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Abstract

In 1961, D. Mumford proved that a normal complex analytic surface X with simply connected
link at 0 need to be smooth at 0. In the case X ⊂ C3 is a complex surface with an isolated
singularity at 0, Mumford’s result is equivalent to say that X is smooth at 0 if and only if X
is a topological manifold at 0. However, this result does not hold true if dimX > 2. In this
talk, we prove a version of Mumford’s result in high dimension. More precisely, if X ⊂ Cn is
a LNE complex analytic set, we prove that the following statements are equivalent:

(1) X is a topological manifold at 0;

(2) X is smooth at 0.

No restriction on the dimension or codimension and no restriction on the singularity to be
isolated is needed. In order to know, a set X ⊂ Rn is called Lipschitz normally embedded
(LNE) if the identity map between X endowed with the inner distance and X endowed with
the induced euclidean distance is a bi-Lipschitz homeomorphism.
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