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ABSTRACT. – We present a version of Rolle’s theorem for real exponential polynomials having a number
L sufficiently large of zeros in a compact setK of the complex plane. We show that the derivative of
the exponential polynomials have at leastL − 1 zeros in a region slightly larger thanK. The method of
proof is elementary and similar to that of the classical Jensen’s theorem about the location of the zeros of
the derivative of a real polynomial. The proof also relies on known results concerning the distribution
of the zeros of real exponential polynomials. Besides, we display a Rolle’s theorem for higher-order
derivatives and as a conclusion make a few comments about the maximal number of zeros a real exponential
polynomials may have in a given compact set ofC.  2001 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Nous présentons un analogue du théorème de Rolle pour les polynômes exponentiels réels
admettant un nombreL suffisamment grand de zéros dans un ensemble compactK du plan complexe.
Nous montrons que la dérivée de ces polynômes exponentiels possède au moinsL − 1 zéros dans une
région légèrement plus grande queK. La méthode de démonstration est élémentaire et s’inspire de
celle du théorème classique de Jensen sur la distribution des zéros de la dérivée d’un polynôme réel.
La démonstration utilise en outre des résultats classiques sur la distribution des zéros des polynômes
exponentiels réels. Nous donnons également une version du théorème de Rolle pour les dérivées d’ordre
supérieur et en conclusion, quelques remarques sur le nombre maximal de zéros d’un polynôme exponentiel
réel dans un ensemble compact deC.  2001 Éditions scientifiques et médicales Elsevier SAS

AMS classification: 30C15

1. Introduction

Exponential polynomials are entire functionsg of the form

g(z)=
n∑

j=1

qj (z)eωj z,

where theωj are complex numbers, usually called the frequencies ofg, and the coefficientsqj
are complex polynomials. We assume that theωj are distinct and the polynomialsqj not zero.
We set:

mj = degqj , j = 1, . . . , n.
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Since the coefficientsqj are uniquely determined by the functiong, we can define thedegree of
g as

degg := n− 1+
n∑

j=1

mj .

Properties of exponential polynomials, which are solutions of linear homogeneous differential
equations with constant coefficients, are of interest in analysis, number theory or in applications
of the type occurring in control theory. The zeros sets and ideals generated by exponential
polynomials have been the subject of many studies. We refer to [2,3] and the bibliography therein
for an exposition of this subject.

In this paper, we will be interested in studying the zeros ofreal exponential polynomials,

g(z)=
n∑

j=1

pj (z)eαj z,(1.1)

with real frequencies

0 � α1 < α2 < · · ·< αn,

andreal polynomial coefficients pj .
Apparently, there does not seem to exist easy generalizations of the classical Rolle’s theorem

for functions of a complex variable. A few references for this topic are, e.g., [4,7,10]. Here, we
derive an analog of Rolle’s theorem for exponential polynomialsg havingL� degg zeros in a
compact regionK around the origin. When the degree ofg is sufficiently large, we show that at
leastL − 1 zeros of the derivativeg′ lie in a regionK′ slightly larger than the original region
K (for example, ifK is the disk of radiusρ, thenK′ consists of the interior of an ellipse whose
semi axis have lengths

√
2ρ andρ).

Note that the above assertion bears some resemblance with Lucas’s theorem, which says that
the zeros of the derivative of a polynomialp lie in the convex hull of the (degp) zeros ofp.
The proof of our result is elementary. It is adapted from the method used in proving the Jensen
theorem for polynomials [6, Theorem 7.1, p. 26], asserting that every non real critical point of
a real polynomialp lies in at least one of the circles whose diameters are the line-segments
joining the pairs of conjugate zeros ofp, the so-called Jensen circles. Applying the argument
principle to the logarithmic derivative of our exponential polynomials on a convenient contour
and comparing the contributions of the zeros that are interior with those that are exterior to this
contour leads to our result. Here, the distribution of the zeros of exponential polynomials plays
an important role. In particular, the number of these zeros is known to be bounded above in any
given horizontal strips (see Proposition 2.4). The proof of this Rolle’s theorem will be the content
of Section 2. In Section 3, we show how to derive Rolle’s theorem for higher order derivatives
and also for a natural analog of them. In Section 4, we make a few comments about the results
and suggest an open problem.

2. A complex Rolle’s theorem for real exponential polynomials

We will need a few notations. Letρ, p andl be three positive real numbers. Throughout,Tρ
andD(0, ρ) will respectively denote the circle of radiusρ and the closed disk of radiusρ, both
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centered at the origin. Also we denote byEρ,p the ellipse such that

Eρ,p :=
{
x + iy:

x2

p
+ y2 = ρ2

}
,

andFρ,p the closed interior of this ellipse, that is

Fρ,p :=
{
x + iy:

x2

p
+ y2 � ρ2

}
.

Hence, in particular,Fρ,1 =D(0, ρ). Moreover, we set:

Ll,ρ,p := {x + iy: −l � x � l, − ρ � y � ρ} ∪ (Fρ,p − l)∪ (Fρ,p + l),

so thatLl,ρ,p is the bounded strip consisting of the interior of a rectangle of dimensions 2l× 2ρ,
centered at the origin, whose left and right sides have been replaced with semi-ellipses of half-
axisρ and

√
pρ. We denote byKl,ρ,p the closed curve which consists of the boundary of the

domainLl,ρ,p .
Moreover, we will use the following notation. ForM andN two points in the complex plane,

we set:

Q(M,N) := d2(N,M0)− d2(M,M0)

d2(N,M)d2(N,M)
,(2.1)

whereM0 denotes the projection ofM on the real axisOx, M, the conjugate point ofM, i.e.
the point symmetric toM with respect toOx andd(·, ·), the usual Euclidean distance between
points in the plane.

Finally, we define thediameter of a real exponential polynomial (1.1) to be the positive number
αn − α1.

The aim of this section will be to prove the next two theorems:

THEOREM 2.1 (A complex Rolle’s theorem). –Let g be any real exponential polynomial of
diameter less than or equal to some fixed positive real number α and let l, ρ and ρ′ be three
positive real numbers such that 0< ρ < ρ′ < 2π/α. Finally, let p � 1 be some integer. Assume
that g has L� degg zeros in the domain Ll,ρ,p . Then the derivative of g has at least L−1 zeros
in the domain Ll,ρ′,p+1 as soon as

degg � 1

ρ′2

(
1− αρ′

2
cot

αρ′

2

)
max

M∈Ll,ρ,p

N∈Kl,ρ′ ,p+1

Q(M,N)−1.(2.2)

Remark 1. – From the upper bound in the forthcoming Proposition 2.4 and the assumption
ρ < 2π/α, we see that the integerL can only assume the values degg or degg+ 1.

