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Summary. We investigate consistency properties of rational approximation
of prescribed type in the weighted Hardy spd€é(;:) for the exterior of

the unit disk, whereu is a positive symmetric measure on the unit circle
T. The question of consistency, which is especially significant for gradient
algorithms that compute local minima, concerns the uniqueness of critical
points in the approximation criterion for the case when the approximated
function is itself rational. In addition to describing some basic properties of
the approximation problem, we prove for measurésving a rational func-

tion distribution (weight) with respect to arclength @hthat consistency
holds only under rather restricted conditions.
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Notations

T, D, D unit circle, open unit disk, complement@hof the closed
unit disk

Pn space of real polynomials of degree at mosif n < 0,

ML monic real polynomials of degreehaving all their roots
inD
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ML real polynomials of degree at moswith constant coef-
ficientequal td having all their roots outside the closure
of D

L3(p), L? real Hilbert spaces of square-summable functions with

respect to a finite positive measyrtesymmetric onT
(i.e. invariant by complex conjugation), with respect to
the Lebesgue measu#é on T

Gy Vs (50 (real valued) scalar products ir? (1), in L?

2,00 11112 norms inL?(u), in L?

H?(p), H? real Hardy spaces of exponent 2 of the unit disk, closures
of the space of real polynomials it? (11), in L?

H? (), H? real Hardy spaces defined as the closures of the linear

span of{1/z* | k > 0} in L?(p), in L?
P!, P., P, P_ orthogonal projectiond?(n) — H?(p), L* — H?,
L*(p) — H? (), andL? — H?
L, H*® real Banach space of essentially bounded functions on
T, real subspace di? of essentially bounded functions
subset of H? consisting of rational functions
Zn=m=1lp/q with p € P, andg € M}

R

m,n

1 Introduction

We investigate consistency properties of rational approximation in the com-
plement inC of the closed unit disk, with the norm induced by that of a
weighted real Hardy spadé? (1), wherey is some finite positive measure
symmetric orT'. Let us first state and comment on the rational approximation
problem.

Pb“(ﬁ), m,n): Givenf € H?(x) and nonnegative integers, n, find ra-
tional functionsz"~™'p/q € R, ,, which minimize

(1.1) |If —="""""p/q

2 )
umge | 10—/ Pd(e),

The measurg onT involved in the definition of the norm above is assumed
to carry some kind of regularity: we consider the case of an absolutely
continuous measure which belongs to the Széglass, that is

(1.2) dp=w(0)ds, 0<welL' logwelL

It then follows from properties of the corresponding weighted Hardy space
H? (1) thatthe seR,, ,, of approximating functions is containedAf¥ (1),
see Sect. 2 below.

ProblemPb* (DD, m, n) is standard in approximation theory. Our motiva-
tion for investigating rational approximation partly stems from system and
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control theory. Indeed, proble‘mb“(]ﬁ), m,n) is a well-posed and efficient
formulation for weighted model reduction issues in frequency domain iden-
tification of linear scalar systems that are stable, causal, and time invariant
[15,23,25]. For multivariable systems, model reduction amounts to solving
an H? matrix rational best approximation problem of bounded MacMillan
degree [5].

The primary question of existence of a minimizer in probIEbi‘(]ﬁ),

m,n) can be answered positively as in the unweighted diagonal ease (
n—1,w = 1), see [1].

Using the differential framework induced by the integral nornd& 1),
we can define the rational functions that ariical pointsof the criterion
(1.1). These are the" ™ !p/q € R, at which the derivative of the
norm of the errofl| f — 2"~""1p/q]|2,,, with respect to the coefficients of
p/q vanishes. Among them, lie local minima as well as global minima, but
possibly also saddle points or local maximums. The analysis of these critical
points forms the basis of our study of the above rational approximation
problem and we spend some time characterizing them.

The unweighted scalar case with degfee n) satisfyingm > n — 1
has already been studied in a series of papers. Let us briefly review some of
the results that were obtained. Existence and generic uniqueness of a best
approximant, asymptotic properties, as well as an index theorem that gives
a global constraint on the set of critical points, have been established in [1,
4,6]; a gradient algorithm converging to a local minimum is also described
in [3]. From the index theorem, uniqueness of a critical point (hence of
a local and global minimum) is derived for some classes of functions, like
Markov functions or exponentials; see [8] and the bibliography therein. Such
unigueness properties are of interest from a numerical viewpoint, since they
ensure the convergence of the above algorithm to the best approximant.

Afirst step in the study of the weighted diagonal approximation problem
Pb“(ﬁ), n—1,n)in H%(x) appears in [19], where a resolution algorithm is
proposed for weights that are the square-modulus of reciprocals of poly-
nomials. In this connection, weighted Hardy spaég&<.), for measures
1 belonging to the Szégclass (1.2), have also been considered in [9] to
generalize results about uniform meromorphic approximation in the unit
disk (commonly as Adamjan—Arov—Krein theory) rather tiah rational
approximation.

We come now to the consistency issue. This is a quite standard notion
in numerical analysis of differential equations. Let us first explain what we
mean by consistency for probleltb* (D, m, n). When the functiory itself
is an irreducible fraction iR, ,, it is obvious thatf minimizes (1.1), as
its own approximant. Still, in this case, the question arises whefher
the only critical point among the set of approximants. &nsistency of



524 J. Leblond et al.

the approximation problenwe mean that the answer to this question is in
the positive; see Definition 4.1 for a precise statement. For example, the
unweighted diagonal casew(= n — 1) is known to be consistent [4] as well

as its matrix valued generalization [5].

