Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentes Révision précédente
en:recherche [2020/03/19 10:32]
fhubert créée
en:recherche [2020/03/19 15:25] (Version actuelle)
fhubert
Ligne 1: Ligne 1:
-publications+==== Publications ==== 
 +=== Books === 
 +  - <color #7092be>**F. Hubert**, J. Hubbard</color> <color #ff7f27>//CALCUL SCIENTIFIQUE -  De la théorie à la pratique - Illustrations avec Maple et Matlab. Volume 1 : Equations algébriques, traitement du signal, géométrie effective//</color>, Vuibert, 2006. 432 pages. 
 +{{ :fr:book1.jpeg?100 |}} 
 +  - <color #7092be>**F. Hubert**, J. Hubbard</color> <color #ff7f27>//CALCUL SCIENTIFIQUE - De la théorie à la pratique - Illustrations avec Maple et Matlab. Volume 2 : Equations différentielles ordinaires, équations aux dérivées partielles//</color>, Vuibert, 2006. 288 pages     
 +{{ :fr:book2.jpeg?100 |}} 
 + 
 +---- 
 + 
 +=== Articles  === 
 +   - <color #7092be>E. Denicolai, S. Honoré, **F. Hubert**, R. Tesson</color> <color #ff7f27>//Microtubules (MT) a key target in oncology : Mathematical modeling of anti-MT agents on cell migration//</color>. A paraître dans Mathematical Modelling of Natural Phenomena (MMNP), 2020.  
 +   - <color #7092be>S. Honoré, **F. Hubert**, M. Tournus, D. White</color> <color #ff7f27>//A growth-fragmentation approach for modeling microtubule dynamic instability//</color>, Bulletin of Mathematical Biology, 81 p. 722–758 (2019). 
 +   - <color #7092be>A. Barlukova, D. White, G. Henry, S. Honoré, **F. Hubert**</color> <color #ff7f27>//Mathematical modeling of microtubule dynamic instability: new insight into the link between GTP-hydrolysis and microtubule aging//</color>,  M2AN, 52, p. 2433–2456, 2018. 
 +   - <color #7092be>A. Barlukova, S. Honoré, **F. Hubert**</color> <color #ff7f27>//Mathematical Modeling of Effect Of Microtubule-Targeted Agents On Microtubule Dynamic Instability//</color>, ESAIM Proc,  62, p. 1-16, 2018. 
 +   - <color #7092be>D. Figarella-Branger, et al.</color> //Duplications of KIAA1549 and BRAF screening by Droplet Digital PCR from formalin-fixed paraffin-embedded DNA is an accurate alternative for KIAA1549-BRAF fusion detection in pilocytic astrocytomas//, Modern Pathology, 31(10) , p.1490-1501, 2018. 
 +   - <color #7092be>D. White , S. Honoré, **F. Hubert**</color> <color #ff7f27>//A new mathematical model for microtubule dynamic instability: exploring the effect of end-binding proteins and microtubule targeting chemotherapy drugs//</color>,  Journal Theoritical Biology, 429, p. 18-34, 2017. 
 +   - <color #7092be>N. Hartung, C. Huynh, C. Gaudy-Marqueste, A. Flavian, N. Malissen,  MA Richard-Lallemand, **F. Hubert**, JJ Grob</color> <color #ff7f27>//Study of metastatic kinetics in metastatic melanoma treated with B-RAF inhibitors: Introducing mathematical modelling of kinetics into the therapeutic decision//</color>, PLOS One, 12(5) 2017. 
 +   - <color #7092be>**F. Hubert**, M. Jedouaa, I. Khames, J. Olivier, O. Theodoly, A. Trescases</color> <color #ff7f27>// Cell Motility in confinement : a computaional model for the shape of the cell//</color>, ESAIM Proc. And Survey, 55, p. 148-166, déc 2016. 
 +   - <color #7092be>S. Honoré, **F. Hubert**</color> <color #ff7f27>// L'adhésion thérapeutique : un nouveau challenge pour les mathématiques,//</color> A3 Magazine - Rayonnement du CNRS, juillet 2016. 
 +   - <color #7092be>N. Hartung, S. Mollard, D. Barbolosi, A. Benabdallah, G. Chapuisat, G. Henry,S. Giacometti, A. Iliadis, J.Ciccolini, C. Faivre, **F. Hubert**</color> <color #ff7f27>// Mathematical Modeling of tumor growth and metastatics spreading : validation in tumor-bearing mice,//</color> Cancer Research 74, p. 6397-6407, 2014. 
