JOURNAL OF
COMPUTATIONAL AND
APPLIED MATHEMATICS

ELSEVIER Journal of Computational and Applied Mathematics 105 (1999) 141-154

Non-uniqueness of rational best approximants

L. Baratchart®, Herbert Stahl®>*!, F. Wielonsky®'

*INRIA 2004, route des Lucioles B.P. 93 06902, Sophia, Antipolis, Cedex, Frunce
®TFH-Berlin/FB2, Luxemburger Starasse 10, 13353 Berlin, Germany

Received 17 September 1997; received in revised form 24 August 1993

Dedicated to Professor Haakon Waadeland on the occasion of his 70th birthd 1y

Abstract

Let f be a Markov function with defining measure u supported on (—1,1), ie., f(z) = [( - z)7'du(t), #>0, and
supp(u#) C(—1,1). The uniqueness of rational best approximants to the function f in the norm of the real Hardy space
H(V), V:=C\D = {z € C||z|>1}, is investigated. It is shown that there exist Markov functions / with rational best
approximants that are not unique for infinitely many numerator and denominator degrees n — 1 and #, respectively. In
the counterexamples, which have been constructed, the defining measures u are rather rough. But there also exist Markov
functions f* with smooth defining measures u such that the rational best approximants to f are not unique for odd
denominator degrees up to a given one. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction and main results

We consider rational best approximants to functions of the real Hardy space #*(V) with ¥ :=C\D
={z€C|z|>1}. This type of approximants is interesting in control theory, and they have been the
object of several studies (cf. [1-4,6-9]). In the present paper, we are concerned with the uniqueness
of such approximants. We consider approximants to Markov functions, i.e., functions of the form

)
t_

£(2) = flp; 2) = / (1)
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with p a positive measure of compact support on R. In order that f is an element of H*(V), it is
assumed that

supp(p) S (—1.1). (2)

The problem of uniqueness has practical importance, for instance, in model fitting or in algorith-
mic considerations. Markov functions are interesting since in their case uniqueness has been proved
for certain subclasses of functions (cf. [4,5,8]). It is a natural question, how much the subclass
of Markov functions in H?(¥) with at least asymptotic uniqueness can be extended, and how
close the results in [5] come to best possible ones. We shall prove two new theorems (Theorems
4 and 5) that will shed light on these questions. To set the stage we (very shortly) summarize
relevant results from [8,5] in two theorems. The summary is also used to introduce necessary
notations.

The set of all real polynomials of degree at most » is denoted by #,, the set of all real ratio-
nal functions of numerator and denominator degree at most m and n, respectively, by #,,,, and
A, , < A, denotes the set of rational functions that have all their poles in the open unit disc D

(hence, #' = Ry VHAV)). By |||l = || |2v, we denote the norm in H'( "), i.e.,

mon
1.2

1 2n ) 5 ,
%A lg(re™)| dt] , g < H(V), (3)

gl = lim

and R,=R,(f:-) € #,_,, denotes the rational best approximant to f€H*(¥ ) in the norm of H*(V),
ie, R, €A and

-l
”f —R,,H :,-;;i;}f Hf - l"H . (4)

For each pair of degrees (n — 1,n), at least one best approximant exists, but in general it is not
unique (cf. [8], Section 1). In case of nonuniqueness we assume that the symbol R,=R,(f;-) denotes
one of the possible functions. If necessary, different functions R(",R{?), etc.. are distinguished by
superindices.

In [8] the following theorem has been proved:

Theorem 1 (Baratchart and Wielonsky [8], Theorem 3). If the defining measure u in (1) satisfies
one of the three conditions: (i) supp(u)C[ — A, 4], Ao = V2 — V3=0517..., (ii) supp(u) C
(0,411, or Giii) supp(s) € [~ 2,01, 41 = \/L, then all R,(f(:-);-), n=0,1. . . are unique.

