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ABSTRACT. — We present a version of Rolle’s theorem for real exponential polynomials having a number
L sufficiently large of zeros in a compact gétof the complex plane. We show that the derivative of
the exponential polynomials have at ledst- 1 zeros in a region slightly larger tha8. The method of
proof is elementary and similar to that of the classical Jensen’s theorem about the location of the zeros of
the derivative of a real polynomial. The proof also relies on known results concerning the distribution
of the zeros of real exponential polynomials. Besides, we display a Rolle’s theorem for higher-order
derivatives and as a conclusion make a few comments about the maximal number of zeros a real exponential
polynomials may have in a given compact sefof1 2001 Editions scientifiques et médicales Elsevier SAS

RESUME. — Nous présentons un analogue du théoreme de Rolle pour les polyndmes exponentiels réels
admettant un nombré suffisamment grand de zéros dans un ensemble comipaltt plan complexe.
Nous montrons que la dérivée de ces polyndmes exponentiels possede au.moihgéros dans une
région légérement plus grande gé& La méthode de démonstration est élémentaire et s’inspire de
celle du théoréme classique de Jensen sur la distribution des zéros de la dérivée d’'un polyndme réel.
La démonstration utilise en outre des résultats classiques sur la distribution des zéros des polyndémes
exponentiels réels. Nous donnons également une version du théoréme de Rolle pour les dérivées d’'ordre
supérieur et en conclusion, quelques remarques sur le nombre maximal de zéros d'un polyndbme exponentiel
réel dans un ensemble compact@®ed 2001 Editions scientifiques et médicales Elsevier SAS

AMS classification: 30C15

1. Introduction
Exponential polynomials are entire functionsf the form
n
g =) q;() e,
j=1

where thew; are complex numbers, usually called the frequencigs ahd the coefficientg;
are complex polynomials. We assume thatdheare distinct and the polynomials not zero.
We set:

m]'=degqj, j:l,...,n.
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Since the coefficientg; are uniquely determined by the functignwe can define thdegree of
gas

degg::n—l—i—ij.
j=1

Properties of exponential polynomials, which are solutions of linear homogeneous differential
equations with constant coefficients, are of interest in analysis, number theory or in applications
of the type occurring in control theory. The zeros sets and ideals generated by exponential
polynomials have been the subject of many studies. We refer to [2,3] and the bibliography therein
for an exposition of this subject.

In this paper, we will be interested in studying the zeroseaf exponential polynomials,

(1.1) g) =) pj) €&,

j=1
with real frequencies

Oar<az < - <ay,

andreal polynomial coefficients p ;.

Apparently, there does not seem to exist easy generalizations of the classical Rolle’s theorem
for functions of a complex variable. A few references for this topic are, e.g., [4,7,10]. Here, we
derive an analog of Rolle’s theorem for exponential polynonmgaisving L > degg zeros in a
compact regioriC around the origin. When the degreegifs sufficiently large, we show that at
leastL — 1 zeros of the derivativg’ lie in a regionK’ slightly larger than the original region
K (for example, ifK is the disk of radiug, thenk’ consists of the interior of an ellipse whose
semi axis have lengthg2p andp).

Note that the above assertion bears some resemblance with Lucas’s theorem, which says that
the zeros of the derivative of a polynomiallie in the convex hull of the (deg) zeros ofp.

The proof of our result is elementary. It is adapted from the method used in proving the Jensen
theorem for polynomials [6, Theorem 7.1, p. 26], asserting that every non real critical point of
a real polynomialp lies in at least one of the circles whose diameters are the line-segments
joining the pairs of conjugate zeros pf the so-called Jensen circles. Applying the argument
principle to the logarithmic derivative of our exponential polynomials on a convenient contour
and comparing the contributions of the zeros that are interior with those that are exterior to this
contour leads to our result. Here, the distribution of the zeros of exponential polynomials plays
an important role. In particular, the number of these zeros is known to be bounded above in any
given horizontal strips (see Proposition 2.4). The proof of this Rolle’s theorem will be the content
of Section 2. In Section 3, we show how to derive Rolle’s theorem for higher order derivatives
and also for a natural analog of them. In Section 4, we make a few comments about the results
and suggest an open problem.

2. A complex Rolle’'stheorem for real exponential polynomials

We will need a few notations. Let, p and! be three positive real numbers. Throughdit,
and D(0, p) will respectively denote the circle of radigsand the closed disk of radiys both
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centered at the origin. Also we denotedjy , the ellipse such that

. X2 2 2
Eppi= {x+|y: —+y‘=p }
p
andF, , the closed interior of this ellipse, that is
. X2 2 2
Fo.p = {x+|y: —+y°<p }
p
Hence, in particulatF, 1 = D(0, p). Moreover, we set:

Lipp={x+iy: =I<x <, —p<y<plU(Fpp—DU(Fpp+D),

so thatZ, ,, , is the bounded strip consisting of the interior of a rectangle of dimension22,
centered at the origin, whose left and right sides have been replaced with semi-ellipses of half-
axis p and ,/pp. We denote by, , , the closed curve which consists of the boundary of the
domaint; , .

Moreover, we will use the following notation. F&4f and N two points in the complex plane,
we set:

d?(N, Mg) — d?(M, Mo)
d2(N, M)d2(N, M)

where My denotes the projection dif on the real axis)x, M, the conjugate point o#/, i.e.
the point symmetric ta/ with respect taDx andd(-, -), the usual Euclidean distance between
points in the plane.

Finally, we define theliameter of a real exponential polynomial (1.1) to be the positive number
o, — o].

The aim of this section will be to prove the next two theorems:

(2.1) O(M,N):=

THEOREM 2.1 (A complex Rolle’s theorem). +et ¢ be any real exponential polynomial of
diameter less than or equal to some fixed positive real number « and let I, p and p’ be three
positive real numberssuch that 0 < p < p’ < 27 /a. Finally, let p > 1 be some integer. Assume
that ¢ has L > degg zerosinthedomain £; ,, ,. Then the derivative of g hasat least L — 1 zeros
inthedomain £; , ,+1 assoon as

1 ap’ ot,o’) 1

2.2 degg > —(1— — cot— max M,N) -.

