V. Bases orthogonales, bases orthonormales

Théorème 17

Il existe toujours une base orthonormale pour $(E, \langle \cdot, \cdot \rangle)$.

<u>Preuve</u>: A partir d'une base $\{v_1, \ldots, v_n\}$ de E, on peut construire une base orthonormale à l'aide du procédé d'orthonormalisation de Gram-Schmidt.

V. Bases orthogonales, bases orthonormales

Théorème 17

Il existe toujours une base orthonormale pour $(E, \langle \cdot, \cdot \rangle)$.

<u>Preuve</u>: A partir d'une base $\{v_1, \ldots, v_n\}$ de E, on peut construire une base orthonormale à l'aide du procédé d'orthonormalisation de Gram-Schmidt.

Conséquence

Si
$$\dim(E) = n$$
, $(E, \langle \cdot, \cdot \rangle)$ peut être "identifié" à $(\mathbb{R}^n, \langle \cdot, \cdot \rangle_{\operatorname{can}})$.

Soient $\mathcal{B} = \{e_1, \dots, e_n\}$ une base (quelconque) de E et $v, w \in E$.

Soient $\mathcal{B} = \{e_1, \dots, e_n\}$ une base (quelconque) de E et $v, w \in E$. Notons $X := \operatorname{Mat}_{\mathcal{B}}(v)$ et $Y := \operatorname{Mat}_{\mathcal{B}}(w)$.

Soient $\mathcal{B} = \{e_1, \dots, e_n\}$ une base (quelconque) de E et $v, w \in E$. Notons $X := \operatorname{Mat}_{\mathcal{B}}(v)$ et $Y := \operatorname{Mat}_{\mathcal{B}}(w)$.

Définition 18

On appelle matrice représentative du p.s. $\langle\cdot,\cdot\rangle$ dans la base ${\cal B}$ la matrice

$$\operatorname{Mat}^{\operatorname{ps}}_{\mathcal{B}}\left(\left\langle \cdot,\cdot\right\rangle \right):=\left(\left\langle e_{i},e_{j}\right\rangle \right)_{1\leq i,j\leq n}$$

Soient $\mathcal{B} = \{e_1, \dots, e_n\}$ une base (quelconque) de E et $v, w \in E$. Notons $X := \operatorname{Mat}_{\mathcal{B}}(v)$ et $Y := \operatorname{Mat}_{\mathcal{B}}(w)$.

Définition 18

On appelle matrice représentative du p.s. $\langle\cdot,\cdot\rangle$ dans la base ${\cal B}$ la matrice

$$\operatorname{Mat}^{\operatorname{ps}}_{\mathcal{B}}\left(\left\langle \cdot,\cdot\right\rangle \right):=\left(\left\langle e_{i},e_{j}\right\rangle \right)_{1\leq i,j\leq n}$$

Si on note A cette matrice, on a alors $\langle v, w \rangle = {}^t XAY$.

Soient $\mathcal{B} = \{e_1, \dots, e_n\}$ une base (quelconque) de E et $v, w \in E$. Notons $X := \operatorname{Mat}_{\mathcal{B}}(v)$ et $Y := \operatorname{Mat}_{\mathcal{B}}(w)$.

Définition 18

On appelle matrice représentative du p.s. $\langle \cdot, \cdot \rangle$ dans la base $\mathcal B$ la matrice

$$\operatorname{Mat}^{\operatorname{ps}}_{\mathcal{B}}\left(\langle\cdot,\cdot
angle
ight):=\left(\langle e_i,e_j
angle
ight)_{1\leq i,j\leq n}$$

Si on note A cette matrice, on a alors $\langle v, w \rangle = {}^t XAY$.

Remarque 19

• \mathcal{B} est orthonormale par rapport à $\langle \cdot, \cdot \rangle$ ssi $\operatorname{Mat}^{\operatorname{ps}}_{\mathcal{B}}\left(\langle \cdot, \cdot \rangle\right) = I_n$.

Soient $\mathcal{B} = \{e_1, \dots, e_n\}$ une base (quelconque) de E et $v, w \in E$. Notons $X := \operatorname{Mat}_{\mathcal{B}}(v)$ et $Y := \operatorname{Mat}_{\mathcal{B}}(w)$.

Définition 18

On appelle matrice représentative du p.s. $\langle \cdot, \cdot \rangle$ dans la base $\mathcal B$ la matrice

$$\operatorname{Mat}^{\operatorname{ps}}_{\mathcal{B}}\left(\langle\cdot,\cdot
angle
ight):=\left(\langle e_i,e_j
angle
ight)_{1\leq i,j\leq n}$$

Si on note A cette matrice, on a alors $\langle v, w \rangle = {}^t XAY$.

