥ : [0,1] — R,
such that W(h) | 0 a.s. as h {0, and for any 0 < s <3, any 0 < h <1,

(HE,, — HE)_ < W(h), Yk > 1.

PROOF Since X is a Lévy process with only positive jumps, it is not hard to check by
contradiction that
Ox(h) = swp  (X,—X,)
0<r<5,0<s—r<h

is a.s. a continuous function of & on [0, 1] such that ®x(0) = 0. Since X* — X uniformly
in probability on [0, 5], one obtains that ®yr(h) — ®x(h) in probability as k — oo, for
any h > 0. Since each ®yx is increasing and the limit is continuous, it follows from the
second Dini theorem that the convergence in probability is uniform w.r.t. h € [0, 1]. This
implies readily that

U(h) =" (sup Oy (h)V (IDX(h)> , h>0

k>1

15



is a.s. continuous in h, and ¥(0) = 0.
Now, using (3.9) and abbreviating Y := X*

—s+h —S —s+h —S
BHE, — HE) = Yoin = Yo=Y " 4V — 3 (AV, " = AY)
0<r<s
-y A
s<r<s+h
>V —Yi— Yy, AV

s<r<s+h
. s+h .
Since Y5 — qugs% AY . >inf.c, <54 Y,, we conclude that

B(HE, —HF)> inf Y, -V,

s s<r<s+h

and consequently
(Hip, = H)- < U(h),

which proves the result. Il
We now deduce from the two previous statements

Corollary 3.15. Under the above assumptions, H* — H, in probability, locally uniformly
w.r.t. s.

Corollary 3.15 is an immediate consequence of Proposition 3.13, Lemma 3.14, the fol-
lowing extension of the second Dini theorem, and the equivalence of convergence in proba-
bility and the fact that from any subsequence, one can extract a further subsequence which
converges a.s..

Lemma 3.16. Consider a sequence {gi, k > 1} of functions from Ry into R and T > 0,
which are such that for any 0 <t < T, gi(t) — g(t), where g : [0,T] — R is continuous,
and supys (ge(t+h)—gi(t))= = 0, as h — 0. Then gi(t) = g(t) uniformly w.r.t. t € [0,T].

PROOF Let ¢ > 0 be arbitrary. Since t — g¢(t¢) is uniformly continuous on the compact
interval [0, 77, there exists n > 0 small enough such that whenever s,t € [0,7], 0 < t <
s <t—+mn,

(3.16) lg(s) — g(t)]

(3.17) gr(s) — g(t) > —% for all k£ > 1,

IA
wl ™

Y

where the second inequality follows from our assumption on the sequence gy.

We next choose an integer N > T/n and 0 = t; < t; < --- < ty = T such that
tiz1 —t; <m forall 0 <j < N —1. We now choose k. large enough such that, for any
E>h, 1<j<N,

(3.18) |9x(t;) — g(t;)| <

W M
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Now for any t € [0,7] either ¢t = t; for some 1 < j < N (and then (3.18) ensures that
lgk(t) — g(t)] < €), or else there exists 0 < j < N such that ¢; < ¢ < t;4;. In that case we
obtain, using successively (3.17), (3.18) and (3.16), the two following inequalities:

) glt) < gelty) + 5

< g(tj) + % < g(t) +e,
(i) gult) 2 9ulty) — 5

> g(ty)—% > g(t) —¢

The result clearly follows from those inequalities and the fact that ¢ > 0 is abitrary. [

3.4.2 The local time of the height process

Let L'(s) denote the local time accumulated by the process H, defined by (3.9) or (3.10),
at level ¢ up to time s. The existence of L'(s) was established already in Duquesne and Le
Gall [8]. We shall give an independent definition of L'(s), via an It6—Tanaka formula for
(H —t)*, and prove some regularity.

Proposition 3.17. We have

B(H, —t)* /1HT WX, // 1y -i(z+ inf X, — X))V N(dr,dz)+L(s),

r<u<s

where L'(s) is for any s > 0, t > 0 the local time accumulated by H at level t up to time
s, in the sense that it satisfies the occupation times formula.

The formula in the Proposition can be rewritten as

T‘US

(3.19)  L'(s) = B(H, —t)+—/0 1y, -1dX, +/ /lH si(z+ inf X, — X,)TN(dr,dz).

The proof of Proposition3.17 will be based on a limiting procedure along the sequence X*
of Lévy processes associated to mi(dz) = 1., m(dz). This gives us a construction of the
local time that is different from the construction in Duquesne and Le Gall [8], but leads to
the same result, as a consequence of the occupation time formula.

Note that the corresponding height process H* is a continuous semi-martingale, whose
local time is well-defined using the classical theory, see e.g. Chapter VI in Revuz and Yor
[15]. We have the formula, analogous to (3.19)

Li(s) = B(HE — 1) — /51H5>tdxf
(3.20)

r<u<s

/ /1Hk>t z+ inf XF¥— XFY*N(dr,dz).

17



Note that the formula would be different if L!(s) were the “semi-martingale local time”,
as defined in [15]. In that case there would be a factor g in front of the local time. Indeed,
after the division of the whole formula by , we should find a factor % in front of the local
time, see the second formula in Theorem VI.1.2 in [15].

Before proving the above Proposition, let us establish a technical Lemma.

Lemma 3.18. For any s > 0,

sup ELi(s) < cc.
>0, k>1

PrROOF We need to show successively

sup E(HF — )" < oo,

t>0, k>1
S
sup E
>0, k>1
sup ]E/ /1Hk>t z+ inf XF— XM)Y*N(dr,dz) < 0o
t>0, k>1 r<uss

The first estimate is an easy exercise which we leave to the reader. The third one follows
readily from

//1Hk>t z+ inf XF-— Xf)+N(dr,dz)§// z4 inf X¥— XMTN(dr,dz)
0 Jeg

r<u<s r<u<s

and Proposition 3.4. It remains to consider
/ 1H§>thf = —04/ 1pesedr + \/25/ 1pr-,dB, +/ 1Hﬁ>t/ ZN(dr,dz).
0 0 0 0 ek

The first term on the right is bounded in absolute value by |a|s. We estimate the second
term using Cauchy-Schwartz

B|[ tudBi| < Vs
0
Finally
Lok, 2N (dr, dz)
* 1 oo
<E lyrsy [ 2N(dr,dz)| +E Lk 2N (dr,dz)
1

< /5/01 2r(dz) + 25 /loo an(dz).

