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Physical domain :

Y = Af + εξ.

A : H → K compact operator, ξ Gaussian White Noise.

Sequential domain :

yk = bkθk + εξk , k ∈ N∗,

where b2 := (bk
2)k is the sequence of eigenvalues values of the

operator A?A and ξk are i.i.d N (0, 1). Here the noise level ε > 0
is known.
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Goal : we aim at detecting whether the signal f is the null function
(hypothesis H0) or not (alternative hypothesis), using the
observations y = (yk )k .

Definition (Hypotheses testing problems)

Indirect testing problem

H0 : θ = 0l2(N∗) against H1 : θ ∈ Θ, ‖θ‖2 ≥ r2
ε .

Direct testing problem

H0 : θ = 0l2(N∗) against H̃1 : b.θ ∈ Θ̃, ‖b.θ‖2 ≥ µ2
ε.

Above :

r = (rε)ε>0 and µ = (µε)ε>0 are decreasing and non negative
sequences, called the chosen rates of detection,

Θ and Θ̃ are subset of l2(N∗).
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Signal detection in inverse problem: testing procedures

Definition (α-testing procedure)

Fix 0 < α < 1. An α-testing procedure ∆α,ε = ∆α,ε(y) is a
measurable function of y = (yk )k∈N∗ , such that ∆α,ε ∈ {0, 1} and

P0l2(N∗)
(∆α,ε = 1) ≤ α.

Convention :

∆α,ε = 1 means H0 is rejected

∆α,ε = 0 means H0 is not rejected
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For a given truncation that is an increasing sequence of non
negative integers (Dε)ε>0.

Definition

Indirect testing Procedure : b = (bk)k∈N∗ is known.

∆IP
α,ε = 1{TDε>tα,ε}, where TDε =

Dε∑
k=1

bk
−2y2

k

Direct testing Procedure : b = (bk)k∈N∗ is unknown.

∆DP
α,ε = 1{SDε>sα,ε} where SDε =

Dε∑
k=1

y2
k ,

where tα,ε and sα,ε denote appropriate thresholds.
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Let (α, β) ∈ (0, 1)2 be respectively the Type-I and the Type-II
errors. Fix a set Θ ⊂ l2(N∗). Let • ∈ {IP,DP}.

Definition (β-separation rate for ∆•α,ε)

The β-separation rates over Θ for ∆•α,ε is defined as :

Rε(∆IP
α,ε,Θ, β) = inf

{
rε > 0, sup

θ∈Θ, ‖θ‖2≥r2
ε

Pθ(∆IP
α,ε = 0) ≤ β

}
.

Rε(∆DP
α,ε , Θ̃, β) = inf

{
µε > 0, sup

θ∈Θ̃, ‖b.θ‖2≥µ2
ε

Pθ(∆DP
α,ε = 0) ≤ β

}
.

The (α, β)-minimax separation rates associated to the testing
problems are then defined as r? = (r?ε )ε>0 and µ? = (µ?ε)ε>0 where
:

r?ε := inf
∆α,ε

Rε(∆α,ε,Θ, β) and µ?ε := inf
∆α,ε

Rε(∆α,ε, Θ̃, β)
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Theorem (B. Laurent, J.-M. Loubes and C. Marteau (2010))

Consider mildly or severely ill-posed model. Then, with a good
choice of (Dε)ε :

1 in the Indirect testing problem (IP), ∆IP
α,ε is (α, β)-minimax

optimal over of Besov balls,

2 in the Direct testing problem (DP), ∆DP
α,ε is (α, β)-minimax

optimal over Besov ellipsoids.

3 Any (α, β)-minimax optimal testing procedure over ellipsoids
balls for (DP) is (α, β)-minimax optimal procedure over
ellipsoids balls for (IP). The converse are wrong.

Corollary (B. Laurent, J.-M. Loubes and C. Marteau (2010))

According to the minimax sense, ∆DP
α,ε outperforms ∆IP

α,ε for the
problem of signal detection.
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Questions on the minimax point of view :

Can other signals be detected by our testing procedures at the
chosen (α, β)-minimax separation rates ?

What about the performance of our testing procedures for
other rates of detection ?

=⇒ Could maxiset approach tackle this problem ?
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Definition (Maxiset of ∆•α for a chosen rate of detection)

Indirect testing problem

MS(∆IP
α , r , β) =

{
θ : ∀ε ∈ (0, 1),

[
‖θ‖2 ≥ r2

ε ⇒ Pθ
[
∆IP
α,ε = 0

]
≤ β

]}
.

Direct testing problem

MS(∆DP
α , µ, β) =

{
θ : ∀ε ∈ (0, 1),

[
‖b.θ‖2 ≥ µ2

ε ⇒ Pθ
[
∆DP
α,ε = 0

]
≤ β

]}
.

