Ceci est une ancienne révision du document !


Articles dans des revues avec comité de lecture
  1. E. Denicolai, S. Honoré, F. Hubert, R. Tesson Microtubules (MT) a key target in oncology : Mathematical modeling of anti-MT agents on cell migration. A paraître dans Mathematical Modelling of Natural Phenomena (MMNP), 2020. 
  2. S. Honoré, F. Hubert, M. Tournus, D. White A growth-fragmentation approach for modeling microtubule dynamic instability, Bulletin of Mathematical Biology, 81 p. 722–758 (2019).
  3. A. Barlukova, D. White, G. Henry, S. Honoré, F. Hubert Mathematical modeling of microtubule dynamic instability: new insight into the link between GTP-hydrolysis and microtubule aging,  M2AN, 52, p. 2433–2456, 2018.
  4. A. Barlukova, S. Honoré, F. Hubert Mathematical Modeling of Effect Of Microtubule-Targeted Agents On Microtubule Dynamic Instability, ESAIM Proc,  62, p. 1-16, 2018.
  5. D. Figarella-Branger, et al. Duplications of KIAA1549 and BRAF screening by Droplet Digital PCR from formalin-fixed paraffin-embedded DNA is an accurate alternative for KIAA1549-BRAF fusion detection in pilocytic astrocytomas, Modern Pathology, 31(10) , p.1490-1501, 2018.
  6. D. White , S. Honoré, F. Hubert A new mathematical model for microtubule dynamic instability: exploring the effect of end-binding proteins and microtubule targeting chemotherapy drugs,  Journal Theoritical Biology, 429, p. 18-34, 2017.
  7. N. Hartung, C. Huynh, C. Gaudy-Marqueste, A. Flavian, N. Malissen,  MA Richard-Lallemand, F. Hubert, JJ Grob Study of metastatic kinetics in metastatic melanoma treated with B-RAF inhibitors: Introducing mathematical modelling of kinetics into the therapeutic decision, PLOS One, 12(5) 2017.
  8. F. Hubert, M. Jedouaa, I. Khames, J. Olivier, O. Theodoly, A. Trescases Cell Motility in confinement : a computaional model for the shape of the cell, ESAIM Proc. And Survey, 55, p. 148-166, déc 2016.
  9. S. Honoré, F. Hubert L'adhésion thérapeutique : un nouveau challenge pour les mathématiques, A3 Magazine - Rayonnement du CNRS, juillet 2016.
  10. N. Hartung, S. Mollard, D. Barbolosi, A. Benabdallah, G. Chapuisat, G. Henry,S. Giacometti, A. Iliadis, J.Ciccolini, C. Faivre, F. Hubert. Mathematical Modeling of tumor growth and metastatics spreading : validation in tumor-bearing mice, Cancer Research 74, p. 6397-6407, 2014.
  11. L. Halpern, F. Hubert A new nite volume Schwarz algorithm for advection-diusion equations, SIAM Journal of Numerical Analysis, 52(3), 2014.
  12. D. Barbolosi, A. Benabdallah, S. Benzekry, J. Ciccolini, C. Faivre, F. Hubert, F. Verga et B. You, A mathematical model for growing metastases on oncologist's service, Computational Surgery and dual training, p. 331-338, 2014.
  13. B. Andreianov, M. Bendahname, F. Hubert On 3D DDFV discretization of gradient and divergence operators. II. Discrete functional analysis tools and applications to degenerate parabolic problems, Computational Methods in applied Mathematics, 13(4), p. 369-410, 2013.
  14. N. André, D. Barbolosi, F. Billy, G. Chapuisat, E. Grenier, F. Hubert, A. Rovini Mathematical model of tumor growth controlled by metronomic chemotherapies, ESAIM Proceedings, 41, p. 77-94, 2013.
  15. S. Benzekry, G. Chapuisat, J. Ciccolini , A. Erlinger, F. Hubert A new mathematical model for optimizing the combination between antiangiogenic and cytotoxic drugs in oncology, CRAS, 350, p. 23-28, 2012. 
  16. S. Benzekry, N. André, A. Benabdallah, J. Ciccolini, C. Faivre, F. Hubert, D. Barbolosi, Modelling the impact of anticancer agents on metastatic spreading, Mathematical Modelling of Natural Phenomena, 7(1), 306-336, 2012.
  17. B. Andreianov, M. Bendahname, F. Hubert, S. Krell On 3D DDFV discretization of gradient and divergence operators. I. Meshing, operators and discrete duality., IMA JNA, 32(4), 1574­1603, 2012.