Remarque 19

- \mathcal{B} est orthonormale par rapport à $\langle \cdot, \cdot \rangle$ ssi $\operatorname{Mat}^{\operatorname{ps}}_{\mathcal{B}}\left(\langle \cdot, \cdot \rangle\right) = I_n$.
- La matrice $\operatorname{Mat}^{\operatorname{ps}}_{\mathcal{B}}(\langle\cdot,\cdot\rangle)$ est symétrique et inversible.

Soient $\mathcal{B} = \{e_1, \dots, e_n\}$ une base (quelconque) de E et $v, w \in E$. Notons $X := \operatorname{Mat}_{\mathcal{B}}(v)$ et $Y := \operatorname{Mat}_{\mathcal{B}}(w)$.

Définition 18

On appelle matrice représentative du p.s. $\langle \cdot, \cdot \rangle$ dans la base $\mathcal B$ la matrice

$$\operatorname{Mat}^{\operatorname{ps}}_{\mathcal{B}}\left(\langle\cdot,\cdot\rangle\right):=\left(\langle e_i,e_j\rangle\right)_{1\leq i,j\leq n}$$

Si on note A cette matrice, on a alors $\langle v, w \rangle = {}^t XAY$.

Remarque 19

- \mathcal{B} est orthonormale par rapport à $\langle \cdot, \cdot \rangle$ ssi $\operatorname{Mat}^{\operatorname{ps}}_{\mathcal{B}}\left(\langle \cdot, \cdot \rangle\right) = I_n$.
- La matrice $\operatorname{Mat}^{\operatorname{ps}}_{\mathcal{B}}(\langle\cdot,\cdot\rangle)$ est symétrique et inversible.
- Attention à ne pas confondre avec la matrice représentative d'une application linéaire!

Soit \mathcal{B}' une autre base de E.

Soit \mathcal{B}' une autre base de E.

Proposition 20 (changement de base pour le produit scalaire)

$$\operatorname{Mat}_{\mathcal{B}'}^{\operatorname{ps}}\left(\left\langle \cdot,\cdot\right\rangle \right)={}^{t}P_{\mathcal{B}\to\mathcal{B}'}\operatorname{Mat}_{\mathcal{B}}^{\operatorname{ps}}\left(\left\langle \cdot,\cdot\right\rangle \right)P_{\mathcal{B}\to\mathcal{B}'}$$

Soit \mathcal{B}' une autre base de E.

Proposition 20 (changement de base pour le produit scalaire)

$$\operatorname{Mat}_{\mathcal{B}'}^{\operatorname{ps}}\left(\left\langle \cdot,\cdot\right\rangle \right)={}^{t}P_{\mathcal{B}\to\mathcal{B}'}\operatorname{Mat}_{\mathcal{B}}^{\operatorname{ps}}\left(\left\langle \cdot,\cdot\right\rangle \right)P_{\mathcal{B}\to\mathcal{B}'}$$

Remarque

Attention à ne pas confondre avec le changement de base pour une application linéaire!

Soit f un endomorphisme de E.

Soit f un endomorphisme de E.

Proposition 21

Il existe un unique endomorphisme f^* de E tel que

$$\forall v, w \in E, \langle f(v), w \rangle = \langle v, f^*(w) \rangle.$$

Soit f un endomorphisme de E.

Proposition 21

Il existe un unique endomorphisme f^* de E tel que

$$\forall v, w \in E, \langle f(v), w \rangle = \langle v, f^*(w) \rangle.$$

 f^* est appelé endomorphisme adjoint de f.

Soit f un endomorphisme de E.

Proposition 21

Il existe un unique endomorphisme f^* de E tel que

$$\forall v, w \in E, \langle f(v), w \rangle = \langle v, f^*(w) \rangle.$$

 f^* est appelé endomorphisme adjoint de f.

Proposition 22

Soit f un endomorphisme de E.

Proposition 21

Il existe un unique endomorphisme f^* de E tel que

$$\forall v, w \in E, \langle f(v), w \rangle = \langle v, f^*(w) \rangle.$$

 f^* est appelé endomorphisme adjoint de f.

Proposition 22

$$\bullet \ (\mathrm{Id}_{\mathsf{E}})^* = \mathrm{Id}_{\mathsf{E}}$$

Soit f un endomorphisme de E.

Proposition 21

Il existe un unique endomorphisme f^* de E tel que

$$\forall v, w \in E, \langle f(v), w \rangle = \langle v, f^*(w) \rangle.$$

 f^* est appelé endomorphisme adjoint de f.

Proposition 22

- $\bullet \ (\mathrm{Id}_{\mathit{E}})^* = \mathrm{Id}_{\mathit{E}}$

Soit f un endomorphisme de E.

Proposition 21

Il existe un unique endomorphisme f^* de E tel que

$$\forall v, w \in E, \langle f(v), w \rangle = \langle v, f^*(w) \rangle.$$

 f^* est appelé endomorphisme adjoint de f.

