Ceci est une ancienne révision du document !
Publications
Livres
- F. Hubert, J. Hubbard CALCUL SCIENTIFIQUE - De la théorie à la pratique - Illustrations avec Maple et Matlab. Volume 1 : Equations algébriques, traitement du signal, géométrie effective, Vuibert, 2006. 432 pages.
- F. Hubert, J. Hubbard CALCUL SCIENTIFIQUE - De la théorie à la pratique - Illustrations avec Maple et Matlab. Volume 2 : Equations différentielles ordinaires, équations aux dérivées partielles, Vuibert, 2006. 288 pages
Articles dans des revues avec comité de lecture
- C. Tayou Fosto, S. Girel, F. Anjuère, V. Braud, F. Hubert, T. Goudon A mixture-like model for tumor-immune system interactions. Journal of Theoretical Biology, Volume 581, 2024. https://doi.org/10.1016/j.jtbi.2024.111738
- S. Chauvet, F. Hubert, F. Mann, M. Mezache Tumorigenesis and axons regulation for the pancreatic cancer: A mathematical approach Journal of Theoretical Biology, Volume 556, 2023. https://doi.org/10.1016/j.jtbi.2022.11130
- M. Gander, L. Halpern, F. Hubert, S. Krell Discrete Optimization of Robin Transmission Conditions for Anisotropic Diffusion with Discrete Duality Finite Volume Methods Vietnam J. Math. 2021. https://doi.org/10.1007/s10013-021-00518-3
- M. Gander, L. Halpern, F. Hubert, S. Krell Optimized Schwarz methods with general Ventcell transmission conditions for fully anisotropic diffusion with discrete duality finite volume discretizations Moroccan Journal of Pure and Applied Analysis, 7(2), p. 182-213, 2021. Published online https://content.sciendo.com/view/journals/mjpaa/mjpaa-overview.xml?language=en&tab_body=latestIssueToc-79907
- E. Denicolai, S. Honoré, F. Hubert, R. Tesson Microtubules (MT) a key target in oncology : Mathematical modeling of anti-MT agents on cell migration. Mathematical Modelling of Natural Phenomena, Cancer modelling, 15, 2020. Published online https://www.mmnp-journal.org/articles/mmnp/abs/2020/01/mmnp190010/mmnp190010.html
- S. Honoré, F. Hubert, M. Tournus, D. White A growth-fragmentation approach for modeling microtubule dynamic instability, Bulletin of Mathematical Biology, 81 p. 722–758 (2019).
- A. Barlukova, D. White, G. Henry, S. Honoré, F. Hubert Mathematical modeling of microtubule dynamic instability: new insight into the link between GTP-hydrolysis and microtubule aging, M2AN, 52, p. 2433–2456, 2018.
- A. Barlukova, S. Honoré, F. Hubert Mathematical Modeling of Effect Of Microtubule-Targeted Agents On Microtubule Dynamic Instability, ESAIM Proc, 62, p. 1-16, 2018.
- D. White , S. Honoré, F. Hubert A new mathematical model for microtubule dynamic instability: exploring the effect of end-binding proteins and microtubule targeting chemotherapy drugs, Journal Theoritical Biology, 429, p. 18-34, 2017.
- N. Hartung, C. Huynh, C. Gaudy-Marqueste, A. Flavian, N. Malissen, MA Richard-Lallemand, F. Hubert, JJ Grob Study of metastatic kinetics in metastatic melanoma treated with B-RAF inhibitors: Introducing mathematical modelling of kinetics into the therapeutic decision, PLOS One, 12(5) 2017.
- F. Hubert, M. Jedouaa, I. Khames, J. Olivier, O. Theodoly, A. Trescases Cell Motility in confinement : a computaional model for the shape of the cell, ESAIM Proc. And Survey, 55, p. 148-166, déc 2016.