18



The result follows. U

We now turn to the
PROOF OF PROPOSITION 3. 17 We first consider the case [;° zm(dz) < oo (which certainly
applies to m(dz) := m,(dz) = 1,5.,m(dz)). Then H, is a continuous semi-martingale, and
the formula of our Proposition follows from It6-Tanaka’s formula (see e.g. the second
identity in Theorem VI.1.2 in [15]), but with a different constant in front of the local
time, due to our definition (1.7). It is then crucial to note that whenever we have a point
(r,z) of the Point Process N such that H, < t, then until the first time s for which
z +inf,<,<s X, — X, = 0, the process u — inf,<,<, X, decreases only when H, = H, <t,
hence the term 1y -, factorizes in the last integral.

We now take the limit along a sequence X* associated to mj, thus establishing the
Ito—Tanaka formula in the general case.

From the occupation time formula, for any g € C([0, 00)) with compact support

| s = [ attyar

Clearly [, g(HF)dr — [; g(H,)dr as k — oo. Denote by R'(s) (resp. Rj(s)) the right-
hand side of (3 19) (resp. of (3 20)). The Proposition will clearly follow from

supE |R'(s) — Rj(s)| = 0, as k — oo.

t>0

In other words, all we have to show is that, as k — oo,

(3.21) supE |(H, — t)" — (HY —)"| — 0,

t>0
(3.22) supE 1y - dX, — / Ly dX)| =0,

t>0

supE‘/ /1H -t z+ 1nf X, — X,)TN(dr,dz)
(3.23) =0

/ /1Hk>t z+ inf X¥ — XFYTN(dr,dz)| — 0.

r<u<s

Since x — (x — t)" is continuous, (3.21) follows from Corollary 3.15 and the uniform
integrability of the sequence HF. We next establish (3.23). We argue similarly as in the
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proof of Proposition 3.13.

1H ~t(z+ inf X, — X,)TN(dr,dz)

r<u<s

—//1H§>t z+ inf XF— XM)TN(dr,dz)

r<u<s

<E/ /H>t z+ inf X, — X,)"N(dr,dz)

r<u<s

+]E// ‘1HT>t(z+ inf (X, — X,))*"
0 5

r<u<s

— Loz + inf (XF— X,’?))*’N(dr,dz).

r<u<s

The first term on the right is bounded from above by the same term without the factor
1y -, which tends to 0 as k£ — oo thanks to Corollary 3.5. We now estimate the second

term.
/ / 1g,-¢(2 + ing (Xu— X)) " = Lps(2 + éng (XF — XF)*| N(dr, dz)
<E// 11p, 50 — Lpese| (2 + ing (X — X,))TN(dr, dz)
_ + _ : k_ ykyy+
—i—E/ / Z+ri%£s (X, — X)) (Z—i—T%%fSS(Xu X)) (dr,dz)

The first term on the right hand side of the last inequality tends to zero by dominated
convergence, while the convergence to zero of the second term was proved in Proposition
3.13. In order to finally establish (3.22), we first note that

/ 1H7‘>th / ]_Hk>th / 1H >t ]_Hk>t dX +/ 1Hk>t/ dS dZ

The sup in ¢ of the expectation of the second term on the right tends to zero since

(/OS Lizpst /OEIc zN(d37dz)) 2] < S/ng 27(dz)

— 0, as k — oo.

Concerning the first term, all we need to do is to use the same decomposition and the same
kind of estimates as used in the proof of Lemma 3.18, combined with the following

(3.24) SupE/ 114,50 — Lypss| dr — 0, as k — occ.
0

t>0

20



In order to prove (3.24), we note that for any ¢ > 0,
]E/ 11,50 — Lpgese| dr < / P(|H, — H| > e)dr + IE/ Lo ccmizieydr
0 0 0
t+e

:/ P(|H, — H*| > g)dr+E/ LY(s)du.

0 t—e

The first term on the right does not depend upon ¢t and tends to 0 as & — oo as a
consequence of Corollary 3.5, while the second term is dominated by

2¢  sup Li(s).
t>0, k>1

Hence (3.24) follows from Lemma 3.18 and the fact that € > 0 is arbitrary. The Proposition
is established. |
We have in fact proved

Corollary 3.19. For any t,s >0, as k — oo,
Li(s) — L'(s) in probabiity.
We next establish
Lemma 3.20. The local time L'(s) is continuous in s, for all t > 0.

PROOF An argument very similar to that at the end of the proof of Proposition 3.13 yields
the continuity of the map s — B(H, —t)" — L'(s), while the same Proposition implies that
s — B(Hs; —t)* is continuous. The result follows. d

Before proving the next Proposition, we show a uniform LP-bound for the (approximat-
ing) local time(s), up to the time of the first big jump of X. To prepare this, we first fix
k> 1 and s > 0, and consider the process

S €k -
A = / / 1y, <i2N(dr,dz).
o Jo

Let G; denote the o—algebra generated by the random variables

S €k -
I, = / / g(r,z) zN(dr,dz),
0o Jo

where ¢ is bounded and P ® B, measurable (P stands for the o—algebra of predictable
subsets of © x R, ) and satisfies {g(r,2) = 0} D {H, > t}. We first establish

Lemma 3.21. The process {A; : t > 0} is a (G;)—martingale.

PrOOF It suffices to verify that E[(Ay — A)I;] = 0 for t < t' and any g as above. This,
however, is obvious. [l

For K > 0, let 7 be the time of the first jump of X of size greater than or equal to
K. We shall need the
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Lemma 3.22. Foranyp >1, s >0, K > 0, there exists a constant C which depends only
on those three parameters, such that

sup E[L'(s A 15 )?] < C,

>0
sup E[LL(sATr)?] < C.
£>0,k>1

PROOF We shall prove the first inequality only. The second one is proved in exactly the

same way. Since Hy and L'(s) are continuous in s, we can rewrite their expressions (3.10)
and (3.19) as

fHy = X,_ — inf X, — / / (z+ inf X, — X,)"N(dz,dr),

0<r<s r<u<s

L'(s) = B(H, — t)+—/ 1p,~:dX, +/ /lH si(z+ inf X, — X,)TN(dr,dz).
0

r<u<s

We first note that, since 1p x)(2)(2* A 2P)m(dz) is integrable for all p > 1, one can easily
show that for all p > 1, K > 0,5 > 0, there exists a constant C), ks such that

(3.25) ]E( sup |Xr|p) < Cpk.s-
0<r<sATk

We now estimate the last term in the above right hand side. It is clear that (the second
inequality follows by combining SH, > 0 with the above identity)

r<u<s r<u<s

/ /1Hr>t z+ inf X, — X,)"N(dr,dz) / /z—l— inf X, — X,)"N(dr,dz)
o Jo
— inf X,

0<r<s

<2 sup |X,].

