en:recherche

Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentes Révision précédente
Prochaine révision
Révision précédente
Prochaine révisionLes deux révisions suivantes
en:recherche [2022/01/24 16:51] pardouxen:recherche [2022/06/30 13:47] pardoux
Ligne 23: Ligne 23:
  
 [155] Conditional propagation of chaos in a spatial stochastic epidemic model with common noise, with M.Hauray and Y.V. Vuong, [155] Conditional propagation of chaos in a spatial stochastic epidemic model with common noise, with M.Hauray and Y.V. Vuong,
-//Stochastic and Partial Differential Equations//, to appear.+//Stochastic and Partial Differential Equations//, arXiv:2111.0273, to appear.
  
-[154] Metastability between the clicks of the Müller ratchet, with M. Mariani and A. Velleret. arXiv:2007.14715 (2021)+[154] Metastability between the clicks of the Müller ratchet, with M. Mariani and A. Velleret. arXiv:2007.147152021.
  
 [153] {{ :en:survey_forien-pang-pardoux2021.pdf |Recent advances in epidemic modeling : non Markov stochastic models and their scaling limits}}, with R. Forien and G. Pang, submitted. [153] {{ :en:survey_forien-pang-pardoux2021.pdf |Recent advances in epidemic modeling : non Markov stochastic models and their scaling limits}}, with R. Forien and G. Pang, submitted.
Ligne 33: Ligne 33:
 [151] {{ :en:fclt-vi-arxiv.pdf |Functional central limit theorems for epidemic models with varying infectivity}}, with G. Pang, submitted. [151] {{ :en:fclt-vi-arxiv.pdf |Functional central limit theorems for epidemic models with varying infectivity}}, with G. Pang, submitted.
  
-[150] {{ :fr:bep.pdf |A Spatial Stochastic Epidemic Model: Law of Large Numbers and Central Limit Theorem}}, with S. Bowong and A. Emakoua,  //Stochastic and Partial Differential Equations//, to appear.+[150] {{ :fr:bep.pdf |A Spatial Stochastic Epidemic Model: Law of Large Numbers and Central Limit Theorem}}, with S. Bowong and A. Emakoua,  //Stoch. PDE : Anal. Comp.//, to appear, 2022, https://doi.org/10.1007/s40072-021-00221-x. 
  
 [149] {{ :en:rsos.202327.pdf |Estimating the state of the Covid-19 epidemic in France using a non-Markovian model}}, with R. Forien and G. Pang,  // R. Soc. Open Sci.// **8**:202327, 2021. [149] {{ :en:rsos.202327.pdf |Estimating the state of the Covid-19 epidemic in France using a non-Markovian model}}, with R. Forien and G. Pang,  // R. Soc. Open Sci.// **8**:202327, 2021.
    
-[148] {{ :en:varying_infectivity-siam-final.pdf |Epidemic models with varying infectivity}}, with R. Forien and G. Pang, //SIAM J. Applied Math.//, to appear.+[148] {{ :en:varying_infectivity-siam-final.pdf |Epidemic models with varying infectivity}}, with R. Forien and G. Pang, //SIAM J. Applied Math.//, **81**, pp1893-1930, 2021. 
  
 [147] {{ :en:multipatch_arxiv_may21.pdf |Multi-patch epidemic models with general infectious periods}}, with G. Pang, submitted. [147] {{ :en:multipatch_arxiv_may21.pdf |Multi-patch epidemic models with general infectious periods}}, with G. Pang, submitted.
Ligne 43: Ligne 45:
 [146] {{ :en:funct_limit_theorem_gp-ep_arxiv.pdf |Functional limit theorems for non-Markovian epidemic models}}, with G. Pang, //Annals of Applied Probability//, to appear. [146] {{ :en:funct_limit_theorem_gp-ep_arxiv.pdf |Functional limit theorems for non-Markovian epidemic models}}, with G. Pang, //Annals of Applied Probability//, to appear.
  
-[145] {{ :drame-pardoux_tims_final.pdf |Approximation of the height process of a continuous state branching process with interaction}}, with I. Dramé, //Theor. Probability and Math. Statist.//, to appear+[145] {{ :drame-pardoux_tims_final.pdf |Approximation of the height process of a continuous state branching process with interaction}}, with I. Dramé, //Theor. Probability and Math. Statist.// **103**pp. 3-39, 2020.
  
 [144] {{ :en:hairer-pardoux2021_article_fluctuationsaroundahomogenised.pdf |Fluctuations around a homogenized semilinear random PDE}}, with M. Hairer, //Archive for Rational Mechanics and Analysis// ** 239**, pp. 151-217, 2021.  [144] {{ :en:hairer-pardoux2021_article_fluctuationsaroundahomogenised.pdf |Fluctuations around a homogenized semilinear random PDE}}, with M. Hairer, //Archive for Rational Mechanics and Analysis// ** 239**, pp. 151-217, 2021. 
Ligne 53: Ligne 55:
 [141] {{ :en:epardoux_cimom18_revised.pdf |Deviations from the law of large numbers, and extinction of an endemic disease}}, in //Mathematical modeling of random and deterministic phenomena//, Manou--Abi, S.M., Dabo--Niang, S., Salone, J.J. eds., pp. 3--30, ISTE and Wiley, 2020. [141] {{ :en:epardoux_cimom18_revised.pdf |Deviations from the law of large numbers, and extinction of an endemic disease}}, in //Mathematical modeling of random and deterministic phenomena//, Manou--Abi, S.M., Dabo--Niang, S., Salone, J.J. eds., pp. 3--30, ISTE and Wiley, 2020.
  
-[140] {{ :en:lpw_jotp_published.pdf |The height process of a continuous state branching process with interaction}}, with Z. Li and A. Wakolbinger, // J Theor Probab // (2020)https://doi.org/10.1007/s10959-020-01054-5+[140] The height process of a continuous state branching process with interaction, with Z. Li and A. Wakolbinger, // J Theor Probab // **35**, pp142--185, 2022.
  
 [139] {{ ::aihp1807-002ra0.pdf |Extinction time and the total mass of the continuous state branching processes with competition}}, with Vi Le, //Stochastics// **92**, pp. 852-875, 2020. [139] {{ ::aihp1807-002ra0.pdf |Extinction time and the total mass of the continuous state branching processes with competition}}, with Vi Le, //Stochastics// **92**, pp. 852-875, 2020.
  
-[138] {{ ::modesteetiennetenanlln.pdf |A SIR model on a refining spatial grid I - Law of Large Numbers}}, with Modeste N'zi and Ténan Yeo, //Applied Math. & Optimization// **83**, pp. 1153-1189, 2021.+[138] A SIR model on a refining spatial grid I - Law of Large Numbers, with Modeste N'zi and Ténan Yeo, //Applied Math. & Optimization// **83**, pp. 1153-1189, 2021.
  
 [137] {{ :en:rootparti.pdf |Stochastic epidemics in a homogeneous community}}, with Tom Britton, Part I of //Stochastic Epidemic Models with Inference//, T. Britton and E. Pardoux eds., Lecture Notes in Math. **2255**, pp. 1--120, Springer 2019. [137] {{ :en:rootparti.pdf |Stochastic epidemics in a homogeneous community}}, with Tom Britton, Part I of //Stochastic Epidemic Models with Inference//, T. Britton and E. Pardoux eds., Lecture Notes in Math. **2255**, pp. 1--120, Springer 2019.
  • en/recherche.txt
  • Dernière modification : 2022/10/18 17:07
  • de pardoux