(2.2) o p/z( Feo"y ) max  O.N)
NEK:I,P/.IH'J-

Remark 1.— From the upper bound in the forthcoming Proposition 2.4 and the assumption
p < 21 /a, we see that the integércan only assume the values degr degg + 1.

Remark 2. — The assumptiop’ < 27 /a has been given because the function

p' = 1—(ap'/2) cotlap’/2)

which appears in (2.2) has a singularity at/&. Obviously, the conclusion of Rolle’s theorem
with respect to a domaifi; , ,+1, o’ > 27 /e, follows if one can apply the theorem on a smaller
domain withp’ < 27 /a.
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In order to make more explicit the maximum in the right-hand side of (2.2), we state the
following proposition:

PROPOSITION 2.2. — Let p beapositiveinteger andlet I, p, p’ bethree positivereal numbers
with p < p". Then, forany M € L; , , andany N € K; 41, we have:

p'? = p? (p/+«/§l)2—pz> :
, ifp=1,

2.3 (M,N) > min< ,
23) © (02 + 0?2 2(p' +V2)? — p?)?

and
2 2
L. / 1 2), if p>2.
(p“+p2?% WP+l + /pp+2)

Remark 1.-— Actually, a weaker condition than that in (2.2) may be sufficient in order to apply
Rolle’s theorem. Indeed, denote Byp, p’) the expression in the right-hand side of (2.2) where
we replace the maximum of the(M, N)~1's with the upper bound deduced from Lemma 2.2.
Note thatS(p, p’) tends to infinity wherp’ tends top and to Zr/«. In the segmento, 2 /a),
it meets a minimun® for some particular valug;, of o’ and then increases up to infinity at
27 /. Since the conclusion of Rolle’s theorem holdxlippéypﬂ as soon as deg> S, it holdsa
fortioriin £; » 11, 0’ = pg, @s soon as deg> S. Consequently, one can replace the expression
S(p, p') in the right-hand side of (2.2) with ipt, ./} S(p, u).

Remark 2. — The minimum in (2.3) is smaller than or equal to the minimum in (2.4), when
p = 1. In particular, with the proof to be given here, inequality (2.4) does not extend to the case
p=1.

(2.4) Q(M,N) >min<

Remark 3.—Where = p’ — p tends to 0, the degree giheeded in order to apply Theorem 2.1
becomes of ordef /¢, whereC is a constant depending only grandc.

Examples. — Assumeg is a real exponential polynomial of diameter 1 having gleg 2
zeros in the circlely, so that with the notations of Theorem 201= 1,/ =0, « = 1. One
checks that, when replacing the maximum in the expresSidno’) in the right-hand side
of (2.2) by the upper bound deduced from (2.3), one obtains a quantity which is decreasing
whenp’ increases from 1 ta/2 and then increasing up to infinity a2 The minimum value
at /2 is approximatively equal to.076. Moreover, the expressidf(1, p’) has value 2 for
o' = py~=1.098. Hence, Rolle’s theorem holds for the polynongiah the domainﬁo’pégz (and
a fortiori in any domainCo , 2, p” > pj) without any assumption on its degree. If one wants to
apply Rolle’s theorem in smaller domaids , o, €.9.p" = 1.05 or p’ = 1.01, condition (2.2)
then translates to deg> 4 or degg > 18, respectively.

In Fig. 1, we have graphed the zeros (denoted with circles “0”) in the stirip< y < im of
the ninth derivatives of the exponential polynomiglgz) = € — P19(z), degP19 = 19, and
22(2) = Qo(z2) €% — P10(z), degQg = 9, degP1o = 10, Qg monic, such that

(2.5) g(im) = gV (—im) = g(in) = ¢ (—im)=0, k=0,...,0.

Hence,g1 and g2, which are of degree 20, are uniquely determined by (2.5). Moreover, the
derivativeSgig) and gég) both admit a simple zero atriand —ix. In Figure 2, we have also
graphed the zeros in the strignr < y < iz of the ninth derivative of the exponential polynomial

g3(2) = Q19(z) € — 1, degQ19 = 19 such that

gP(im) =g¥ (-im)=0, k=0,...,9.
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Fig. 1. The zeros of the ninth derivatives@f andg» in the strip—7 <y <.
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Fig. 2. The zeros of the ninth derivative gf in the strip—7 < y < 7.

On these three examples, we observe that the zeros of the derivatives deviate from the segment
[—im, imw] and on the last one, also leave the circle of radius

Theorem 2.1 may be generalized to a dom&ip_, of arbitrary heighf. Indeed, we have:

THEOREM 2.3.— Let a, [ and p < p’ be four real positive numbers, and let « € N and
p > 1 beintegers. There exists an integer C(l, p, o', a, p, «) such that for any real exponential
polynomial g of diameter less than or equal to @ having at least L, L > degg — a, zerosin the
domain £, ,, ,, the derivative of ¢ hasat least L — 1 zeros in the domain £; v 1, &s soon as
the degree of g islarger than C(l, p, 0, a, p, @).

Remark. — Theorem 2.3 is more general than Theorem 2.1 because here we allow a domain
Ly, p of arbitrary heighjp but also because the numlieof zeros of the exponential polynomial



394 F. WIELONSKY / J. Math. Pures Appl. 80 (2001) 389408

g hasint; , , is allowed to be less than the degreegoplip to some fixed constant. Of course,
since we do not compute an explicit expression for the int€yérp, o', a, p, o), it is also less
precise than Theorem 2.1.

Before proving the above theorems, let us begin with displaying some known results
concerning the zeros of exponential polynomials. The following proposition was alluded to in
the introduction. It gives estimates on the number of zeros an exponential polynomial may have
in horizontal strips (cf. [9, Problem 206.2]).