  18. Y. Coudière, F. Hubert. A 3D Discrete Duality Finite Volume Method for Nonlinear Elliptic Equations, SIAM Journal of Scientic Computing, 33(4), 1739-1764, 2011.
  19. F. Verga, B. You, A. Benabdallah, C. Faivre, C. Mercier, C. Ciccolini, F. Hubert, D. Barbolosi Modélisation du risque d'evolution metastatique chez les patients supposés avoir une maladie localisée, Oncologie, 13(8), 528-533, 2011.
  20. F. Boyer, F. Hubert, J. Le Rousseau Uniform null-controllability for space/time-discretized parabolic equations, Nümerische Math. 118(4), 601-660, 2011.
  21. C. Pocci, A. Moussa, G. Chapuisat, F. Hubert Numerical study of the stopping of aura during migraine, ESAIM : proceedings, 30, 44-52, 2010.
  22.  F. Boyer, F. Hubert, J. Le Rousseau Discrete Carleman estimates for elliptic operators in arbitrary dimension and applications, SIAM J. on Control and Optimization, 48(8), 5357-5397, 2010.
  23. F. Boyer, F. Hubert, J. Le Rousseau Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations, Journal de Mathematiques Pures et Appliquees, 93(3), 240-273, 2010.
  24. F. Hubert, M.-C. Viallon Algorithm to refine a finite volume mesh admissible for parabolic problems, CRAS Mécanique, 337, 95-100, 2009.
  25. F. Boyer, F. Hubert, S. Krell A Schwarz algorithm for the Discrete Duality Finite Volume (DDFV) scheme, IMA Jour. Num. Anal., 30, 1062-1100, 2009.
  26. D. Barbolosi, A. Benabdallah, F. Hubert, F. Verga Mathematical and numerical analysis for a model of growing metastatic tumors, Mathematical Biosciences, 218(1), 1-14, 2009.
  27.  P. Angot, F. Boyer, F. Hubert Asymptotic and numerical modelling of flows in fractured porous media, M2AN, 23, 239-275, 2009.
  28. F. Boyer, F. Hubert Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities, SIAM Journal of Numerical Analysis, Vol. 46, No 6, pp 3032-3070, 2008.
  29. B. Andreianov, F. Boyer, F. Hubert Discrete duality finite volume schemes for Leray-Lions type problems on general 2D meshes, Numerical Methods for PDE, Vol. 23, 1, pp 145-195, 2007.
  30. B. Andreianov, F. Boyer, F. Hubert Discrete Besov framework for finite volume approximation of the p-laplacian on non uniform cartesian grids, ESAIM Proceedings, Vol. 18, pp 1-10, 2007.
  31. B. Andreianov, F. Boyer, F. Hubert On finite volume approximation of regular solutions of the p-laplacian, IMA Journal Numerical Analysis, Vol. 26, 3, pp. 472-502, 2006.
  32. B. Andreianov, F. Boyer, F. Hubert Besov regularity and new error estimates for nite volume approximations of the p-laplacian, Num. Math, Vol. 100, 4, pp. 565-592, 2005.
  33. B. Andreianov, F. Boyer, F. Hubert Finite volume schemes for the p-laplacian, on cartesian meshes, M2AN, Vol. 38,6, pp. 931-960, 2004.
  34. R. Cautrès, R. Herbin, F. Hubert The Lions domain decomposition algorithm on non matching cell-centered nite volume meshes, IMA Journal Numerical Analysis, Vol. 24, pp. 465-490, 2004.
  35. T. Gallouët, F. Hubert On the convergence of the parabolic approximation of a conservation law in several space dimensions, Chinese Annals of Mathematics, Vol. 20B, No 1, pp 7-10, 1999.
  36. F. Hubert Global existence for hyperbolic-parabolic systems with large periodic initial data, Dierential and Integral Equations, Vol. 11, No 1, pp 69-83, 1998.
  37. F. Hubert Viscous perturbations of isometric solutions of the Keytz-Kranzer system, Applied Mathematics Letters, Vol. 10, No 1, pp 51-55, 1997.
  38. F. Hubert, D. Serre Dynamique lente-rapide pour des perturbations de systemes de lois de conservation, Comptes Rendus de l'Academie des Sciences. Vol. 322, Serie I, pp 231-236, 1996.
  39. F. Hubert, D. Serre Fast-slow dynamics for parabolic perturbations of conservation laws, Communications in Partial Dierential Equations, Vol 21, No 9-10, pp 1587-1608, 1996.
Articles dans des actes de conférences
  • fr/recherche.1584624923.txt.gz
  • Dernière modification: 2020/03/19 14:35
  • par fhubert