Remark 2. – The assumptionρ′ < 2π/α has been given because the function

ρ′ → 1− (αρ′/2)cot(αρ′/2)

which appears in (2.2) has a singularity at 2π/α. Obviously, the conclusion of Rolle’s theorem
with respect to a domainLl,ρ′,p+1, ρ′ � 2π/α, follows if one can apply the theorem on a smaller
domain withρ′ < 2π/α.
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In order to make more explicit the maximum in the right-hand side of (2.2), we state the
following proposition:

PROPOSITION 2.2. – Let p be a positive integer and let l, ρ, ρ′ be three positive real numbers
with ρ < ρ′. Then, for any M ∈ Ll,ρ,p and any N ∈Kl,ρ′,p+1, we have:

Q(M,N)� min

(
ρ′2 − ρ2

(ρ′2 + ρ2)2
,

(ρ′ + √
2l)2 − ρ2

(2(ρ′ + √
2l)2 − ρ2)2

)
, if p= 1,(2.3)

and

Q(M,N)� min

(
ρ′2 − ρ2

(ρ′2 + ρ2)2
,

1

(
√
p+ 1ρ′ + √

pρ + 2l)2

)
, if p � 2.(2.4)

Remark 1. – Actually, a weaker condition than that in (2.2) may be sufficient in order to apply
Rolle’s theorem. Indeed, denote byS(ρ,ρ′) the expression in the right-hand side of (2.2) where
we replace the maximum of theQ(M,N)−1’s with the upper bound deduced from Lemma 2.2.
Note thatS(ρ,ρ′) tends to infinity whenρ′ tends toρ and to 2π/α. In the segment(ρ,2π/α),
it meets a minimumS for some particular valueρ′

0 of ρ′ and then increases up to infinity at
2π/α. Since the conclusion of Rolle’s theorem holds inLl,ρ′

0,p+1 as soon as degg � S, it holdsa

fortiori in Ll,ρ′,p+1, ρ′ � ρ′
0, as soon as degg � S. Consequently, one can replace the expression

S(ρ,ρ′) in the right-hand side of (2.2) with infu′∈(ρ,ρ′] S(ρ,u′).
Remark 2. – The minimum in (2.3) is smaller than or equal to the minimum in (2.4), when

p = 1. In particular, with the proof to be given here, inequality (2.4) does not extend to the case
p = 1.

Remark 3. – Whenε = ρ′−ρ tends to 0, the degree ofg needed in order to apply Theorem 2.1
becomes of orderC/ε, whereC is a constant depending only onρ andα.

Examples. – Assumeg is a real exponential polynomial of diameter 1 having degg � 2
zeros in the circleT1, so that with the notations of Theorem 2.1ρ = 1, l = 0, α = 1. One
checks that, when replacing the maximum in the expressionS(1, ρ′) in the right-hand side
of (2.2) by the upper bound deduced from (2.3), one obtains a quantity which is decreasing
whenρ′ increases from 1 to

√
2 and then increasing up to infinity at 2π . The minimum value

at
√

2 is approximatively equal to 0.776. Moreover, the expressionS(1, ρ′) has value 2 for
ρ′ = ρ′

0 � 1.098. Hence, Rolle’s theorem holds for the polynomialg in the domainL0,ρ′
0,2

(and
a fortiori in any domainL0,ρ′,2, ρ′ � ρ′

0) without any assumption on its degree. If one wants to
apply Rolle’s theorem in smaller domainsL0,ρ′,2, e.g.ρ′ = 1.05 orρ′ = 1.01, condition (2.2)
then translates to degg � 4 or degg � 18, respectively.

In Fig. 1, we have graphed the zeros (denoted with circles “o”) in the strip−iπ � y � iπ of
the ninth derivatives of the exponential polynomialsg1(z) = e5z − P19(z), degP19 = 19, and
g2(z)=Q9(z)e5z − P10(z), degQ9 = 9, degP10 = 10,Q9 monic, such that

g
(k)
1 (iπ)= g

(k)
1 (−iπ)= g

(k)
2 (iπ)= g

(k)
2 (−iπ)= 0, k = 0, . . . ,9.(2.5)

Hence,g1 and g2, which are of degree 20, are uniquely determined by (2.5). Moreover, the
derivativesg(9)1 andg(9)2 both admit a simple zero at iπ and−iπ . In Figure 2, we have also
graphed the zeros in the strip−iπ � y � iπ of the ninth derivative of the exponential polynomial
g3(z)=Q19(z)e5z − 1, degQ19 = 19 such that

g
(k)
3 (iπ)= g

(k)
3 (−iπ)= 0, k = 0, . . . ,9.
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Fig. 1. The zeros of the ninth derivatives ofg1 andg2 in the strip−π � y � π .

Fig. 2. The zeros of the ninth derivative ofg3 in the strip−π � y � π .

On these three examples, we observe that the zeros of the derivatives deviate from the segment
[−iπ, iπ] and on the last one, also leave the circle of radiusπ .

Theorem 2.1 may be generalized to a domainLl,ρ,p of arbitrary heightρ. Indeed, we have:

THEOREM 2.3. – Let α, l and ρ < ρ′ be four real positive numbers, and let a ∈ N and
p � 1 be integers. There exists an integer C(l, ρ,ρ′, a,p,α) such that for any real exponential
polynomial g of diameter less than or equal to α having at least L, L� degg − a, zeros in the
domain Ll,ρ,p , the derivative of g has at least L− 1 zeros in the domain Ll,ρ′,p+1, as soon as
the degree of g is larger than C(l, ρ,ρ′, a,p,α).

Remark. – Theorem 2.3 is more general than Theorem 2.1 because here we allow a domain
Ll,ρ,p of arbitrary heightρ but also because the numberL of zeros of the exponential polynomial
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g has inLl,ρ,p is allowed to be less than the degree ofg, up to some fixed constant. Of course,
since we do not compute an explicit expression for the integerC(l, ρ,ρ′, a,p,α), it is also less
precise than Theorem 2.1.

Before proving the above theorems, let us begin with displaying some known results
concerning the zeros of exponential polynomials. The following proposition was alluded to in
the introduction. It gives estimates on the number of zeros an exponential polynomial may have
in horizontal strips (cf. [9, Problem 206.2]).