This consistency property has strong consequences when interpreting the
local minima found by an algorithm, based on a gradient method. Indeed, if
consistency fails, a local minimum, even of the right degree, that furnishes
a small error when approximating a rational function, can happen to be
far from the function to be identified. This pathological behaviour then
leads to computational difficulties when trying to recover the right degree
of the function, let alone the function itself. In a system theoretic setting,
consistency-like properties have already been investigated for least—squares
criteria. Sufficient conditions in the overparametrizing case (degree of the
approximant larger than the degree of the system) for uniqueness of critical
points and a counterexample to consistency in a matching order case (of
degreesn = 0, n = 2, and a weightw of the form |22 — o?*, a €
(—1,1)) have been givenin [26]. Further counterexamples in the unweighted
case (withm = 0 andn = 3) and a discussion about the uniqueness
of critical points in more general situations also appear in [11,21]. The
consistency issue for different kinds of approximants, namely multivariate
Pack approximants, has also been studied in [10].

In this paper, we consider rational weightsand demonstrate that con-
sistency holds only in a few cases that we specify. For example, we show
that the unweighted problem is consistent if and only i 2 < m. In
most other cases, we construct counterexamples which show that consis-
tency fails. In the special occurence where the degree of the numerator of
the approximants equals zerma (= 0), we prove that situations with two
distinct minima can occuisfrong nonconsistengy

In Sect. 2, we describe the weighted Hardy spaces that we consider, along
with their main properties. We also display some of the characteristics of our
weighted rational approximation problem. In Sect. 3, we study the differen-
tial properties oPb*(ID, m, n) and establish the critical points equations. In
Sect. 4, we derive a sufficient condition for consistency to hold and exhibit
cases where it is satisfied. In Sect. 5, we construct examples of nonconsis-
tency and, using a topological argument, we refine these examples to get,
under the additional condition that = 0, cases of strong nonconsistency.

2 Weighted H? rational approximation

General properties of Hardy spaces can be found in [12,16,18,24]. Some
results on weighted Hardy spaces are given in [16,22]. We summarize in
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the following proposition a few of the well-known facts about Hardy spaces
associated with measures Brsatisfying the Szdgcondition (1.2).

Proposition 2.1 ([13,16])If i satisfieq1.2), then:

(i) The functionl/z does not belong té72(y). In particular, H?(u)
L?(p).
(i) The Lebesgue measure is absolutely continuous with respgact to
(i) The weightw € L' can be written as

(2.1) w= [P,
for an outer functiorh in H2, with1/h in H?(y).

Note thath can be chosen real since the weighsatisfiesv(6) = w(—6),
6 € T. From Proposition 2.1, we deduce that the maps

(2.2) frehf, fw hf,

are isometric isomorphisms frof¥ (1) onto 2. Moreover, the restriction

of the first map tai (1) is an isometric isomorphism ontd?, while the
restriction of the second map 2 (1) is an isometric isomorphism onto
H?. Sincel/h (resp.1/h) defines an analytic function i (resp.f5>), for
any functionf in H?(p) (resp.H?2 (1)), there is a functiom = (hf)(1/h)
(resp.g = (hf)(1/h)) analytic inD (resp.ﬁ)), such that the non—tangential
limits of g agree withf almost everywhere with respect to the Lebesgue
measure. Furthermore,

2w
lim [ |g(e) - g(re”)[dp(0) = 0.
r—1 0
Hence, similar to the usual Hardy spadé, the weighted spacH?(y) can
be considered as a Hilbert space of analytic functior3.in
Finally, it is easily checked from the previous isomorphisms that the
following two orthogonal decompositions éf () hold:

(2.3) L*(n) = H*(n) ® (h/h)H2 () = (h/h)H?(n) & H2 (),
and that, for anyf in Ly (p),
(2.4) P(f)=h™'Pe(hf), PE(f) = (R)~'P-(hf).

Let us now describe some properties of the approximation problem.
First, observe thdb* (D, m, 0) simply amounts to the usual polynomial
approximation of the function™*! f(z) in L?(u), the unique solution of
which is given by then + 1 first terms of its expansion in the SZebasis
associated with the measuyiesee [27, Chapter Xl]. Note also that, in this
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case, the answer to the consistency issue is immediate since uniqueness of
a critical point holds. In order to consider truly rational approximatiea,
assume hereafter that the degreef the denominators of the approximants
satisfies: > 1. N

ProblemPb* (D, m,n) can be transformed into an equivalent problem
about functions that are analytic inside the unit disk. Indeed, applying the
involutive isometry ofL.?(1) defined by:

g(z)=z""g(=7"),
which interchange&l? () and H2 (), we get
Pb*(D,m,n): Giveng € H?(u) and nonnegative integers, n, minimize
lg — B/al13 .
asp/q ranges over the subset Bf(1) consisting of rational functions with

peEPnandgc ML,
Next, the problem of minimizing the distance

le —p/all3,
between any functiop in the ambient spack? (1) and fractiong/q with

p € P, andg € M1 reduces to our probledb* (D, m,n). Indeed,

n—m-—1 n—m—1

le —p/all3, == o—z p/all3,.,
and, using the second decomposition in (2.3), we have

n—m—1

z p=p1+¢2, 1€ (W/h)H* (), @2 € HZ(p).

By orthogonality, we deduce, sine&~™"'p/q € H?(p), that
"/l e
Hence, we are led to minimizgp, — 2"~ 'p/q|} ,, which is Pb*(D,
m, n) for the functionps.

In order to establish the next property, we need an additional assumption
on the measuréyu, namely that the outer functiolm such that (2.1) holds
also satisfies

e —p/alls, = lleill3,, + lle2 — 2

(2.5) he H®, 1/hc H™.
This implies, in view of the isomorphisms (2.2), that
(2.6) L*(u) = L?, H*(n)=H?, H2(u)=HZ,

and that the normi. |2, and||.||» are equivalent. Note that the assumption
(2.5) is also necessary in order to have the identities (2.6). Indeed, it is well-
known that any multiplier orl.? has to belong td.> (cf. [29, Theorem
13.14]). Henceh € L>® N H? = H*, and the same holds for its reciprocal
1/h.



