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Outline

• Introduction : from functional binary discrete models to SAR
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• Functional linear spatial autoregressive (Functional SAR)

• Numerical experiments
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Introduction : from functional
binary discrete models to SAR
model



Motivation

• Developing a model by comprehensive analysis of physical and
biological characterization with existing genetic information,

• To predict metastatic potential or migration of a cell by means
of physical properties

• Using BioMEMS : MEMS (micro-electro-mechanical systems)
applied to biological and/or biomedical.

3



Yesterday and Tomorrow : Physical Single Cell manipulation
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Cell physical/biological properties

• Cell physical properties : described by her rigidity, viscous
losses, membrane capacitance, cytoplasm conductivity, shape
recovery and size

• Cell biological properties : migration capability, invasion
capacity and metastatic potential (in physiologically relevant
conditions),...
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Physical properties : Experimental steps
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Cell compression
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Genetic cell data : physical characterization
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Genetic cell data : biological characterization
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Choice-Based or Case-Control Sampling

• Prospective studies are disadvantageous in terms of time and
cost

• Use existing records to identify people with a certain health
problem (cases) and a similar group without the problem
(controls) and observe there characteristics to some risk
factors.

• Oversample a rare disease of interest to increase the accuracy
of an analysis.
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Binary Functional Choice Model for sampling data

• In a given population, assume that one observe Y ∈ {0, 1} and
X ∈ X ⊂ L2(T ), with T ⊂ R.
• Let the parameters of interest α∗ ∈ R and θ∗(·) ∈ L2(T ) :

P (Y = 1|X , α∗, θ∗(·)) ≡ E (Y |X ) = Φ

(
α∗ +

∫
T
X (t)θ∗(t)dt

)
with Φ(·) is some cumulative distribution function strictly
increasing and E (X (t)) = 0, ∀t ∈ T .

• The population is divided according to the values of Y into
two stratum J (0) = {(0,X ), X ∈ X} and
J (1) = {(1,X ), X ∈ X}.

• Let Q(i) = P (Y = i) be the population share of choice i ,
Q∗ = Q(1).
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Existing works on functional sampling data

• Functional PCA for sampling data : Cardot et al. (2010),...

• Functional mean and variance estimates for sampling data :
Cardot et al. (2011),...

• Functional logit model applied to case-control to test
association between a dichotomous trait and multiple genetic
variants in a region : Fan et al. (2014).

• Functional logit model applied to case-control head
circumference growth data : Petrovich et al. (2018)

• Non-functional Binary Choice Models under sampling data :
Manski and McFadden (1981), Cosslett (1981, 2013), Imbens
(1992),...
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• Let H(i) be the probability according to which the stratum i is
drawn and let H∗ = H(1).
• First draw a stratum i with a probability H(i). Then, select an

observation (i ,X ) randomly from J (i).
The conditional density of Y given X = x is

g(i |x) =
P (i |x , α∗, θ∗(·))H(i)/Q(i)∑1
j=0 P (j |x , α∗, θ∗(·))H(j)/Q(j)

, x ∈ X , i ∈ {0, 1}

• Let Es denote the expectation with respect to the CBS
(choice-based or case-control)

Es(·) = H(0)E (·|Y = 0) + H(1)E (·|Y = 1).

When H∗ = Q∗ we have E (·) = Es(·).
• Assume that we have a prior information, allowing knowledge

on Q∗ and H∗.
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Infeasible maximum likelihood

Let (Yn = in, {Xn(t), t ∈ T }) , n = 1, . . . ,N be independent
observations drawn through the CBS process.
The conditional log likelihood :

L(α, θ(·)) =
N∑

n=1

log

(
P (Y = in|Xn, α, θ(·))H(in)/Q(in)∑1
j=0 P (Y = j |Xn, α, θ(·))H(j)/Q(j)

)
(1)

Objective : estimate α∗ and θ∗(·) by maximizing L(., .).

• Truncated Likelihood Method (Müller and Stadtmüller
(2005)).
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Truncated Likelihood Method

• Let pN be a positive sequence of integers, increasing as
N →∞.

• Let Γs denotes the covariance operator of the X−valued
random function under the CBS, defined as

Γsx(t) =

∫
T
K (t, v)x(v)dv , x ∈ X , t ∈ T .

with the kernel K (t, v) = Es(X (t)X (v)).
Γs is a compact self-adjoint Hilbert-schmidt operator.

• Let {ϕj , j = 1, 2, . . .} be the orthonormal eigen-basis of Γs

and λj the associated eigenvalues.
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Truncated Likelihood Method

X and θ∗(·) can be expanded as follow

X (t) =
∑
j≥1

εjϕj(t), θ∗(t) =
∑
j≥1

θ∗j ϕj(t)

with

εj =

∫
T
X (t)ϕj(t)dt, and θ∗j =

∫
T
θ∗(t)ϕj(t)dt

then ∫
T
X (t)θ∗(t)dt =

∑
j≥1

θ∗j εj .