PROPOSITION 2.4. – Let g be a real exponential polynomial of diameter α and let N(g,a, b)
the number of zeros of g that are contained in the horizontal strip a � Im z� b, we have:

α
b− a

2π
− degg �N(g,a, b)� α

b− a

2π
+ degg.(2.6)

Idea of proof. – The derivation of these inequalities consists in applying the argument principle
on a rectangle{z: a � Im z� b,−c� Rez� c}, and then letc tend to∞. ✷

We proceed with recalling the Polya–Dickson theorem (cf. [2,3]), restricting ourselves to the
real frequencies case. Following [2], we set a few notations. LetPj , j = 0, . . . , n, be the points
in the plane with coordinates(αj ,mj ) whereαj andmj have been defined in Section 1 and letL

be the upper convex envelope of these points. In other words,L is the polygonal line which joins
P0 to Pn, has vertices only at points of the set{Pj }, no pointsPj lie above it and the domain
belowL is convex. Let the successive segments ofL be denoted byL1, . . . ,Lk , and let the slope
of Lr be denoted byµr (from the definition ofL, the slopeµr is a decreasing function ofr). For
c > 0, we consider the curvilinear stripsVr defined by:

Vr = {
z ∈ C:

∣∣Re(z+µr logz)
∣∣ � c

}
, r = 1, . . . , k.

Note that the strips are disjoint, for large|z|, and thatVr+1 lies to the right ofVr .

PROPOSITION 2.5. – Let g be an exponential polynomial as in (1.1), possibly with complex
coefficients. Outside a certain disk {z: |z| � c2}, the following assertions hold true:

(i) All zeros of g are contained in the union of the regions Vr .
(ii) In any region R,

∣∣Re(z+µr logz)
∣∣ � c,

∣∣ Im(z+µr logz)− a
∣∣ � b,

with no zeros of g on the boundary, the number of zeros in R satisfies

(b/π)α+ 1− nr � n(R)� (b/π)α− 1+ nr ,(2.7)

where nr is the number of frequencies lying in the segment Lr and α is the difference in
values of the frequencies at the end-points of Lr .

(iii) In any strip Vr with µr �= 0, the zeros of g lie asymptotically along a finite number of
curves |zµr ez| = |wµr |, w in the set of roots of an algebraic equation determined by the
points on Lr . Clearly, these curves are symmetric with respect to the real axis and if
z= x + iy is a point lying on one of these curves, then |y/x| → +∞ as |z| → +∞.
Moreover, the zeros z = x + iy of large modulus accumulating near |zµr ez| = |wµr |
are described by the following asymptotic formulas. Let l be any large integer such that
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lµr > 0. Then, for z lying in the upper-half plane, we have z= zl = xl + iyl , with

xl = µr
(
log|w| − log|µr argw+ 2lµrπ −µrπ/2|) + o(1)

and

yl = µr(argw+ 2lπ − π/2)+ o(1),

whereas, for z lying in the lower-half plane, we have z= z−l = x−l + iy−l , with

x−l = µr
(
log|w| − log|µr argw− 2lµrπ +µrπ/2|) + o(1)

and

y−l = µr(argw− 2lπ + π/2)+ o(1).

Remark. – When the exponential polynomial has real coefficients, the algebraic equation
alluded to in assertion (iii) is real as well, so that the pointszl and z−l corresponding to the
rootsw andw respectively, are conjugate roots ofg.

From these results we may derive a precise form of the Hadamard factorization of a real
exponential polynomial.

PROPOSITION 2.6. – Assume that g(z) is a real exponential polynomial vanishing at the
origin with a multiplicity n0, n0 � 0, and let Z denote the set of zeros of the entire function
g(z)/zn0 . Let N be a fixed large positive integer, we decompose Z into an union of a finite
subsets Z0 = {zi} of roots of small modulus and an infinite subsets of roots (zl)l=±N,... , given
by asymptotic expressions as in Proposition 2.5, assertion (iii) . Then, g(z) admits the following
representation:

g(z)= czn0 eaz
∏
zi∈Z0

(
1− z

zi

) ∏
l�N

(
1− z

zl

)(
1− z

z−l

)
,(2.8)

where the infinite product converges and where a and c are some real constants.

Proof. – Sinceg is an entire function of order 1, the Hadamard factorization theorem tells us
that

g(z)= zn0 eh(z)
∏
zi∈Z0

(
1− z

zi

) ∏
l=±N,...

(
1− z

zl

)
ez/zl ,(2.9)

whereh(z) is a polynomial of degree less than or equal to 1. In the last product, we bracket
together the factors corresponding to indicesl and−l and show that the series

S =
∑
l�N

(
1

zl
+ 1

z−l

)

converges. Indeed, whenzl , l large, lies in a stripVr with µr �= 0, we know from the expressions
in assertion (iii) of Proposition 2.5, that:

zl = −µr log|2lµrπ | + 2ilµrπ + O(1),

z−l = −µr log|2lµrπ | − 2ilµrπ + O(1).
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Thus, the general term ofS satisfies

1

zl
+ 1

z−l
= −2µr log|2lµrπ |

(2lµrπ)2
(
1+ o(1)

)
,

which implies the convergence of the series. Whenµr = 0, the result remains true since the zeros
are in|Re(z)| � c and by the estimates (2.7), they lie along the imaginary axis with a constant
density, equal toα/2π .

Hence, the exponential factors ez/zl are not necessary to the convergence of the canonical
product in the right-hand side of (2.9). Taking them out of this product and collecting them
together with the polynomialh leads to the asserted expression forg. Finally, the constantsa
andc are real sinceg is. ✷

Remark. – The representation (2.8) ofg can also be deduced from the fact thatg is a function
of completely regular growth, see [5, Chapter III].

In the sequel, we shall need the following simple geometric lemma:

LEMMA 2.7. – The circles whose diameters are the vertical chords of the ellipse Eρ,p lie in
the closed interior of the ellipse Eρ,p+1 and have this ellipse as their envelope. Evidently, this
implies that the circles whose diameters are the vertical chords of the domain Ll,ρ,p lie in the
domain Ll,ρ,p+1 and have Kl,ρ,p+1 as their envelope.

Proof. – Easily verified by elementary calculus.✷
Proof of Proposition 2.2. – Let (x, y) and(u, v) be the coordinates in the complex plane ofN

andM respectively. Then, from the definition (2.1) ofQ(M,N), we deduce

Q(M,N)= [(x − u)2 + y2 − v2]
[(x − u)2 + (y − v)2][(x − u)2 + (y + v)2] .(2.10)

We have

[
(x − u)2 + (y − v)2

][
(x − u)2 + (y + v)2

]
�

[
(x − u)2 + y2 + v2]2

.

Hence, setting

X := (x − u)2 + y2, Y := v2,(2.11)

we get

Q(M,N)� X− Y

(X+ Y )2
.