0<r<s

Next we observe that

B(H, —t)" < BH, <XS_— inf X,

T’<8
<2 sup |X,].
0<r<s

From the last two inequalities,

(sA\TK)

B(Hspry — / /1H st(z+ inf X, — X,)TN(dr,dz)
(326) r<u<s
sup [ X, .
O<T<SATK
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We now consider the second term

_/ 1Hr>thr Y 26\/ ]-Hr>tdBr - / / 1HT>tZN(dT, dZ)
0 0 0 0

The p—th absolute moment of the first term on the right is easy to estimate, since by the
Burkholder-Davis-Gundy inequality,

/ 1H1">tdBT’
0

We finally estimate the p-th absolute moment of the last term. Let Y, =
fos fooo 1y,-:2N(dr,dz). We first note that

r K 5
/ / 1y,5:2N(dr,dz)
0 Jo

Newt we use the Burkholder-Davis-Gundy inequality for possibly discontinuous martin-
gales, see e.g. Theorem IV .48 in Protter [14], which yields

r pK o p s prK p/2
/ / zN(dr,dz) ) <cE </ / 1y,-2°N(dr, dz)> ] :
o Jo 0 Jo

The result follows from a combination of (3.25), (3.26), (3.27), (3.28), (3.29) and the fact
that if NV is a Poisson random measure with mean measure v and f € L*(v) N L*(v), then
all moment of N(f) are finite. The last statement can be deduced from the fact that the
k—th cumulant of N(f) is given as kx(N(f)) = [ f*dv, which is easy to verify for any step
function f.

Just as the reflection of H above zero leads to L%(s) > L%~ (s) = 0, the process t — L'(s)
is discontinuous, due to the fact that the jumps of X create accumulations of local time of
H at certain level. The points of discontinuity of t — L’(s) are of course at most countable.
They can be described as follows : Let

(3.27) E (

P
) < C'psp/Q.

(3.28) [Yisnrie)—| < sup

r<s

(3.29) E (Sup

r<s

N, ={0<r<s; N{r} xR,) >0}

be the projection onto the s-axis of the support of the Poisson random measure N. The
set NV is at most countable, and {H,, r € N,} is the set of the points of discontinuity of
the mapping ¢ — L'(s).

Proposition 3.23. The local time L'(s) has a version which is a.s. continuous in s and
cadlag in t.

PROOF The continuity in s has been established in Lemma 3.20. Considering now the
regularity in ¢, we note that the first term in the right of (3.19) is clearly continuous in ¢.
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Concerning the second term, we have for any p > 2 and ¢t < t' from the Burkholder-Davis—
Gundy inequality, with the stopping times introduced just before Lemma 3.22, exploiting
/ (L#,>t — La, >0 )dB,

0

Jensen’s inequality for the last inequality,
2p>
S/\TK p
/ 1t<HT§t'd7’ }
0

E( sup
0<r<sATk
t d p
:4(t’—t)pE{(/ LU(s A 1) —2 )}
t t/_t

< 4E {
<4t -t 'E /tt/(L“(s A T))Pdu.

This combined with Kolmogorov’s lemma implies that the mapping ¢ — fos 1y ~+dB, has
a version which is continuous in the two variables ¢ and s.

Concerning the two last terms, if we replace the integrals over (0, s| x (0, 00) by integrals
over (0, s] x (e, 00), then the sum of those two terms is cadlag, the evolution between the
jumps being absolutely continuous in the first term and decreasing in the second one. It
remains to show that the supremum over t of

/ / 1y, >tzN (dr,dz) + / /1Hr>t z+ inf X, — X,)TN(dr,dz)

r<u<s

tends to 0 as k — oo. Concerning the second term, this follows from the fact that

sup/ /1H ~t(z+ 1nf X, — X,)"N(dr,dz)

§/ /(z—i— inf X, — X,)*N(dr,dz),
0 0 r<u<s

and the right hand side converges to 0 in probability as k — oo.
Finally the uniform convergence of the first term follows from Lemma 3.21 and Doob’s
maximal inequality. O

3.4.3 The Ray—Knight theorem

We can now establish the Ray-Knight Theorem.

Theorem 3.24. Under the assumption (3.4) the stopping time S, defined in (3.6) is finite
a.s. and the process {L'(S;), t > 0} is a CSBP with branching mechanism 1.

PROOF Let S¥ :=inf{s > 0, L9(s) > x}. Proposition 3.11 shows that {L!(S¥), t > 0} is
a CSBP with branching mechanism 1, (here again L, denotes the local time of H*). It is
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plain that for any g € Cp(R4; R, ) with compact support, we have both
00 Sk
| azistae= [ gtbs, and
0 0
o Sac
| aorisad= [ gt
0 0

Provided we show that S¥ — S, which will be done in the next Lemma, it follows from
Corollary 3.15 that the right—hand side of the first identity converges in probability to the
right-hand side of the second identity in probability, as k& — oo. Consequently for any
T >0,

Ly (52) = L'(5)
in L?(0,T) weakly, in probability, as k — oo.

On the other hand, from Proposition 3.11, {L%(S¥), ¢ > 0} is a CSBP with branching
mechanism 1. Let now W be a space-time white noise, and M a Poisson random measure
with mean ds x du x w(dz), while M will denote the compensated measure M (ds, du,dz) —
dsdum(dz). It is clear that if {Z", t > 0} denotes the unique strong solution of the
Dawson-Li type SDE (see [5])

Zkz
Z“—era/Z’”der\/ // W (ds, du)

—i—/ / S_/ zM(ds,du,dz),
0 0 €k

then for each k > 1, {LL(S¥), t >0, x> 0} and {Z/"", t >0, 2 > 0} have the same law.
On the other hand, it is not hard to show that Zf * — Z¥ in probability, locally uniformly
in ¢, where Z is the unique solution of the SDE

¢ t 2z
ZF =z + a/ Zids + \/26/ / W (ds, du)
0 0 Jo

t A oo
+ / / / zM(ds, du, dz).
0 Jo 0

The result follows from a combination of the above arguments. g
It remains to show that S¥ — S,.

