Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien. On note $\| \cdot \|$ l'application $E \to [0, +\infty[$; $v \mapsto \sqrt{\langle v, v \rangle}$.

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien. On note $\| \cdot \|$ l'application $E \to [0, +\infty[$; $v \mapsto \sqrt{\langle v, v \rangle}$.

Soient $v, w \in E$.

Lemme 3 (Inégalité de Cauchy-Schwarz)

 $|\langle v, w \rangle| \le ||v|| ||w||$ et $|\langle v, w \rangle| = ||v|| ||w||$ ssi v et w sont liés.

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien. On note $\| \cdot \|$ l'application $E \to [0, +\infty[$; $v \mapsto \sqrt{\langle v, v \rangle}$.

Soient $v, w \in E$.

Lemme 3 (Inégalité de Cauchy-Schwarz)

 $|\langle v, w \rangle| \le ||v|| ||w||$ et $|\langle v, w \rangle| = ||v|| ||w||$ ssi v et w sont liés.

Corollaire 4 (Inégalité triangulaire)

$$||v + w|| \le ||v|| + ||w||$$

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien. On note $\| \cdot \|$ l'application $E \to [0, +\infty[$; $v \mapsto \sqrt{\langle v, v \rangle}$.

Soient $v, w \in E$.

Lemme 3 (Inégalité de Cauchy-Schwarz)

 $|\langle v, w \rangle| \le ||v|| ||w||$ et $|\langle v, w \rangle| = ||v|| ||w||$ ssi v et w sont liés.

Corollaire 4 (Inégalité triangulaire)

$$||v + w|| \le ||v|| + ||w||$$

Conséquence

L'application $\|\cdot\|$ est une "norme" sur E, appelée <u>norme euclidienne</u>.

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien. On note $\| \cdot \|$ l'application $E \to [0, +\infty[$; $v \mapsto \sqrt{\langle v, v \rangle}$.

Soient $v, w \in E$.

Lemme 3 (Inégalité de Cauchy-Schwarz)

 $|\langle v, w \rangle| \le ||v|| ||w||$ et $|\langle v, w \rangle| = ||v|| ||w||$ ssi v et w sont liés.

Corollaire 4 (Inégalité triangulaire)

$$||v + w|| \le ||v|| + ||w||$$

Conséquence

L'application $\|\cdot\|$ est une "norme" sur E, appelée <u>norme euclidienne</u>.

Remarque

On a
$$\langle v, w \rangle = \frac{1}{2} (\|v + w\|^2 - \|v\|^2 - \|w\|^2).$$

Soient $v, w \in E$ et A un sous-ensemble de E.

Soient $v, w \in E$ et A un sous-ensemble de E.

Définition 5

On dit que v et w sont orthogonaux si $\langle v, w \rangle = 0$.

Soient $v, w \in E$ et A un sous-ensemble de E.

Définition 5

On dit que v et w sont orthogonaux si $\langle v, w \rangle = 0$.

On appelle le sev

$$A^{\perp} := \{ v \in E \mid \ \forall w \in A, \ \langle v, w \rangle = 0 \}$$

de E l'orthogonal de A.

Soient $v, w \in E$ et A un sous-ensemble de E.

Définition 5

On dit que v et w sont $\underline{\text{orthogonaux}}$ si $\langle v, w \rangle = 0$.

On appelle le sev

$$A^{\perp} := \{ v \in E \mid \ \forall w \in A, \ \langle v, w \rangle = 0 \}$$

de E l'orthogonal de A.

Remarque 6

 Une famille de vecteurs non nuls orthogonaux deux à deux, appelée famille orthogonale, est libre.

Soient $v, w \in E$ et A un sous-ensemble de E.

Définition 5

On dit que v et w sont orthogonaux si $\langle v, w \rangle = 0$. On appelle le sev

$$A^{\perp} := \{ v \in E \mid \forall w \in A, \langle v, w \rangle = 0 \}$$

de E l'orthogonal de A.

Remarque 6

- Une famille de vecteurs non nuls orthogonaux deux à deux, appelée famille orthogonale, est libre.
- $\{0_E\}^{\perp} = E \text{ et } E^{\perp} = \{0_E\}.$

Soient $v, w \in E$ et A un sous-ensemble de E.

Définition 5

On dit que v et w sont orthogonaux si $\langle v, w \rangle = 0$. On appelle le sev

$$A^{\perp} := \{ v \in E \mid \forall w \in A, \langle v, w \rangle = 0 \}$$

de E l'orthogonal de A.