Consider the decomposition

UpN = α∗ +

pN∑
j=1

θ∗j εj , VpN =
∞∑

j=pN+1

θ∗j εj .
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Estimation Procedure

Under the CBS :

Es (Y |X ) = g (1|X ) ≡ µ (UpN + VpN )

where

µ(t) =
Φ(t)H(1)/Q(1)

Φ(t)(H(1)/Q(1)) + (1− Φ(t))H(0)/Q(0)
.

• Let θ̃ = (θ∗0, θ
∗
1, . . . , θ

∗
pN

)T with θ∗0 = α∗ and θ∗1, . . . , θ
∗
pN

the
pN first coefficients of θ∗(·) and let ε0 = 1.
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Estimation Procedure

The truncated conditional likelihood function is defined for
θ ∈ RpN+1 :

L̃pN (θ) =
N∑

n=1

Yn logµ (ηn) + (1− Yn) log (1− µ (ηn)) (2)

where ηn =
∑pN

j=0 θjε
(n)
j with ε(n)

j =
∫
Xn(t)ϕj(t)dt, ε

(n)
0 = 1.

Then θ̃ is estimated by

θ̂ = argmax
{
L̃pN (θ), θ ∈ RpN+1

}
So α̂∗ = θ̂0 and the estimate of θ∗(·) is

θ̂(t) =

pN∑
j=1

θ̂jϕj(t).
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Asymptotic Results

Under appropriate assumptions (identification,...) :

N(θ̂ − θ̃)T∆pN (θ̂ − θ̃)− (pN + 1)√
2(pN + 1)

→ N (0, 1)

pN →∞, N−1/4pN → 0.
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Asymptotic Results

Let {ϕG
j , j = 1, 2 . . .} denotes the eigen-basis of the operator

associated to the kernel G defined by

G (t, v) = Es

(
µ′2(η)

σ2(µ(η))
X (t)X (v)

)
, t, v ∈ T

σ2(t) = t(1− t).
Considering the metric in L2(T ) defined by

d2
G (f , g) =

∫ ∫
(f (t)− g(t))G (t, v) (f (v)− g(v)) dtdv , f , g ∈ L2(T ).

As N →∞ we have,

Nd2
G

(
θ̂(·), θ∗(·)

)
− pN

√
2pN

→ N (0, 1).
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Biased OML intercept estimate : logit case

Let the conditional log-likelihood function when the sampling
scheme is ignored

L(α, θ(·);Y , x) = Y log(Φ(η(α, θ))) + (1−Y ) log(1−Φ(η(α, θ))).

Let F(α, θ(·); x) be (under the true parameters α∗ and θ∗(·))) :

F(α, θ(·); x) = Es (L(α, θ;Y , x)|α∗, θ∗(·)) .

Let δ = log(H∗/Q∗) and δ̄ = log((1− H∗)/(1− Q∗)) ; by use of
the definition of Es(·),

F(α, θ(·); x) =
1 + eη(α∗+δ,θ∗)

1 + eη(α∗+δ−δ̄,θ∗)
×

E
(
L(α, θ(·);Y , x)|α∗ + (δ − δ̄), θ∗(·)

)
.
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Biased OML intercept estimate : logit case

• Consistent OML estimate θ̂RS(·) of θ(·) and a biased estimate
of the intercept, with (in the logit case) bias

log((1− Q∗)H∗/(1− H∗)Q∗).

• θ̂RS is not asymptotic normal if Q∗ 6= H∗.
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Functional clustering of physical fake data by BioMEMS tech-
nology

• We have both softer (agressive/metastatic) and less-soft
(non-metastatic) cell lines using continuous monitoring (500
monitoring points) of cells’ physical properties (size and
stiffness from frequency resonance, viscosity from the
amplitude data) under different mechanical cell stimulation

• Namely, resonance frequency and amplitude monitoring data
of two groups (metastatic, non-metastatic) of cells (1000 cells
per group) are analyzed.

• Functional clustering methods to recognize cell status
(aggressiveness).
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Resonance
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Plot classification/prediction analyses using FPCA and GAM
showing very good classification of metastatic characteristics (blue
for metastatic cell, red for non-metastatic)

0 50 100 150 200

0
50

10
0

15
0

20
0

DD-plot(mode,gam)

depth 0

de
pt

h 
1

Class Rule 
0
1

Data points
0
1

26



Functional linear spatial
autoregressive models



Spatial lattice data

"Economic activities and epidemiological data are often located in

space",

Pinkse and Slade [1998]

Let a spatial set S ⊂ R2. Locations are in general geographical units
(zip codes, regions,...) or structured sites in a neighbor network.