- S. Honoré, F. Hubert L'adhésion thérapeutique : un nouveau challenge pour les mathématiques, A3 Magazine - Rayonnement du CNRS, juillet 2016.
- N. Hartung, S. Mollard, D. Barbolosi, A. Benabdallah, G. Chapuisat, G. Henry,S. Giacometti, A. Iliadis, J.Ciccolini, C. Faivre, F. Hubert Mathematical Modeling of tumor growth and metastatics spreading : validation in tumor-bearing mice, Cancer Research 74, p. 6397-6407, 2014.
- L. Halpern, F. Hubert A new nite volume Schwarz algorithm for advection-diusion equations, SIAM Journal of Numerical Analysis, 52(3), 2014.
- D. Barbolosi, A. Benabdallah, S. Benzekry, J. Ciccolini, C. Faivre, F. Hubert, F. Verga et B. You A mathematical model for growing metastases on oncologist's service, Computational Surgery and dual training, p. 331-338, 2014.
- B. Andreianov, M. Bendahname, F. Hubert On 3D DDFV discretization of gradient and divergence operators. II. Discrete functional analysis tools and applications to degenerate parabolic problems, Computational Methods in applied Mathematics, 13(4), p. 369-410, 2013.
- N. André, D. Barbolosi, F. Billy, G. Chapuisat, E. Grenier, F. Hubert, A. Rovini Mathematical model of tumor growth controlled by metronomic chemotherapies, ESAIM Proceedings, 41, p. 77-94, 2013.
- S. Benzekry, G. Chapuisat, J. Ciccolini , A. Erlinger, F. Hubert A new mathematical model for optimizing the combination between antiangiogenic and cytotoxic drugs in oncology, CRAS, 350, p. 23-28, 2012.
- S. Benzekry, N. André, A. Benabdallah, J. Ciccolini, C. Faivre, F. Hubert, D. Barbolosi Modelling the impact of anticancer agents on metastatic spreading, Mathematical Modelling of Natural Phenomena, 7(1), 306-336, 2012.
- B. Andreianov, M. Bendahname, F. Hubert, S. Krell On 3D DDFV discretization of gradient and divergence operators. I. Meshing, operators and discrete duality., IMA JNA, 32(4), 15741603, 2012.
- Y. Coudière, F. Hubert A 3D Discrete Duality Finite Volume Method for Nonlinear Elliptic Equations, SIAM Journal of Scientic Computing, 33(4), 1739-1764, 2011.
- F. Verga, B. You, A. Benabdallah, C. Faivre, C. Mercier, C. Ciccolini, F. Hubert, D. Barbolosi Modélisation du risque d'evolution metastatique chez les patients supposés avoir une maladie localisée, Oncologie, 13(8), 528-533, 2011.
- F. Boyer, F. Hubert, J. Le Rousseau Uniform null-controllability for space/time-discretized parabolic equations, Nümerische Math. 118(4), 601-660, 2011.
- C. Pocci, A. Moussa, G. Chapuisat, F. Hubert Numerical study of the stopping of aura during migraine, ESAIM : proceedings, 30, 44-52, 2010.
- F. Boyer, F. Hubert, J. Le Rousseau Discrete Carleman estimates for elliptic operators in arbitrary dimension and applications, SIAM J. on Control and Optimization, 48(8), 5357-5397, 2010.
- F. Boyer, F. Hubert, J. Le Rousseau Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations, Journal de Mathematiques Pures et Appliquees, 93(3), 240-273, 2010.
- F. Hubert, M.-C. Viallon Algorithm to refine a finite volume mesh admissible for parabolic problems, CRAS Mécanique, 337, 95-100, 2009.
- F. Boyer, F. Hubert, S. Krell A Schwarz algorithm for the Discrete Duality Finite Volume (DDFV) scheme, IMA Jour. Num. Anal., 30, 1062-1100, 2009.
- D. Barbolosi, A. Benabdallah, F. Hubert, F. Verga Mathematical and numerical analysis for a model of growing metastatic tumors, Mathematical Biosciences, 218(1), 1-14, 2009.