Remark : The faster the chosen rates of detection r = (rε)ε and
µ = (µε)ε the thinner the maxisets.
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Lemma (Indirect testing problem)

There exist Cmax(α, β) and Cmin(α, β) such that, for all ε ∈ (0, 1) :

(i)
Dε∑

k=1

θ2
k > Cmax(α, β)ε2

√√√√ Dε∑
k=1

b−4
k ⇒ Pθ(∆IP

α,ε = 0) ≤ β,

(ii)
Dε∑

k=1

θ2
k ≤ Cmin(α, β)ε2

√√√√ Dε∑
k=1

b−4
k ⇒ Pθ(∆IP

α,ε = 0) > β.

Remark : A consequence of (ii) is :

‖θ‖2 = Cmin(α, β)ε2
o

√√√√Dεo∑
k=1

b−4
k for some 0 < εo < 1 =⇒ Pθ(∆IP

α,εo
= 0) > β.
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Lemma (Direct testing problem)

There exist C ′min(α, β) and C ′max(α, β) such that, for all ε ∈ (0, 1) :

(i)
Dε∑

k=1

b2
kθ

2
k > C ′max(α, β)ε2

√
Dε ⇒ Pθ(∆DP

α,ε = 0) ≤ β,

(ii)
Dε∑

k=1

b2
kθ

2
k ≤ C ′min(α, β)ε2

√
Dε ⇒ Pθ(∆DP

α,ε = 0) > β.

Remark : A consequence of (ii) is :

‖b.θ‖2 = C ′min(α, β)ε2
o

√
Dεo for some 0 < εo < 1 =⇒ Pθ(∆DP

α,εo
= 0) > β.

F. Autin, M. Clausel, J.-M. Freyermuth et C. Marteau Maxiset point of view for signal detection in inverse problems



Comment :

Poorly informative setting ⇒ Robust version of Maxisets.

Definition (Robustness)

A set H ⊂ l2(N∗) is said to be robust if for any filter h ∈ l∞(N∗)
with l∞-norm smaller than 1 :

θ ∈ H ⇒ h.θ ∈ H.

Heuristic idea : focusing on detected signal θ or b.θ with the
smallest information.
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Definition

For any C > 0 we introduce the following subset of l2(N∗) :

Fr ,D(C ) =

θ ∈ l2(N∗), ∀ε ∈ (0, 1);
∑

k>Dε

θ2
k < r2

ε − Cε2

√√√√ Dε∑
k=1

b−4
k

 ,

Gµ,D(C ) =

{
θ ∈ l2(N∗), ∀ε ∈ (0, 1);

∑
k>Dε

b2
kθ

2
k < µ2

ε − Cε2
√

Dε

}
.
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Maxisets are empty for fast rates of detection.

Corollary (Indirect testing problem)

MS(∆IP
α , r , β) 6= ∅ ⇐⇒ r2

ε � ε2
√∑Dε

k=1 b
−4
k , ∀ε ∈ (0, 1).

Corollary (Direct testing problem)

MS(∆DP
α , µ, β) 6= ∅ ⇐⇒ µ2

ε � ε2
√
Dε, ∀ε ∈ (0, 1).

Remarks :

Direct testing Procedure can detect signals with small
information while Indirect procedure can not.

For the Indirect testing Procedure, the worse the operator, the
further the horizon of detection.
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Theorem

Consider the two testing procedures ∆IP
α and ∆DP

α as defined
previously.
Denote as MSfilt(∆IP

α , r , β) and MSfilt(∆DP
α , r , β) the respective

robust maxisets associated with chosen rates r = (rε)ε>0 and
µ = (µε)ε>0 that are beyond the horizon of detection. Then :

1 MSfilt(∆IP
α , r , β) = Fr ,D . More precisely,

Fr ,D(Cmax(α, β)) ⊂ MSfilt(∆IP
α , r , β) ⊂ F√2r ,D(Cmin(α, β)),

2 MSfilt(∆DP
α , µ, β) = Gµ,D . More precisely,

Gµ,D(Cmax(α, β)) ⊂ MSfilt(∆DP
α , µ, β) ⊂ G√2µ,D(Cmin(α, β)).
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Corollary

Choose r = (rε)ε>0, and µ = (µε)ε>0 such that, for any ε ∈ (0, 1),
µε � bDε rε. Then,

MS(∆IP
α , r) ⊂ MS(∆DP

α , µ).

According to the maxiset sense, ∆DP
α,ε outperforms ∆IP

α,ε for the
problem of signal detection.
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Concluding remarks :

We presented many reasons to prefer the Direct testing Procedure
(DP) for signal detection in inverse problem :

1 looking at minimax performance (optimality),

2 looking at maxiset performance (horizon of detection,
embedding).
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