(3.30)

Lemma 3.25. For any x > 0, as k — o0,
S¥ — S, in probability.

PROOF From the definition of S, := inf{s > 0, L%(s, H) > x}, for any € > 0, L(S, +¢) >
x. Hence limsup,_, ., S* < S,. However, L(s, H) = —info<,<, X,. By Theorem VIL.1 of
Bertoin [4], the process x — S, is a subordinator. Consequently, by Proposition 1.7 of [4],
a.s. Sy =S, =inf{s >0, L%(s,H) > z}. So for any € > 0, L°(S, — &, H) < x, and a.s.
liminfg 0o S¥ > S, O
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4 The case with interaction

For the rest of the paper we consider, instead of (1.2), the collection of SDE’s (1.3). In
other words, the linear drift term —aZ; dt in (1.2) is replaced by the non-linear drift term
f(Z7F)dt, with f satisfying (1.4).

Connecting to the results of the previous section, we consider a process X defined by
(3.3) with a =0, i.e.

(4.1) X, = /26B, + // N(dr,dz), s>0,

where again N denotes the compensated measure N (dr,dz) = N(dr,dz) — dr n(dz).

Our final aim in this paper is to obtain a Ray—Knight representation for the solution
Z of (1.3) in terms of an appropriate height process. For this, our strategy will be to
introduce, via Girsanov’s theorem, the appropriate drift into the equation (3.10) for the
height process H. This change of measure will introduce the same drift into the the process
X, and should lead to the SDE’s (1.5) and (1.6) for the pair (X, H).

However, condition (1.4) gurantees only local boundedness of f’. Thus, in order to make
sure that Girsanov’s theorem is applicable, we use a localization procedure and associate
to each b € (0,00) a function

f» € CF(R,), f; is uniformly continuous on R,

(4.2) and fy(z) = f(2), 0< z < b.

We also assume that f;(z) <6, for all z> 0, b > 0.

Even with this localization, we have no guarantee that the process H (which then solves
(1.5) with f, instead of f) may tend to infinity before its local time at ¢ = 0 has achieved
the value S,, > 0. Then there would be no way make sense of the process L*(S,). One
way to circumvent this difficulty would be to define H reflected below an arbitrary level a
as in [6] and [11], and identifying the law of L'(S,) as that of Z*, killed at time ¢t = a.
However, there would be difficulties with the definition of the thus reflected SDE for H,
due to the jump terms. Therefore, we will use an additional localization by adding a drift
which acts only while H takes values above a > 0, and has the effect of forcing H to go
back to 0 after any time. Our choice for this will be

ga(h) = —(h —a)".

After taking the limit b — oo we will identify the law of {L!(S,), 0 <t < a} with that of
{ZF, 0 <t <a}, but will loose the interpretation of L'(S,) for ¢t > a.

4.1 The case 1 =0
This case is treated in Pardoux [11]. The equation (1.5) for the height process H reads

0<r<s

(4.3) BHS:/OSf’(LHT (r)) dr + /288, — inf X,.
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It is shown in Proposition 16 of [11] that in this case the process {ZF, t > 0} goes extinct
a.s. in finite time for all z > 0 iff

» [ (2[00 -

and in this case Corollary 7 of [11] shows that {L§ , t > 0} solves the SDE (1.3), of course

with M = 0. If the condition (4.4) is not satisfied, Z7 need not go extinct, and in that case
the process H, may tend to infinity as s — oo, so that we may have L°(c0) < x. However
one can still obtain an extension of the second Ray—Knight theorem, by reflecting H below
an arbitrary level, as in Delmas [6], see Theorem 14 in [11]. The equation (4.3) has a unique
weak solution: for each x > 0, existence up to time S, follows from Girsanov’s theorem,
see the explanation on p. 95-97 together with Corollary 8 in [11]. Since Girsanov’s theorem
can be applied also in the reverse direction, this implies weak uniqueness up to time S,;
see also [12] Sec. 4.1 for that argument in the case of affine linear f’.

4.2 The case 7 finite

In this subsection, we assume that 7((0,4+00)) < co. We now use Girsanov’s theorem in
order to describe the corresponding height process. Under the reference measure P, let
H denote the solution of (3.10). For any a,b > 0, let Y denote the following Girsanov
Radon—Nikodym derivative

wt — e ([ e, L 24
vt e (o [ IR0 1B, - g5 [T IR 0) + gt Far).
and define

(45) Bt = b= — [ )+ atlar. s3>0

This is a Brownian motion up to time S, under the unique probability measure P* which
is such that, with Fy = o{H,, 0 <r < s},

dpe
dP

=Y®* 5>0.
Fs

Since f] and g, are bounded, this follows readily from Proposition 35 in [11]. It is easy to
verify that the law of the random measure N (dr,dz) is the same under P** and under P.
Indeed, one way to check that under P#*| N is a Poisson random measure on (0, +00)? with
mean the Lebesgue measure is to check that for any ¢ € C((0,+00)? R, ) with compact
support,

(4.6) E*? exp[N(—p)] = exp{/ / (2) _ 1]dsdz}.
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To verify (4.6), note first that it follows from It6’s formula that for any s > 0, if ¢4(r, 2) :=
QO(’/’, Z)]-[O,S] (T>7

explN ()] =1+ [ eplN (o) [ (e~ 1) N(ar.do

+ [CexplVpa) [ (o0 < 1) dedr.

We now observe that the above integral with respect to N is a martingale under P*?, which
follows, see e.g. Theorem II1.36 in Protter [14], from the fact that both it is a martingale
under P, and

(yob, /0. exp[N(—p,_)] /000 (e’“”(r’z) —1) N(dr,dz)) = 0.