WeightedH? rational approximation and consistency 527

Proposition 2.2 (Normality property) Assume that the measyréelongs
to the Szefyclass and satisfies assumpti@b). Then, iff € H? (u)isnota
rational function belonging t®,,,_, ,,_,, any local minimum™~""1p/q

of Pb“(]ﬁ),m,n) with respect tof is such thatdegg = n andp, ¢ are
coprime.

Proof. Assume that™ ™ !p/q € R,, ,, is a reducible local minimum of
Pb*(D,m,n)sothat™ ™ 1p/q e R, with0 < v < inf(m,n).To

m—v,n—v
obtain our result, we use a perturbation argument as follows. For any closed
subsetK of (—1, 1) with nonempty interior, there exists a neighbourhood

U of zero inR such that
Vae U, VbeK,
m—v—+1
1 [P az
f _ynmm 1 ( + >
H q¢ (2—b)q
Note that:" "~ !(p/q+az™""*'/(2—b)q) € R,, .- Expanding the norms
in terms of scalar products yields

2

> ||If - zn*m*lp/qH;M-
2,p

n—v

a a _ _ Zn_m_lg az ‘
@7 <(Z—b)CJ’ (z—b)q>u 2<f q’ (Z—b)Q>H =0

As q tends to zero, the left—hand side is of order
—2a(f —2""""p/q, 2" /(2 — b)a),, -

Since (2.7) is satisfied regardless of the sign,offe must have

(28)  WbeK, (f—2"""'p/g,2"V/(z—b)g), =0.

On the other hand, the famil:" " /(z — b)q}»cx SPans a dense subspace
F of H?. Indeed, assumeg € H? is orthogonal to this family. Then, by
definition of the scalar product if2, we have

n—v f
Z"Vg(2)
————dz =0,
/ (z = b)q(z)
or equivalently, by Hermite formula,
b gk () — L(b) = 0,

where L € P,_,_1 denotes the polynomial interpolating " ¢*(z) at
the roots ofg. As this equality between two analytic functionslinholds
for b in a subsetk that admits accumulation points i, we deduce that
2" Vgt (2) = L(z), which, in turn, implieg/* = 0, sincedeg £L = n—v—1.



528 J. Leblond et al.

Consequently, the orthogonal complement/fin H2 is zero; whence

F = H?, as was to be proved. Next, by the assumption (2.5).0H?
and H2 (1) share the same topology, so that the subsgaiealso dense

in the weighted”?2 (11). Now, (2.8) means that — 2"~ 1p/q belongs to

the orthogonal complement &fin H2 (1); hence it is equal to zero, by the
preceding remark. This yields a contradiction with the assumption made on
f and finishes the proof. O

As mentioned in the introduction, we shall now restrict our study to
the case of rational weights. It seems that such weight§ bave not yet
received much attention in the literature. The only reference that the authors
know of is the article [17] where orthogonal polynomials with respect to
rational weights are investigated. Let us now give the precise definition of
the measuregu on T associated with rational weights. These measures are
the finite positive absolutely continuous ones, whose densities are equal to
the square modulus of a rational function. Namely,

(2.9) du(eie) = |7“(eie)\2 o, r=ro/r1,

for some polynomials, andr;. Throughout, we suppose that no roots of
ro norry lie onT, and thaty andr, are coprime. We also assume these two
polynomials to be monic since this only requires multiplying the measure
du by a positive constant. If

degro = do, deg r = dl7

it will be convenient to say that the weight is of typé,, d;). Moreover,
note from the definition (2.9) ofy that all the roots ofy andr; can be
chosen inD \ {0}. In this way, we get in particular that, € M, and
ry € M}h. Also, the derivativeln./df on T equals the square modulus of
70/71 Which, with our assumptions, belongsits®, and the same is true for
its reciprocal. Thus, condition (2.5) is satisfied, so that the identities (2.6)
hold in the case of rational weights.

For convenience, wheriy is a measure as in (2.9), we rename the
weighted rational approximation probldPb* (D, m, n) as:

Pb"(m,n,do,dq): Givenf € H? and two integersn, n > 0, minimize
If==2"""""p/qll3,

2T
(2.10) L = ) (@) P () 2o,

= % )
asz""™"!p/qranges ovemR, .

One should note aboitb" (m, n, 0, d;) (that is, when the weightonly
consists of the reciprocal of a polynomial) that situations where the degrees
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satisfym > n + d; — 1 can always be reduced to the so-called canonical
diagonal case where = n+d; — 1. This merely means that, whép = 0,

some linear part of the approximants involved in the numerators does not
play any role in our problem, as soon as itis of degree larger than some given
constant. The proof is as follows. By definition of the weightdA (), we

have:
Zdlf Zd1+n—m—1p

. n—m-—1 —_ )
I£ == p gl = |15 "l

In the unweighted spadé?, we can apply [7, Lemma 2.2, Eq. (2.7)], which
implies that the last norm equals

|P- (z" " f ) — 7w /ragll2
for somer € P, +q4,—1. HeNCE,

—d;

z s

1 = 2 gl = |k p (2 meniman ) 20

Finally, observing that in the present situation the outer fundiidefined
in (2.1) equald /71, we get by applying the second equality in (2.4) that

1f = 2" p gl = [P (2771 ) = 2o

which is just the quantity to minimize when considering the approximation
problemPb’” (n + dy — 1,n,0,dy) for the functionP” (2= 1= f),

3 Critical points

The aim of this section is to study our approximation problem with respect
to differentiation.

First, the following definition has to be given. The revepsd the poly-
nomialp € P,, is the polynomial such that

p(z) =2"p(1/z) € Py.