This result is not the best possible, and it has been conjectured that it should hold true for larger
supports. However, Lemma 1 in the next section (or a remark in the introduction of [8]) shows that
some restrictions have to be satisfied by u or by supp(p) if one wants to hav: uniqueness for all
best approximants R, = R,(f(u;-);-), n=1,2,... .

A different, but practically not less interesting question concerns asymptotic uniqueness. Asymp-
totic uniqueness means that there exists n, € N such that rational best approximants R,(f;-) are
unique for all n=n,.

In a forthcoming paper [5] it has been shown that for defining measures x ir (1), that belong to
the Szego class, asymptotic uniqueness holds true.
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Definition 2. A positive measure x4 on R belongs to the Szegd class if
(1) supp(u) C R is a compact interval [a,b], and
(i1) if in the Lebesgue decomposition

w(x)dx

CEENCET x € [a,b], (5)

du(x) =dp"(x) +

with ¢’ a totally singular measure, and the density function g’ satisfies

h

log i/'(x)

o Vb—x)x—a)

dx > — cc. (6)

The following result has been proved in [5]:

Theorem 3 (Baratchart et al. [5], Theorem 1.3). If the defining measure u in (1) belongs to the
Szegd class and satisfies (2), then the rational best approximants R, = R,(f(y:-);-), n =0,1,...,
are asymptotically unique, i.e., there exists no € N such that R, is unique for all n>=ny.

Naturally, the question arises whether the assumption of Theorem 3 is really necessary. The next
theorem gives an answer to this question, it shows that the defining measure 4 in (1) has to satisfy
some conditions beyond (2) in order that asymptotic uniqueness holds true.

Theorem 4. There exist positive Borel measures p with supp(u) C(—1,1) suc that each second
rational best approximant R,(f(u;-); ") is not unique. More precisely. there exist measures u such
that for each odd index n=1,3,5,... there exist at least two different rational best approximants

RI(f () ) and RP(f (w3 ;).

Theorem 4 will be proved by constructing measures u with the stated property. These measures
are not smooth. Actually, they are rather rough. For instance, each one is carried by a denumerable
set. In the light of Theorem 3 it seems that it is rather difficult to construct a measure y with smooth
and positive density such that the best rational approximants are not at least asymptotically unique.
However, a nonuniqueness result for smooth measures can rather easily be deduced from Theorem 4,
but nonuniqueness can be guaranteed only for a finite number of approximants.

Theorem 5. For any ny € N there exists a positive Borel measure p with supp(y') a closed interval
in (—1,1), the measure u has a positive and smooth density function on supp(u), and for each
index n=1,3,...,ny (let ny be chosen to be odd) there exist at least two diffrent rational best

approximants R\(f(u;-);+) and RO(f(w;-); ).

Remark. The measure p of Theorem 5 belongs to the Szegoé class. It follows therefore from
Theorem 3 that in Theorem 5 the rational best approximants R,(f;-), n € N, are asymptotically
unique.
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2. Proofs

The proof of Theorems 4 and 5 will be prepared by three lemmas, of which the second one is the
most important and also the one with the most involved proof. We start with some notations and
some results from the theory of rational best approximants R, = R,(f;-) € # _,, in the H*-norm.
Let R, be represented as

R,=L=2 (7)
q qu

where g, € 2, is assumed to be monic, and p,€#,_,. In case of nonuniqueness different denomina-
tors and numerator polynomials g, and p, are denoted by ¢''’,¢'?,..., and p!". p\),..., respectively.
By ¢, we denote the reversed polynomial g,(z):=z"¢,(1/z) of the polynomldl g, We note that this
operation assumes a given degree n, which is usually understood from the context. It is well known
(cf. [8], Proposition 5) that the denominator g, of rational best approximants R, is exactly of degree
n, has only simple zeros, and all » zeros are contained in the smallest interval / containing supp(u).
The best approximants R, interpolate the function f with order 2 in the reciprocal of each zero of
the polynomial ¢,, i.e., each R, interpolates f in the 2n zeros of the polynomial g2. If z =10 is a
zero of g,, then f — R, has a zero of order 3 at infinity (cf. [8], Proposition 5). As a consequence
of the interpolation property, it is possible to derive a characterization of the polynomial g, by an
orthogonality relation. We have

du(?) _ 3
/ ”(’)7,0) 0, k=0,...,n—1, (8)