This readily implies that
E*" exp[N(—¢,)] = 1 +/ Eb eXp[N(—go,.)]/ (e—w(r,z) — 1) dzdr,
0 0

from which (4.6) follows by explicit integration of a linear ODE, choosing s large enough
so that supp(¢) C [0, s] x (0, +00).
It follows from (4.1) and (4.5) that

x.- | UL () + gu(H)dr + X2, 5> 0.
0

where
X = /2B + / / 2N(dr,dz).
0 0

Consequently (3.10) can be written as
(4.7)

s s poo +
o 11 Hp ab__ _ 3 _
BH, _/o [fo (L7 (7)) + g4 (H,)]dr+ X inf X, /0 /0 (z—l— inf X, XT> N(dr,dz).

0<r<s r<u<s
Weak existence of a solution to (4.7) follows from the above explicit construction. Weak
P = (Y#%)~1. We denote again by L!(s) the local

dPa,b
Fs
time accumulated by the process H at level ¢ up to time s, and S, = inf{s > 0; L°(s) > x}.
We have

uniqueness follows from the fact that

Lemma 4.1. For any a,b > 0 we have P**(S, < c0) = 1.
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Proor We observe that

f (L (1) + ga(H,) < 0 — (H, —a)*.
Consequently, whenever H, > 6 + a + 1, the drift in the equation for H is bounded from
above by —1. This is enough to conclude that under P**, the process H returns to 0 after

arbitrarily large times, hence accumulates arbitrary quantities of local time at level 0. [
We can rewrite (4.7) as

8, = [ L™ (0)+ 0u(H) =) dr + VEBB — it X,

s o) +
_|_/ / 2z — {zjt inf X, X} N(dr,dz),
0 0 r<u<s

where v = [,y 2 7(dz).

(4.8)

Proposition 4.2. Assume that the measure 7 is finite, and fix a,b > 0. Under P*?,
the process {L'(S,), 0 <t < a, x > 0} is, on the time interval [0,al, a solution of the
collection indexed by x > 0 of SDEs

t t pzzb
Z5 = o+ / Fo(ZE0)dr + \/25/ / W (dr, du)
0 0 Jo

t Zf;b o
+/ / / zM(dr,du,dz), t>0.
0o Jo 0

PROOF STEP 1. EQUATION FOR L'(S,) Here x > 0 is fixed. We first note that Hg, = 0

implies that ) o g AY;% = 0. Moreover Xg, = —z. Consequently formula (3.19) at
s = S, reads

(4.9)

Sz
L4(S,) = / Ly, =idX,
0
Sz
=+ / 1Hr§th7" .
0

Note that

X, = B—I—// drdz

= / [F (L™ (r) + go(H,)|dr + B2 + / / zN(dr, dz), hence for t <a
0 0o Jo
Se Sa Se o
LYS,) == +/ Ly, <t fo(L7(r))dr —l—/ 17, <, dB%° +/ 1HT§t/ zN(dr,dz),
0 0 0 0
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where we have exploited the fact that for ¢t < a, 1g,<1g.(H,) = 0. We will now rewrite
each of the three integrals of the last right hand side. For the first one, we use, similar to

an argument on page 728 of [12], the generalized occupation times formula from Exercise
1.15 in Chapter VI of [15], and obtain

Sz t Sy
| et onar = [ [ ez
0 0o Jo
t
- / fo(L*(S,))du.
0
We next consider the process
Sz
Ut = / ]‘HrSt ng’b, t 2 0.
0
For t > 0, let HP denote the sigma-algebra generated by the random variables of the form
Sz
Y, = / g(r)dB’,
0

where g is progressively measurable and satisfies {g(r) = 0} D {H, > t}. It is easily seen
that U = (Uy)s>0 is an HP-martingale for the filtration H? = (H?);>o. We now show that
it is a continuous martingale. Indeed, for any K > 0, let again 75 denote the time of the
first jumps of X is size greater than K. On the event Q, x = {S, < 7k}, for any t > 0,

Sz ATK
U, = / Lt <, dB*.
0

Therefore, for t/ >t >0, p > 2,

Sz/\TK p
b
/ licp,<vdB} ]
[[Jo

[ Sz ATK p/2
/ 1t<HT§t'd7”
0

[ p/2

E|Uy — UfP; Q0 k] = E

=K

t/
_E / LY(S, A i) du
t

< supE (|LU(5; A TK)W?) x|t — tPr2,
u>0

The a.s. continuity of U follows from this computation, Lemma 3.22, Kolmogorov’s Lemma,
and the fact that P (Ug>18, k) = 1.
We next note that

<U>t:/0tL“(Sx)du, £>0.
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Indeed, by 1to’s formula,

t Sz r
U? — / L*(S,)du = 2 / 1y, <t / 1y« dB**dB*", t >0,
0 0 0

is a HP-martingale.
It is now clear that there exists a space-time white noise W (dr, du) such that

t rL7(Se)
U = / / W(dr,du), t>0.
0 Jo

Here the choice of representing the above martingale as a stochastic integral with respect
to a space time white noise, rather than with respect to a Brownian motion, is motivated
by Step 2 of the proof below.

We finally consider the process

Sz e t
/ 1HT§t/ zN(dr,dz) =V, — 7/ L*(Sy)du, t>0,
0 0 0

where 5
7:/ zm(dz), and Vt::/ 1HT§t/ zN(dr,dz),
0 0 0

so that we have obtained

t t pL"(Sz)
(410)  LHS) — a2+ /0 o (L7(S,)) — 7 L7(S)]dr + /0 /O W (dr, du) + V;

We now want to rewrite the process V; in a different way. For that sake, we use again the
construction introduced in Proposition 3.11.
We start with X©, HO L, S defined as follows.

X0 = [l o)~ + V2B,
BHY = [ U () = ke + V/25BE" — int X

0<r<s
Lfo)( s) is the local time accumulated by H ©) at level t up to time s,
SO —inf{s >0, L?O)(s) >},

Let N© denote an independent copy of the P01sson random measure N, and
{(si,21), 1<i< J} be the set of points of N on [0, 5] x (0,+0c). If J = 0, then
(X,H,L,S,) = (XO HO L, S )) and we are done Otherwise, we select the a.s. unique
index m € {1,.. J} such that H® = = minj<;<y Y. and we define XM ga L S

m i)
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as follows. We consider an independent copy B%! of B%, and define

x, for s < s,
XM = X(O)—l—zm—i-fs [fa( LH(I)( )) — ~]dr + /2BB%! 5,5 for s, <5 < sp 451,
X+ [0 fb<LH () = Adr +VIBBY, fors 2 st &
BHW = / [ fb(LH( y]dr 4+ /28B" — oinf XM,

Liyy(s) is the local time accumulated by HW at level t up to time s,
S =inf{s >0, L{(s) > x},

Sm

5 = inf {s > 0,x0 < X<0)} .