 +   - <color #7092be>L. Halpern, **F. Hubert**</color> <color #ff7f27>// A new nite volume Schwarz algorithm for advection-diusion equations,//</color> SIAM Journal of Numerical Analysis, 52(3), 2014. 
 +   - <color #7092be>D. Barbolosi, A. Benabdallah, S. Benzekry, J. Ciccolini, C. Faivre, **F. Hubert**, F. Verga et B. You</color> <color #ff7f27>// A mathematical model for growing metastases on oncologist's service,//</color> Computational Surgery and dual training, p. 331-338, 2014. 
 +   - <color #7092be>B. Andreianov, M. Bendahname, **F. Hubert** </color> <color #ff7f27>//On 3D DDFV discretization of gradient and divergence operators. II. Discrete functional analysis tools and applications to degenerate parabolic problems,//</color> Computational Methods in applied Mathematics, 13(4), p. 369-410, 2013. 
 +   - <color #7092be>N. André, D. Barbolosi, F. Billy, G. Chapuisat, E. Grenier, **F. Hubert**, A. Rovini </color> <color #ff7f27>// Mathematical model of tumor growth controlled by metronomic chemotherapies,//</color> ESAIM Proceedings, 41, p. 77-94, 2013. 
 +   - <color #7092be>S. Benzekry, G. Chapuisat, J. Ciccolini , A. Erlinger, **F. Hubert** </color> <color #ff7f27>// A new mathematical model for optimizing the combination between antiangiogenic and cytotoxic drugs in oncology,//</color> CRAS, 350, p. 23-28, 2012.  
 +   - <color #7092be>S. Benzekry, N. André, A. Benabdallah, J. Ciccolini, C. Faivre, **F. Hubert**, D. Barbolosi </color> <color #ff7f27>// Modelling the impact of anticancer agents on metastatic spreading,//</color> Mathematical Modelling of Natural Phenomena, 7(1), 306-336, 2012. 
 +   - <color #7092be>B. Andreianov, M. Bendahname, **F. Hubert**, S. Krell</color> <color #ff7f27>// On 3D DDFV discretization of gradient and divergence operators. I. Meshing, operators and discrete duality.,//</color> IMA JNA, 32(4), 1574­1603, 2012. 
 +   - <color #7092be>Y. Coudière, **F. Hubert**</color> <color #ff7f27>// A 3D Discrete Duality Finite Volume Method for Nonlinear Elliptic Equations,//</color> SIAM Journal of Scientic Computing, 33(4), 1739-1764, 2011. 
 +   - <color #7092be>F. Verga, B. You, A. Benabdallah, C. Faivre, C. Mercier, C. Ciccolini, **F. Hubert**, D. Barbolosi  </color> <color #ff7f27>//Modélisation du risque d'evolution metastatique chez les patients supposés avoir une maladie localisée, //</color>Oncologie, 13(8), 528-533, 2011. 
 +   - <color #7092be>F. Boyer, **F. Hubert**, J. Le Rousseau  </color> <color #ff7f27>//Uniform null-controllability for space/time-discretized parabolic equations,//</color> Nümerische Math. 118(4), 601-660, 2011. 
 +   - <color #7092be>C. Pocci, A. Moussa, G. Chapuisat, **F. Hubert**  </color> <color #ff7f27>//Numerical study of the stopping of aura during migraine,//</color> ESAIM : proceedings, 30, 44-52, 2010. 
 +    <color #7092be>F. Boyer, **F. Hubert**, J. Le Rousseau  </color> <color #ff7f27>// Discrete Carleman estimates for elliptic operators in arbitrary dimension and applications,//</color> SIAM J. on Control and Optimization, 48(8), 5357-5397, 2010. 
 +   - <color #7092be>F. Boyer, **F. Hubert**, J. Le Rousseau  </color> <color #ff7f27>//Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations, //</color>Journal de Mathematiques Pures et Appliquees, 93(3), 240-273, 2010. 
 +   - <color #7092be>**F. Hubert**, M.-C. Viallon  </color> <color #ff7f27>//Algorithm to refine a finite volume mesh admissible for parabolic problems,//</color> CRAS Mécanique, 337, 95-100, 2009. 
 +   - <color #7092be>F. Boyer, **F. Hubert**, S. Krell  </color> <color #ff7f27>//A Schwarz algorithm for the Discrete Duality Finite Volume (DDFV) scheme,//</color> IMA Jour. Num. Anal., 30, 1062-1100, 2009. 