PROPOSITION 2.4. — Let g beareal exponential polynomial of diameter « and let N (g, a, b)
the number of zeros of g that are contained in the horizontal strip a < Imz < b, we have:

b— b—
2 degg <N(g.a,b)<a

a +de
2 2 9-

(2.6) o

Idea of proof. — The derivation of these inequalities consists in applying the argument principle
on arectangléz: a <Imz <b, —c <Rez < ¢}, and then let tend tocc. O

We proceed with recalling the Polya—Dickson theorem (cf. [2,3]), restricting ourselves to the
real frequencies case. Following [2], we set a few notationsA:eff =0, ..., n, be the points
in the plane with coordinate® ;, m ;) wherea; andm ; have been defined in Section 1 andllet
be the upper convex envelope of these points. In other wérdsthe polygonal line which joins
Py to P, has vertices only at points of the g&;}, no pointsP; lie above it and the domain
belowL is convex. Let the successive segments dle denoted by, ..., L, and let the slope
of L, be denoted by, (from the definition ofL, the slopeu, is a decreasing function ej. For
¢ > 0, we consider the curvilinear strips defined by:

Vr:{ze(C: |Re(z+urlogz)|<c}, r=1...,k.

Note that the strips are disjoint, for larggg, and thatV, 1 lies to the right ofV,..

PROPOSITION 2.5. — Let g be an exponential polynomial asin (1.1), possibly with complex
coefficients. Outside a certain disk {z: |z| < ¢2}, the following assertions hold true:
(i) All zeros of g are contained in the union of the regions V..
(i) Inanyregion R,

|Re(z+ur Iogz)|<c, |Im(z+ur Iogz)—a|<b,
with no zeros of g on the boundary, the number of zerosin R satisfies
(2.7) b/m)ya+1—n, <n(R) < (b/m)aa —1+n,,

where n, isthe number of frequencies lying in the segment L, and « is the differencein
values of the frequencies at the end-pointsof L, .

(i) Inany strip V, with u, # 0, the zeros of g lie asymptotically along a finite number of
curves |z €] = |wr |, w in the set of roots of an algebraic equation determined by the
points on L,. Clearly, these curves are symmetric with respect to the real axis and if
z=x + iy isapoint lying on one of these curves, then |y /x| — 400 as |z| — +oc.
Moreover, the zeros z = x + iy of large modulus accumulating near |z#r €| = |wHr|
are described by the following asymptotic formulas. Let I be any large integer such that
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luy > 0. Then, for z lying in the upper-half plane, we have z = z; = x; + iy;, with
x; = pr(log|w| — log|w, argw + 2,7 — p,7/2) 4 0(1)

and
yi = pr(@rgw + 2w — 7/2) + 0(1),
whereas, for z lying in the lower-half plane, wehavez = z_; = x_; + iy_;, with

x—1 = pr(log|w| — log|u, argw — 2,7 + wr7/2]) + 0(1)

and
y_1 = ur@rgw — 2lw 4+ 7 /2) + 0o(1).

Remark. — When the exponential polynomial has real coefficients, the algebraic equation
alluded to in assertion (iii) is real as well, so that the poimtandz_; corresponding to the
rootsw andw respectively, are conjugate rootsgf

From these results we may derive a precise form of the Hadamard factorization of a real
exponential polynomial.

PROPOSITION 2.6. — Assume that g(z) is a real exponential polynomial vanishing at the
origin with a multiplicity ng, no > 0, and let Z denote the set of zeros of the entire function
g(z)/7". Let N be a fixed large positive integer, we decompose Z into an union of a finite
subsets Zp = {z;} of roots of small modulus and an infinite subsets of roots (z;);—+n...., given
by asymptotic expressions asin Proposition 2.5, assertion (iii) . Then, g(z) admits the following
representation:

(2.8) s =cme [] (1_ i) 1l <1_ i) (1_ i)’
I>N

seZo 3i 2l -1

where the infinite product converges and where a and ¢ are some real constants.

Proof. — Sinceg is an entire function of order 1, the Hadamard factorization theorem tells us
that

(2.9) g(z) =" 1_[ <1_ i) 1_[ (1_ i) e/,
[=%N,...

Zi Z
Zi€Zo ! !

whereh(z) is a polynomial of degree less than or equal to 1. In the last product, we bracket
together the factors corresponding to inditesid —/ and show that the series

11
S=Z(—+—)
I>N 2l -1

converges. Indeed, whep [ large, lies in a strig/,. with u, # 0, we know from the expressions
in assertion (iii) of Proposition 2.5, that:

71 = —prl0g| 2w,y | + 2ilp, 7w + O(1),

21 = —p,log| 2| — 2ilp,m 4+ O1).
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Thus, the general term ¢f satisfies

1 1 —2u,log |2,
—+ —=——F"————(14+0(1)),
2 2o (2prm)? ( )

which implies the convergence of the series. Whgnr= 0, the result remains true since the zeros
are in| Re(z)| < ¢ and by the estimates (2.7), they lie along the imaginary axis with a constant
density, equal toa /27 .

Hence, the exponential factors/@ are not necessary to the convergence of the canonical
product in the right-hand side of (2.9). Taking them out of this product and collecting them
together with the polynomial leads to the asserted expression goiFinally, the constants
andc are real sincg is. O

Remark. — The representation (2.8) gfcan also be deduced from the fact tigdas a function
of completely regular growth, see [5, Chapter IlI].

In the sequel, we shall need the following simple geometric lemma:

LEMMA 2.7.— The circles whose diameters are the vertical chords of the ellipse £, ,, liein
the closed interior of the ellipse £, ,+1 and have this ellipse as their envelope. Evidently, this
implies that the circles whose diameters are the vertical chords of the domain £; , , lie in the
domain £; ,, ,+1 and have K; , ,+1 astheir envelope.

