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Abstract. We investigate questions such as convergence, differential equa-
tions, location of zeros of Hermite–Padé approximants to ez and display some
numerical experiments concerning the distribution of zeros. We consider the
known results about the more elementary Padé approximants to ez as a general
background for the discussion.

1. Introduction

Padé approximation may be seen as one of the many ways of performing approx-
imation to analytic functions in the complex plane. One of the main features of the
Padé approximants comes from the algebraic nature of their definition. Through-
out, Pk will denote the set of polynomials with complex coefficients, of degree at
most k.

definition 1.1. Let f be a function analytic at the origin. The Padé approx-
imant of degree (m, n) is defined as the rational function Pm,n/Qm,n such that

(Qm,nf − Pm,n)(z) = O(zm+n−1) as z → 0,

with Pm,n ∈ Pm and Qm,n ∈ Pn.

Thus, given the Taylor’s coefficients of the function f at the origin, the Padé ap-
proximants can be explicitely computed by solving a set of linear equations. There
exists a whole theory based on algebraic tools such as determinants which leads
to numerous identities, recursion relations and algorithms. In this connection, one
can also mention the strong links that exist between Padé approximants, continued
fractions and orthogonal polynomials.

The other aspect of the theory is the analytic aspect and the main interest,
here, lies in properties such as convergence, asymptotics and distribution of zeros.
In this respect, the Padé (or Baker-Gammel-Wills) conjecture plays a prominent
role which predicts that, given a meromorphic function f , there exists an infinite
subsequence N ⊂ N such that the Padé approximants of degree (n, n), n ∈ N
converge locally uniformly to f , away from the poles of f , as n tends to infinity
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(cf. [Sta97] for a recent overview of this conjecture). In general, analyticity is not
sufficient in order to ensure convergence of the full sequence of Padé approximants,
as the existence of spurious poles shows (cf. [Lub92, Per57, Wal74]).

In this paper, we shall describe a few results and numerical experiments that
concern the analytic aspect of a classical generalization of Padé approximants,
namely the Hermite–Padé approximants.

definition 1.2. Let (f0, . . . , fm) be a vector of m + 1 functions analytic at
the origin. For any multi-index n = (n0, . . . , nm) ∈ Nm+1, the (latin or type
I) Hermite–Padé approximants of degree n are defined as the nonzero vector of
polynomials

(A0, . . . , Am) ∈
m∏

j=0

Pnj−1

such that

(1.1)
m∑

i=0

Ai(z)fi(z) = O(z|n|−1) as z → 0,

where |n| = ∑m
i=0 ni.

Let us just recall that there exists another type of Hermite–Padé approximants,
the german type or type II, which consists of simultaneous rational approximants.
Concerning the algebraic and analytic aspects of Hermite–Padé approximants, we
refer to [BGM96, dB85, Coa66, Coa67, Mah68] and [AS92, Nut84, Sta88]
respectively.

In the sequel, we shall only consider the approximants in Definition 1.2 when
specializing the choice of the vector of functions (f0, . . . , fm) to be the vector of
exponentials (1, ez, . . . , emz). An important property of such a vector is that it
constitutes an example of a perfect system. It means that for any multi-index
n = (n0, . . . , nm), any solution A0, . . . , Am of (1.1) satisfies

deg Aj = nj − 1, j = 0, . . . , m.

Hence, the solution to (1.1) is actually unique, up to a constant factor.
In the subsequent sections, we shall start from the known results about Padé

approximants and discuss questions such as convergence, differential equations,
location and asymptotic distribution of zeros of Hermite–Padé approximants.

Let us terminate this introduction by mentionning the well-known application
of Padé approximation to number theory, which was initiated by Hermite, in proving
the transcendence of e. A few references here, among others, are [Beu81, Pré96,
Ass98, dP79].

2. Convergence of Hermite–Padé approximants to ez

Let us first take a look at the Padé case of type (m,n). We thus consider two
polynomials Pm,n and Qm,n, of respective degree m and n, such that

(2.1) Rm,n(z) = Qm,n(z)ez − Pm,n(z) = O(zm+n+1), Qm,n(0) = 1.

Note that upon dividing the previous equation by ez and changing z into −z, we
get

Pm,n(−z)ez −Qm,n(−z) = O(zm+n+1),
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which implies, by uniqueness, that Qn,m(z) and Pm,n(−z) are equal, up to a con-
stant. The following theorem of Padé shows that for a rational function, interpo-
lating the exponential function at zero with an order as high as possible suffices to
imply uniform convergence in the complex plane to this exponential function.

theorem 2.1. With Pm,n and Qm,n satisfying (2.1), we have

Pm,n/Qm,n → ez,

locally uniformly in C as m + n → ∞. Moreover, if m/n → λ, one has separated
convergence, namely

Pm,n(z) → eλz/(1+λ), Qm,n(z) → e−z/(1+λ).