If " > n andp € P, is considered as an element/®f, (with vanishing

leading coefficients), then the two definitionspafay be inconsistent. For

this reason, we shall always specify whieh is involved in the computation.
We identify the polynomial of,,,

p(z) =ppz" + -+ po,

with the vector(p,, . .., po). In this way,P,, is endowed with the Euclidean
topology ofR"*!. Similarly, identifying the polynomial of\1.,

q(z) = 2"+ Gn12""V 4 4 qo,
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with the vectol(q,,_1, . . ., q), M. becomes an open subseRd. Differen-
tiating under the integral sign in (2.10), we see that the Pgp< M. — R
given by

(3.1) () = If — 2" "p/dll3,

issmoothi.e. all partial derivatives of every order exist and are continuous.
Next, in order to obtain a criterion depending on the denomingbaty, we
characterize the optimal numeragarfrom f andq. Considering the partial
derivative of (3.1) with respect to the numerapokve obtain

P+ m
2 - ; -
(3 ) <f zm—n—i—lq’ Zm—n+1q>u 0,

which means that the unique optimalis the numerator of the orthogonal
projection of f onto the subspac®,,/>™ "¢ ¢ H%(u). Denoting this

'

numerator byL,’;;{n(q) € P,,, we define a new mapﬁ;{‘n ML - Rasa
function ofq only, by

v = If = Lik o)/ I3,
(3.3) = [IF13, = ILH5 (@) /2" a3,

In particular, the map;/s, is bounded by f[3 , on M.

Theorem 3.1 Let du be a measure off such that(2.9) holds. Then, the
mapyit, : ML — R is smooth.

Proof. It is sufficient to prove the smoothness of the map> Lf;’l’fn(q).
Let {#/!};>¢ denote the system of orthonormal polynomialslofor the
measurely/|q|?. The orthogonal polynomiaﬁg"q has precisely degreg
and its roots lie i [27, Thm. 11.4.1].

Choosing{?"?}y<<m as a basis foP,,, and applying the Christoffel—
Darboux formufa for the Szégkernel (see [27, Chapter Xl]), we first get,
asin[2] or [19, Proposition 2], that the polynomIaJ};f‘n(q) € P, is given
by

M (5)5%(1 (z) — e (5)(15#,(1 (2)
I _ m—+1 m—+1 m+1 m+1 .
Lrin(@)(2) <f ’ Gt (1= £2)g(¢) >

Next, recall thaj: is defined by (2.9) and introduce the measudefined on

T by do(el) = df/|r1(e'?)|?; whencedu(el?) = |ro(e'?)|? do(el). Write
{®5} >0 for the system of orthonormal polynomials @rassociated with
the measurep/|q|?. Because € M, and|ro(z)[> = 2% ro(2) 7o(z)

for z € T, we get from [17, Theorem 1] that the orthonormal polynomials
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associated with the distributiontp anddy = |ro|? do are linked by a
determinantal relation of the form

ro(z) Fo(2) P (2) = an(2) D27, (2) + Brl2) D22, (2), k>0,

whereqy, € Pg,—1 andg; € Pg,. Moreover, the coefficients of the poly-
nomialsay, and 3y, are given by determinants whose entries are the values
of 27@p1, (2) andz/ Y, () at the roots ofy andry, for j = 0, ..., do.

Finally, the mapg ~ ®%7 is smooth onM}. Indeed, the classical
induction formulas (see [27]):

(0) &3¢

i (2) — 250027 (2), 520,

j+1

B0 = B (07 — B34, (0 = Tl #4°(0).

can be initialized backwards for such measuigesince we have the relations
Be(z) = 2 g(2)ri(2), jE=n+di.

The last equation directly yields the smoothnesgef &7 for j > n+d;.
The induction formula then allows one to deduce the same resoltfoj <
n-+d; assoona$?(0)> = ¢%{,(0)* — &77,(0)* # 0. Thisis always true
forq € M}, forthe polynomial??fl(z)/éﬁ?fl(o) belongs toM , ;; hence,
¢§f1(0)/@7~;?f1 (0) which is the product of its zeros, necessarily satisfies
|¢§f1(_0)/q5§.’f1_(0)| < 1. o

This establishes the claim, since each step of the composed map
Pr gy Doy LI, (q) is smooth forg € M. O

By definition, acritical point of pr;’f‘n will be anyq € M. such that the

derivative ow,f#n vanishes at this point. We first use the integral form of
(3.2) to obtain in Proposition 3.2 a characterization of the optimal numerator
p in terms of division relations. Then, in Proposition 3.4, we characterize in
the same manner critical points Bb" (m, n, dy, d1).

In the remainder of this paper, we assume the meastaée of the type
(2.9) and we set throughout

(3.4) l=n—m+dy —dyp—1.

Proposition 3.2 Assume; € M. is fixed inPb” (m, n, dy, d;) and set
E=[f*G—p, pEPn.

Then, the following two assertions are equivalent:

(i) The polynomiap € P,, minimizes the weighted nor¢#.10)
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(i) If I > 0, there exista polynomial € P, 4,_; and a function3 € H?

such that

(3.5) droToE—-T1dA=r1qB.

If I < 0, there exist a polynomial € P4, _; and a functionB € H?
such that

(3.6) To?oE—FlaAzz_lrqu.

Remark Assertion (ii) can be rephrased as followsl i 0, there exists a
polynomial A € P;44,—1 such that-;g dividesz! ro7o E — 71 ¢ A in H2.

If I < 0, there exists a polynomial € Py, _; such that:~'r;q divides
To%/oE—?l(A]/A in H2.

Proof. By differentiating the quantity (2.10) with respect to the coefficients
of p, we get thap/q leads to a minimum if and only if

<Zn—m—1+i/q’ f _ Zn—m—lp/q>u
= <z"_m_1+ir/q, (f - z"_m_lp/q) ry=0,i=0,...,m.