They are linked to a large number of models :

• auto-regressive models : spatial auto-correlation : a location i

depends on some neighbor locations j .
• Markov random fields used in images analyses
• ...
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Price of houses (m2) in Paris (2009)
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Neighbors

Let S = (si )i=1,n.

Neighbor graph : binary relation on S × S : si is neighbor of sj .
Neighbor matrix : weigth matrix

wij =

1 if si and sj are neighbors

0 if si and sj are not neighbors or si = sj

or

wij =

 1
dij

si si and sj are neighbors dij = dist(si , sj)

0 if si and sj are not neighbors or si = sj
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Spatial econometric models

Three different types of spatial interaction effects :

• Endogenous interaction effects among response Y.

• Exogenous interaction effects among predictors X.

• Interaction effects among the disturbances terms ε.
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Spatial econometric models

• Sample of n observations collected from points or
regions in sites si ∈ Rk ; i = 1, . . . , n on
S ⊂ Rk , k ≥ 2

• ∀si , sj ∈ S : ||si − sj || ≥ d0

• We observe (Xsi ,Ysi ); i = 1, . . . , n

• Y be the vector of responses.
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Spatial econometric models

The full model (Manski model) :

Y = ρWY + Xβ + WXη + u,

u = λMu + ε ; ε i.i.d. ∼ (0, σ2
ε In),

Special cases :

• SLM (λ = 0 and η = 0) :
Y = (In − ρW )−1(Xβ + ε)

• SEM (ρ = 0 and η = 0) :
Y = Xβ + (In − λM)−1ε

• Kelejian-Prucha (general) model (η = 0) :
Y = (In − ρW )−1Xβ + (In − ρW )−1(In − λM)−1ε

• Error terms no longer independent, violation of Gauss-Markov
assumption, then OLS does not works
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Functional lattice data

• In many applied domains, spatially correlated functional data are
available : economic, environmental, hydrology, ...

Example : curves of daily concentration of ozone at near municipalities

• Some works are developed to deal with spatially correlated functional
data

• Functional geostatistical data :

Kriging methods : Bohorquez et al. (2016), Giraldo et al. (2010),...

Nonparametric regression : Dabo et al. (2011), Ternynck (2014),...

• Lattice functional data : less developed

Ruiz-Medina (2012) : prediction of SAR hilbertian processes

Pineda-Ríos and Giraldo (2016) : FLMs with SAR disturbance process

↪→ SAR models with functional covariates :
Ahmed et. al. (2017), Huang et al. (2018)
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Model

• At n spatial units, we observe a covariate function {X (t), t ∈ T } and a
real-valued variable Y .

• Wn = (wij)1≤i,j≤n = o(h−1
n ) is the spatial weights matrix associated to

these units

↪→Relation between Yi and Xi is modeled by the FSAR :

Yi = λ0

n∑
j=1

wijYj +

∫
T
Xi (t)θ∗(t)dt + Ui , i = 1, . . . , n, (3)

� λ0 is the autoregressive parameter

� {Xi (t) t ∈ T }, i = 1, . . . , n are i.i.d

� The disturbances Ui are i.i.d and such that E (U2
i ) = σ2

0 .

QML (Lee, 2004) is one of the popular estimation methods (ML ; Ord (1975),
2SLS ; Kelejian and Prucha (1998), GMM ; Smirnov and Anselin (2001)) when
X ∈ Rp. 33



Quasi-Likelihood function

Model (3) can be rewritten as

SnYn = Xn(θ∗(·)) + Un, (4)

where

� Xn(θ∗(.)) is the vector of i-th element
∫
T
Xi (t)θ∗(t)dt.

� Sn = In − λ0Wn, let Sn(λ) = In − λWn.

So the conditional log quasi-likelihood function associated to (4) is :

Ln(λ, θ(·), σ2) = −n

2
lnσ2 − n

2
ln(2π) + ln|Sn(λ)|

− 1
2σ2 [Sn(λ)Yn − Xn(θ(·))]

′
[Sn(λ)Yn − Xn(θ(·))] (5)

↪→ Maximize truncated version of (5).
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Truncated Quasi-Likelihood function

Let the truncated log quasi-likelihood :

L̃n(λ, θ, σ2) = −n

2
lnσ2 − n

2
ln(2π) + ln|Sn(λ)|

− 1
2σ2 [Sn(λ)Yn − ξpnθ]

′
[Sn(λ)Yn − ξpnθ] ,

with

� ξpn is an n × pn matrix of elements given by

ε
(i)
j =

∫
T
Xi (t)ϕj(t)dt , i = 1, . . . , n j = 1, . . . , pn.

� θ is the 1× pn vector of parameters given by

θj =

∫
T
θ(t)ϕj(t)dt , j = 1, . . . , pn.