Proof. — Easily verified by elementary calculusto

Proof of Proposition 2.2. — Let (x, y) and(u, v) be the coordinates in the complex plane\of
andM respectively. Then, from the definition (2.1) 6 M, N), we deduce
[(x —u)? +y2 =12

2.10 M,N)= .
(2.10) o ) [((x —u)?+ (y — v)2][(x — u)?+ (y + v)?]

We have
[ — w2+ (v — 02][(x — )P+ &+ )] < [(x —w)? + y2 +v*]%.

Hence, setting

(2.11) X:=x—uw?+y>? Y =12,
we get
O(M,N) > X-r
T X+

Let F(X,Y):=(X —Y)/(X + Y)2. Since

oF Y —X oF Y —3X

(2.12) X (X+Y)3 Y X+1)3

F has no local minimum and the magnitude Bfmust be studied on the boundary of the
domain inR? consisting of those pointsX, Y) such that (2.11) holds wittu, v) € Ly, p and
(x,y) €Ky, p+1. ASSumeY has a fixed value?. Let M be the point on the boundaky, ., , of
coordinategu, v) with u > 0 (so thatv =/ when 0< u <! and (u — )2/p = p? — v? when
u > 1), and My its projection on the real axis. Singé lies on the curveX; , ,11, X can
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only range from the square of the minimal distance betwefgrand K; ,» ,+1 to the square
of their maximal distance. This maximal distance evidently equals+ 1p’ + 1 + u and it is
also straightforward to check that the minimal distance equfaifsu < 1, \/p'> — (u — )2/ p if

I<u<l+po'//p+1andyp+1p’ +1—u otherwise. We thus have to study the minimum
of the following three values of':

F(W/p+1p +1+w2 o> —w—D%p).  F(p'>—@—D?/p.p* = u—1?/p).
and
F(/p+10 +1—uw)? p* — (u—1)?/p),
asu ranges froni to! 4+ ./pp on one hand, and the minimum of the following two valueg'of
F(Wp+10 +14+uw? p?) and F(p% p?),

asu ranges from 0 t@, on the other hand. Since

WP T1p +1—w?— (% —w—1?/p)=(Vp+1u—1)—pp)/p>0,
we have

P2 —u—0%p<p+1+1-w?< p+1p +1+w?
asu ranges from to ! + ,/pp, and also

P <P+ 10 +D2<(/p+ 10 +1+w?< p+ 1o + 212

asu ranges from 0 td. SinceF increases then decreases as a functiok ,ofve only have to
look for the minimums of

/ 2 2 2

F(p 10 +1 4+ w2 02— (u—D2/p) = p(Wp+1p +1+u)y + @w—0D"—pp

(Vo421 +14w7% 07~ =D p) P T 10 + 1+ w2 = -2+ pp?)?
(2.13)

and

,0/2 . ,02

(02 = 20u = 12/p + p?)?

asu ranges froml to [ 4+ ,/pp. One can check that ip is distinct from 1 or ifp =1 and

o' + /21 = +/2p then (2.13) decreases asncreases. Thus, assumipg+ /21 > +/2p when
p =1, the minimum of (2.13) is

/p+1p +/pp+2)72

Whenp =1 andp’ ++/2 < +/2p, the minimum of (2.13) as € [/, + /pp] is either

(214)  F(p®—@—0%p,p* = w—D?/p) =

20" +V22=p? (V22— p?
(0" + V21)2 + p?)2 (' +V2)2 — p2)2’
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depending whethey' + /21 < /3/2p or p’ ++/21 > \/3/2p. Since the last value is the smallest
one among the three, we shall consider this one whenl.
As for (2.14), it is clear that its minimum equals

2
p'°— p?

(p'2+ p2)?’
asu ranges from to ! + ,/pp, and this finishes the proof of Proposition 2.21

Proof of Theorem 2.1. — To establish this result, we shall adapt the classical proof of Jensen’s
theorem (see, e.g., [6, Theorem 7.1]). This theorem asserts that the zeros of the derivative of a
real polynomial lie into certain circles, usually called Jensen circles, that are determined by the
roots of the polynomial. Denoting by the set of roots; of g, we know from Proposition 2.6
that

(2.15) g =cme® ] (l_i.) I <1_i>’

2j€ZnLy, 57 emznty,., %
zj#0
wherea andc are some real constants and the rootg afe symmetric with respect to the real
axis sinceg is real. Moreover, by Proposition 2.4 and the assumptiongh&teal and has deg
zeros in the domaid; , ,, 0 < p < 27/, we know that the other zeros gfactually lie outside
the horizontal strip-27 /@ < Imz < 27 /a, except for one possible extra real zero that we shall
denote byzg. From the factorization (2.15), the logarithmic derivativesa$ equal to

(216) @/ =a+8/c-+ Y LGe-zp+ Yy Le-z),

z2j€Lip,p [Imz;|>27/a

wheres equals 0 or 1, depending whethgrdoes exist or not. The real zerosgdll lie in £; , ,,
except the possible extra zexg@ The term ¥ (x +iy —x;) in (2.16) corresponding to a real zero
zj = xj andz = x + iy has the imaginary part

(2.17) —y/[(x = x4+ ¥?].

Remark that the sign of (2.17) is always opposite to the sign of
The sum of terms A(x +iy — x; —iy;) and ¥/(x +iy — x; +iy;) corresponding to the pair
of conjugate zeros; = x; +iy; andz; = x; —iy; has the imaginary part

—2y[(x —x,)%+ y2 — 7]
[((x —x)?+ (y—y)2lx —x)%+ (y+y)2]

(2.18)

Denote byC; the Jensen circle of the pair of zergsandz;, that is the circle whose diameter

is the segment joining; to z;. If the pointz = x + iy lies outsideC;, the sign of (2.18) and

the sign ofy are opposite, whereasiflies insideC;, the signs are equal. Now, consider some
bounded contouf that encloses all Jensen circles corresponding to roogstiot are located

into the domain’; , ,. Then, forz onC, the sign of expression (2.18) corresponding to roots
into £; ., is opposite to the sign of. When (2.18) corresponds to roots lying outside the
strip [Imz| < 27 /«, its sign may be equal or opposite to the signyptilepending whether the
chosen point o lies inside or outside the Jensen circle. Though this will not be needed in the
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sequel, note that, from Proposition 2.5, the zeros of large modulgsasymptotically lie near
the imaginary axis. Hence, their Jensen circle completely encloses the cGnidiich means
that, in this case, expression (2.18) has the sign®ferywhere ort.