Using the integral representation of the scalar product and taking linear
combinations of the previous equations, we get

i ﬂz—lﬁ z”*mflw(z)TZQz: T
(10~ 55) (z) " =0 YT E P

or, equivalently,

1 Erg7
(3.7) — 2 070 z 7

dz = m -
Sir i qu(z) z=0,VreP

Assume first that > 0. Write
gri=mm2, 71 € Pp_midi—1, T2E€ Pmy1.
Moreover, letF’ be theH? function defined by:

1 (u) N Ergro dz

(3.8) F(u)= , YueD.

2ir Jr qri m1(z) (z —u)

On the one hand, i denotes a root af r; with multiplicity ¢, writing F/(5)
for the s** derivative ofF, it holds that

(3.9) FO>a)=0 for 0<s<l—1,
or, equivalently, thag  dividesF in H2. Indeed,

s )
s) _ i' T ('LL) l
a (“)_Zﬂ 2w Jp©

=0

E To ’70 dz
X z

(810 7 mE) (- ap

YueD.
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Let ¢ = ¢1 + ¢ where/; is the multiplicity of « as a root ofr;, i = 1, 2.
When0 < j < 41 — 1, thenvrij)(a) = 0. When/; < j < ¢ —1, then
1<s—j+1</tlyfor0<j<s;thus,o1(z) =m(2) (2 —a)*7*lisa
factor ofg r1 of degree larger than or equalito- m + d; andgr, = o1 09
for someoy € P.,,. Applying (3.7) withm = o4, we get that the integrand
in (3.10) vanishes at, thereby establishing (3.9).

Onthe other hand, the residue formula applied to expression (3.8) implies
that there exists some polynomidle P,,_,,+4,—2 such that

_ ul E To ?0
qri
This, together with (3.9) and the observation thatm +d; —2 = [+dy—1,

establishes (3.5).
Conversely, assume that (3.5) holds. The integral in (3.7) then becomes

1 Am 1 Br
o 7(2) dz + — ==
2 Jrqr: 2 Jrqr

F(u) (u) — A(u), Vu e D.

— z)dz .
However, we get from Cauchy’s theorem that the two integrals above vanish
for 7 € P,,. Indeed, in the first oned 7 is of degree at most + d; — 2
while ¢ r1 is exactly of degree + d; and has no zero outside the closure
of D. In the second one, the integrand belonggfta This completes the
proof of the equivalence of (i) and (ii) wheén> 0.

Second, assume< 0 and write this time

1
z'qri =mm2, 7T €Pqy, T2 E Py

DefineF € H? as

(311) F(u)= W [ EroTo dz

D.
2im Jr qm m(z)(z_u),Vue
Again, we get that (3.9) holds for every raeof z~! ¢ r; with multiplicity
¢ and as before:

Ergro

Pl =—=25

(u) — A(u), Vue D,
for someA € Pg4,—1. Note that whenevef, = 0, thenA = 0. Finally, the
assertion that (ii) implies (i) can be proved as in the dase). O

From Proposition 3.2, we can gain some information on the behaviour of
the mapp,frﬁn on the boundarg M. of the domainM_. This is the content
of the next corollary. It will be useful in the proof of Theorem 5.3. Note that
dM? consists of monic polynomials whose roots are all of modulus at most
1 and at least one root is exactly of modulus 1.
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Corollary 3.3 If the functionf € H? is continuous on the closure &f,

then the maps&ﬁ’fn andz/;,’;’f‘n admit continuous extensions to the boundary
OM. of the domainM,,. Moreover, if the limit poing; € M}, has more
thanm roots of modulus 1, these continuity properties still hold afithout
the above assumption g In this case, we also ha\le,’fﬁ{‘n(q) = 0 and the
mapi;", assumes its maximal vallig || , atg.

Proof. Let (¢;) be a sequence of polynomials i’ which tends to a
polynomialq = qig2 € M}, with ¢; a monic polynomial of degree
n1 > 0 having all its roots of modulus 1 and € M,,_,, . The sequence
HLﬁé’fn(qz‘)/qu%,“ remains bounded bbyf||§7#. Consider any subsequence
(¢i,) such thath;L’fn(qiy)/qu converges to some rational functigp/q,

Py € Py,. This limit has a finiteL? norm; whencey; dividesp,.. Hence, if

n1 > m, we havep, = 0, so that the whole sequenbé;f‘n(qi)/qi tendsto O,
which finishes the proof of the corollary in this case:{f< m, we consider
the limits in relations (3.5) and (3.6) wheg), tends tog. Indeed, one can
check that the polynomiall admits a limit by recalling that it is obtained
from the residue formula applied to expression (3.8) and that the fungtion
is continuous up t@, and in particular at the roots gf. ConsequentlyB
admits a limit as well and we get

droTo (f'4—p,) —TdA=r1qB, A€Prg-1, BeH,
if [ >0, and
TOFO (fﬂa_ﬁy) —71(?14: Z_lrqu7 A e,Pdoflv B S H27

if I <0.Wesetp} = p,/q1 € Pm—n,. Sinceq, is also a factor op,),
dividing the two previous relations hy leads to

droTo (f'd —Dy) —T1@a A=1192B, A€ Prigy1, BeH?,
if . > 0, and

ro7o (f'Gy —Py) —T1d A=2""r1¢2B, A€ Py_1, BeH,
if I < 0. Consequently, applying Proposition 3.2, we derive that

p; = Lfr;/’inl,nfnl (Q2)7

which shows that the limip, /¢ = p},/q- is independent of the particu-
lar subsequencegy;, ). Hence, the whole sequenﬁé;;f‘n(qi)/qi converges

to Lﬁ;‘inm_m(qg)/qg if n; < m and the map<L{, and i, admit a
continuous extension to the boundary/ef?.. 0

We now proceed with characterizing the critical pointsbaf (m, n,
d07 dl)
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Proposition 3.4 Letz"~™~1 p/q be a rational function ink,,, ,, such that

P =19po, ¢=0qo,

for polynomialsp, go such thatpg /¢ is irreducible ands € ML, 0 < v <
n. Set

(3.12) Eo = f*qy — Po-
Then, the following two assertions are equivalent:

() The polynomialy is a critical point of the mapbf,;’fn defined by3.3).
(i) If I > 0, there exista polynomial € Py, 4,1 and a function3 € H?

such that

(3.13) drotoFEo—T1GyA=r1¢30B.