Note that S = Séo) + 54, since it is true under the reference probability P (see the same
construction in Proposition 3.11). We next define as follows the Poisson random measure
N® on [0, Séo)] x (0, +00). Given N an independent copy of N, which we restrict to
[0, 51] x (0,400), the points of N® are those of N© on [0, s,,,] x (0, 400), those of N1
whose first coordinate has been shifted by +s$,, on [s,,, S;m+51] X (0, +00), and finally those
of the restriction of N to [s,,, Sg(co)] x (0, 4o00) shifted by +5; on [s,, + 31, S;S;l)] x (0, +00).

We are now ready to iterate our procedure, and construct the elements indexed by 2.
The iteration terminates a.s. at rank K > J which is such that N¥) has no point. The
law of K is that of the number of points of our original Poisson random measure N on
[0,S,] x (0,+00). Note that starting from X, H, L, S,, we could construct a copy of the
above sequence in reverse order by deleting one by one the jumps of X on [0, .S,], starting
from the one corresponding to the largest value of H.

Coming back to the above sequence, the jumps of {V;, ¢ > 0} are described by that
sequence in the order in which they appear as t increases. It follows from our construction
that the process V' can be written as

t pL"(Se) 00
v, :/ / / SM(dr, du,dz), t>0,
0 0 0

where M is a Poisson random measure on (0, +00)? with mean measure dr du u(dz) as in
Proposition 3.11.

Inserting this formula for V' in (4.10), we have proved that for fixed x > 0, the process
{LY(S,), 0 <t < a} satisfies equation (1.3).
STEP 2 IDENTIFICATION OF THE LAW OF {L/(S;),0 < t < a,x > 0} If we define
H = Hg, 15 andX = Xg,+s + x, we have X’”—Oand under P

0<r<s r<u<s

H® = X® — inf X"+ // (z+ inf X®— X*)*N(dr,dz).
0 0

Denote again F, = 0{X,, 0 < r < s}. It is not hard to see that under P** {L!(S, + s) —
L}(S,), s > 0,0 <t < a} is a function of both {L¥(S,), 0 < #' < a} (through the nonlinear
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coefficient f}), and noises which are independent of Fg,. Now we fix both x and y > 0,
and note that

Sx+y Sz ~
L (Susy) — L(S0) =y + / 1o ey fU(LP (S, + 1)) dr

Suty—Sa Suty—Sa o
+/ Hx<tng'b+r / 1ﬁf<t/zN(Sx +dr,dz) .
0 0 ~Jo

Applying the same extended occupation times formula as above, we deduce that

Spty—Sa -
/0 Lo UL (S, 4 7))y = / (L (Sun)) = Fo(L(S0)))] dut.

From the same arguments of the previous steps, we see that Z; b= L' (Spty) — LH(Sy)
satisfies for 0 <t < a

Z?y’b:w/[fb( A(82) + 2290 = fy(L, dr+\/_//zyb “(dr, du)

S

where W* and W (resp. M*, M) are i.i.d. The independence follows by noting that the
cross quadratic variation is zero. It follows from the independence property of the white
noise and the Poisson random measure on disjoint subsets that the pair {(L*(S;), L'(Sy1y)—
L'(S,)), 0 <t < a} has the same law as {(Z", ZF™" — Z""), 0 < t < a}, hence also the
two pairs {(L'(S,), L'(Saiy)), 0 < t < a} and {(Z7°, ZFH¥"), 0 < t < a} have the same
law.

/ sz(dr, du, dz),

A similar argument shows that for any n > 2 and =7 < 2y < -+ < 1z,
the two n—dimensional processes {(Lf(Sz,),L*(Ss,),---,L'(S:,)), 0 < t < a} and
{(Z2® z7b . ZP), 0 <t < a} have the same law. This proves the result. O

4.3 The general case

With ¢, and 7, as in Section 3.4.1, we are now going to take the limit as k — oo in the set-
ting of the previous subsection. To this end, we first fix a,b > 0. Since the drift f](L7(r))
is not Lipschitz in H with respect to any of the standard metrics on the continuous paths,
it seems that the only practical route to access H and its local time, and to establish our
final result Theorem 4.9, is to rely on the convergence result of Section 3.4, and Girsanov’s
theorem. We recall that |f;| and g, are bounded.

Consider the sequence H*, k > 1, of Section 3.4, let L; denote the local time of H¥
an define S¥ = inf{s > 0; LY(s) > z}. We need to take the limit in the sequence of
Radon-Nikodym derivatives

1 S/\SIIg

sASE k
Yot — exp (ﬁ [ e s, - L Ifé(LkHT(T))Jrga(Hf)IQdT)-
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The reference probability P governs the case f, = 0 and g, = 0. Hence under P,

0<r<s r<u<s

s [e's] +
(4.11) BHY = XF — inf XF— / / (z—i— inf XF— Xff) N(dz,dr).
0 €k

The quantities introduced in the previous subsection need now to be indexed by k > 1.

That is we consider the probability measure P4** such that for all s > 0, with F* =
o{HF 0<r<s},

d]P)a,b,k:

dP |Fk

Under P*** the process H* solves the SDE (see (4.7))

=Ya* s> 0.

s

0<r<s

Bt = [ [AL )+ ga(H)] dr + X2 int X
0

(412) s [ee) +
—/ / <z—i— inf XF— Xf) N(dr,dz),
0 cr r<u<s
where o o
Xobk =\ /23B%" +/ / =N (dr,dz),
0 €k
and

B = B—\/_/ AL (1) + g (HF)]dr

is a Brownian motion under P*** up to time S*.
Under the reference probability P, H is defined by (3.10), that is

+
(4.13) BHs = X, — 1nf X, — / / (z—l— inf X, X) N(dz,dr).

r<u<s

The definition of the pair (Y*?, P%?) which was given at the beginning of the previous
subsection for the case of a finite 7, remains the same also for a general 7 satisfying (1.1).
Under P*, H solves the SDE

BH, = /0 S Ly (L™ (r)) + ga(H,)] dr + X2* — inf X,

0<r<s

s [e's] +
_ / / (z+ inf Xu—X,) N(dr, dz).
0 0 r<u<s

Again by the argument developed in the previous subsection, (4.14) has a unique weak
solution. The main argument in this subsection is

(4.14)

Proposition 4.3. Let a,b > 0 and s > 0 be fized. Then, under the reference probability
measure P, YO¥* — Y a5 k — oo, in probability and also in LP for any p > 1.
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PROOF Since |f{] and g, are bounded, for any p > 1, {(Y**)P},~, is uniformly integrable,
hence it suffices to establish the convergence in probability. For that purpose, we need to

show that
|

and / 11,<5,9.(H,) — lTSS;fga(Hf)f dr — 0,
0

k 2
Lcs. fi(L (1) = Lcsy fi(L{ ()| dr =0

as k — oo in P-probability.