Remarque 6

- Une famille de vecteurs non nuls orthogonaux deux à deux, appelée famille orthogonale, est libre.
- $\{0_E\}^{\perp} = E \text{ et } E^{\perp} = \{0_E\}.$

Lemme 7 (Théorème de Pythagore)

v et w sont orthogonaux ssi $||v + w||^2 = ||v||^2 + ||w||^2$.

Soit F un sev de E.

Proposition 8

 $\bullet \ \dim(E) = \dim(F) + \dim(F^{\perp})$

Soit F un sev de E.

Proposition 8

- $\bullet \ \dim(E) = \dim(F) + \dim(F^{\perp})$
- $E = F \oplus F^{\perp}$

Soit F un sev de E.

Proposition 8

- $E = F \oplus F^{\perp}$
- $(F^{\perp})^{\perp} = F$

Soit F un sev de E.

Proposition 8

- $E = F \oplus F^{\perp}$
- $(F^{\perp})^{\perp} = F$

Définition 9

On appelle <u>projection orthogonale sur F</u> la projection de E sur F parallèlement à F^{\perp} , notée p_F .

Soit F un sev de E.

Proposition 8

- $E = F \oplus F^{\perp}$
- $(F^{\perp})^{\perp} = F$

Définition 9

On appelle projection orthogonale sur F la projection de E sur F parallèlement à F^{\perp} , notée p_F .

On appelle symétrie orthogonale par rapport à F la symétrie par rapport à F parallèlement à F^{\perp} , notée s_F .

Soit F un sev de E.

Proposition 8

- $E = F \oplus F^{\perp}$
- $(F^{\perp})^{\perp} = F$

Définition 9

On appelle projection orthogonale sur F la projection de E sur F parallèlement à F^{\perp} , notée p_F .

On appelle symétrie orthogonale par rapport à F la symétrie par rapport à F parallèlement à F^{\perp} , notée s_F .

Soit $v \in E$.

Proposition 10

$$d(v, F) := \inf_{w \in F} \|v - w\| = \|v - p_F(v)\|$$

Pour $v \in E$, on note $\Lambda_v : E \to \mathbb{R}$; $w \mapsto \langle v, w \rangle$.

Pour $v \in E$, on note $\Lambda_v : E \to \mathbb{R}$; $w \mapsto \langle v, w \rangle$.

Théorème 11

L'application $\Lambda: E \to E^*$; $v \mapsto \Lambda_v$ est un isomorphisme linéaire "canonique".

Pour $v \in E$, on note $\Lambda_v : E \to \mathbb{R}$; $w \mapsto \langle v, w \rangle$.

Théorème 11

L'application $\Lambda: E \to E^*$; $v \mapsto \Lambda_v$ est un isomorphisme linéaire "canonique".

Conséquence

$$\forall \varphi \in E^*$$
, $\exists v \in E$ t.q. $\forall w \in E$, $\varphi(w) = \langle v, w \rangle$, et $v = \Lambda^{-1}(\varphi)$.

Pour $v \in E$, on note $\Lambda_v : E \to \mathbb{R}$; $w \mapsto \langle v, w \rangle$.

Théorème 11

L'application $\Lambda: E \to E^*$; $v \mapsto \Lambda_v$ est un isomorphisme linéaire "canonique".

Conséquence

 $\forall \varphi \in E^*$, $\exists v \in E$ t.q. $\forall w \in E$, $\varphi(w) = \langle v, w \rangle$, et $v = \Lambda^{-1}(\varphi)$.

Corollaire 12

$$\Lambda\left(F^{\perp}\right)=F^{0}$$

Pour $v \in E$, on note $\Lambda_v : E \to \mathbb{R}$; $w \mapsto \langle v, w \rangle$.

Théorème 11

L'application $\Lambda: E \to E^*$; $v \mapsto \Lambda_v$ est un isomorphisme linéaire "canonique".

Conséquence

 $\forall \varphi \in E^*$, $\exists v \in E$ t.q. $\forall w \in E$, $\varphi(w) = \langle v, w \rangle$, et $v = \Lambda^{-1}(\varphi)$.

Corollaire 12

$$\Lambda(F^{\perp}) = F^0$$

Corollaire 13

$$\dim(E) = \dim(F) + \dim(F^{\perp})$$

Soit $\mathcal{B} = \{e_1, \dots, e_n\}$ une base de E.

Soit $\mathcal{B} = \{e_1, \dots, e_n\}$ une base de E.

Définition 14

• On dit que \mathcal{B} est une base orthogonale si $\forall i, j \in \{1, \dots, n\}, i \neq \overline{j} \Rightarrow \langle e_i, e_j \rangle = 0.$

Soit $\mathcal{B} = \{e_1, \dots, e_n\}$ une base de E.