If I < 0, there exist a polynomial € P4, 1 and a functionB € H?
such that

(3.14) rotoBo —T1qgA=2""r1¢26B.

Remarkslin the above reduction gf/q, note that eithepy = 0 or v < m.
Assertion (ii) can be rephrased as followd. i 0, there exists a polynomial
A € Py 4,1 SUchthaty g2 dividesz!roro Eg—714, Ain H2.1f 1 < 0,there
existsapolynomiall € P4, such that—lrlqgé dividesrg 7o Eo—r1 gy A
in H2.

Proof.By differentiating the criterion with respect to the coefficients ahd
q, we getthap/q is a critical point for (2.10) if and only if, foi = 0, ..., m
andj =0,...,n, we have

<an1 Ziq + ij f _ Zn_m_1p>
g q i

= <Zn—m—lziq +27sz7“, <f — znmlp) 7“> =0.
q q

This is equivalent to

[ B e 108G
L T(f() a(z)) 2o Rz =0,
VWEPm+n—V7

since the spaceB,,,qo + Pnpo andP,,+,—, coincide, by coprimeness of
po andgg. Substitutingrg/r; for » and using (3.12), we obtain

1 Eoror
(3.15) — [ 7 07070 27T (2)dz=0, V7 € Prsyn—v -
2T Jr do 71 a0

Now, the remainder of the proof follows as in the proof of Proposition 3.2.
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If { > 0, we choose

F(u) = m,(u) /zl EET,OVTO (2) dz , VueD,
2im Jr qoT1 m1(2) (2 — u)

where
2
@or1 =mm2, T1 € Ppemidi—1, T2 € Pmgn—vt1-
If [ <0, we choose

T (u) EO To ’IA:o . dZ

Fu) = 2T Jr quT1 m1(2) (2 — u)

, VueD,

where
12
2qgory =mma, T € Pay, T2 € Pmgn—vtil-

Here, we get thag? 6 r; dividesF in the first case, while ~!q2 § r; divides

F in the second case. Using the residue formula to expgresse obtains
(3.13) and (3.14). Again, the converse follows from Cauchy’s theorem by
plugging (3.13) and (3.14) into (3.15). a

4 Consistency properties ofPb" (m, n, do, d1)

First, we state precisely what we mean by consistency. For fixed values of the
degreesn, n, dy, d;, introducePb(m, n, dy, d;) as the family of approxi-
mation problemgPb" (m, n, dy, d1)}, whenr describes the set of rational
weights of type(do, d;) defined in Sect. 2. Observe that the unweighted
family Pb(m, n, 0, 0) contains only probler®b! (m, n, 0, 0).

Definition 4.1 The familyPb(m,n, dy, d;) is consistent if, for any weight
r of type(dp, d1) and any functiory which is a rational function:

(4. fe) =1L () € Ry
with P and Q coprime, the criteriony*,, with du(el®) = |r(el)|2d6,
admitsf as its unigue critical point. On the contrary, if there exist a weight
r and a functionf of the form(4.1) such thatgbfﬁf‘n admits several critical
points, therPb(m, n, dy, d1) is nonconsistent. If at least two distinct local
minima exist, thefPb(m, n, dy, d) is strongly nonconsistent.

In this section, we prove the following theorem.
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Theorem 4.2 The familyPb(m, n, dy,d1), n > 1, is consistent whenever
do € {0,1} andn —2 < m+ds. In particular, the familyPb! (m, n, 0, 0) of
unweighted approximation problems of degfee n) is consistentwhenever
n—2<m.

Before displaying the proof, we need to restate Proposition 3.4 when the
function f is of the form (4.1).

Proposition 4.3 Let f be given by4.1)and letz"~""! p/q be a rational
functioninR,, ,, as in Propositior8.4. Set

(4.2) So = PGy — QPpp-

Then the following two assertions are equivalent:

() The polynomialy is a critical point of the mapbﬁ;{ln defined by3.3).
(i) If { > 0, there exist polynomiald and B in P 4,—1 such that

(43) ZlToFoso—?laoéA:?“lquB.
If I <0, there exist polynomiald and B in P4,_; such that
(4.4) 107080 — T o QA=2"r1d0B.

In particular, if ] < 0 anddy = 0, equation(4.4) reduces taSy = 0.

Proof.Multiplying (3.13) byQ and renaming) B asB, we get (4.3) withB

in H2. Moreover,B is obtained by dividing the polynomial on the left-hand
side of (4.3) by a polynomial with all roots ip. SinceB is in H?, these
roots necessarily cancel with some of the numerator, implyingRitgelf

is a polynomial. Further,

degzlro?oSo <2n+dy+d; —v—1 and
deg?laOQVA <3n-m+2d —v—2.

The second upper bound is larger than the first oneby, so thatB can
be chosen of degree at most

3n—m—|—2d1—1/—2—degr1q(2)5:n—m+d1—2:l+do—1.