Next, we shall prove that, when summing up terms in (2.16), the contribution from the first
sum (taken over zeras; € £; ) to the imaginary part o§’(z)/g(z) becomes, uniformly on
C, larger than the contribution of the second sum (taken over zeros|mth;| > 27 /«) as
the degree of exceeds some explicitly given bound. Here, note that the possible extra fraction
8/(z — zo) can be neglected, since its contribution only adds to the first sum.

From Lemma 2.7, we know that the convex hull of the Jensen circles whose diameters are
the vertical chords of the domaig, , , is the curvek , ,41. Thus, one can choose as a
contourC the curvek’; , 41, p < p’ < 2/, surroundingC;,, ,+1 and contained in the strip
[Imz| < 27 /a. Forz a pointonky; , ,41, We give an upper bound for the modulus of

I:= Z Im(1/(z —zj))y~*

| Imz;|>27 /o
2A(x —x))2+y?—y?
(2.19) . . L x’)z Y yé] ,
Ve [((x —x)2+ = y)?lx —x)2+ (v + y/)7]

and a lower bound for the modulus of

Ji= ) Im(L/z-z))y ™t

ZjEﬁ/ypyl,
‘Sz- _ .2+ 2_ 2
(2.20) -- ¥ i ;L sz) y zj] _
0 [0 —x)Z 4 & = 20— x4 (3 37

wheres;; equals 1 or 2 depending whethgris real or complex. First, let us consider We
have

[0 —x)2 4+ y2 = 3P < [ =202+ (v — )2 [ =202+ (v + y)?]-
Thus

2 2
<y 5 51 <Y 55—
— .. o212y — )2 N211/2 2_ 2
vy 5o ge L& =X =y —x)% 4+ (5 + )7 v o Vi Y

(2.21)

From Proposition 2.4, we know that roots gfcannot accumulate in any bounded horizontal
strip. More precisely, from the upper bound in (2.6), rapt®f g with |y;| > 27/« are spread
along the imaginary axis with a density at mag@r. Hence, the last sum in (2.21) cannot be
larger than

1 1 o ap’ ap’ 2
2.22) 2 )= LA [ - =
(2:22) ((271/01)2 ~ 2 amjar— 2t > 2’ [I/f< 21 ) w( 21 ﬂ e

whereyr denotes the logarithmic derivative of the Gamma funcfigror Digamma function:

>/ 1 1
w<z)=—y+2<n+l—z+n),

n=0
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and y denotes the usual Euler constant. Using the recurrence relationship and the reflection
formula forvy,

Y(A+2)=v@ +1/z, Y(1—2z)=v¥(z) +mcotrz,

respectively, we get for (2.22) the expression
1 a ap’
— — —cotl — |,
% 20 < 2 )
which implies

1 ap’  ap’
2.23 I1<—(|1— —cot— ).
229) 1< —5(1- % coy )

Second, we give a lower bound fpF|. From the definitions (2.1) of (M, N) and (2.20) of/,
we get
(2.24) [J|> min Q(M, N)degg.
MEL/,M,
NEIC/,p/,p+1

From (2.23) together with (2.24), we see that a necessary condition to eérigwré! | is

, 1 ap’  ap’
2.25 min M,N)degg > —|1— —cot— |.
(2.25) min Q. N) deg p/z( 2 cot®
NEK:/,/)’,/H—l

Assume that the degree gfsatisfies the previous inequality. Then, from (2.16), the discussion
after (2.18) and the definitions df and J, we know that the imaginary part @f(z)/g(z) is
negative ag describes the upper-half &f; v ,,1 and positive ag describes the lower-half of
K1, p+1. Hence K, v 41 is mapped by the functiog’(z)/g(z) into a curve which encircles
the origin at most once. Thus, by the argument principle, the number of zegd& pfwithin
K1, p+1 differs by at most one from the number of zerog¢f) in K; v ,11. This implies the
assertion of Theorem 2.1.00

Proof of Theorem 2.3. —We shall apply the same idea as in the proof of Theorem 2.1 but,
now, we have to be careful about the extra zeros ghaiay have near the curvé, , ,1. We
determine some contolr= K; po p+1, p + € < po < p’, 0< & < p’ — p, surrounding the curve
Ky, p,p+1, With pg — p larger than some fixed constantin order that a lower bound fqu|/L
exists. Also, we need that the distance fréim,,, ,+1 to zeros ofg that do not belong td; , ,
remains bounded away from zero in order that an upper bound|fexists. This can be achieved
as follows. From Proposition 2.4, the horizontal strip

H:={z llmz|<In/a}, I=[pa/m]+1

([x] denoting the integral part of), contains at most deg+ [ zeros ofg, that is,H contains

at most/ 4 degg — L extra zeros in addition to the > degg — a zeros ofg in £, , ,. One

can always determine som®, p + ¢ < po < p’, such that the curvé; ,, ,+1 is at least at

a distancep’ — p — €)/2(1 + degg — L) from thel + degg — L possible extra zeros af in

Ly p+1\ L1, p,p- Since this distance is bounded below and the number of extra zeros is bounded
above independently from the degreegothe quantityi /| still admits an absolute upper bound
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depending only o, p, o’ anda. Thus, assuming deglarge enough, the argument principle can
be applied to the functiop’(z)/g(z) as in the last part of the proof of Theorem 2.1, eventually
showing that’ admits at leasL. — 1 zeros inl; p, p+1, henceing; v ,41. O

3. A complex Rolle'stheorem for higher-order derivatives

In this section we shall prove results similar to those established in Theorems 2.1, 2.3, now
considering a real exponential polynomgaand derivatives whose order can possibly grow up
to the degree of. Actually, we shall consider derivatives gfand also slight modifications of
them, which consist in taking the derivative of the quotieng &f) by explez), wherea is the
smallest frequency of. We shall denote by!!!, the exponential polynomial, image gfby
this transformation, and similarly!*!, k integer, for the iterates of this transformation. From
the definition, if zero is a frequency @f theng{! equals the usual derivativeé? of g. Note
that, contrary to the derivative, the degreegt¥ is always one less than the degreegofNith
this definition at hand, we are in a position to state our result. As a first step, we only consider
derivatives of a fixed order, while the degree of the exponential polyngngaks large.

