Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentes Révision précédente
Prochaine révision
Révision précédente
fr:recherche [2020/03/19 15:23]
fhubert
fr:recherche [2021/02/18 15:48] (Version actuelle)
fhubert
Ligne 9: Ligne 9:
  
 === Articles dans des revues avec comité de lecture === === Articles dans des revues avec comité de lecture ===
-   - <color #​7092be>​E. Denicolai, S. Honoré, **F. Hubert**, R. Tesson</​color>​ <color #​ff7f27>//​Microtubules (MT) a key target in oncology : Mathematical modeling of anti-MT agents on cell migration//</​color>​. ​A paraître dans Mathematical Modelling of Natural Phenomena ​(MMNP), 2020. +   - <color #​7092be>​M. Gander, L. Halpern, **F. Hubert**, S. Krell</​color>​ <color #​ff7f27>//​Optimized Schwarz methods with general Ventcell transmission conditions for fully anisotropic diffusion with discrete duality finite volume discretizations ​ //</​color>​ Moroccan Journal of Pure and Applied Analysis, 7(2), p. 182-213, 2021. Published online https://​content.sciendo.com/​view/​journals/​mjpaa/​mjpaa-overview.xml?​language=en&​tab_body=latestIssueToc-79907 
 +   - <color #​7092be>​E. Denicolai, S. Honoré, **F. Hubert**, R. Tesson</​color>​ <color #​ff7f27>//​Microtubules (MT) a key target in oncology : Mathematical modeling of anti-MT agents on cell migration//</​color>​. ​ Mathematical Modelling of Natural Phenomena, Cancer modelling, 15, 2020. Published online https://​www.mmnp-journal.org/​articles/​mmnp/​abs/​2020/​01/​mmnp190010/​mmnp190010.html
    - <color #​7092be>​S. Honoré, **F. Hubert**, M. Tournus, D. White</​color>​ <color #​ff7f27>//​A growth-fragmentation approach for modeling microtubule dynamic instability//</​color>,​ Bulletin of Mathematical Biology, 81 p. 722–758 (2019).    - <color #​7092be>​S. Honoré, **F. Hubert**, M. Tournus, D. White</​color>​ <color #​ff7f27>//​A growth-fragmentation approach for modeling microtubule dynamic instability//</​color>,​ Bulletin of Mathematical Biology, 81 p. 722–758 (2019).
    - <color #​7092be>​A. Barlukova, D. White, G. Henry, S. Honoré, **F. Hubert**</​color>​ <color #​ff7f27>//​Mathematical modeling of microtubule dynamic instability:​ new insight into the link between GTP-hydrolysis and microtubule aging//</​color>, ​ M2AN, 52, p. 2433–2456,​ 2018.    - <color #​7092be>​A. Barlukova, D. White, G. Henry, S. Honoré, **F. Hubert**</​color>​ <color #​ff7f27>//​Mathematical modeling of microtubule dynamic instability:​ new insight into the link between GTP-hydrolysis and microtubule aging//</​color>, ​ M2AN, 52, p. 2433–2456,​ 2018.
Ligne 52: Ligne 53:
  
 === Articles dans des actes de conférences === === Articles dans des actes de conférences ===
-  - <color #​7092be>​M. Gander, L. Halpern, **F. Hubert**, S. Krell</​color>​ <color #​ff7f27>//​ Optimized Schwarz Methods for Anisotropic Diffusion with Discrete Duality Finite Volume Discretizations,​ //</​color>​FVCA9BergenJuin 2020.+  - <color #​7092be>​M. Gander, L. Halpern, **F. Hubert**, S. Krell</​color>​ <color #​ff7f27>//​ Optimized Schwarz Methods for Anisotropic Diffusion with Discrete Duality Finite Volume Discretizations,​ //</​color> ​In: Klöfkorn R.Keilegavlen E.Radu F., Fuhrmann J. (eds) Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples. FVCA 2020. Springer Proceedings in Mathematics & Statistics, vol 323. Springer, Cham. https://​doi.org/​10.1007/​978-3-030-43651-3_33.
   - <color #​7092be>​**F. Hubert**, R. Tesson</​color>​ <color #​ff7f27>// ​ Weno scheme for transport equation on unstructured grids with a DDFV approach,//</​color>​ FVCA8, Lille, Juin 2017.   - <color #​7092be>​**F. Hubert**, R. Tesson</​color>​ <color #​ff7f27>// ​ Weno scheme for transport equation on unstructured grids with a DDFV approach,//</​color>​ FVCA8, Lille, Juin 2017.
   - <color #​7092be>​A. Barlukova, S. Honoré, **F. Hubert** </​color>​ <color #​ff7f27>//​Mathematical modeling of the microtubule dynamic instability:​ a new approch of GTP-tubulin hydrolysis,//</​color>​ ITM Web of Conferences 5, 00011 (2015).   - <color #​7092be>​A. Barlukova, S. Honoré, **F. Hubert** </​color>​ <color #​ff7f27>//​Mathematical modeling of the microtubule dynamic instability:​ a new approch of GTP-tubulin hydrolysis,//</​color>​ ITM Web of Conferences 5, 00011 (2015).
  • fr/recherche.1584627818.txt.gz
  • Dernière modification: 2020/03/19 15:23
  • par fhubert