This establishes (ii) wheh> 0. The proof in the cask< 0 is similar. The
converse is immediate. O

Next, evaluate (4.3) at the rootssfandr (if dy > 0) on the one hand,
and identify the coefficients of* in the polynomials in the right and left-
hand sides of (4.3), fot from O tol — 1 and from2n + dy + dy — v t0 3n —
m+2d; —v— 2 onthe other hand. This gives rised + d) equations that
completely determine the two polynomialsandB in P 4,1 . Similarly, if
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dy > 0, evaluating (4.4) at the roots af andr, gives rise t®d, equations

that completely determine the two polynomialsand B in Pg4,—;. These

sets of equations comprise two linear systems with respect to the coefficients
of AandB. They are described in the next proposition, after some additional
notations that we now introduce.

Set
do
(4.5) ro(z) = [[(— ), i €D\ {0}
=1
Also, put
N=2n+d; —v,
and

a(z) =r1qQ(z) € Py, b(2) =11¢30(z) € Py, forl>0,
a(z) = zilrlqu(z) € Pn_i, b(2) = zilrqu(S(z) € Pn_i,
forl <0.

Let a; andb; be the coefficients of’ in the polynomials: andb. Setd =
deg A = deg B, and let4;, B; be the coefficients of’ in the polynomials
A andB. Define the vectot of dimensior2(d + 1):

(46) U: [A07"’7Ad7B07"‘7Bd]t7

and, for some nonnegative integetthe matrixM (k) of dimension2dy x
2k:

T aar) ...V (ar) b)) . @ M(an) T
a(ag,) - 0650_1&:(06110) blag,) ... aso_ll;(ado)
M(k) = - -
A a(ar) ... alen) o Tb(an) ... bley)
_ago—lé(ado) .. alag,) a’;o—l?;'(ad()) . blag)

Observe that the equatiomt(d + 1)U = 0 expresses the vanishing of the
polynomials@A + bB andaA + bB at ai, ..., ag,. For zeros ofrg of
multiplicity h, h > 1, we replace the corresponding rows in the matrix by
those corresponding to the vanishing of the derivatives of exder. . . , h —

1 of the polynomial§iA + bB anda A + bB, evaluated at that zero.

Furthermore, wheh> 0, introduce the matriXV of size2l x 2(1 +d):



WeightedH? rational approximation and consistency 539

1 bo
anN-—1 0 bl 0
Ogg = "+ Oty
N _ AN—]4+71 + -+« anN_—1 1 bl—l cee e bl bg
apg ay ... ... Q1 1 bN—l ---bN—l+1 ’
OL.d, Ol.d,
0 [e5} 0 bN,1
i ag L]

whereQ, 4, stands for the zero matrix of size< dy.

RemarkThe above matrix bears some resemblance with the matrices whose
determinants are involved in the Schur-Cohn algorithm concerning the num-
ber of zeros of a given polynomialin the unit disk [20, Chapter X, Sect. 43].
Whend, = 0, they are identical except that, here, two sequences of coeffi-
cients must be considered, namely those of the polynomaatslb, whereas
in the Schur-Cohn algorithm, only one sequence of coefficients appears,
namely that of the polynomiat.

The following proposition, which is easily checked, describes the above
mentioned sets of linear equations using the notations just introduced.

Proposition 4.4 Let f be given by4.1) and letz"~™~! p/q be a critical
point of Pb"(m, n, dy, d1). Moreover, letU be the vectof4.6), consisting
of the coefficients of the polynomialsand B satisfying(4.3)or (4.4). Then

4.7) [M(Cj{f l)} U=0, if [>0,
and
4.8) Md)U=0 if 1<0.

In particular, whenl > 0 anddy = 0, equation(4.7) reduces to\V U = 0,
whereas, wheh < 0 anddy = 0, equation(4.8)is empty.

We fix the values of the various degreesn, dy, d; involved inPb" (m, n,

dp, dy) in order to discuss consistency properties. From Definition 4.1, con-
sistency holds if for any given by (4.1) and any critical point'—™~! p/q,

one hayy = pp = P andq = ¢ = @, or equivalentlySy, = 0, for Sy
defined in (4.2). However, depending on the valug dffollows from (4.3)

or (4.4) that if the polynomialgl and B do vanish identically, then so does
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So. Further,A = B = 0 can be stated &3 = 0. Hence, from Proposition
4.4, we get the following sufficient condition for consistency to hold:

if, for some prescribedlanddy, equation(4.7)or (4.8)admitsU = 0 as its
unique solution, theRb" (m, n, dy, d1 ) is consistent for all integers, n, d;
suchthatn —m +dy =1+ dy + 1.

Using this property, we now proceed with the proof of Theorem 4.2.

Proof of Theorem 4.2First, fordy = 0 and! < 0, the assertion follows
immediately from the last observation of Proposition 4.3.

Second, considefy = 0 and! = 1. In view of Proposition 4.4, we look
for vectorsU of size 2 such that:

NU=0,
for the2 x 2 matrix \/ given by

1 b
N_[aol].

The determinant af\" is equal tol — ag by which cannot vanish, because
the polynomials: andb have all their roots ifd. Hence, in this case, (4.7)
admits the unique solutioli = 0.

Finally, takedy = 1 andl! < 0. Again from Proposition 4.4, we look for
vectorsU of size 2 that are solutions to (4.8), where #he 2 matrix M(1)

is given by Hoy) blay)
i al\og b aq
MO = | )

The determinant of\1(1) is equal to(’d’li— a b)(c) which cannot vanish,

since both Blaschke produciga andb/b are of modulus less than 11n
0

5 Counterexamples to consistency

We now turn to cases where consistency fails. The nonconsistency will
be proved by exhibiting some critical point&—""1p/q different from

the rationalf. We will look at particular critical points, namely those with
vanishing numeratép = 0. Inview of (3.3), these points always correspond
to maximums of the criteriog;;".