The second convergence follows readily from Lemma 3.25, Corollary 3.15, the Lipschitz
continuity of g, and the dominated convergence theorem. The rest of this proof will be
devoted to establishing the first convergence.

For this purpose we consider

Lo, f{ (L) = Loz ff (17 ()| <

fi (@) = £ (L% )|
1,<s, [y (LH;C(TD ~L<sihs <L”‘Hf (T)> ’ ‘

The Proposition will be proved if we show that the above right-hand side tends to zero
in dP x dr-measure, as k — o0o. Consider the first term on the right. By Corollary 3.15,
HY — H, in probability, locally uniformly in r, as k — oo. Moreover, t — L!(r) is
continuous for ¢ outside an at most countable set, and H spends zero time in that at most
countable set. Hence we have that L7*(r) — L7 (r) in probability, dr a.e. Since f] is
continuous, the first term converges.

The second term on the r.h.s. of the previous inequality is bounded from above by

Les, — Lest] £ (1 (0) + | (2% 0) - £ (2 0) |

The first term in this expression converges to 0 in dP X dr-measure thanks to Lemma 3.25.
Concerning the second term, since f; is uniformly continuous, it suffices to show that

+

L (r) — Lf’]f(r) — 0 in probability.
Due to (3.19) and (3.20) for the local times of H and H*, this expression takes the form

. k r
LH{E (T) - Lk;HT (T) = 5(Hr - Hf)+ Y 26/0 (1Hv>t - 1H,{§>t)dBv Ry

/ (1HU>H,I? — 1H5>H7I§>ZN(d’U,dZ)
o

(Liyomr — Lgpspe) (2 + inf X, — X,)"N(dv, dz)

v<u<lr

8

€k -
1p,~2N(dv,dz)

/0 t=Hp
/0

k
Ly o (z+ inf X, — X,)"N(dv, dz).

v<u<lr
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Note that we can insert the anticipative H¥ in the last four integrals since three of them
are Stieltjes integrals, and the third is an integral with respect to a compensated Poisson
point process which is independent of HF.

It is plain that

0</ /1H>Hk z+ inf X, — X,)"N(dv,dz)

v<u<r

//z—l— inf X, — X,)"N(dv,dz).

v<u<r

Consequently from Corollary 3.5

v<u<r

/ / Liome(z+ inf X, — X,)* N(dv,dz) < O(r) /0 " 2r(d2)

— 0, ask — oo.

In order to estimate the next to last term, we note that from Lemma 3.21, for any given

T >0,
2
<sup / /lH ~:zN(dv, dz) )
0<t<T
. 2 2
< 2E ( zN(dv,dz) ) +2E < sup / /1H1,<tzN (dv,dz) )
o Jo 0<t<T
< 27“/ 7(dz) +8E< 1H <T2N (dv,dz) >
0
ek
< 107’/ 2r(dz).
0
Consequently

/ /1H ~zN(dv, dz)

2
sup
t>0

We split the two previous terms into two, choosing an arbitrary ¢ > 0, which w.l.o.g. we
can assume to satisfy § > ;. By the same arguments as above,

2
) = lim E(sup / /1Hv tzN dv, dz)
T—+o00 0<t<T

§10r/ w(dz) -0, ask— oo.
0

5
(Lgyomre — Lgiapr)(z+ inf X, — X,)"N(dv,dz)

v<u<lr

€k

<) /O  (d)
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and

r 1)
/ /(]-Hu>t — 1pk~)2N(dv, dz)
0 £k

2 5
E (sup ) < 107“/ 27(dz).
£>0 0

Those can be made arbitrarily small by choosing § > 0 small enough.
Denoting by N; s the number of points of N in [0, s] x (0, 00), we have that

v<u<r

/ \/(1Hv>Hf — 1H5>H§)(Z + inf Xu — Xv)+N(dU, dZ)
0 1
Ng.s

< E Lry smre — Lyp spelZ;
1
=1

and

/ / (i, > — 1H5>H15>2N(dva dz)
0 0
Ns,5

= Z(]‘HTi>H7I? - 1H§_>H5)Zz' —/ zw(dz)/ (Lo, >mp — Lagsmp)dv.
‘ s 0

i=1

The fact that the finite sum converges to 0 as k — oo follows from the fact that H% — Hrp,
while HY — Hf. — H, — Hr, # 0 a.s., and moreover

‘1HT1.>HL“ - 1H§2i>H]f < 1\HT1.—H%\>|H]E—H£|7

which tends to 0 from the above claims. Moreover, by the occupation times formula,

/OvT(]-HU>H1’f — 1ypspr)dv = /M(Lt(r) _ Li(r))dt.

HEk

T

Let us use again the stopping times 7y, defined just before Lemma 3.22. Since P(7x < 1)
— 0 as K — o0, it suffices to consider

“(

Since the integrand on the right converges to 0 in probability for any ¢, the conver-
gence to 0 of the first integral on the right follows from uniform integrability provided by
Lemma 3.22, for any M > 0. Concerning the last term, using the inequality |L*(r) — Lt (r)]
< L'(r) + Lt (r), we have two integrals to estimate. We estimate the first one, the estimate

/M(Lt(r) C L))t < 7K> < /0 E (|L'(r) — LL()| 57 < 7c) dt

H}

;r<TK)dt.

- /MOO]E (}Lt(r) — Li(r)
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of the second being very similar.