In particular, in the diagonal case m = n →∞, we have

Pn,n(z) → ez/2, Qn,n(z) → e−z/2.

The proof relies on the integral expressions of Pm,n and Qm,n

(2.2) Pm,n(z) =
1

(n + m)!

∫ ∞

0

e−t(t + z)mtndt,

(2.3) Qm,n(z) =
1

(n + m)!

∫ ∞

0

e−t(t− z)ntmdt.

Explicit forms are given by

Pm,n(z) =
m∑

j=0

(m + n− j)!m!zj

(m + n)!j!(m− j)!
,

Qm,n(z) =
n∑

j=0

(m + n− j)!n!(−z)j

(m + n)!j!(n− j)!
,

(cf. [Per57]). Let us proceed with Hermite–Padé approximants, by considering the
vector of exponentials (1, ez, . . . , emz). This is one of the few cases where integral
expressions can be given for the solutions to (1.1). Indeed, it is easily checked that
the formulas

(2.4) Ap(z) =
1

2iπ

∫

C0

eζzdζ∏m
l=0(ζ + p− l)nl

, 0 ≤ p ≤ m,

where C0 is a circle centered at the origin and of radius less than 1, define poly-
nomials of degree np − 1 satisfying (1.1). Then, it is natural to ask whether the
previous theorem can be generalized to Hermite–Padé approximants. The following
result, whose proof can be found in [Wie97], answers this question in the diagonal
case, that is when considering m + 1 polynomials A0, . . . , Am such that

(2.5) R(z) =
m∑

p=0

Ap(z)epz = O(zmn+n−1),

and all the polynomials A0, . . . , Am are of degree less than the same constant integer
n ∈ N.
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theorem 2.2. Let A0, . . . , Am be the Hermite–Padé approximants to the expo-
nential function given by (2.4), with nl = n, 0 ≤ l ≤ m, of degree less than n. Let
{−p− ηp, 0 < ηp < 1}m−1

p=0 be the set of the m critical points, that is the m roots of
the derivative, of the Pochhammer polynomial

(z)m = z(z + 1) · · · (z + m− 1).

Then, there exist some explicitly computable nonzero constants µp,n, 0 ≤ p < m/2,
such that, as n →∞,

Ap(0) ∼ (−1)mnµp,n, Am−p(0) ∼ (−1)n−1µp,n, 0 ≤ p < m/2.

Consequently, for n large, one can define Ãp as the polynomial obtained upon di-
viding Ap by its nonzero constant coefficient. Then

Ãp(z) → eηpz, Ãm−p(z) → e−ηpz, 0 ≤ p < m/2,

locally uniformly in C. If m is even, let A
(1)
m/2 (resp. A

(2)
m/2) be the subsequence of

polynomials Am/2 corresponding to even (resp. odd) indices n. Then, A
(1)
m/2 is an

odd polynomial and A
(2)
m/2 an even polynomial. Moreover, there exists an explicitly

computable nonzero constant µm/2,n such that, as n →∞,

dA
(1)
m/2

dz
(0) ∼ 2ηm/2µm/2,n, A

(2)
m/2(0) ∼ 2µm/2,n.

For n large, let Ã
(1)
m/2 and Ã

(2)
m/2 be the polynomials obtained upon dividing A

(1)
m/2 and

A
(2)
m/2 respectively by the nonzero derivative at zero and nonzero constant coefficient.

Then, as n →∞,

(2.6) Ã
(1)
m/2(z) → 1

2ηm/2
(eηm/2z − e−ηm/2z), Ã

(2)
m/2(z) → 1

2
(eηm/2z + e−ηm/2z),

uniformly on compact subsets of C.

The proof relies on applying the saddle point method to the integral expressions
(2.4) of the polynomials Ap. Using in the same way, the integral representation of
the remainder term R,

(2.7) R(z) =
1

2iπ

∫

C∞

eζzdζ∏m
l=0(ζ − l)nl

,

where C∞ is a circle centered at the origin and of radius greater than m, one may
also show that in the diagonal case

R(z) ∼ zmn+n−1emz/2

(mn + n− 1)!
,

uniformly on compact subsets of C, as n → ∞. The derivation of all the previous
asymptotics for the non diagonal case can be obtained similarly.

remark 2.3. From Theorem 2.2, one easily recovers the assertions of Theorem
2.1 in the diagonal case. Indeed, the unique critical point of z(z + 1) is −1/2 so
that η0 = 1/2.
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example 2.4. When m=2 and

A0(z) + A1(z)ez + A2(z)e2z = O(z3n−1),

we consider the critical points of z(z+1)(z+2) which are −1+1/
√

3 and −1−1/
√

3
so that

η0 = 1− 1/
√

3, η1 = 1/
√

3.