(cf. [10, Lemma 6.1.2]). Because of the polynomial g; in relation (8), this relation is no longer
linear in g,, which is a remarkable difference to the usual orthogonality relations, and also explains
why g, is in general not uniquely determined by relation (8). It has been shown in [10, Lemma
6.1.2] that any monic polynomial g, that satisfies relation (8) is the denominator of a rational
function that interpolates f in the 2n point of g2. If there exist different rational best approximants
R = p\//q/", j=1,2,..., then each denominator polynomial ¢!/’ satisfies relation (8). We note
that in th1s later case orthogonahty relation (8) is different for each ; since the polynomials ¢!/’ a
different.
For the interpolation error we have the representation

g(z)" [ q.()* du(z)
qn(z)z . i:(t)z [—z

(cf. [10, Lemma 6.1.2]). Relation (8) and formula (9) will be important tools in the proofs of the
next two lemmas.

(f - R,,)(Z) = (9)

Lemma 6. Let z, € (\/g, 1) s Mo :=(0_., +9.,)/2, and

, d
futeyi= [0, (10)
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Then there exist exactly two different rational best approximants RV (fo;+), j=1,2, to the function
fo. They are given by

‘ 22 -1 ;
R i) = L with a;i=(=1)/\J2 = 2%, j=1,2 ()
- T ]
and we have
: 1 [3z22-1 :
1 fo= RVUis ) =5y T j=1.2 (12)

P
2Z() 1 — Zy

Remark. None of the two rational best approximants R\, j = 1,2, is symmetric or antisymmetric
with respect to the origin, while this is the case with f;. We have fy(z) = - f.(—z). But the two
best approximants are connected by reflection on the origin, we have R(,”(z) =- R(lz)(—z). From the
proof of Lemma 6 it can be deduced that the symmetric rational best approximant Ry to fp is
given by

1
R™(z) =R (fy2) =~ (13)

and the norm of the approximation error is given by

2
Sym Z
I fo—RY" || = ——=. (14)

1=z

Proof. Let R, be represented by p/q as in (7). Both polynomials ¢ and ¢ are of degree 1. Let
x, € (—2z9,2) be the only zero of g. We have ¢g(z)=z—x,, §(z)=1—x,z, and because of the special
form of yy, relation (8) reduces to the single equation

duo(t) Zy) — X, Zp + X,
1) — = - =0, 1
J 40 G = Tz~ T ey (13
which is equivalent to the equation
x (1 =2z +z3x7) = 0. (16)

This equation has the three solutions x\”’ =0 and x\"*’=+,/2 — z;?, and they are ihe only ones. Each

solution leads to a different denominator polynomial ¢'¥, ¢!, and ¢'®, and consequently also to three
different approximants R'”, R\", and R\’ The constant ¢!/’ in R{'(z) = ¢V/(z - x\"), j = 0,1,2,
can be determined by the interpolation property of R\, For j =1,2 we have interpolation of f; in
1/x\”, which leads to

1 , 1 1 1 ¢/
x(]./) | x(l‘/) 5 (20 _ l/x(,'”) 2 (—20 . l/x(l”) 1/x(]/) _ xgn

x(lj) x&/) C(j)xtl./)

2z 1) 26 1) 1Y

=0, j=12 (17)
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From (17) we deduce after some calculations that

x\"
c‘”z——( ’7) ~1, j=12 (18)
In case of j =0, i.e., x\") =0, we have interpolation at infinity, which leads to ¢ = 1.
For each of the three cases j =0,1,2, we calculate the norm || f; — K,"'||. Since |(§/g)(z) =1
for all |z] =1, it follows from (9) that

qC) [ gty d;uo(t)

v 1) duo(t
Hf() _ R(f/] II — - L / q~( )’) :u()( )
q(-»*J q@)y ¢ g(1)* t—-
_ H|@ea@)y?  aaacar o g, (19)
2 Zyp — Z0 + -
After some lengthy calculations it follows from (19) that
4 2
w2 Zy e 3z5 — 1 .
- = -R' = Jj=1L2 20
1= RPP =120 R P = ol (20)