 +   - <color #7092be>D. Barbolosi, A. Benabdallah, **F. Hubert**, F. Verga  </color> <color #ff7f27>//Mathematical and numerical analysis for a model of growing metastatic tumors,//</color> Mathematical Biosciences, 218(1), 1-14, 2009. 
 +    <color #7092be>P. Angot, F. Boyer, **F. Hubert**  </color> <color #ff7f27>//Asymptotic and numerical modelling of flows in fractured porous media,//</color> M2AN, 23, 239-275, 2009. 
 +   - <color #7092be>F. Boyer, **F. Hubert**  </color> <color #ff7f27>//Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities,//</color> SIAM Journal of Numerical Analysis, Vol. 46, No 6, pp 3032-3070, 2008. 
 +   - <color #7092be>B. Andreianov, F. Boyer, **F. Hubert**  </color> <color #ff7f27>//Discrete duality finite volume schemes for Leray-Lions type problems on general 2D meshes,//</color> Numerical Methods for PDE, Vol. 23, 1, pp 145-195, 2007. 
 +   - <color #7092be>B. Andreianov, F. Boyer, **F. Hubert**  </color> <color #ff7f27>//Discrete Besov framework for finite volume approximation of the p-laplacian on non uniform cartesian grids,//</color> ESAIM Proceedings, Vol. 18, pp 1-10, 2007. 
 +   - <color #7092be>B. Andreianov, F. Boyer, **F. Hubert**  </color> <color #ff7f27>//On finite volume approximation of regular solutions of the p-laplacian,//</color> IMA Journal Numerical Analysis, Vol. 26, 3, pp. 472-502, 2006. 
 +   - <color #7092be>B. Andreianov, F. Boyer, **F. Hubert**  </color> <color #ff7f27>//Besov regularity and new error estimates for nite volume approximations of the p-laplacian,//</color> Num. Math, Vol. 100, 4, pp. 565-592, 2005. 
 +   - <color #7092be>B. Andreianov, F. Boyer, **F. Hubert**  </color> <color #ff7f27>//Finite volume schemes for the p-laplacian, on cartesian meshes,//</color> M2AN, Vol. 38,6, pp. 931-960, 2004. 
 +   - <color #7092be>R. Cautrès, R. Herbin, **F. Hubert**  </color> <color #ff7f27>//The Lions domain decomposition algorithm on non matching cell-centered nite volume meshes,//</color> IMA Journal Numerical Analysis, Vol. 24, pp. 465-490, 2004. 
 +   - <color #7092be>T. Gallouët, **F. Hubert**  </color> <color #ff7f27>//On the convergence of the parabolic approximation of a conservation law in several space dimensions, //</color>Chinese Annals of Mathematics, Vol. 20B, No 1, pp 7-10, 1999. 
 +   - <color #7092be>**F. Hubert**  </color> <color #ff7f27>//Global existence for hyperbolic-parabolic systems with large periodic initial data,//</color> Differential and Integral Equations, Vol. 11, No 1, pp 69-83, 1998. 
 +   - <color #7092be>**F. Hubert**  </color> <color #ff7f27>//Viscous perturbations of isometric solutions of the Keytz-Kranzer system,//</color> Applied Mathematics Letters, Vol. 10, No 1, pp 51-55, 1997. 
 +   - <color #7092be>**F. Hubert**, D. Serre  </color> <color #ff7f27>//Dynamique lente-rapide pour des perturbations de systemes de lois de conservation,//</color> Comptes Rendus de l'Academie des Sciences. Vol. 322, Serie I, pp 231-236, 1996. 
 +   - <color #7092be>**F. Hubert**, D. Serre  </color> <color #ff7f27>//Fast-slow dynamics for parabolic perturbations of conservation laws, //</color>Communications in Partial Differential Equations, Vol 21, No 9-10, pp 1587-1608, 1996. 
 + 
 +---- 
 + 
 +=== Proceedings === 
 +  - <color #7092be>M. Gander, L. Halpern, **F. Hubert**, S. Krell</color> <color #ff7f27>// Optimized Schwarz Methods for Anisotropic Diffusion with Discrete Duality Finite Volume Discretizations, //</color>FVCA9, Bergen, Juin 2020. 
 +  - <color #7092be>**F. Hubert**, R. Tesson</color> <color #ff7f27>//  Weno scheme for transport equation on unstructured grids with a DDFV approach,//</color> FVCA8, Lille, Juin 2017. 