Then, from Theorem 2.2, one gets that

A2(z) ∼ (−1)n−1µ0,ne−(1−1/
√

3)z,

A1(z) ∼ (−1)nµ0,n

(
ez/

√
3 + (−1)n−1e−z/

√
3
)

,

A0(z) ∼ µ0,ne(1−1/
√

3)z,

where µ0,n may be seen to equal 1
3
√

2nπ

(
3
√

3
2

)n

.

3. Some differential equations

Let us now establish the differential equations satisfied by the Hermite–Padé
approximants A0, . . . , Am such that (2.5) holds. For clarity, as before, we shall limit
ourselves to the diagonal case, though the general case can be treated in a similar
way. First, in connection with the Padé approximants Pn := Pn,n and Qn := Qn,n

defined by (2.1), with m = n, we set

wn(z) = e−z/2z−nPn(z).

Then, wn(z) satisfies Whittaker’s equation (cf. [Olv54, p.260])

d2w(z)/dz2 =
[
1
4

+
n(n + 1)

z2

]
w(z),

or, equivalently, Pn satisfies

(3.1) nPn(z) = (z + 2n)P ′n(z)− zP ′′n (z).

Also, from the remark after (2.1), we deduce that

(3.2) nQn(z) = (z − 2n)Q′n(z) + zQ′′
n(z).

Let us now derive the generalization of (3.1) and (3.2) corresponding to the ap-
proximants A0, . . . , Am. Consider the contour integral (2.7) in the diagonal case,
that is, nl = n, 0 ≤ l ≤ m and note that for any polynomial G, we have

(3.3) G(D)R(z) =
1

2πi

∫
G(ζ)eζzdζ∏m
l=0(ζ − l)n

,

where D denotes the differential operator d/dz. Set

(3.4) L(t) = t(t− 1) . . . (t−m).

Then we can apply partial integration to (3.3) with (n − 1)L′ instead of G and
obtain

(n− 1)L′(D)R(z) =
1

2πi

∫
zeζzdζ∏m

l=0(ζ − l)n−1
.

On the other hand, the right hand side of the previous equation equals zL(D)R(z).
Hence we get the differential equation

zL(D)R(z)− (n− 1)L′(D)R(z) = 0.
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Since the functions 1, ez, e2z, . . . , emz are linearly independent over the rational
functions, the differential equation holds for each of the summands Ap(z)epz of
R(z). Hence

zL(D)(Ape
pz)− (n− 1)L′(D)(Ape

pz) = 0.

Because of the identity D(epzu) = epz(D + p)u, this implies that

zL(D + p)Ap − (n− 1)L′(D + p)Ap = 0.

We summarize the result in the next theorem.

theorem 3.1. Let A0, . . . , Am be the diagonal Hermite–Padé approximants to
the exponential function satisfying (2.5), of degree less than n, and let L be the
polynomial defined by (3.4). Then, the following differential equations of order
m + 1 are satisfied:

(3.5) zL(D + p)Ap = (n− 1)L′(D + p)Ap, 0 ≤ p ≤ m.

example 3.2. Let

A0(z) + A1(z)ez + A2(z)e2z + A3(z)e3z = O(z19),

define, up to a constant, the Hermite–Padé approximants of degree 4 of the vector
(1, ez, e2z, e3z). Assuming n = 5, m = 3 in Theorem 3.1, it is straightforward to
check that

24A0 = (88 + 6z)A′0 − (72 + 11z)A(2)
0 + (16 + 6z)A(3)

0 − zA
(4)
0 ,

8A1 = (8 + 2z)A′1 + (24− z)A(2)
1 − (16 + 2z)A(3)

1 + zA
(4)
1 ,

8A2 = (−8 + 2z)A′2 + (24 + z)A(2)
2 + (16− 2z)A(3)

2 − zA
(4)
2 ,

24A3 = (−88 + 6z)A′3 − (72− 11z)A(2)
3 − (16− 6z)A(3)

3 + zA
(4)
3 .

remark 3.3. The differential equation (3.5) relates A
(m+1)
p and the m + 1

polynomials Ap, A
(1)
p , . . . , A

(m)
P . By differentiating (3.5) several times, we get a

linear relation with polynomial coefficients between any derivative A
(j)
p , j ≥ m + 1

and the polynomials Ap, A
(1)
p , . . . , A

(m)
p . On the other hand, from the analog of

formula (3.3) for the polynomial Ap,n, where, here, the second subscript denote the
degree, we deduce that

L(D + p)jAp,n = Ap,n−j , 0 ≤ j ≤ n− 1.