Since z, > \@, we have || fo — R\ | < || fo — R\"|| for j = 1,2, which shows that only the two
solutions x|’ and x|*’ of Eq. (16) lead to rational best approximants. With (20) the proof of Lemma
6 is complete. O

For later use we have a second look at (15). We consider the zero x of the polynomial ¢(z)=z—x
as an independent variable, and define

, to(t) t—x _ X Ao )
010 i= /meO = [ iy ) = g 5 21)

From (16) we know that g,(x}"')=0 for j=0,1,2. Since g,(x) is a rationa! function of degree (3,
4), all three zeros of gy, are simple and we have

gi(x\""y#0 for j=0,1,2. (22)

Let .#, denote the set of all Markov functions f = f(u;-) of type (1) with a defining measure
p that has a support of exactly m € N points in (—1,1). Thus, each f €.#, is a rational function
with m poles in (—1,1), and all residua are negative. Since rational best approximants R,,(f;-) are
rational interpolants, it follows from [10, Ch. 6.1], that if the function f i< of type (1) satisfying
(2), then R,(f;-) € .#,. Let .#¥™C .#, denote the subset of Markov tunctions f e .#, that

satisfy f(—z)= —f(z), i.e., the defining measure u of f is symmetric with respect to the origin.
We define
dist( f, .#,) = 1Ent/" N/ —rl- dist(f, 47" = lnfw I/ —rl. (23)

From (4) and the fact that R,(f;-) € .#, we deduce that dist(f,.#,) = f — R.(f:)| for all
functions of type (1) satisfying (2).



L. Baratchart et al. | Journal of Computational and Applied Mathematics 105 (1999} 141-154 147

Lemma 7. Let p,, be a positive, symmetric (with respect to the origin) Borel measure on (—1,1)
with supp(u,) consisting of 2m points. Let further z, € (\@, 1) \ supp( 2, ) he chosen in such a

way that \/2 — z, > & supp(uan), and define pg:= (0., + 0,)/2. Then there exists 6, > 0 such that
for any & with 0< <0y the Markov function

. ' d(#Zm + 5/10)(1)
filz)= fi(0; 2):= / — iz
has exactly two different rational best approximants R (fis), j=1,2, and’ we have

dist( £, 23" > dist(f, #):= | f = Rowir(Fi: ) F=1.2, (25)
for all 0 < 5<6,.

(24)

Proof. Let the 2m points of supp(u,) be denoted by z,...,z, € (—1,1). As in the proof of
Lemma | we assume that the rational best approximants R, ( fi;-) are represented by the quotients
plq = p./q, with ¢ € #,,,, monic polynomials, and p € #,,. We know that as a consequence of
orthogonality (8) the polynomial g has exactly 2m-+1 simple zeros x;, € I C (-1 1), j=1,...,2m+1,
with / denoting the smallest closed interval containing supp(,) U {—zo,z0}. The zeros x; = x,(d),
j=1,....,2m+ 1, as well as the polynomial g = ¢(J;-) itself depend on the parameter ¢ introduced
in definition (24) of the function f;.

In the first step of the proof we shall show that

1)13;1’ x{(0)=z forj=1,....2m. (26)

Indeed, by taking subsequences if necessary, we can assume that for a given sequence o, — O,
{ — oo, the limits Z; :=1lim,_ . x;(9;), j=1,...,2m+ 1, exist. As a consequence the monic polyno-
mials ¢ = g(J,;-) converge to §(z) = ]—I‘ffl“(z — ;) € Py, uniformly in D. Since the Ry, (fi;-)
are best approximants, it follows that the denominator and numerator polynomials ¢ = ¢(d;;-) and
p= p(d,;-) converge to polynomials § € #,,,, and p € P, that satisfy f,(0;-) = f(u2;) = p/q,
which implies that Z, =z, for j=1,...,2m, and consequently also (26). Note that the behavior of the
last zero x,,.,(0) for 6 — O is at this stage not clear, we can only conclude that the linear factor
(z —xy,-1) In g cancels out in the limit with a corresponding factor in the numerator polynomial p.

