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Multivariate time series structured in a network

A simple example: recording electric consumption

A simple sensor recording the
overall electrivity consumption
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[Harlé et al. IEEE Trans. Sig. Proc. 2016]
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Multivariate time series structured in a network

Multiple sensors in different
places of the house

kitchen living-room

stairs
bathroom

Observed multivariate time series
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[Harlé et al. IEEE Trans. Sig. Proc. 2016]
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Multivariate time series structured in a network

Multiple sensors in different
places of the house with pos-
sible links

kitchen living-room

stairs
bathroom

Observed multivariate time series with multiple change point detection
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[Harlé et al. IEEE Trans. Sig. Proc. 2016]
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Multivariate time series structured in a network

Definition of the network (or
graph):

nodes: X1, X2, X3 and X4

edges: X2-> X1, X3-> X1, X4-> X1

adjacency matrix: 
0 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0


[Harlé et al. IEEE Trans. Sig. Proc. 2016]
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The brain as a network

1011 neurons

Connected via axons and dendrites
(1014 connections)

Transmission of nerve signals
(segregated and distributed
information)
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Exploring the brain using networks analysis

Functional Magnetic Resonance Imaging – fMRI:
[Ogawa 1990, Kwong 1991]

Measure of the haemodynamic response related to neural activity in the
brain.
BOLD(Blood-oxygen-level dependent)= MRI contrast of blood
deoxyhemoglobin

Copyright Hunter G Hoffman. IRMaGe, GIN, UGA
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Exploring the brain using networks analysis

Hundreds of time series corresponding to brain regions

10   neurons
11

10  voxels
0.3 Hz

5

Parcellation

Time series

fMRI data
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Exploring the brain using networks analysis

[De Vico Fallani et al. Phil. Trans. Roy. B 2014]
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Outline of the talk

Part I: Wavelets, Correlation, fractal connectivity

Part II: Graphs construction, comparison; Applications on coma
patients
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Part I: Inference of networks
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Long memory property of the brain time series
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Long memory property of the brain time series
X87 X66
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autocorrelations not summable

ρ(λ) = Corr(X (t + λ),X (t)) ∼ λ2d−1

Note: For an ARMA process,

|ρ(λ)| 6 b|a|λ, 0 < b <∞, 0 < a < 1
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Long memory property of the brain time series
X87 X66
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autocorrelations not summable

A simple example, X (1), . . . ,X (N), random variables,

X̂ := N−1
N∑
i=1

X (i), V(X̂ ) =
σ2

N2

N∑
i ,j=1

Corr(X (i),X (j))
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Wavelets and long memory time series

An example of ψ, Daubechies 8
Let (φ, ψ) define a father and
a mother wavelets

For any scale j > 0 and location
k ∈ Z we consider the wavelet
coefficient of the signals X`(·),
for ` = 1, . . . , p,

Wj ,k(`) ≈
∫

X`(t)ψj ,k(t)dt
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Wavelets and long memory time series

Under specific hyptothesis on the wavelet basis,

Wavelets are acting as a differentiation process,

Wj ,k(`) = (↓j [h̃j ,. ?∆MX`])k ,

where

∆ is the finite difference operator, ∆X (k) = X (k)− X (k − 1)

h̃j ,. are the adequate trigonometric polynom coefficient,

↓j is the downsampling operator.

[Achard and Gannaz J. Time Series Analysis 2015]
[Moulines et al. 2007]
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Wavelets and long memory time series

Under specific hyptothesis on the wavelet basis,

Wavelets are acting as a differentiation process,

Wj ,k(`) = (↓j [h̃j ,. ?∆MX`])k ,

{Wj ,k(`)}k∈Z and bivariate process {Wj ,k(`),Wj ,k ′(m)}k∈Z are
covariance-stationary and with short dependence.