THEOREM 3.1.— Let o, I and p < p’ be four real positive numbers, and let r be a positive
integer. There exists an integer C(/, p, o, a, ) such that for any real exponential polynomial g
of diameter less than or equal to «, of degree degg > r + 1, and having L zeros in the domain
L1,.1 With L > degg, the exponential polynomials g and g} haveat least L — r zerosinterior
to the curve K; ,/ 11, as soon as the degree of g islarger than C(l, p, p’, a, 7).

Proof. — First, remark that Theorem 2.3 applies in the same way, when the derivatives of
replaced with the functiog!! defined above. Then, it suffices to apply Theorems2tBnes,
successively with the polynomials ¢V, ..., gD or the polynomialg, g'¥, ..., g~ on
two consecutive curves taken among the setof 1) concentric curves

(3.1) Kip+k(o'—py/rk+1, k=0,....r,

leading to the conclusion that, for dgdarge, g™ or g"} have L — r zeros interior to the
curve K v »+1. The integerC in the statement of the theorem exists and may be chosen as
the maximum of the constants

C(lp+k(p'=p)/r.p+k+D(p —p)/r k. k+1,a)+k, k=0,....,r—1,

where these constants refer to those introduced in Theorem 2.3. Observe that if we deal with the
sequence of derivatives of tyg&’, then the fourth argument in the above constants can actually
be equal to zero since de§f! =degg —k, k=0,...,r —1. O

Now, we shall consider a sequence of exponential polynomgialehose degrees tend to
infinity, and derivatives of typgi’”} whose order, may possibly grow to infinity with the degree
of g,. We restrict ourselves to bounded domains included in the horizontal lstri < 27 /«,

wherew is an upper bound for the diameter of thes.

THEOREM 3.2.— Let ¢, «, [ and p be four real positive numbers such that p < 27 /a. Let
(gv)ven, be a sequence of real exponential polynomials of diameter less than or equal to « such
that

lim degg, = oo.

V—>00
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Let , be a sequence of integerswith 1 < r, < degg, — 1, satisfying:

< In

veN r+1

3.2) 4(1— %cot%) in 4898y +1-n0

For each v, assume that g, has L, > degg, zeros in the domain £; , 1. Then, there exists a
positive integer C depending on ¢, «, [ and p such that the exponential polynomial gir”} has at

least L, —r, zerosinterior to the curve IC; ;¢ r,+1, @ssoon asthe degree of g, islarger than C.
Moreover, if
, . de
(3.3) lim r, =00 and lim 9 _ w (1< pu<o0),

V—00 V=00

assumption (3.2)in the previous assertion may be replaced by

ap ap
4 41— — cot— -1
(3.4) ( 2C0t2><u

Remark 1. - First, as in Theorem 2.1, we know from the upper bound in Proposition 2.4 and
the assumptiop < 27/« that the integeL.,, can only assume the two values ge®r degg, + 1.
Second, observe that the conditions (3.2) and (3.4) are independent from the lehtjté strip
L, .1 containing all the zeros of theg,, v e N.

Remark 2.— Theorem 3.2 improves asymptotically the upper bound in (2.6) for certain
exponential polynomials in the strigmz| < p, 7/a < p < 27/a. Let us give an example.
Consider a sequence of real exponential polynomialset — P,,, of diametera = 1, with
degP,,, = my, degQ,, =n,, m, + n, — 0o, and satisfying

o __.p om+1
3.5 41— —cot— inf
(3:5) ( 2 2) = veNm, + 2

From Proposition 2.4, we know thé&k,, € — P,,, cannot have more than, + n, + 2 zeros in
the strip|Imz| < p, 7 < p < 27. Assume it has exactlyr, + n, + 2 zeros there. Denote by
D the differentiation operator. In view of (3.5), forlarge, we can differentiate, + 1 times
Q,, €& — P,, and get that7 + D)"™*+1Q, , which is a polynomial of degree,, hasn, + 1
zeros inL; ,+¢,m,+2, a contradiction. Consequently, foedarge, Q,,, € — P,,, has no more than
my+ny,+ 1 zerosin the stripimz| < p, m < p < 27, which improves in this example the upper
bound in (2.6) by 1.

Remark 3.— The domain containing the zerosgﬁrl“’}, that is the domaitt; ;¢ r,+1 remains
bounded along the imaginary axis and has a length along the real axis which is of/@pdérr,
tends to infinity ag tends to infinity. The precise magnitude of this length prove to be important
since it allows one to use Theorem 3.2 in order to obtain convergence properties in the problem
of rational interpolation to the exponential function with complex conjugate interpolation points
(see [14)).

In the previous section, we made use of Proposition 2.2, which gives a lower bound for an
expression involving distances between points located interior to the dafpgip on the one
hand and on the surrounding cukig » ,11 on the other hand. Here we shall need the order of
this expression when the radip$tends top, first when the parameter is fixed, and second
also whenp tends to infinity. This is the content of the next two lemmas:
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LEMMA 3.3. — With the same notations and assumptions as in Proposition 2.2, we have:

. 2p 7p+5

3.6 min M,N)="2("—p)— p—=——(0' — p)°> + O((p' — p)3).