Next, we study the behavior of x,,.,(5) as 6 — 0. We define

n=n(0):= max x(d)—z], (27)
0 for 1 =0,
Zmpi=1 —V 2oz forl=1, (28)
+y/2—z,7 for =2,
and show that

dist (a1 (8), {24011, 2800170 ) = O(n) (29)

as 0 — 0. Definition (28) has been motivated by Lemma 6. If (29) is proved, then it shows that the
three points introduced in (28) are the only possible cluster points of the sequence {x2m1 () hier
for any sequence J, — 0.
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From (26) and (27) it follows that lim;_,#7(J) = 0. Set

plm(z) = H(z - zj ) (30)
j=1
It follows from (27) that
4(z) = (z — Xams1 ) P2n(2) + O(n)] 31
and
4(z) = (1 = 221 ) P2m(z) + O(1)] (32)

for 6 — 0. The Landau symbol O(n) in (31) and (32) holds uniformly or D. Since supp(im)
has been assumed to be symmetric with respect to the origin, we have Pr(—2) = py(z). The
denominator polynomial ¢ satisfies the orthogonality relation (8), which with (24), (31), (32) and
the definition of y, yields

() (2)
0= [ pantt) £ dltan + 510)0) =5 [ pant) Sk duat)
_ pZm(ZO) 2 t—x2m+l N
_(5(1,);,(20)) /(1 et dult) +60(r) a5 0. (33)

The integral in the last line of (33) is identical with the integral in (21) if we replace in (21) x by
Xm+1. From the assumption of Lemma 7 it follows that p,,.(z0)/ Pan(zo) # 0. From (21) and (22)
we know that the integral in the last line of (33) has exactly three simple zeros if we consider
this integral as a function of x,,.,. The three zeros are identical with the numbers zg,f o 1=0,1,2,
defined in (28). Assertion (29) then follows from (33) and (22).

Next we prove an estimate for 7(J) as 6 — 0. As a byproduct we get a sharper version of (29).
Set

P f(2) = Pop (2) 1= ponlz)z — 250, Wz —2,) € Pomy j=1,....2m 1 =0,1,2. (34)
From (27) and (29) we deduce that
9(z) = —x)P )+ O], j=1,...,2m. (35)

Like in (31) and (32) O(#) holds uniformly on D. The superindex /, € {0, 1,2} in (35) has to be

chosen in such a way that |z, (6) — 2\, | is small. Since the denominator polynomial g satisfies

the orthogonality relation (8), we deduce with (35) that

_ @) - a4
0 - / sz,‘,'(t) q~(t)2 d(.u2m + 5#0)(t) - / p2m.j(t) cj(t)z d,uZm(t) + 0(5)
2
(o | [ P22
=(z; — x;) [ ( 7)) ) + 0(11)] + 0(9) (36)

for 0 - 0 and j=1,...,2m. Since D j(2;) # 0, we deduce from (36) that
x(0)—z;=0(5) for 6 -0, j=1,....2m. (37)
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With (27) and (29) the last estimate implies that

n(0) = max xi(8) = z;f = O(9),
=l (38)
dist (x7,,,+1(5) ERR })=0() for 6 —0.
Up to now we have only derived necessary conditions for the asymptotic location of the 2m +

1 zeros of the denominator polynomials ¢ as & — 0. It has been shown that the vector x =
(x1,...,%m+1) of the 2m + 1 zeros has to lie in a neighborhood of one of the three points

2= (21 2o B ), 1=0,1,2, (39)
for & > 0 sufficiently small. For each é > 0 the orthogonality relations (8), i.e.,

[ 5 e+ om0 =0, k=0, 2m (40)
define a system of 2m + 1 equations for the 2m + 1 components of the vector x = (x,...,Xzn11) €

R2+! of zeros of g. We shall now show that if we consider the x;, j=1,....2m + 1, as variables,
then for & > 0 sufficiently small the system of equations (40) has exactly three solutions, and each
of the three solutions is lying in a small neighborhood of one of the three points (39).