Cov(Wj ,k(`),Wj ,k ′(m)) =

∫ π

−π
D

(j)
0;0(λ; (`,m))eiλ(k−k ′)dλ.

where D
(j)
0;0(λ; (`,m)) is the joint spectral density of

{Wj ,k(`),Wj ,k(m)}k∈Z

[Achard and Gannaz J. Time Series Analysis 2015]
[Moulines et al. 2007]
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Wavelet scalogram

X87 X66
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σ2(j) = V(Wj ,k) ∼ 22dj

[Flandrin 1992]
[Abry and Veitch 1998]

[Moulines et al. 2007]
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Wavelets and correlation

X = {X(k), k ∈ Z} long memory process, 1 6 `,m 6 p,

Wavelet variance Wavelet covariance

σ2
` (j) = V(Wj ,k(`)) θ`,m(j) = Cov(Wj ,k(`),Wj ,k(m))

σ̂2(j) := 1
nj

∑nj
k=0 W

2
j ,k θ̂`,m(j) := 1

nj

∑nj
k=0(Wj ,k(`)Wj ,k(m))

[Percival et al. 2000]
[Whitcher et al. 2000]

Wavelet correlation

ρ`,m(j) =
θ`,m(j)

σ`(j)σm(j)
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Wavelets and correlation

Proposition

X = {X(k), k ∈ Z} long memory process, ρ̂`,m(j) := θ̂`,m/(σ̂`(j)σ̂m(j))√
(nj − 3)(z(ρ̂`,m(j))− z(ρ`,m(j)))

L−−→ N (0, 1)

where z in the Fisher transform.

X66, X87 X66, X67
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[Achard et al. J. Neurosci. 2006] [Whitcher et al. 2000]
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Construction of the adjacency matrices

→ pair-wise inter-regional
correlations

Wavelets MODWT

Connectivity = Correlation

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

scale 1 scale 3 scale 5

scale 2 scale 4 scale 6

→ adjacency matrix
Threshold ?

Threshold

R=0.3 R=0.4 R=0.5

→ Undirected graphs :
small-world properties

[Achard et al. J. Neurosci. 2006]
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Wavelets and correlation

X = {X(k), k ∈ Z} long memory process, 1 6 `,m 6 p,

X66, X87 X66, X67
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θ`,m(j) ∼ 2j(d`+dm)

[Achard et al. J. Neurosci. 2006]
[Achard et al. PRE 2008]
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Multivariate long memory model

Definition (M(d) process)

X long memory with memory parameters d = (d1, d2, . . . , dp)

Z = diag(∆D` , ` = 1, . . . , p)X

D > d− 1/2, Z is covariance-stationary with a spectral density matrix
given by for all (`,m),

f
(D`,Dm)
`,m (λ) =

1

2π
Ω`,m(1− e−iλ)−d`

s
(1− e iλ)−dm

s
f S`,m(λ), λ ∈ [−π, π],

dS
m = dm − Dm for all m

f S`,m(·) correspond to the short memory behaviour

Ω`,m is the coupling between X` and Xm

[Achard and Gannaz J. Time Series Analysis 2015]
[Moulines et al. 2007]
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Multivariate long memory model

The generalized spectral density of a long memory process X is:

f(λ) = Ω ◦ (diag((1− e−iλ)−d)fS(λ)diag((1− e+iλ)−d))

Ω long-run covariance matrix, corresponding to the fractal
connectivity

d vector of long-range dependences of each series

fS(·) short-range behaviour
∀λ ∈ (−π, π), ‖fS(λ)− 1‖∞ 6 L|λ|β
with L > 0 and 0 < β 6 2.

Remark: If Ω is the identity matrix, the model is equivalent to univariate
M(d)

[Achard and Gannaz J. Time Series Analysis 2015]
[Moulines et al. 2007]
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Example of multivariate long memory process

Example: bivariate ARFIMA(0,d,0), with Ω =

(
1 ω
ω 1

)
(
u1

u2

)
 N

((
0
0

)
,Ω

)

(1− L)−d1u1 = X1

(1− L)−d2u2 = X2

with L lag-operator. For all integer D,
(1− L)DX (t) = (1− L)D−1(X (t)− X (t − 1)).
For fractionnal coefficient δ,

(1− L)δ =
∞∑
k=0

Γ(δ + 1)

Γ(k + 1)Γ(δ − k + 1)
(−1)kLk
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Long-memory effects on empirical correlation

Boxplots of Corr{Wj ,k(1),Wj ,k(2)} for d1 = 0.2 and d2 = 0.2.
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Long-memory effects on empirical correlation

Boxplots of Corr{Wj ,k(1),Wj ,k(2)} for d1 = 0.2 and d2 = 0.6.
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Long-memory effects on empirical correlation

Boxplots of Corr{Wj ,k(1),Wj ,k(2)} for d1 = 0.2 and d2 = 1.2.
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Mathematical formulation

Suppose we observe X(1), . . . ,X(N), with N = 2J .