� Let θ∗ = (θ∗1 , . . . , θ
∗
pn)

′
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QML Estimators

� For a fixed λ, the truncated log quasi-likelihood is maximized at

θ̂n,λ = (ξ
′

pnξpn)−1ξ
′

pnSn(λ)Yn = (θ̂nj,λ)j=1,...,pn

and

σ̂2
n,λ =

1
n
Y

′

nS
′

n(λ)MnSn(λ)Yn,

where Mn = In − ξpn(ξ
′

pnξpn)−1ξ
′

pn .

� The concentrated truncated log quasi-likelihood function of λ is :

L̃n(λ) = L̃n(λ, θ̂n,λ, σ̂
2
n,λ) = −n

2
(ln(2π) + 1)− n

2
lnσ̂2

n,λ + ln|Sn(λ)|.

↪→ Then the estimator of λ0 which maximizes L̃n(λ) is λ̂n, and

� Those of θ∗ and σ2
0 are, respectively, θ̂n,λ̂n

, σ̂2
n,λ̂n

� The corresponding estimator of θ∗(·) is : θ̂n(t) =
∑pn

j=1 θ̂nj,λ̂n
ϕj(t).
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Asymptotic Results

The QMLE λ̂n is consistent and satisfies√
n

hn
(λ̂n − λ0)→ N (0, s2

λ0
),

σ̂2
n is consistent and satisfies

√
n(σ̂2

n,λ̂n
− σ2

0)→ N (0, s2
σ0

)
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Asymptotic Results

We have

n
(
θ̂n,λ̂n

− θ∗
)′

Γpn

(
θ̂n,λ̂n

− θ∗
)
− pn

√
2pn

→ N (0, σ4
0).

Moreover,
nd2

(
θ̂n(·), θ∗(·)

)
− pn

√
2pn

→ N (0, σ4
0),

where d2(·, ·) denotes the metric defined in L2(T ) by

d2(f , g) =

∫
T

∫
T

(f (t)− g(t))E (X (t)X (s)) (f (s)− g(s)) dtds,

for all f , g ∈ L2(T ).
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Numerical results : simulations

We consider the model

Yi = λ0

n∑
j=1

wijYj +

∫ 1

0
Xi (t)θ(t)dt + Ui , X (t) =

20∑
j=1

εjϕj(t),

where θ∗(t) =
∑20

j=1 θjϕj(t), Ui ∼ N (0, σ2
0 = 1).

• εj ∼ N (0, 1/j) for j ≥ 1, θj = 1/j , for j = 1, 2, 3 and θj = 0 for
j > 3

• Wn is constructed by taking the 8 neighbors of each unit using kNN
method.

• Use of the eigen-basis, FPCA associated to the kernel

K̂ (t, v) =
1

n − 1

n∑
i=1

Xi (t)Xi (v).

• Using AIC, BIC and ASE criterion to chose the number of PC (pn).

• Comparing IMSE =
∫

(θ(t)− θ̂(t))2dt 39



Simulations

λ0 = 0.2 λ0 = 0.8
ASE AIC BIC ASE AIC BIC

λ .1912 .1912 .1916 .7941 .7950 .7950
(.0800) (.0799) (.0801) (.0321) (.0318) (.0321)

σ2 .9833 .9839 .9871 .9957 .9889 .9925
(.0687) (.0688) (.0690) (.0745) (.0720) (.0536)

IMSE .0394 .0548 .0881 .0811 .0492 .0880
(.0409) (.0484) (.0476) (.0970) (.0476) (.0536)

PCs 2.980 2.725 2.395 2.615 2.775 2.405
(.1404) (.4476) (.4901) (.6315) (.4186) (.5022)
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Problem of Spatial dependence + sampling models

Suppose that in the population

• N observations

• ~XN be a N random variables from a functional exogenous
variable

• each couple (X̃i , Ỹi );i=1,...,N is based on Ỹi = I
(
Ỹ ∗i ≥ 0

)
via

~Y∗N = ρWN
~Y∗N + ~XNθ + (IN − λMN)−1 νN ,

νN ∼ (0, IN)
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Problem of Spatial dependence + case-control sampling

Stratifying the population (using fine stratifying sampling) :

• sample (Xi ,Yi )i=1,...,n of size n

• difficult to have the right spatial connection (WN ,MN) in the
population
• (Wn,Mn) are not able to identify the autoregressive

parameters ρ and/or λ.
• not possible to estimate the parameters using the existed

estimation methods. 42



Conclusion and Perspectives

• Exogenous weight matrices

• Extension of the full econometric model

• Relation between economic growth and emissions from carbon
dioxide, sulfur dioxide, carbon monoxide,...,

• More flexible models
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Thank You for your time
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