For each / =0,1,2 the set {p(zi,l‘,,...,p{zf,’,,z,,,,pz,,,} of polynomials defined in (39) and (30) is a

basis in 2,,. Therefore, these polynomials can be used in (40) instead of the 2m + 1 powers z*.
With these polynomials we define three maps F' : R — R+ [ =0,1,2, b

X = (X1 Xaet) > (FY(R), o Fal (%))

( t
/ (72 /(t) f]( )zd(,u2m+5#0)(t) fOl‘]I 1,...,2m,
(t)
FO@):= / pant) T2 W ) A4t + S110)(2) a1)
—/ Do) f’(( ))2 dutol?) for j=2m+ 1.
In (41) the 2m + 1 zeros x,,... xz,,,H of g are con51dered as variables. If x == (v,,..., X3 ) = 2",

then we have q(z) = p2.(z)(z — 25,.,) and q(z) = p') (z)(z —z;) = panj(z)(z—2.) for J=1....2m.
Considering the expressions used in (36) it is rather immediate to see that from (35) it follows that

- (—pz’"*"(zf)> +0(8) fork=j,

¢ i =
5o B = i(z) (42)
0(9) fork=1,....2m+ 1, j #k,
j=1,...,2m, § — 0, and / =0, 1,2. Using the expression in (33) in a similar analysis, one gets
sz(ZO ) )2 ' (€5)
0 (:———— g 25, for k=2m+1,
3, P (21) = ¢ A pan20) (#e-) (43)

0(9) fork=1,....2m+1,
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0 — 0, and /=0, 1,2. The function g, in (43) has been defined in (21). For the components of the
function value F'/(z'"") we have the following estimates, respective value:

(€]

pg,,,(t)(l - 22m+l
(Pam()(1 = 225) )

2 ) 2
:5(_p2”’(z(’)) /(r Zz('}f') o) 0@y, j=1....om

Pan(20) 1 —tz,,., )] t—2z

d(ptam + o )(1)

F;/)(Z(/)) = / pzm.,l([)

(44)

)
sz(t)(t - Z}m+l

(D1 — 25) )P

2 ()
2m{ & t*sz
— <p‘- (())) / (1)+| ; d,uo(t):O,

Danl(z0) (1 -1z,

L
F 0= 5 [ o) Wt + S10)(1)

/=0,1,2. In the last equation, definition (21) and Eq. (15) has been used.

In (42) and (43) we have seen that the functional matrices of the threc maps F' 1 =0,1,2,
have a dominant diagonal, and consequently F') is invertible in small neighborhoods of the three
points z'"', / = 0,1,2. Hence, there exists J, > 0 such that in each ball /)" :— {(x1....,x0m01) €
R |x, — 2| <00, j=1,..,2m, oy — 2501 <60}, 1=0,1,2, the map F' is injective. From
(42)—(44) it follows that 0 =(0,...,0) € F'(B") for § > 0 sufficiently small. Therefore, for each
[ =0,1,2, there exists exactly one solution

= (x(,'x‘_f,:ﬂ) =F"71(0) e D (45)
Let '’ be the polynomial [];"/'(z — x!""), 1=10,1,2. Each of these three polynomials satisfies the
orthogonality relation (40) (or equivalently (8)), and together with the first part of the proof we
know that for 6 > 0 sufficiently small, these are the only polynomials having this property.