00 o0 M+k+1
E / L) dt =S E / L)1, dt
M iy JM+tk
< P su H,>M+FEk
2.7 (i,
gi[@( sup | Xy >§M>
=0 0<u<rATK 2
< Coxr(2/8)° ) (M + k)72,
k=0

where we have used (3.25) and Chebychev’s inequality for the last line. Clearly the last
right-hand side tends to 0 as M — oo.
Finally we consider the Brownian integral. Let us define

TATK TATK
O(t, 1) —/ 1py,51dB,, Pk(t,r) —/ 1gks.dB,.
0 0

We need to show that ®(HEF, r) — &, (HF, r) — 0, which will follow from a variant of the
last argument which we have used and the fact that for any M > 0,
(4.15) sup |®(t,r) — P(t,r)| — 0
0<t<M
in probability, as £ — oco. It is plain that for fixed ¢, ®,(¢,7) — ®(¢,7) in probability. So
(4.15) will follow if we show that for any fixed r, the sequence of processes {®y (-, 7)}g>1 is
tight in C'([0, M]). It follows from the computation done in the proof of Proposition 3.23
and from Theorem 1.2.1 in [15] that with any p > 2, p < % — %,
|[Pr(t, ) = Pyt 7)]
= su
e Y " — il

satisfies u
E[67] < C,E / (LE(r A 7))Pdu,
0

which thanks to Lemma 3.22 yields the desired tightness. The result follows, since
P(rg <r) — 0 as K — oo, for any r > 0. O
Let us repeat here Lemma 24 from [11].

Lemma 4.4. Let (&,mx), (§,m) be random pairs defined on a probability space (2, F,P)
with ng, 0 being non-negative random variables satisfying E[n,] = E[n] = 1. Let &, stand
for the r.v. & defined on (Q, F,Py,) with APy /dP = n,, € for the r.v. € defined on (Q, F,P)
with d]fb/d]P’ =n. If (&, nx) converges in law towards (&,m) as k — oo, then &, converges
n law towards é, as k — 0.
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Now a combination of Corollary 3.15, Proposition 4.3 and Lemma 4.4 yields

Proposition 4.5. As k — oo, the solution HF, s > 0 of equation (4.12) converges in
probability, locally uniformly in s, to the solution Hy, s > 0, of equation (4.14).

Imitating the proof of Theorem 3.24, we now deduce from Proposition 4.2 the following

Theorem 4.6. For any a,b > 0, under the probability measure P**, the process
{LY(S:), 0 <t < a, x > 0} is a solution of the collection indexed by x of SDEs (4.9)
on the time interval [0, a).

It remains to let first b — oo, then a — oc.

First of all, let us fix z > 0. We would like to replace f, and f; by f and f’. Since f’
is not bounded from below, it is not clear that we can apply Girsanov’s theorem, i.e. it is
not clear that we have E(Y) = 1 if we define

1 SASy 1 SASy
Y =exp (—/ (L (1)) + go(H,)]dB, — — (LA (1) + go(H, 2dr> )
75 ), ST+ ga(H)] 5 ) FETE)+ga(H)]
We shall argue as in section 7.2.2 of [11]. Let
S™:=inf{s > 0, L*(s) > n}.

Since f’(L":(s)) is bounded on [0, S™], we can define the probability measure P* on \/, Fgn,
which is such that for any n € N

Under P*, H solves the SDE

BHS:/S[f’(LH"(r))+ga(Hr)]dr+X§— inf X,

0<r<s

(4'16) ’ s 0o +
—// (z—i— inf Xu—Xr) N(dr,dz),
0 0 r<u<s
with s [0
Xg—\/Qﬁij—i—// zN(dr,dz),
0o Jo
where

R L L i
B =B~ / (L™ () + ga(H,))d

is a Brownian motion under P*. It remains to verify that for each s > 0, E(Y?) = 1, and
dpe

dP

=Y. From Proposition 28 in [11], this will be the case, provided
Fs

Lemma 4.7. Asn — oo, P(S" < S;) — 0 and P*(S" < S,) — 0.
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PROOF Let us establish the first statement. We choose an arbitrary € > 0 and observe
that for any A > 0

IP( sup L":(s) > n> < ]P>< sup L7:(S,) > n>

0<s<S, 0<s< S,

§]P’< sup HS>A) —l—IP(sup Lt(S$)>n)

0<5<Sy 0<t<A

Since under P, S, < oo a.s. and H is continuous, the random variable supy<,<g H; is a.s.
finite, and we can choose A large enough, such that P (SUPogsgsz Hy > A) < /2. Next,
under P, the second Ray—-Knight theorem holds true, so that

P ( sup L'(S,) > n) = P( sup Zy > n) <e/2,

0<t<A 0<t<A

provided n is choosen large enough.

For the proof of the second statement, we start the argument in exactly the same way.
Again, thanks to the drift g,, the random variable supy.,.g H; is a.s. finite under P*. In
order to estimate the second term, we cannot use the identification with the solution of
(1.3) for t > a. However, if we go back to the proof of Proposition 4.2, we note that for
t > a which had been excluded in that proof, we have

S Se S ~
LY(S,) <=z —i—/ 1HT<tfé(LHT(r))d7“+/ 1y, < dBy —i—/ 1Hr<t/ zN(dr,dz),
0 0 0 0

although the equality does not hold. Going through the first step of the proof of Proposi-

tion 4.2, we deduce that L'(S,) is a subsolution of equation (1.3), thus by the comparison

theorem for that SDE (see [5]), L(S,) < ZF, which finishes the proof. O
It is now easy to deduce from Theorem 4.6

Theorem 4.8. For any a > 0, wunder the probability measure P*, the process
{LY(S:), 0 <t <a, >0} is a solution of the collection indexed by x of SDEs (1.3) on
the time interval [0, a).

It now remains to let a — oo. First of all let us observe that the projective limit of
the laws of (H, X) under P* as a — oo renders a (unique) weak solution of (1.5), (1.6).
For that H there is, however, no guarantee that S, < co. On the other hand, the law of
{L(S,), 0 <t < '} depends only upon the pieces of trajectories of H below ¢'; and it
does not depend upon a, provided a > t’. Therefore there exists a projective limit of those
laws as well, and we have our final theorem.

Theorem 4.9. There exists a random field {LL, = > 0,t > 0} defined on a probability
space (', F', ') such that for any a > 0, the law of {LL, = > 0,0 <t < a} is the same as
the law of {L*(S;), = > 0,0 <t < a} under P*. Consequently, {L., > 0,t > 0} solves
the collection indexed by x > 0 of SDEs (1.3).
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