- P. Angot, F. Boyer, F. Hubert Asymptotic and numerical modelling of flows in fractured porous media, M2AN, 23, 239-275, 2009.
- F. Boyer, F. Hubert Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities, SIAM Journal of Numerical Analysis, Vol. 46, No 6, pp 3032-3070, 2008.
- B. Andreianov, F. Boyer, F. Hubert Discrete duality finite volume schemes for Leray-Lions type problems on general 2D meshes, Numerical Methods for PDE, Vol. 23, 1, pp 145-195, 2007.
- B. Andreianov, F. Boyer, F. Hubert Discrete Besov framework for finite volume approximation of the p-laplacian on non uniform cartesian grids, ESAIM Proceedings, Vol. 18, pp 1-10, 2007.
- B. Andreianov, F. Boyer, F. Hubert On finite volume approximation of regular solutions of the p-laplacian, IMA Journal Numerical Analysis, Vol. 26, 3, pp. 472-502, 2006.
- B. Andreianov, F. Boyer, F. Hubert Besov regularity and new error estimates for nite volume approximations of the p-laplacian, Num. Math, Vol. 100, 4, pp. 565-592, 2005.
- B. Andreianov, F. Boyer, F. Hubert Finite volume schemes for the p-laplacian, on cartesian meshes, M2AN, Vol. 38,6, pp. 931-960, 2004.
- R. Cautrès, R. Herbin, F. Hubert The Lions domain decomposition algorithm on non matching cell-centered nite volume meshes, IMA Journal Numerical Analysis, Vol. 24, pp. 465-490, 2004.
- T. Gallouët, F. Hubert On the convergence of the parabolic approximation of a conservation law in several space dimensions, Chinese Annals of Mathematics, Vol. 20B, No 1, pp 7-10, 1999.
- F. Hubert Global existence for hyperbolic-parabolic systems with large periodic initial data, Differential and Integral Equations, Vol. 11, No 1, pp 69-83, 1998.
- F. Hubert Viscous perturbations of isometric solutions of the Keytz-Kranzer system, Applied Mathematics Letters, Vol. 10, No 1, pp 51-55, 1997.
- F. Hubert, D. Serre Dynamique lente-rapide pour des perturbations de systemes de lois de conservation, Comptes Rendus de l'Academie des Sciences. Vol. 322, Serie I, pp 231-236, 1996.
- F. Hubert, D. Serre Fast-slow dynamics for parabolic perturbations of conservation laws, Communications in Partial Differential Equations, Vol 21, No 9-10, pp 1587-1608, 1996.
Articles dans des actes de conférences
- M. Gander, L. Halpern, F. Hubert, S. Krell Overlapping DDFV Schwarz algorithms on non-matching grids , In: 22st International Conference on Domain Decomposition, Hong Kong, China, Décembre 2020.
- M. Gander, L. Halpern, F. Hubert, S. Krell Optimized Schwarz Methods for Anisotropic Diffusion with Discrete Duality Finite Volume Discretizations, In: Klöfkorn R., Keilegavlen E., Radu F., Fuhrmann J. (eds) Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples. FVCA 2020. Springer Proceedings in Mathematics & Statistics, vol 323. Springer, Cham. https://doi.org/10.1007/978-3-030-43651-3_33.
- F. Hubert, R. Tesson Weno scheme for transport equation on unstructured grids with a DDFV approach, Finite Volumes for Complex Applications 8, Jun 2017, Lille, France. pp.13-21, https://doi.org/10.1007/978-3-319-57394-6_2.
- A. Barlukova, S. Honoré, F. Hubert Mathematical modeling of the microtubule dynamic instability: a new approch of GTP-tubulin hydrolysis, ITM Web of Conferences 5, 00011 (2015), https://doi.org/10.1051/itmconf/20150500011.