It is known (cf. [10, Lemma 6.1.2]) that if ¢ € 2,,,, satisfies the orthogonality relation (40),

then it is the denominator of a rational interpolant R(zf,i 1= p"/q'" that interpolates f, in all zeros of

(qﬁ))z, taking account of multiplicities. We know from [8, Proposition 5]. that a rational interpolant
R € A, ,,, is a stationary point of the error norm || f; — R || if, and only if. R interpolates f; at the

reciprocal of each pole of R with order 2. Thus, each R w1+ 1=0,1.2, is a stationary point of the

error norm || £, — RS I, and even more, the three interpolants R +1» 1=0.1.2, are the only rational
functions having this property, and therefore the only candidates for rationa! best approximants to
Ji with degree (2m,2m + 1). Before we determine the error norm for thesc functions, we make the
following observation: Since supp(u,,) is symmetric with respect to the origin, it follows from (28)
and (39) that the two vectors z!"’ € R and —z' € R***' are identical up to permutations of
its components, and the same is true for the two vectors z(” € B>+ and -z ¢ R+ It is not
difficult to conclude from (40) that the same also holds true for the two patrs of vectors x!! € R"+!

and —x*' e R as well as x'© € R¥*! and —x'" € R>*! | which implies that

¢"'(~2)=~¢%(z) and ¢"(-z)=—¢"(z). (46)
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The calculation of the norm of the approximation error f; — R 41 1s based on formula (9). In
this formula we have |q(~1 (2)/q'"(z)| =1 for all |z| =1 and /= 0,1,2. Hence, it follows that

/ ql,)(t) ’ d(a“Zm + 5;“0)(t)
4(1) r—
From (38), (30)—(32), and the same arguments as used in (33) it follows that

/ (qj'(t))z A + 0o (1) _ /(Q(r)y W) s | <q<~n(,)>zg,@
. g'"(t) {—z q'(t) t—z q(¢) t -z

2 o p2m(20)>2/ t_Zgr:H dﬂo([) N
= - p—cassa— () *
e {(f’?m(m ARSI R

1A= RO = . 1=0.1.2. (47)

(43)
or
- (/3 . plm(ZO) : ~_12(1) O 52
L= Rl =0 (2222 115~ RV +0()
3-z°
ZZ50 forl=12
2| Vaa =z -
:0(52)+5<fi’i’5";) L (49)
Panto 2 for =0
\/ 1 —Zg

as 0 — 0. In (49) the formulae (19) and (20) from the proof of Lemma 6 have been used.

Since ¢'”’ is an old function (cf. (46)), it follows from (9) and properties of f; that the rational
best approximant Ry, , is also an odd function. We have already earlier discussed that all residua
of RY)),, are negative. Hence, we conclude that R\’ g €A . From ¢V(— 1) = — ¢ (z) we deduce

in a similar way that

R(Z:n] ](f]; _Z) = AR(E?W,{ l(f\l;z)' (50)
Since z; > \/g has been assumed, it follows from (49) and (50) that
1A = Roi = 1A = R I < [/ = RS (51)

for 6 > 0 sufficiently small. Thus, it has been proved that for § > 0 sufficiently small /i has exactly
two different rational best approximants of degree (2m,2m + 1).
The proof of the lemma is completed if we have shown that

dist(fi.. 457 ) = || fi — Roi || - (52)

In [8, Proposition 5] it has been shown that if one considers a given denominator polynomial
4 € #3,11. then the rational best approximant p/gq with this polynomial as denominator is uniquely
determined, and so is also the error norm | f; — p/g || =: Y(q). The functional y has a stationary
point if, and only if, the orthogonality relation (40) (or equivalently (8)) is satisfied by ¢. Let us
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now assume that Ry, = p/g € 43, is a minimal element in .43, with respect to the norm
| /i = Ramy 1 ||. We shall consider small variations § € 25, of the polynomial ¢. If §(—z)=—4(z),
then the corresponding rational approximant R,,.; = p/§ € 43",. But if §(—z) # —4§(z), then
g and the polynomial §(z) 1= — ¢(—z) are different, and therefore define also two different rational

approximants R, and R,,, . Both approximants have the same error norm | fi = Ropit || =
| fi = Roms1||. The argumentation is the same here as used for (50). As a consequence we see

sym

that if R, = p/q is minimal in the subset .#3)",,, then this rational function is also a stationary
point of the functional ¥ in the nonrestricted case. We have seen that the only stationary point of

in .#5,", is the approximant R3,",, which implies that (52) holds true, and the proof of Lemma
+

2m+1

7 is completed. [

We come to the last preparatory result.