Let F(X,Y ) := (X− Y )/(X+ Y )2. Since

∂F

∂X
= 3Y −X

(X+ Y )3
,

∂F

∂Y
= Y − 3X

(X+ Y )3
,(2.12)

F has no local minimum and the magnitude ofF must be studied on the boundary of the
domain inR2 consisting of those points(X,Y ) such that (2.11) holds with(u, v) ∈ Ll,ρ,p and
(x, y) ∈Kl,ρ′,p+1. AssumeY has a fixed valuev2. LetM be the point on the boundaryKl,ρ,p of
coordinates(u, v) with u � 0 (so thatv = l when 0� u � l and(u − l)2/p = ρ2 − v2 when
u � l), andM0 its projection on the real axis. SinceN lies on the curveKl,ρ′,p+1, X can
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only range from the square of the minimal distance betweenM0 andKl,ρ′,p+1 to the square
of their maximal distance. This maximal distance evidently equals

√
p+ 1ρ′ + l + u and it is

also straightforward to check that the minimal distance equalsρ′ if u� l,
√
ρ′2 − (u− l)2/p if

l � u� l + pρ′/
√
p+ 1 and

√
p+ 1ρ′ + l − u otherwise. We thus have to study the minimum

of the following three values ofF :

F
(
(
√
p+ 1ρ′ + l + u)2, ρ2 − (u− l)2/p

)
, F

(
ρ′2 − (u− l)2/p,ρ2 − (u− l)2/p

)
,

and

F
(
(
√
p+ 1ρ′ + l − u)2, ρ2 − (u− l)2/p

)
,

asu ranges froml to l + √
pρ on one hand, and the minimum of the following two values ofF :

F
(
(
√
p+ 1ρ′ + l + u)2, ρ2) and F

(
ρ′2, ρ2),

asu ranges from 0 tol, on the other hand. Since

(
√
p+ 1ρ′ + l − u)2 − (

ρ′2 − (u− l)2/p
) = (√

p+ 1(u− l)− pρ′)2
/p � 0,

we have

ρ′2 − (u− l)2/p � (
√
p+ 1ρ′ + l − u)2 � (

√
p+ 1ρ′ + l + u)2,

asu ranges froml to l + √
pρ, and also

ρ′2 < (
√
p+ 1ρ′ + l)2 � (

√
p+ 1ρ′ + l + u)2 � (

√
p+ 1ρ′ + 2l)2,

asu ranges from 0 tol. SinceF increases then decreases as a function ofX, we only have to
look for the minimums of

F
(
(
√
p+ 1ρ′ + l + u)2, ρ2 − (u− l)2/p

) = p
p(

√
p+ 1ρ′ + l + u)2 + (u− l)2 − pρ2

(p(
√
p+ 1ρ′ + l + u)2 − (u− l)2 + pρ2)2

(2.13)

and

F
(
ρ′2 − (u− l)2/p,ρ2 − (u− l)2/p

) = ρ′2 − ρ2

(ρ′2 − 2(u− l)2/p+ ρ2)2
,(2.14)

asu ranges froml to l + √
pρ. One can check that ifp is distinct from 1 or ifp = 1 and

ρ′ + √
2l �

√
2ρ then (2.13) decreases asu increases. Thus, assumingρ′ + √

2l �
√

2ρ when
p = 1, the minimum of (2.13) is

(
√
p+ 1ρ′ + √

pρ + 2l)−2.

Whenp = 1 andρ′ + √
2l <

√
2ρ, the minimum of (2.13) asu ∈ [l, l + √

pρ] is either

2(ρ′ + √
2l)2 − ρ2

(2(ρ′ + √
2l)2 + ρ2)2

or
(ρ′ + √

2l)2 − ρ2

(2(ρ′ + √
2l)2 − ρ2)2

,
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depending whetherρ′ +√
2l �

√
3/2ρ orρ′ +√

2l �
√

3/2ρ. Since the last value is the smallest
one among the three, we shall consider this one whenp = 1.

As for (2.14), it is clear that its minimum equals

ρ′2 − ρ2

(ρ′2 + ρ2)2
,

asu ranges froml to l + √
pρ, and this finishes the proof of Proposition 2.2.✷

Proof of Theorem 2.1. – To establish this result, we shall adapt the classical proof of Jensen’s
theorem (see, e.g., [6, Theorem 7.1]). This theorem asserts that the zeros of the derivative of a
real polynomial lie into certain circles, usually called Jensen circles, that are determined by the
roots of the polynomial. Denoting byZ the set of rootszj of g, we know from Proposition 2.6
that

g(z)= czn0 eaz
∏

zj∈Z∩Ll,ρ,p

zj �=0

(
1− z

zj

) ∏
zj∈Z\Z∩Ll,ρ,p

(
1− z

zj

)
,(2.15)

wherea andc are some real constants and the roots ofg are symmetric with respect to the real
axis sinceg is real. Moreover, by Proposition 2.4 and the assumption thatg is real and has degg
zeros in the domainLl,ρ,p , 0< ρ < 2π/α, we know that the other zeros ofg actually lie outside
the horizontal strip−2π/α < Im z < 2π/α, except for one possible extra real zero that we shall
denote byz0. From the factorization (2.15), the logarithmic derivative ofg is equal to

g′(z)/g(z)= a + δ/(z− z0)+
∑

zj∈Ll,ρ,p

1/(z− zj )+
∑

| Im zj |�2π/α

1/(z− zj ),(2.16)

whereδ equals 0 or 1, depending whetherz0 does exist or not. The real zeros ofg all lie in Ll,ρ,p ,
except the possible extra zeroz0. The term 1/(x+ iy− xj ) in (2.16) corresponding to a real zero
zj = xj andz= x + iy has the imaginary part

−y/[(x − xj )
2 + y2].(2.17)

Remark that the sign of (2.17) is always opposite to the sign ofy.
The sum of terms 1/(x + iy − xj − iyj ) and 1/(x + iy − xj + iyj ) corresponding to the pair

of conjugate zeroszj = xj + iyj andz̄j = xj − iyj has the imaginary part

−2y[(x − xj )
2 + y2 − y2

j ]
[(x − xj )2 + (y − yj )2][(x − xj )2 + (y + yj )2] .(2.18)

Denote byCj the Jensen circle of the pair of zeroszj and z̄j , that is the circle whose diameter
is the segment joiningzj to z̄j . If the pointz = x + iy lies outsideCj , the sign of (2.18) and
the sign ofy are opposite, whereas ifz lies insideCj , the signs are equal. Now, consider some
bounded contourC that encloses all Jensen circles corresponding to roots ofg that are located
into the domainLl,ρ,p . Then, forz on C, the sign of expression (2.18) corresponding to roots
into Ll,ρ,p is opposite to the sign ofy. When (2.18) corresponds to roots lying outside the
strip |Imz| < 2π/α, its sign may be equal or opposite to the sign ofy, depending whether the
chosen point onC lies inside or outside the Jensen circle. Though this will not be needed in the
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sequel, note that, from Proposition 2.5, the zeros of large modulus ofg asymptotically lie near
the imaginary axis. Hence, their Jensen circle completely encloses the contourC which means
that, in this case, expression (2.18) has the sign ofy everywhere onC.