These observations allows one to compute, for each p, 0 ≤ p ≤ m, a recurrence
relation involving the polynomials Ap,n, . . . , Ap,n−m−1. Indeed, from what precedes,
there are linear relations between Ap,n−j and Ap,n, A

(1)
p,n, . . . , A

(m)
p,n . Hence, a linear

relation between Ap,n, . . . , Ap,n−m−1 can be established.

4. On the zeros of Hermite–Padé approximants to ez

In this section, we shall review some known facts about the zeros of Padé ap-
proximants to ez and display some numerical experiments concerning the zeros of
Hermite–Padé approximants. The first result in studying the zeros of such approx-
imants may be the article of Szegő [Sze24], which considers the zeros of the partial
sums sn(z) =

∑n
k=0 zk/k! of the Taylor expansion of ez. Note that sn(z) is the

Padé approximant of ez of degree (n, 0). Szegő showed that the normalized partial
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sum sn(nz) has all its zeros in |z| ≤ 1 for every n ≥ 1, and that ẑ is a limit point
of zeros of {sn(nz)}∞n=1 iff

|ẑe1−ẑ| = 1 and |ẑ| ≤ 1.

The so-called Szegő curve determined by the previous equations is shown in Figure
1. Concerning general Padé approximants, Saff and Varga have given in a series of
papers (cf. [SV75, SV76, SV77, SV78] and the references therein) numerous re-
sults concerning the location of their zeros. Mainly using the three-term recurrence
relation (or Frobenius relation) and the second-order differential equation satisfied
by these approximants, they could prove the existence of a sector, alternatively
a parabolic region determined by the type of the approximants, free of zeros. A
sharp lower bound as well as an upper bound on the modulus of these zeros could
also be established in this way. Moreover, by means of the saddle point method
applied to the integral representation (2.2) and (2.3), asymptotic estimates were
obtained, from which the asymptotic distribution of the zeros of the normalized
Padé approximants and of the error function could be determined. The eye-shaped
curve which consists in the limit points of zeros, poles or zeros of the remainders
generalizes the Szegő curve. We refer the reader to the original papers for complete
statements of the theorems and to [BGM96, pp.268-274] for a nice summary of
these results. Let us now proceed with Hermite–Padé approximants of the vector
(1, ez, . . . , emz). To the author’s knowledge, such precise results as above are not
yet available for the zeros of these approximants. We only state the seemingly weak
upper bound (cf. [Wie97]):

proposition 4.1. For any m ≥ 1 and n ≥ 2, all the zeros of the Hermite–Padé
approximants Ap(z) satisfying (2.5) lie in

(4.1) |z| ≤ 2(n− 1/3)

[
p∑

k=1

1
k

+
m−p∑

k=1

1
k

]
, 0 ≤ p ≤ m,
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where it is understood, in case p = 0 or p = m, that the sum in (4.1) ranging from
k = 1 to 0 vanishes.

Finally, we give some numerical results about these zeros. In Figure 2, we have
graphed the zeros of the five polynomials A0, A1, A2, A3, A4, all of degree 50, such
that

(4.2) A0 + A1e
z + A2e

2z + A3e
3z + A4e

4z = O(z254).

The 50 zeros of the polynomials A0 to A4 appear in 5 sequences from the left to
the right of the figure. The zeros of A0, A2, A4 are denoted by circles “o”. Those
of A1 and A3 are denoted by cross “+”.
In the two subsequent figures, Figures 3 and 4, we still represent, in the same way
as in Figure 2, the zeros of 5 polynomials such that the expansion (4.2) has maximal
vanishing at zero, but now, we consider non diagonal approximation. Indeed, we
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choose
deg A0 = deg A4 = 20, deg A1 = deg A3 = 40, deg A2 = 60,

and

deg A0 = 12, deg A1 = 24, deg A2 = 36, deg A3 = 48, deg A4 = 60,

respectively.
We may conjecture that, with a convenient normalization, the zeros of the

Hermite–Padé approximants cluster, as the degrees tend to infinity, to fixed curves,
analog of the Szegő or eye-shaped curves. As in the Padé case, these curves would
be determined by the different ratios of the degrees of the approximants, as they
tend to infinity. It seems possible that using the differential equations in Theorem
3.1, one can obtain some information on the location and asymptotic distribution
of the zeros of the Hermite–Padé approximants to a vector of exponentials.
Acknowledgements The author would like to thank the referee for his helpful
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comments and especially for having supplied us with a proof of Theorem 3.1, simpler
than that given in a first version of this paper.
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[dB85] M.G. de Bruin, Simultaneous Padé approximation and orthogonality, Polynomes or-
thogonaux et applications (C. Brezinski et al., ed.), Springer Lecture Notes, vol. 1171,
Springer, 1985, pp. 74–83.

[dP79] A. Van der Poorten, A proof that Euler missed... Apéry’s proof of the irrationality of
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