Définition 14

- On dit que \mathcal{B} est une base orthogonale si $\forall i, j \in \{1, \dots, n\}, i \neq \overline{j} \Rightarrow \langle e_i, e_j \rangle = 0.$
- On dit que \mathcal{B} est une base orthonormale si $\forall i, j \in \{1, \dots, n\}, \langle e_i, e_j \rangle = \delta_{ij}$.

Soit $\mathcal{B} = \{e_1, \dots, e_n\}$ une base de E.

Définition 14

- On dit que \mathcal{B} est une base orthogonale si $\forall i, j \in \{1, \dots, n\}, i \neq \overline{j} \Rightarrow \langle e_i, e_j \rangle = 0.$
- On dit que \mathcal{B} est une <u>base orthonormale</u> si $\forall i, j \in \{1, \dots, n\}, \langle e_i, e_i \rangle = \delta_{i,i}$.

Exemple 15

La base canonique de \mathbb{R}^n est une base orthonormale pour $\langle \cdot, \cdot \rangle_{\operatorname{can}}$.

Soit $\mathcal{B} = \{e_1, \dots, e_n\}$ une base de E.

Définition 14

- On dit que \mathcal{B} est une base orthogonale si $\forall i, j \in \{1, \dots, n\}, i \neq \overline{j} \Rightarrow \langle e_i, e_j \rangle = 0$.
- On dit que \mathcal{B} est une <u>base orthonormale</u> si $\forall i, j \in \{1, \dots, n\}, \langle e_i, e_i \rangle = \delta_{i,i}$.

Exemple 15

La base canonique de \mathbb{R}^n est une base orthonormale pour $\langle \cdot, \cdot \rangle_{\operatorname{can}}$.

Remarque 16

• Si \mathcal{B} est une base orthonormale alors, pour tous $v = \sum_{i=1}^{n} x_i e_i, w = \sum_{i=1}^{n} y_i e_i \in \mathcal{E}, \langle v, w \rangle = \sum_{i=1}^{n} x_i y_i.$

Soit $\mathcal{B} = \{e_1, \dots, e_n\}$ une base de E.

Définition 14

- On dit que \mathcal{B} est une base orthogonale si $\forall i, j \in \{1, ..., n\}, i \neq \overline{j} \Rightarrow \langle e_i, e_j \rangle = 0$.
- On dit que \mathcal{B} est une <u>base orthonormale</u> si $\forall i, j \in \{1, \dots, n\}, \langle e_i, e_j \rangle = \delta_{ij}$.

Exemple 15

La base canonique de \mathbb{R}^n est une base orthonormale pour $\langle \cdot, \cdot \rangle_{\operatorname{can}}$.

Remarque 16

- **3** Si \mathcal{B} est une base orthonormale alors, pour tous $v = \sum_{i=1}^{n} x_i e_i, w = \sum_{i=1}^{n} y_i e_i \in \mathcal{E}, \langle v, w \rangle = \sum_{i=1}^{n} x_i y_i.$
- ② Pour tous $v \in E$, $v = \sum_{i=1}^{n} \langle v, e_i \rangle e_i$.

Soit $\mathcal{B} = \{e_1, \dots, e_n\}$ une base de E.

Définition 14

- On dit que \mathcal{B} est une base orthogonale si $\forall i, j \in \{1, \dots, n\}, i \neq \overline{j} \Rightarrow \langle e_i, e_j \rangle = 0$.
- On dit que \mathcal{B} est une <u>base orthonormale</u> si $\forall i, j \in \{1, \dots, n\}, \langle e_i, e_i \rangle = \delta_{i,i}$.

Exemple 15

La base canonique de \mathbb{R}^n est une base orthonormale pour $\langle \cdot, \cdot \rangle_{\operatorname{can}}$.

Remarque 16

- Si \mathcal{B} est une base orthonormale alors, pour tous $v = \sum_{i=1}^{n} x_i e_i, w = \sum_{i=1}^{n} y_i e_i \in \mathcal{E}, \langle v, w \rangle = \sum_{i=1}^{n} x_i y_i.$
- 2 Pour tous $v \in E$, $v = \sum_{i=1}^{n} \langle v, e_i \rangle e_i$.
- On peut "normaliser" une base orthogonale en une base orthonormale.

Théorème 17

Il existe toujours une base orthonormale pour $(E, \langle \cdot, \cdot \rangle)$.

Théorème 17

Il existe toujours une base orthonormale pour $(E, \langle \cdot, \cdot \rangle)$.

<u>Preuve</u>: A partir d'une base $\{v_1, \ldots, v_n\}$ de E, on peut construire une base orthonormale à l'aide du procédé d'orthonormalisation de Gram-Schmidt.