Next, we shall prove that, when summing up terms in (2.16), the contribution from the first
sum (taken over zeroszj ∈ Ll,ρ,p) to the imaginary part ofg′(z)/g(z) becomes, uniformly on
C, larger than the contribution of the second sum (taken over zeros with|Im zj | � 2π/α) as
the degree ofg exceeds some explicitly given bound. Here, note that the possible extra fraction
δ/(z− z0) can be neglected, since its contribution only adds to the first sum.

From Lemma 2.7, we know that the convex hull of the Jensen circles whose diameters are
the vertical chords of the domainLl,ρ,p is the curveKl,ρ,p+1. Thus, one can choose as a
contourC the curveKl,ρ′,p+1, ρ < ρ′ < 2π/α, surroundingKl,ρ,p+1 and contained in the strip
|Imz|< 2π/α. Forz a point onKl,ρ′,p+1, we give an upper bound for the modulus of

I :=
∑

| Im zj |�2π/α

Im
(
1/(z− zj )

)
y−1

= −
∑

yj�2π/α

2[(x − xj )
2 + y2 − y2

j ]
[(x − xj )2 + (y − yj )2][(x − xj )2 + (y + yj )2](2.19)

and a lower bound for the modulus of

J :=
∑

zj∈Ll,ρ,p

Im
(
1/(z− zj )

)
y−1

= −
∑

0�yj�ρ

δzj [(x − xj )
2 + y2 − y2

j ]
[(x − xj )2 + (y − yj )2][(x − xj )2 + (y + yj )2] ,(2.20)

whereδzj equals 1 or 2 depending whetherzj is real or complex. First, let us considerI . We
have [

(x − xj )
2 + y2 − y2

j

]2 �
[
(x − xj )

2 + (y − yj )
2][(x − xj )

2 + (y + yj )
2].

Thus

|I | �
∑

yj�2π/α

2

[(x − xj )2 + (y − yj )2]1/2[(x − xj )2 + (y + yj )2]1/2 �
∑

yj�2π/α

2

y2
j − y2

.

(2.21)

From Proposition 2.4, we know that roots ofg cannot accumulate in any bounded horizontal
strip. More precisely, from the upper bound in (2.6), rootszj of g with |yj | � 2π/α are spread
along the imaginary axis with a density at mostα/2π . Hence, the last sum in (2.21) cannot be
larger than

2

(
1

(2π/α)2 − ρ′2 + 1

(4π/α)2 − ρ′2 + · · ·
)

= α

2πρ′

[
ψ

(
αρ′

2π

)
−ψ

(
−αρ′

2π

)]
+ 2

ρ′2 ,(2.22)

whereψ denotes the logarithmic derivative of the Gamma functionΓ , or Digamma function:

ψ(z)= −γ +
∞∑
n=0

(
1

n+ 1
− 1

z+ n

)
,
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and γ denotes the usual Euler constant. Using the recurrence relationship and the reflection
formula forψ ,

ψ(1+ z)=ψ(z)+ 1/z, ψ(1 − z)=ψ(z)+ π cotπz,

respectively, we get for (2.22) the expression

1

ρ′2 − α

2ρ′ cot

(
αρ′

2

)
,

which implies

|I | � 1

ρ′2

(
1− αρ′

2
cot

αρ′

2

)
.(2.23)

Second, we give a lower bound for|J |. From the definitions (2.1) ofQ(M,N) and (2.20) ofJ ,
we get

|J | � min
M∈Ll,ρ,p

N∈Kl,ρ′,p+1

Q(M,N)degg.(2.24)

From (2.23) together with (2.24), we see that a necessary condition to ensure|J |> |I | is

min
M∈Ll,ρ,p

N∈Kl,ρ′,p+1

Q(M,N)degg � 1

ρ′2

(
1− αρ′

2
cot

αρ′

2

)
.(2.25)

Assume that the degree ofg satisfies the previous inequality. Then, from (2.16), the discussion
after (2.18) and the definitions ofI andJ , we know that the imaginary part ofg′(z)/g(z) is
negative asz describes the upper-half ofKl,ρ′,p+1 and positive asz describes the lower-half of
Kl,ρ′,p+1. Hence,Kl,ρ′,p+1 is mapped by the functiong′(z)/g(z) into a curve which encircles
the origin at most once. Thus, by the argument principle, the number of zeros ofg′(z) within
Kl,ρ′,p+1 differs by at most one from the number of zeros ofg(z) in Kl,ρ′,p+1. This implies the
assertion of Theorem 2.1.✷

Proof of Theorem 2.3. – We shall apply the same idea as in the proof of Theorem 2.1 but,
now, we have to be careful about the extra zeros thatg may have near the curveKl,ρ′,p+1. We
determine some contourC = Kl,ρ0,p+1, ρ + ε � ρ0 � ρ′, 0< ε < ρ′ − ρ, surrounding the curve
Kl,ρ,p+1, with ρ0 − ρ larger than some fixed constantε, in order that a lower bound for|J |/L
exists. Also, we need that the distance fromKl,ρ0,p+1 to zeros ofg that do not belong toLl,ρ,p
remains bounded away from zero in order that an upper bound for|I | exists. This can be achieved
as follows. From Proposition 2.4, the horizontal strip

H := {
z: |Im z| � lπ/α

}
, l = [ρ′α/π] + 1

([x] denoting the integral part ofx), contains at most degg + l zeros ofg, that is,H contains
at mostl + degg − L extra zeros in addition to theL � degg − a zeros ofg in Ll,ρ,p . One
can always determine someρ0, ρ + ε � ρ0 � ρ′, such that the curveKl,ρ0,p+1 is at least at
a distance(ρ′ − ρ − ε)/2(l + degg − L) from the l + degg − L possible extra zeros ofg in
Ll,ρ′,p+1 \Ll,ρ,p . Since this distance is bounded below and the number of extra zeros is bounded
above independently from the degree ofg, the quantity|I | still admits an absolute upper bound
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depending only onl, ρ, ρ′ andα. Thus, assuming degg large enough, the argument principle can
be applied to the functiong′(z)/g(z) as in the last part of the proof of Theorem 2.1, eventually
showing thatg′ admits at leastL− 1 zeros inLl,ρ0,p+1, hence inLl,ρ′,p+1. ✷

3. A complex Rolle’s theorem for higher-order derivatives

In this section we shall prove results similar to those established in Theorems 2.1, 2.3, now
considering a real exponential polynomialg and derivatives whose order can possibly grow up
to the degree ofg. Actually, we shall consider derivatives ofg and also slight modifications of
them, which consist in taking the derivative of the quotient ofg(z) by exp(αz), whereα is the
smallest frequency ofg. We shall denote byg{1}, the exponential polynomial, image ofg by
this transformation, and similarlyg{k}, k integer, for the iterates of this transformation. From
the definition, if zero is a frequency ofg, theng{1} equals the usual derivativeg(1) of g. Note
that, contrary to the derivative, the degree ofg{1} is always one less than the degree ofg. With
this definition at hand, we are in a position to state our result. As a first step, we only consider
derivatives of a fixed order, while the degree of the exponential polynomialg goes large.