 +  - <color #7092be>A. Barlukova, S. Honoré, **F. Hubert** </color> <color #ff7f27>//Mathematical modeling of the microtubule dynamic instability: a new approch of GTP-tubulin hydrolysis,//</color> ITM Web of Conferences 5, 00011 (2015). 
 +  - <color #7092be>N. Hartung, **F. Hubert** </color> <color #ff7f27>//An efficient implementation of a 3D CeVeFE DDFV scheme on cartesian meshes and an application in image processing,//</color> FVCA7, Berlin, Juin 2014. 
 +  - <color #7092be>M. Gander, L. Halpern, **F. Hubert**, S. Krell </color> <color #ff7f27>//DDFV Schwarz Ventcell algorithms ,//</color> 22st International Conference on Domain Decomposition, Lugano, Switzerland, Septembre 2013. 
 +  - <color #7092be>L. Halpern, **F. Hubert** </color> <color #ff7f27>//A new finite volume Schwarz algorithm for advection-diffusion equations, //</color>21st International Conference on Domain Decomposition, Rennes, Juin 2012. 
 +  -  <color #7092be>M. Gander, **F. Hubert**, S. Krell </color> <color #ff7f27>//Optimized Schwarz algorithms in the framework of DDFV schemes,//</color> 21st International Conference on Domain Decomposition, Rennes, Juin 2012. 
 +  - <color #7092be>R. Eymard, G. Henry, R. Herbin, **F. Hubert**, R. Klöfkorn, G. Manzini </color> <color #ff7f27>//3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids,//</color> FVCA6, Prague, Juin 2011. 
 +  - <color #7092be>Y. Coudière, **F. Hubert**, G. Manzini </color> <color #ff7f27>//A CeVeFE DDFV scheme for discontinuous anisotropic permeability tensors,//</color> FVCA6, Prague, Juin 2011. 
 +  - <color #7092be>Y. Coudière, **F. Hubert**, G. Manzini</color> <color #ff7f27>// Benchmark 3D : CeVeFE-DDFV, a discrete duality scheme with cell/vertex/face+edge unknown,//</color> FVCA6, Prague, Juin 2011. 
 +  - <color #7092be>B. Andreianov, **F . Hubert**, S. Krell</color> <color #ff7f27>// Benchmark 3D : a version of the DDFV scheme with cell/vertex unknowns on general meshes,//</color> FVCA6, Prague, Juin 2011. 
 +  - <color #7092be>Y. Coudière, **F. Hubert** </color> <color #ff7f27>//A 3D Discrete Duality Finite Volume Method for Nonlinear Elliptic Equations,//</color> ALGORITMY, Podanske, Slovaquie, pp. 51-60, Mars 2009. 
 +  - <color #7092be>F. Boyer, **F. Hubert**, J. Le Rousseau</color> <color #ff7f27>// On the approximation of the null-controllability problem for parabolic equations,//</color> ALGORITMY, Podanske, Slovaquie, pp. 101-110, Mars 2009. 
 +  - <color #7092be>R. Herbin, **F. Hubert**</color> <color #ff7f27>// Benchmark on discretization schemes for anisotropic diffusion problems on general grids,//</color> Proceedings of the 5th international symposium on Finite Volumes for Complex Applications, Aussois, Juin 2008. 
 +  - <color #7092be>F. Boyer, **F. Hubert** </color> <color #ff7f27>//Benchmark for Anisotropic Problems.The DDFV "discrete duality finite volumes" and m-DDFV schemes,//</color> Proceedings of the 5th international symposium on Finite Volumes for Complex Applications, Aussois, Juin 2008. 
 +  - <color #7092be>F. Boyer, **F. Hubert**, S. Krell </color> <color #ff7f27>//Non-overlapping Schwarz algorithm for DDFV schemes on general 2D meshes,//</color> Proceedings of the 5th international symposium on Finite Volumes for Complex Applications, Aussois, Juin 2008. 
 +  - <color #7092be>F. Boyer, **F. Hubert**</color> <color #ff7f27>// The m-DDFV Method for Heterogeneous Linear and Nonlinear Elliptic Problems,//</color> Proceedings of the 5th international symposium on Finite Volumes for Complex Applications, Aussois, Juin 2008.
  
  • en/recherche.txt
  • Dernière modification: 2020/03/19 15:25
  • de fhubert