Proposition 22

- $\bullet \ (\mathrm{Id}_{\mathsf{E}})^* = \mathrm{Id}_{\mathsf{E}}$
- $\bullet (g \circ f)^* = f^* \circ g^*$

Soit f un endomorphisme de E.

Proposition 21

Il existe un unique endomorphisme f^* de E tel que

$$\forall v, w \in E, \langle f(v), w \rangle = \langle v, f^*(w) \rangle.$$

 f^* est appelé endomorphisme adjoint de f.

Proposition 22

- $\bullet \ (\mathrm{Id}_{\mathsf{E}})^* = \mathrm{Id}_{\mathsf{E}}$

- f bijective $\Rightarrow f^*$ bijective et $(f^*)^{-1} = (f^{-1})^*$

Soit f un endomorphisme de E.

Proposition 21

Il existe un unique endomorphisme f^* de E tel que

$$\forall v, w \in E, \langle f(v), w \rangle = \langle v, f^*(w) \rangle.$$

 f^* est appelé endomorphisme adjoint de f.

Proposition 22

- $\bullet \ (\mathrm{Id}_{\mathsf{E}})^* = \mathrm{Id}_{\mathsf{E}}$
- $\bullet (g \circ f)^* = f^* \circ g^*$
- f bijective $\Rightarrow f^*$ bijective et $(f^*)^{-1} = (f^{-1})^*$
- $(f^*)^* = f$

Proposition 23

Soit \mathcal{B} une base orthonormale de E. Alors

$$\operatorname{Mat}_{\mathcal{B}}(f^*) = {}^{t}\operatorname{Mat}_{\mathcal{B}}(f).$$

Proposition 23

Soit \mathcal{B} une base orthonormale de E. Alors

$$\operatorname{Mat}_{\mathcal{B}}(f^*) = {}^{t}\operatorname{Mat}_{\mathcal{B}}(f).$$

Corollaire 24

$$\operatorname{rg}(f^*) = \operatorname{rg}(f)$$
 et $\det(f^*) = \det(f)$.

Soit f un endomorphisme de E.

Soit f un endomorphisme de E.

Définition 25

On dit que f est un endomorphisme orthogonal si $f^* \circ f = \operatorname{Id}_E$.

Soit f un endomorphisme de E.

Définition 25

On dit que f est un endomorphisme orthogonal si $f^* \circ f = \operatorname{Id}_E$.

Exemple 26

 $\mathrm{Id}_{\mathcal{E}}$ est un endomorphisme orthogonal.

Soit f un endomorphisme de E.

Définition 25

On dit que f est un endomorphisme orthogonal si $f^* \circ f = \mathrm{Id}_E$.

Exemple 26

 Id_E est un endomorphisme orthogonal.

Remarque 27

Si f est orthogonal alors f est inversible et $f^{-1} = f^*$.

Soit f un endomorphisme de E.

Définition 25

On dit que f est un endomorphisme orthogonal si $f^* \circ f = Id_E$.

Exemple 26

 Id_E est un endomorphisme orthogonal.

Remarque 27

Si f est orthogonal alors f est inversible et $f^{-1} = f^*$.

Proposition 28

f est orthogonal

Soit f un endomorphisme de E.

Définition 25

On dit que f est un endomorphisme orthogonal si $f^* \circ f = \mathrm{Id}_E$.

Exemple 26

 Id_E est un endomorphisme orthogonal.

Remarque 27

Si f est orthogonal alors f est inversible et $f^{-1} = f^*$.

Proposition 28

$$f$$
 est orthogonal ssi $\forall v, w \in E$, $\langle f(v), f(w) \rangle = \langle v, w \rangle$

Soit f un endomorphisme de E.

Définition 25

On dit que f est un endomorphisme orthogonal si $f^* \circ f = \mathrm{Id}_E$.

Exemple 26

 Id_E est un endomorphisme orthogonal.

Remarque 27

Si f est orthogonal alors f est inversible et $f^{-1} = f^*$.

Proposition 28

$$f$$
 est orthogonal ssi $\forall v, w \in E$, $\langle f(v), f(w) \rangle = \langle v, w \rangle$ ssi $\forall v \in E$, $||f(v)|| = ||v||$

Soit f un endomorphisme de E.

Définition 25

On dit que f est un endomorphisme orthogonal si $f^* \circ f = \mathrm{Id}_E$.

Exemple 26

 Id_E est un endomorphisme orthogonal.

Remarque 27

Si f est orthogonal alors f est inversible et $f^{-1} = f^*$.

Proposition 28

f est orthogonal ssi $\forall v, w \in E$, $\langle f(v), f(w) \rangle = \langle v, w \rangle$ ssi $\forall v \in E$, ||f(v)|| = ||v|| ssi f est une isométrie.