THEOREM 3.1. – Let α, l and ρ < ρ′ be four real positive numbers, and let r be a positive
integer. There exists an integer C(l, ρ,ρ′, α, r) such that for any real exponential polynomial g
of diameter less than or equal to α, of degree degg � r + 1, and having L zeros in the domain
Ll,ρ,1 with L� degg, the exponential polynomials g(r) and g{r} have at least L−r zeros interior
to the curve Kl,ρ′,r+1, as soon as the degree of g is larger than C(l, ρ,ρ′, α, r).

Proof. – First, remark that Theorem 2.3 applies in the same way, when the derivative ofg is
replaced with the functiong{1} defined above. Then, it suffices to apply Theorem 2.3r times,
successively with the polynomialsg,g(1), . . . , g(r−1) or the polynomialsg,g{1}, . . . , g{r−1} on
two consecutive curves taken among the set of(r + 1) concentric curves

Kl,ρ+k(ρ′−ρ)/r,k+1, k = 0, . . . , r,(3.1)

leading to the conclusion that, for degg large,g(r) or g{r} haveL − r zeros interior to the
curveKl,ρ′,r+1. The integerC in the statement of the theorem exists and may be chosen as
the maximum of ther constants

C
(
l, ρ + k(ρ′ − ρ)/r, ρ + (k + 1)(ρ′ − ρ)/r, k, k + 1, α

) + k, k = 0, . . . , r − 1,

where these constants refer to those introduced in Theorem 2.3. Observe that if we deal with the
sequence of derivatives of typeg{k}, then the fourth argument in the above constants can actually
be equal to zero since degg{k} = degg − k, k = 0, . . . , r − 1. ✷

Now, we shall consider a sequence of exponential polynomialsgν whose degrees tend to
infinity, and derivatives of typeg{rν }

ν whose orderrν may possibly grow to infinity with the degree
of gν . We restrict ourselves to bounded domains included in the horizontal strip|Im z|< 2π/α,
whereα is an upper bound for the diameter of thegν ’s.

THEOREM 3.2. – Let ε, α, l and ρ be four real positive numbers such that ρ < 2π/α. Let
(gν)ν∈N, be a sequence of real exponential polynomials of diameter less than or equal to α such
that

lim
ν→∞ deggν = ∞.
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Let rν be a sequence of integers with 1� rν � deggν − 1, satisfying:

4

(
1− αρ

2
cot

αρ

2

)
< inf

ν∈N

deggν + 1− rν

rν + 1
.(3.2)

For each ν, assume that gν has Lν � deggν zeros in the domain Ll,ρ,1. Then, there exists a

positive integer C depending on ε, α, l and ρ such that the exponential polynomial g{rν }
ν has at

least Lν − rν zeros interior to the curve Kl,ρ+ε,rν+1, as soon as the degree of gν is larger than C.
Moreover, if

lim
ν→∞ rν = ∞ and lim

ν→∞
deggν
rν

= µ (1 � µ� ∞),(3.3)

assumption (3.2)in the previous assertion may be replaced by

4

(
1− αρ

2
cot

αρ

2

)
<µ− 1.(3.4)

Remark 1. – First, as in Theorem 2.1, we know from the upper bound in Proposition 2.4 and
the assumptionρ < 2π/α that the integerLν can only assume the two values deggν or deggν+1.
Second, observe that the conditions (3.2) and (3.4) are independent from the lengthl of the strip
Ll,ρ,1 containing all the zeros of thegν , ν ∈ N.

Remark 2. – Theorem 3.2 improves asymptotically the upper bound in (2.6) for certain
exponential polynomials in the strip| Imz| < ρ, π/α � ρ < 2π/α. Let us give an example.
Consider a sequence of real exponential polynomialsQnν ez − Pmν of diameterα = 1, with
degPmν =mν , degQnν = nν , mν + nν → ∞, and satisfying

4

(
1− ρ

2
cot

ρ

2

)
< inf

ν∈N

nν + 1

mν + 2
.(3.5)

From Proposition 2.4, we know thatQnν ez − Pmν cannot have more thanmν + nν + 2 zeros in
the strip| Im z| < ρ, π � ρ < 2π . Assume it has exactlymν + nν + 2 zeros there. Denote by
D the differentiation operator. In view of (3.5), forν large, we can differentiatemν + 1 times
Qnν ez − Pmν and get that(I + D)mν+1Qnν , which is a polynomial of degreenν , hasnν + 1
zeros inLl,ρ+ε,mν+2, a contradiction. Consequently, forν large,Qnν ez − Pmν has no more than
mν +nν +1 zeros in the strip| Imz|< ρ, π � ρ < 2π , which improves in this example the upper
bound in (2.6) by 1.

Remark 3. – The domain containing the zeros ofg
{rν }
ν , that is the domainLl,ρ+ε,rν+1 remains

bounded along the imaginary axis and has a length along the real axis which is of order
√
rν , if rν

tends to infinity asν tends to infinity. The precise magnitude of this length prove to be important
since it allows one to use Theorem 3.2 in order to obtain convergence properties in the problem
of rational interpolation to the exponential function with complex conjugate interpolation points
(see [14]).

In the previous section, we made use of Proposition 2.2, which gives a lower bound for an
expression involving distances between points located interior to the domainLl,ρ,p on the one
hand and on the surrounding curveKl,ρ′,p+1 on the other hand. Here we shall need the order of
this expression when the radiusρ′ tends toρ, first when the parameterp is fixed, and second
also whenp tends to infinity. This is the content of the next two lemmas:
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LEMMA 3.3. – With the same notations and assumptions as in Proposition 2.2, we have:

min
M∈Ll,ρ,p

N∈Kl,ρ′,p+1

Q(M,N)= 2p

ρ3 (ρ
′ − ρ)− p

7p+ 5

2ρ4 (ρ′ − ρ)2 + O
(
(ρ′ − ρ)3

)
,(3.6)

as p is a fixed integer and ρ′ tends to ρ.