(3.6) Lmin Q(M,N) pg(p p)—p 2 (0" =)+ 0O((p" — p)°)
NE}C/,/J/,IH—J-

as p isafixed integer and p’ tendsto p.

Remarks. — As p’ tends top, the minimums in (2.3) and (2.4) are both given by the ratio
(0’2 = p?)/(0'* + p?)2, which is of order(o’ — p)/2p3. Hence, the order 2p’ — p)/p3 in
the right-hand side of (3.6) improves the previous onep’a®nds top. In particular, it takes
the parametep into account. Remark also that the estimate in (3.6) is independent from the
parametef.

Proof. —Let us first consider the cage=0, i.e. M € F, ,, andN € & ,41. In the limit
casep’ = p, we know from Lemma 2.7 that the minimum in (3.6) actually equals 0. It is easily
checked that for anyf € &, ,, of coordinatesu, v) satisfying

(3.7) lul <(p/v/p+Dp, u##0,

this minimum vanishes wheN € £, ;11 has coordinateér, y) such that

(3.8) x:p—H'u, y2=v2—u—2.
P P
If inequality (3.7) is not met, then the minimum is distinct from 0.
Assume nowp fixed. SinceQ(M, N) is minimized only whenM lies on the boundary of
Fo,p, thatis on&, ,, this expression can be seen as a function of three parameters, namely the
two arguments oM andN and the ratio) := p’/p. Plugging the parameterizations

(39 u=p/pcos, v = psina, x=p"/p+1cosp, y=p'sing

in expression (2.10) oD(M, N), then differentiating with respect tgp and evaluating this
derivative atp = 1 and argumenta and 8 corresponding to pointdZ and N such that (3.8)
holds, leads to the following simple expression:

1 p
202 cofa(l—cofa)’

Now, it only remains to take the minimum of this ratio as@®sanges from 0 tgp/(p + 1) (see
(3.7) and the first equation in (3.9)). Obviously, this minimum is met ad«es1/2, which is
always possible sincg > 1 entails ¥2 < p/(p + 1). Itis thus equal to 2/p2. Consequently,
considering an expansion ¢f(M, N) in a neighborhood o =1, M €&, , andN € £y 11
such that cosx = 1/2 and (3.8) holds, we obtain that the minimum in the left-hand side of (3.6)
is of order 2(p’ — p)/p° asp’ tends top. The second term in the expansion is obtained by
evaluating the second-order derivative@€M, N) at the above points. This finishes the proof
of (3.6) when/ = 0.

To obtain the same result for the general caseO, it is sufficient to remark that when
M e L, , has coordinateg:, p) with |u| <, the minimum ofQ(M, N), N € Ky 5 p+1, does
not vanish. On the other hand, whert |u| <14 ,/pp, the analysis given in the cage= 0
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remains valid since wheh> 0, one merely performs a shift ef/ (resp./) on the left (resp.
right) parts of both%; , , and&; , ,+1. O

LEMMA 3.4. — Wth the same notations and assumptions as in Proposition 2.2, we have:

. (2
(3.10) ,min Q(M,N):mm(p—z,(,/p+1p/+ﬁp+2)—2),
SLlp.p
NEICl,p/,p+1

where p tendsto infinityand o’ /o =1+ ¢/p, withe — O0as p — oc.

Remark. — Whenyp'/p = 1 + ¢/p, the dominant term in the expansion (3.6) and the first
expression in the minimum of (3.10) coincide.

Proof. — First assumé = 0. We consider any poin¥ € &, ,, of coordinategu, v) satisfying
(3.7)andN € &, 41 of coordinategx, y) such that

/ 1 /N 2 2
(3.11) x=L2 + u, y2= <,0_) (vz - M—Z)
P P P p

The pointN has been chosen in this way, becausep’as> p, N tends to the pointV, of
&y, p+1 such thatQ (M, No) vanishes. Plugging the parameterizations (3.9) and relations (3.11)
in expression (2.10) of (M, N), then using the assumptign/po =1+¢/p, n — 0 asp — oo,
we find after some computations that the dominant ter2 ¥, N) equals 2/p2, asp — .
The identical estimate for the general case 0 follows from the same observations as in the
proof of Lemma 3.3.

Now, sincep tends to infinity, we need to compare the latter minimum with the other possible
one which occurs wheM € £; , , has coordinateg + ,/pp,0), N € £; , ,+1 has coordinates
(=1 — /p+1p’,0), whose value equals/p + 1p’ + /pp + 2/)~2. This shows (3.10) and
finishes the proof of the lemma.o

We are now in a position to prove Theorem 3.2.

Proof of Theorem 3.2. — For simplicity, we shall omit the subscript The difficulty in applying
Theorem 2.1 as in the proof of Theorem 3.1 lies in that the concentric curves (3.1) have their
mutual distances tending to 0 and their lengths along the real axis tending &3 possibly
goes large. Hence, in view of the Lemmas 3.3 and 3.4, the maximum in the right-hand side of
(2.2) tends tao and it becomes unclear whether this inequality can still be satisfied. Here, we
define a sequence of concentric curves

(3.12) Ki.p.1:Kipy,25 - Kiprr41s p=:po<pL<--<pr,

distinct from the sequence (3.1): lebe some positive real number to be chosen later, and define
the sequencey, k =0, ..., r, by the recurrence relations:

apk-1

_— k=1...,r
k(degg +1—k)

(3.13) 00 =P, Pk = pk—1+

Since the product

! a
14 —)
,El( k(degg +1—k)
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converges to 1 as tends tooo, p, tends top. In particular, the differenceg;, — px—1,
k=1,...,r, tend to zero, and moreover, from (3.13)/0x—1 =1+ a/k(degg + 1 — k)

with a/(degg + 1 — k) — 0, asv tends tooo (see the assumption (3.2)). Hence, in the proof
of Theorem 2.1, instead of using Proposition 2.2 in order to get an explicit lower bound for
Q(M, N) in (2.24), we may appeal, astends tooco, to the more precise estimates established
in Lemmas 3.3 and 3.4. fremains bounded, we deduce from Lemma 3.3 that