- N. Hartung, F. Hubert An efficient implementation of a 3D CeVeFE DDFV scheme on cartesian meshes and an application in image processing, FVCA7, Berlin, Juin 2014, https://doi.org/10.1007/978-3-319-05591-6_63.
- hal-01090883v1 Communication dans un congrès Séverine Mollard, Sébastien Benzekry, Giacometti Sarah, Christian Faivre, Florence Hubert et al. Model-based optimization of combined antiangiogenic + cytotoxics modalities: application to the bevacizumab-paclitaxel association in breast cancer models, AACR Annual Meeting 2014, Apr 2014, San Diego, United States. https://doi.org/10.1158/1538-7445.AM2014-3677.
- M. Gander, L. Halpern, F. Hubert, S. Krell DDFV Schwarz Ventcell algorithms , 22st International Conference on Domain Decomposition, Lugano, Switzerland, Septembre 2013, https://doi.org/10.1007/978-3-319-18827-0.
- L. Halpern, F. Hubert A new finite volume Schwarz algorithm for advection-diffusion equations, 21st International Conference on Domain Decomposition, Rennes, Juin 2012.
- M. Gander, F. Hubert, S. Krell Optimized Schwarz algorithms in the framework of DDFV schemes, 21st International Conference on Domain Decomposition, Rennes, Juin 2012.
- R. Eymard, G. Henry, R. Herbin, F. Hubert, R. Klöfkorn, G. Manzini 3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids, FVCA6, Prague, Juin 2011.
- Y. Coudière, F. Hubert, G. Manzini A CeVeFE DDFV scheme for discontinuous anisotropic permeability tensors, FVCA6, Prague, Juin 2011.
- Y. Coudière, F. Hubert, G. Manzini Benchmark 3D : CeVeFE-DDFV, a discrete duality scheme with cell/vertex/face+edge unknown, FVCA6, Prague, Juin 2011.
- B. Andreianov, F . Hubert, S. Krell Benchmark 3D : a version of the DDFV scheme with cell/vertex unknowns on general meshes, FVCA6, Prague, Juin 2011.
- Y. Coudière, F. Hubert A 3D Discrete Duality Finite Volume Method for Nonlinear Elliptic Equations, ALGORITMY, Podanske, Slovaquie, pp. 51-60, Mars 2009.
- F. Boyer, F. Hubert, J. Le Rousseau On the approximation of the null-controllability problem for parabolic equations, ALGORITMY, Podanske, Slovaquie, pp. 101-110, Mars 2009.
- R. Herbin, F. Hubert Benchmark on discretization schemes for anisotropic diffusion problems on general grids, Proceedings of the 5th international symposium on Finite Volumes for Complex Applications, Aussois, Juin 2008.
- F. Boyer, F. Hubert Benchmark for Anisotropic Problems.The DDFV “discrete duality finite volumes” and m-DDFV schemes, Proceedings of the 5th international symposium on Finite Volumes for Complex Applications, Aussois, Juin 2008.
- F. Boyer, F. Hubert, S. Krell Non-overlapping Schwarz algorithm for DDFV schemes on general 2D meshes, Proceedings of the 5th international symposium on Finite Volumes for Complex Applications, Aussois, Juin 2008.
- F. Boyer, F. Hubert The m-DDFV Method for Heterogeneous Linear and Nonlinear Elliptic Problems, Proceedings of the 5th international symposium on Finite Volumes for Complex Applications, Aussois, Juin 2008.
- F. Boyer, F. Hubert Finite volume method for nonlinear transmission problems, Proceedings of 17th International Conference on Domain Decomposition Methods, Jul 2006, Strobl, Austria
- B. Andreianov, F. Boyer, F. Hubert Discrete Besov framework for finite volume approximation of the p-Laplacian on non-uniform Cartesian grids, Paris-sud working group on modelling and scientific computing 2006-2007, 2006, Orsay, France. pp.1-10 .