Remarks. – As ρ′ tends toρ, the minimums in (2.3) and (2.4) are both given by the ratio
(ρ′2 − ρ2)/(ρ′2 + ρ2)2, which is of order(ρ′ − ρ)/2ρ3. Hence, the order 2p(ρ′ − ρ)/ρ3 in
the right-hand side of (3.6) improves the previous one, asρ′ tends toρ. In particular, it takes
the parameterp into account. Remark also that the estimate in (3.6) is independent from the
parameterl.

Proof. – Let us first consider the casel = 0, i.e.M ∈ Fρ,p , andN ∈ Eρ′,p+1. In the limit
caseρ′ = ρ, we know from Lemma 2.7 that the minimum in (3.6) actually equals 0. It is easily
checked that for anyM ∈ Eρ,p , of coordinates(u, v) satisfying

|u| � (p/
√
p+ 1)ρ, u �= 0,(3.7)

this minimum vanishes whenN ∈ Eρ,p+1 has coordinates(x, y) such that

x = p+ 1

p
u, y2 = v2 − u2

p2 .(3.8)

If inequality (3.7) is not met, then the minimum is distinct from 0.
Assume nowρ fixed. SinceQ(M,N) is minimized only whenM lies on the boundary of

Fρ,p , that is onEρ,p , this expression can be seen as a function of three parameters, namely the
two arguments ofM andN and the ratioη := ρ′/ρ. Plugging the parameterizations

u= ρ
√
p cosα, v = ρ sinα, x = ρ′√p+ 1cosβ, y = ρ′ sinβ(3.9)

in expression (2.10) ofQ(M,N), then differentiating with respect toη and evaluating this
derivative atη = 1 and argumentsα andβ corresponding to pointsM andN such that (3.8)
holds, leads to the following simple expression:

1

2ρ2

p

cos2α(1− cos2α)
.

Now, it only remains to take the minimum of this ratio as cos2α ranges from 0 top/(p+ 1) (see
(3.7) and the first equation in (3.9)). Obviously, this minimum is met as cos2α = 1/2, which is
always possible sincep � 1 entails 1/2 � p/(p + 1). It is thus equal to 2p/ρ2. Consequently,
considering an expansion ofQ(M,N) in a neighborhood ofη = 1,M ∈ Eρ,p andN ∈ Eρ′,p+1

such that cos2α = 1/2 and (3.8) holds, we obtain that the minimum in the left-hand side of (3.6)
is of order 2p(ρ′ − ρ)/ρ3 asρ′ tends toρ. The second term in the expansion is obtained by
evaluating the second-order derivative ofQ(M,N) at the above points. This finishes the proof
of (3.6) whenl = 0.

To obtain the same result for the general casel > 0, it is sufficient to remark that when
M ∈ Ll,ρ,p has coordinates(u,ρ) with |u| � l, the minimum ofQ(M,N), N ∈ Kl,ρ,p+1, does
not vanish. On the other hand, whenl � |u| � l + √

pρ, the analysis given in the casel = 0
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remains valid since whenl > 0, one merely performs a shift of−l (resp.l) on the left (resp.
right) parts of bothFl,ρ,p andEl,ρ,p+1. ✷

LEMMA 3.4. – With the same notations and assumptions as in Proposition 2.2, we have:

min
M∈Ll,ρ,p

N∈Kl,ρ′,p+1

Q(M,N)� min

(
2ε

ρ2
, (

√
p+ 1ρ′ + √

pρ + 2l)−2
)
,(3.10)

where p tends to infinity and ρ′/ρ = 1+ ε/p, with ε → 0 as p→ ∞.

Remark. – Whenρ′/ρ = 1 + ε/p, the dominant term in the expansion (3.6) and the first
expression in the minimum of (3.10) coincide.

Proof. – First assumel = 0. We consider any pointM ∈ Eρ,p , of coordinates(u, v) satisfying
(3.7) andN ∈ Eρ′,p+1 of coordinates(x, y) such that

x = ρ′

ρ

p+ 1

p
u, y2 =

(
ρ′

ρ

)2(
v2 − u2

p2

)
.(3.11)

The pointN has been chosen in this way, because, asρ′ → ρ, N tends to the pointNρ of
Eρ,p+1 such thatQ(M,N0) vanishes. Plugging the parameterizations (3.9) and relations (3.11)
in expression (2.10) ofQ(M,N), then using the assumptionρ′/ρ = 1+ ε/ρ, η→ 0 asp→ ∞,
we find after some computations that the dominant term inQ(M,N) equals 2ε/ρ2, asp → ∞.
The identical estimate for the general casel > 0 follows from the same observations as in the
proof of Lemma 3.3.

Now, sincep tends to infinity, we need to compare the latter minimum with the other possible
one which occurs whenM ∈ Ll,ρ,p has coordinates(l+√

pρ,0),N ∈ Ll,ρ′,p+1 has coordinates
(−l − √

p+ 1ρ′,0), whose value equals(
√
p+ 1ρ′ + √

pρ + 2l)−2. This shows (3.10) and
finishes the proof of the lemma.✷

We are now in a position to prove Theorem 3.2.

Proof of Theorem 3.2. – For simplicity, we shall omit the subscriptν. The difficulty in applying
Theorem 2.1 as in the proof of Theorem 3.1 lies in that the concentric curves (3.1) have their
mutual distances tending to 0 and their lengths along the real axis tending to∞, asr possibly
goes large. Hence, in view of the Lemmas 3.3 and 3.4, the maximum in the right-hand side of
(2.2) tends to∞ and it becomes unclear whether this inequality can still be satisfied. Here, we
define a sequence of concentric curves

Kl,ρ,1,Kl,ρ1,2, . . . ,Kl,ρr ,r+1, ρ =: ρ0 < ρ1 < · · ·< ρr,(3.12)

distinct from the sequence (3.1): leta be some positive real number to be chosen later, and define
the sequenceρk , k = 0, . . . , r, by the recurrence relations:

ρ0 = ρ, ρk = ρk−1 + aρk−1

k(degg + 1− k)
, k = 1, . . . , r.(3.13)

Since the product
r∏

k=1

(
1+ a

k(degg + 1− k)

)
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converges to 1 asν tends to∞, ρr tends toρ. In particular, the differencesρk − ρk−1,
k = 1, . . . , r, tend to zero, and moreover, from (3.13),ρk/ρk−1 = 1 + a/k(degg + 1 − k)

with a/(degg + 1 − k) → 0, asν tends to∞ (see the assumption (3.2)). Hence, in the proof
of Theorem 2.1, instead of using Proposition 2.2 in order to get an explicit lower bound for
Q(M,N) in (2.24), we may appeal, asν tends to∞, to the more precise estimates established
in Lemmas 3.3 and 3.4. Ifr remains bounded, we deduce from Lemma 3.3 that

min
M∈Ll,ρk−1,k

N∈Kl,ρk ,k+1

Q(M,N)� 2a

ρ2
k−1(degg+ 1− k)

, k = 1, . . . , r,

while, if r andk tend to infinity, we deduce from Lemma 3.4 that

min
M∈Ll,ρk−1,k

N∈Kl,ρk ,k+1

Q(M,N)� min

(
2a

ρ2
k−1(degg + 1− k)

, (
√
k + 1ρk + √

kρk−1 + 2l)−2
)
.