For any j > 0, k ∈ Z we define Wj ,k(`) the wavelet coefficient of the
series X` evaluated with the observations X`(1), . . . ,X`(N).

The covariance of the wavelet coefficients at resolution j ,
θ`,m(j) = Cov(Wj ,k(`),Wj ,k(m)) does not depend on k.

↪→ What is the behaviour of Cov(Wj ,k(`),Wj ,k(m)) ?

↪→ Can we estimate the fractal covariance Ω with θ`,m(·) ?
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Mathematical formulation

Generalization to multivariate long memory processes.

Proposition

Under some hypothesis∣∣∣θ`,m(j)− Ω`,mcos(π(d` − dm)/2)K (d` + dm)2j(d`+dm)
∣∣∣ 6 C L 2j(d`+dm−β)

↪→ Presence of a phase-shift, due to the difference between the
long-memory parameters.

↪→ Problem of identifiability when d` − dm = 1.

[Achard and Gannaz J. Time Series Analysis 2015]
[Moulines et al. 2007]
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Wavelet Whittle estimation

Wavelet Whittle approximation of the negative log-likelihood

L(G,d) =
1

n

j1∑
j=j0

[
nj log det (Σj(d)) +

∑
k

WT
j ,kΣj(d)−1Wj ,k

]
,

Σj(d)`,m = 2j(d`+dm)G`,m(d).

The minimum for fixed d is attained for

Ĝ`,m(d) =
1

n

j1∑
j=j0

∑
k∈ZWj ,k(`)Wj ,k(m)

2j(d`+dm)
,

empirical version of 1
n

∑j1
j=j0

nj
θ`,m(j)

2j(d`+dm) .
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Wavelet Whittle estimation

Wavelet Whittle approximation of the negative log-likelihood

L(G,d) =
1

n

j1∑
j=j0

[
nj log det (Σj(d)) +

∑
k

WT
j ,kΣj(d)−1Wj ,k

]
,

Σj(d)`,m = 2j(d`+dm)G`,m(d).

We define two estimators for long memory parameters and fractal
connectivity

Definition

d̂ = argmin
d
L(Ĝ(d),d)

Ω̂`,m = Ĝ`,m(d̂) /
(
K (d̂` + d̂m)cos(π(d̂` − d̂m)/2)

)
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Asymptotic results

Theorem

Under certain condition, if j0 and j1 are chosen such that
log(N)2(2−j0β + N−1/22j0/2)→ 0 and j0 < j1 6 jN then

d̂− d0 = OP(2−j0β + N−1/22j0/2),

∀(`,m) ∈ {1, . . . , p}2,

Ĝ`,m(d̂)− G`,m(d0) = OP(log(N)(2−j0β + N−1/22j0/2)),

Ω̂`,m − Ω`,m = OP(log(N)(2−j0β + N−1/22j0/2)).

[Achard and Gannaz J. Time Series Analysis 2015]
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Application on real data

Achard, Bassett, Meyer-Lindenberg, Bullmore (2008)

MEG data acquired from a healthy 43 year old woman studied during rest
with eyes open at the National Institute of Mental Health Bethesda, MD
using a 274-channel CTF MEG system VSM MedTech, Coquitlam, BC,
Canada operating at 600 Hz.

We consider N = 215 time
points for each of the 274 time
series.

Fourier does not work.