Lemma 8. Assume that f, € #3,, meN, and
pm = diSt(ﬁnv V%SiI:.LI ) - diSt(f;t7’ b‘”.’!m—l ) > 09 (53)

then for all Markov functions f= f(u;-) of type (1) with symmetric defininy measure u satisfying
(2) and

. . . . i
there exist at least two different rational best approximants R (f:-). | = 1,2.
Proof. There always exists at least one rational best approximant R,,_; =K ,,_,(f;-). We have

H f B RZM?IH < ” f - R‘z”"“l(ﬁ"; )“ < ”f - f;n H + ” .fm - RZm—](ﬁn; -)
< 3P + dist(for, Mrper) = dist(f,, A5 ) — 2,

S = Sl 4 dist(f, A50) — S0 <dist(f, A5 ) - p,. (55)
Thus’ RZI”*‘ g ”,/{;j;)n—l' Set Rgn)vl(f.;'):: le*| and Rg'n)-l(fiz)': - REnv ‘(_Z)- Since RZm*l g
M5y, we have RS ((f1) # R (f3). O

2m—1 2m—1

Proof of Theorem 4. Let / = [ — a,a] be an interval satisfying a € (\/g, 1) Recursively, we shall

select numbers 4, > 0 and measures Mo = %(5_% +0,), zo; € (\/%, l) , /= 1,2,..., in such a way
that the measure

p= D 0, (56)
j=1

has the properties stated in Theorem 4.

Set ¢):=maxg, [|(t — )", and assume that §; and p, have already been fixed for Jj=1....m
with the following three properties:

(i) We have

=1 0<06,<30;y. j=2,....m. (57)
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(i1) The measures

/
Mo = Z Ok, J=1,....m, (58)
k=1
satisfy

supp(u;) contains 2; different points, (59)

p=dist(f(pays ), AT )Y — dist(f(pas ), Moy 1) >0, (60)
and

< 1

0; < ’6;]'/)/'—' (61)
for j=1,...,m.

(1i1) Each Markov function f'= f(u,;;-) has at least two rational best approximants R(Z/,.),](f ;o) =
1,2, j=1,....m.

Lemma 6 shows that the three properties can be satisfied for m=1. From Lemma 7 it follows that
if the three properties are satisfied for some m>1. then it is possible to select d,., and Homel 1N
such a way that the properties (i)—(iii) are satisfied for m + 1, which implies that they are satisfied
for all m € N.

Because of (56), (57), and (61) we conclude that for any m € N we have

‘ < 1
Hf(//t’)*f(uzﬂlﬂ)” = Hf(ﬂ_ﬂzm,)“ < Z o_/' Zo — - (
Jr=m+ '/
— . c2 1
<c Y 8,020, < 6'_61 pn =73 P (62)

J=m-+ 1

From Lemma 8 and property (iii) it then follows that the Markov function / = f(u;-) has at least
two rational best approximants for each odd degree 2m — 1, m=1,2,... .

Proof of Theorem 5. Let ny=2m — 1 be chosen arbitrarily and assume that i denotes the measure
constructed in (56) in the proof of Theorem 4. Let further 7/ C(—1,1) be an 'nterval that contains
supp(/). It follows from (62) and Lemma 8 that variations u of the measure i can be chosen so
small that the Markov function f = f(u;-) has at least two different rational best approximants
RIO(f:), 1=1,2, for each odd index n = 1,3,..., ny. This proves Theorem 5. [
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