Consequently, fork = 1,2, . . . , r, the condition (2.2) may be replaced with the two following
ones

degg + 1− k � 1

ρ2
k

(
1− αρk

2
cot

αρk

2

)
η

2a
ρ2
k−1(degg+ 1− k),(3.14)

and

degg+ 1− k � 1

ρ2
k

(
1− αρk

2
cot

αρk

2

)
(
√
k + 1ρk + √

kρk−1 + 2l)2,(3.15)

for someη > 1. Observe that in our situation, Theorem 2.1 applies withg{k}. Indeed, it has
(contrary tog(k)) exact degree degg − k and thus no extra zeros in the complement ofLl,ρk,k+1

in the strip|Im z|< 2π/α, except for one possible real zero whose contribution, as was seen in
the proof of Theorem 2.1, can be neglected. Obviously, condition (3.14) will be fulfilled as soon
as the parametera is chosen sufficiently large, so that only condition (3.15) has to be met. Here,
we may remark that, since the diameter ofg{k} is only decreasing ask increases and since the
functionx → 1− x cotx is increasing forx � 0, (3.15) is actually stronger than what is needed.
Now, as its right-hand side is less than

4(r + 1)

(
1− αρr

2
cot

αρr

2

)(
1+ l√

r + 1ρ

)2

,

a sufficient condition for (3.15),k = 1, . . . , r, to hold is given by the inequality

4

(
1− αρr

2
cot

αρr

2

)(
1+ l√

r + 1ρ

)2

<
degg + 1− r

r + 1
.(3.16)

This last condition is implied by the stronger inequality

4η1

(
1− αρ

2
cot

αρ

2

)(
1+ l√

r + 1ρ

)2

<
degg + 1− r

r + 1
,(3.17)
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whereη1 > 1, sinceρr tends toρ as ν tends to∞. Now, we consider two cases. First, if
r �

√
degg, (3.17) is satisfied as soon as

4η1

(
1− αρ

2
cot

αρ

2

)(
1+ l

ρ

)2

<
degg + 1− √

degg√
degg + 1

,

which will be granted as soon as degg is larger than some constant depending only onα, ρ and
l. Second, ifr >

√
degg, the factor 1+ l/

√
r + 1ρ tends to 1 as degg tends to∞, which shows

that, for degg large, the condition (3.17) is implied by the condition (3.2), for someη1 > 1. Thus,
if (3.2) is satisfied, and if degg is large enough, we obtain a sequence of concentric curves (3.12)
with the property that Rolle’s theorem can be applied on each pair of two consecutive curves
taken from this sequence. Doing so, we eventually obtain thatg{r} hasL − r zeros interior to
Kl,ρr ,r+1, hence toKl,ρ+ε,r+1, for ν large. Finally, if (3.3) holds, the right-hand side of (3.16)
tends toµ− 1 asν tends to∞. It is then clear that the factorη1 is not necessary in the sequel of
the argument, after (3.16), which means that the inequality (3.2) transforms into the inequality
(3.4), as asserted.✷

4. Some remarks concerning the previous results

First, the assertions in Theorem 3.2 have been applied in [14] to the problem of rational
interpolation to the exponential function by means of complex conjugate interpolation points,
allowing to recover in this case all the classical properties of the Padé approximants, such as
separated convergences of the numerator and of the denominator, as well as error estimates (cf.,
e.g., [8] for these classical results and [1] for the case of real interpolation points).

Second, Theorem 3.2 may also give some hints when asking for the maximal number of zeros
a real exponential polynomial can have, e.g., in a disk. Several authors, Polya, Gelfond, Turan,
Mahler, have given such bounds for general exponential polynomials, i.e. allowing complex
frequencies and complex coefficients. These latter bounds have been subsequently improved by
Tijdeman [11], Waldschmidt [13], Voorhoeve [12], leading to the following result:

Let N(g, z0, r) denote the number of zeros of the exponential polynomial

g(z)=
n∑

j=1

qj (z)eωj z, ωj ∈ C,

where the qj are complex polynomials, that are contained in the closed disk of radius r , centered
at z0. Then,

N(g, z0, r)� 4Ωr/π + 2 degg,(4.1)

where

Ω = max
{|ωj |, j = 1, . . . , n

}
.

For real polynomials, an upper bound is easier to compute. Indeed, from Proposition 2.4, we
knows that forg a real polynomial of diameterα,

N(g, z0, r)� αr/π + degg,(4.2)

and this upper bound even holds true in any horizontal strips of height 2r (incidentally, note
that the previous upper bound is half the upper bound in (4.1)). Now, we may ask about the
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sharpness of this upper bound and in particular what happens asymptotically that is whenz0
goes to infinity or when the degree ofg grows to infinity. The Polya–Dickson theorem, which
gives the asymptotic location of the zeros of large modulus, shows that outside a compact set
near the origin, the right-hand side of (4.2) can be simplified toαr/π . This answers the previous
question whenz0 goes to infinity. Now, ifz0 is fixed while degg grows to infinity, Theorem 3.2
would rather indicate that the right-hand side of (4.2) can be simplified to degg. Indeed, let us
consider a sequence of exponential polynomials with a given numbern of terms, say,

gν(z)=
n∑

j=1

pj,ν(z)eαj,νz, degpj,ν =mj,ν,

and the sequence of integers

rν =
n∑

j=2

(mj,ν + 1)= degg −m1,ν,

such that Theorem 3.2 applies. Obviously, from (3.2), we see that this will be the case whenm1,ν

is larger thanrν . Then, if thegν have more than deggν zeros, we deduce that theg{rν }
ν , which are

polynomials of degreem1,ν , have more thanm1,ν zeros in the complex plane, a contradiction.
Based on these observations, we ask more generally the following:

Open Question. – Let be given a closed disk, centered at the origin, of radiusr, and a diameter
α. Does there exist an integerC depending only onr andα such that, for any real exponential
polynomialg with diameter less than or equal toα, one has

N(g,0, r)� degg,

as soon as the degree ofg is larger thanC?
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