Examples of 4 arbitrary signals.
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x 10
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−12

[Achard et al. PRE 2008]
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Application on real data

Histogram of the estimated long memory parameters d .
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Application on real data

Estimated correlation matrix.
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Application on real data

Estimated correlation matrix with a threshold at 0.4.
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Part II: Comparison of networks
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Construction of the adjacency matrices

→ pair-wise inter-regional
correlations

Wavelets MODWT

Connectivity = Correlation

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

scale 1 scale 3 scale 5

scale 2 scale 4 scale 6

→ adjacency matrix
Threshold ?

Threshold

R=0.3 R=0.4 R=0.5

→ Undirected graphs :
small-world properties

[Achard et al. J. Neurosci. 2006]

Sophie Achard (CNRS, Grenoble) Statistics of networks 08/06/2018 26 / 43



Individual graphs: representation of networks for a given
threshold

90 regions in the brain – 40 minutes scanning – 400 mostly connected pairs
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An example with fMRI data

90 regions in the brain – 5 minutes scanning – 400 mostly connected pairs
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An example with fMRI data

An example using a patient with craniectomy on the left part of the brain.
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Construction of the adjacency matrices

Hypothesis tests: for all i , j , 1 6 i , j 6 p, i 6= j

H0 : ρi ,j = 0 H1 : ρi ,j 6= 0

Problems :

Multiple hypotheses tests : 4005 tests
→ Need to compare graphs with same number of edges
→ Maximise interesting properties

The tests are dependent, classical approaches are not working

[Achard et al. J. Neurosci. 2006]
[Hero et al. 2013]

[Drton et al. 2004]
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Multiple hypotheses tests

Number of errors committed when testing 4005 null hypothesis
n0 = number of true null hypotheses

Not rejected Rejected Total

True null hypotheses U V n0

Non-true null hypotheses T S 4005− n0

4005−W W 4005

PCER = E (V/4005) < α if each tests control at level α.
→ do not take into account the multiple test.

FWER = P(V > 1) < α if each tests control at level α/4005.
→ Problem when the number of hypotheses is large, too conservative.

FDR = P(W > 0)E (V/W|W > 0), i.e. control of the proportion of
rejected null hypotheses which are erronously rejected.
→ less stringent, and a gain in power.

Marine Roux PhD
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Brain connectivity of coma patients

[Achard et al. PNAS 2012]
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Graph features: degree
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low degree high degree

Degree = number of connections that node makes to other nodes.
G = [Gij ]16i ,j6N is the adjacency matrix 1 6 i , j 6 N, Gij = 0 or 1.

Di =
∑
j∈G

Gij .
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Graph features: global efficiency

5

2

3

4

1

6 7

8

9 10

11

5

2

3

4

1

6 7

8

9 10

11

Eglob close to 1 Eglob close to 0

Efficiency = inverse of the harmonic mean of the minimum path length
Lij between a node i and all the other nodes j in the graphs.

Eglobi =
1

N − 1

∑
j∈G

1

Lij

[Latora et al. 2002]
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Graph features: clustering
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Clust close to 0 Clust close to 1

Clustering, also called “local efficiency” = measure of information
transfer in the immediate neighbourhood of each node.

Clusti =
1

NGi
(NGi

− 1)

∑
j ,k∈Gi

1

Ljk
,

[Latora et al. 2002]
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Interpretation of graph metrics
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Interpretation of graph metrics
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Results: global connectivity and network topology

No significant difference on global measure of functional
connectivity
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Examples of connectivity graphs
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Results: nodal connectivity
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Results: hub disruption index
One index to discriminate the coma and healthy volunteers
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Manifold learning of patients

P* : DOC

C* : healthy

dimension reduction
ISOMAP

Evolution of global
efficiency

Distance between networks

A B C

B

C

A

[Renard et al., in preparation]
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Conclusion and future work

fMRI
10  voxels

0.3 Hz

5
Parcellation

time series

fractal 
connectivity

Brain connectivity 
graphs

long memory properties 
of signals

Data acquisition
-- rat (anesthesized, traumatic 
injury model)
-- human (traumatic brain injury)

Statistics of BOLD signal
-- multivariate long memory model
-- robustness 

Graph learning
-- generative models
-- weighted graphs
-- model selection

Noise and  distortion: 
-- physiological noise
-- hemodynamic response 

10   neurons
11
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