2
min  Q(M,N) =~ — a Cok=1....n
MELL 1.k Pj_1(degg +1—k)

while, if » andk tend to infinity, we deduce from Lemma 3.4 that

. . 2
min  QO(M, N):mln( 5 a ,(\/k—i—lpk—i—\/l;pkl—i—Zl)Z).
MEL pp 1.k pj_1(degg +1—k)
k—1
Neky p k41

Consequently, fok =1, 2,...,r, the condition (2.2) may be replaced with the two following
ones
Pk 0Pk \ 7

1 2

and

(3.15)  degg+1—k> p—12<1 - “—g" cota—gk> (Vk + 1px + Vkpr_1+ 22,
k

for somen > 1. Observe that in our situation, Theorem 2.1 applies wifth. Indeed, it has

(contrary tog®) exact degree deg— k and thus no extra zeros in the complementof, «+1

in the strip|Imz| < 27 /«, except for one possible real zero whose contribution, as was seen in

the proof of Theorem 2.1, can be neglected. Obviously, condition (3.14) will be fulfilled as soon

as the parameteris chosen sufficiently large, so that only condition (3.15) has to be met. Here,

we may remark that, since the diametergf is only decreasing ak increases and since the

functionx — 1 — x cotx is increasing for > 0, (3.15) is actually stronger than what is needed.

Now, as its right-hand side is less than

2

apr __ opr l
4r+1(1- cot 1+ —,
( )( 2 2)( vr+1p>

a sufficient condition for (3.15% =1, ..., r, to hold is given by the inequality

2
ooy Opr [ degg+1—r
3.16 41— cot 1+ .
(3.16) ( 2 2)( «/r—}—lp) ST
This last condition is implied by the stronger inequality
2
ap ap l degg +1—r
3.17 4n1— —cot— || 1+ < ,
( ) 7’/1< 2 2>< «/r—l—lp) r+1
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wheren; > 1, sincep, tends top asv tends tooco. Now, we consider two cases. First, if
r < 4/degg, (3.17) is satisfied as soon as

2 J—
4;71(1— %cot%) (1+ i) _ degg +1— vdegs
2 P J/degg +1

2
which will be granted as soon as degs larger than some constant depending onlypp and
[. Second, ifr > \/degg, the factor 1+ [/+/r + 1p tends to 1 as degtends toco, which shows
that, for deg; large, the condition (3.17) is implied by the condition (3.2), for same 1. Thus,
if (3.2) is satisfied, and if degis large enough, we obtain a sequence of concentric curves (3.12)
with the property that Rolle’s theorem can be applied on each pair of two consecutive curves
taken from this sequence. Doing so, we eventually obtainghdthasL — r zeros interior to
Ki,p, . r+1, hence toK; ,4¢ 41, for v large. Finally, if (3.3) holds, the right-hand side of (3.16)
tends tou — 1 asv tends toco. It is then clear that the factap is not necessary in the sequel of
the argument, after (3.16), which means that the inequality (3.2) transforms into the inequality
(3.4), as asserted.O

4. Some remarksconcerning the previousresults

First, the assertions in Theorem 3.2 have been applied in [14] to the problem of rational
interpolation to the exponential function by means of complex conjugate interpolation points,
allowing to recover in this case all the classical properties of the Padé approximants, such as
separated convergences of the numerator and of the denominator, as well as error estimates (cf.,
e.g., [8] for these classical results and [1] for the case of real interpolation points).

Second, Theorem 3.2 may also give some hints when asking for the maximal number of zeros
a real exponential polynomial can have, e.g., in a disk. Several authors, Polya, Gelfond, Turan,
Mahler, have given such bounds for general exponential polynomials, i.e. allowing complex
frequencies and complex coefficients. These latter bounds have been subsequently improved by
Tijdeman [11], Waldschmidt [13], Voorhoeve [12], leading to the following result:

Let N(g, zo, r) denote the number of zeros of the exponential polynomial

g(x) = qu(z) €, w;jeC,

j=1
wherethe g; are complex polynomials, that are contained in the closed disk of radius r, centered
at zo. Then,
(4.2) N(g,z0,7) <492r/m + 2deqg,
where
2 =max{|w;|, j=1,...,n}.
For real polynomials, an upper bound is easier to compute. Indeed, from Proposition 2.4, we
knows that forg a real polynomial of diameter,

(4.2) N(g,zo0,r) <ar/m + degg,

and this upper bound even holds true in any horizontal strips of heigkin2identally, note
that the previous upper bound is half the upper bound in (4.1)). Now, we may ask about the
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sharpness of this upper bound and in particular what happens asymptotically that iggvhen
goes to infinity or when the degree gfgrows to infinity. The Polya—Dickson theorem, which
gives the asymptotic location of the zeros of large modulus, shows that outside a compact set
near the origin, the right-hand side of (4.2) can be simplifiegitor . This answers the previous
guestion wheng goes to infinity. Now, ifzg is fixed while deg grows to infinity, Theorem 3.2
would rather indicate that the right-hand side of (4.2) can be simplified tg.degeed, let us
consider a sequence of exponential polynomials with a given numbgterms, say,

n
g =) pjv@ €7, degpjy=mj,,
j=1

and the sequence of integers

n
ry = Z(mj,v +1)= degg —myy,
=2

such that Theorem 3.2 applies. Obviously, from (3.2), we see that this will be the casemyhen

is larger thanr,,. Then, if theg, have more than deg zeros, we deduce that tlgé’”}, which are
polynomials of degree:; ,,, have more tham , zeros in the complex plane, a contradiction.
Based on these observations, we ask more generally the following:

Open Question. — Let be given a closed disk, centered at the origin, of radiaad a diameter
a. Does there exist an integér depending only om and« such that, for any real exponential
polynomialg with diameter less than or equaldg one has

N(g,0,r) < degg,
as soon as the degreegfs larger tharC?
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