Theorem 5.1 The familyPb(m, n, dy, d1) is nonconsistent whenever

1 Such points have been termed degenerate in [26], but we avoid this terminology, since
it may be confused with the usual one from differential geometry, where it means critical
points whose matrix of second order derivatives (the Hessian matrix) is degenerate.
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() I >2anddy <m+1,o0r
(i) I=1andl1 <dy<n-—2,0r

(i) I<0and2 <dy<n-—1.

More precisely, for any polynomial < M}lo (having at least one (resp.
two distinct) real roots wheh = 1 (resp.l < 0)), there exist polynomials
r € Mél, P € P, andQ,q € M} such that the reducible rational
function Z"_m_lp/q, with p = 0, is a critical point ofq,z)f,;f‘n, with du =
Iro/71(e'?)|2d#, when approximating the rational functiaft—™~1P/Q.

Remarkln case (i), we get from the definition (3.4) band the inequality
d1 < m + 1 that the degred, of the weight's numerator satisfiely <
n—2—(m—d +1).

Corollary 5.2 The unweighted proble®b!(m,n, 0, 0) is consistent if and
onlyifn—2<m.

Proof. This is a direct consequence of Theorem 4.2 and assertion (i) of
Theorem 5.1. O

RemarkHere, it may be interesting to note that the same condition on the
degrees also appears in a totally different problem, namely that of com-
paring the errordZ" (f) and E°(f), f a continuous real function on the
interval [—1, 1], in real and complex rational Chebyshev approximation of
fixed degredm, n). It was proved in [14, 28] that the infimum of the ratios
E°(f)/E"(f), asf describes the set of continuous real-valued functions on
[—1, 1] distinct from the rational functions of typen, n) with coefficients

in R, equals zero ifn — 2 > m. It was also conjectured that the above
infimum is positive whem — 2 < m.

Figure 1 illustrates the results of Theorems 4.2 and 5.1. It shows the
differentknown cases of consistency (represented Byor nonconsistency
(represented by™”) according to the various degrees, n, dy, di. The
horizontal dashed lines correspond to the values1,n — 2,0rn — 2 —

(m —dy + 1) of dy whenl < 0,1 = 1, orl > 2, respectively. It is very
likely that larger values ofly also correspond to cases of nonconsistency.
Also, note that the definition dfand the fact thaf; is a nonnegative integer
impliesdy > (n—m—1)—1. Hence, in Fig. 1, only points located above the
line L with equationdy = (n—m—1)—1 are to be taken into consideration.

In the special case when the degree of the numerator equals zero, we
strengthen our results to strong nonconsistency properties. This will be
achieved by following an observation od&erstdom (cf. [26]).

Theorem 5.3 The familyPb(m, n, dy, d1 ) is strongly nonconsistent when-
everm = 0 and one of the three conditions of Theorgrhholds.
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|=n-m+dy -dg-1

Fig. 1. Consistency«) or nonconsistency{() according to the values éfanddy,

Proof of Theorem 5.1As mentioned at the beginning of this section, we
consider critical points™~™~1p/q with vanishing numeratgs = 0. With
the notations of Proposition 3.4, such points satisfy

d=q, =1, po=0.

Plugging these identities in the critical point equations (4.3) and (4.4) leads
to

(5.1) droroP —T1QA =rgB,  if 1>0,
and B B
(5.2) rotoP — T1QA = z7r1¢B, if 1<o0,

whereA and B have degrees at mast- dy — 1 in (5.1) anddy — 1 in (5.2).

In order to construct explicitly critical points, we need to reduce the size of
the matrices in (4.7) and (4.8) or, equivalently, to reduce the degrees of the
involved polynomials4 and B. To achieve this, the main idea will be to
choose both denominatofs andq as multiples of the weight’s numerator

ro (or of a large part of it).

Casel > 2. We show that, for any numeratoy € M}lo of a measuréd;; as

in (2.9), equation (5.1) is satisfied by some polynomid)<), andq such
that P/@ is an irreducible fraction, hence distinct from the critical point
2"~™=1p/q = 0. We choose botly) andg as multiples ot'~2r,, which is
always possible since the assumptin< m + 1 implies

degz'2ro=n—m+d; —3 <n=degQ = degq,

and write
(53) Q) =#n(x)Q"(2),  alz) =2 ro(2)q"(2),
where bothQ* andg* belong toM],_, , .. We then have

deg 2lrotoP <n+do+di —1,  degFQA<n+dy+di + 1,
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which, in view of (5.1), implies thallegr1¢B < n + dy + di + 1; that is,
deg B = dy + 1. Moreover, as!~2r, dividesq and is prime withﬁ@, we
deduce from (5.1) that it also divides Similarly, sincerg dividesQ and is
prime withr g, it divides B. Performing these simplifications in (5.1) leads
to

(5.4) 2P — 771@*14* =ri1q" B,
with deg A* , deg B* < 1. Put

A*(z) = Ag + Ay 2, B*(z) = By + Biz.

We also set
m =m—dy +3>2
and
(5.5) Q*(2) = 2™ + Qu—12™ 1+ -+ Qo.

Moreover, we fixg* andr; as
(5.6) q*(z) = PUL 4, ri(z) = 24 4o,

whereg; andc are some real numbers {r-1,1), ¢ # 0. Equation (5.4)

entails that the two first and last coefficients of the polynorﬁié*A* +
r1q* B* of degreem + 4 vanish. This can be written in matrix form as

1 0 cg5 O A
(57) Qm’—l 1 0 Cqop Al 0,

Qo ¢ 1 0 By
0 ¢Qy 0 1 By

whose determinant equals
(5.8) (1= 5Q0)” + g5 Q1 Q-1
The values of this expressiongit= 1 andq; = —1 are
1+cQf+c*(Q1Qm-1-2Q0)  and  1+¢'Qf — *(Q1Qm—1 —2Q0),
respectively, which are of opposite signs if and only if
(5.9) 1+¢'Q5 < |2(Q1Qm—1 — 2Qo) |-

2 Although more general denominatars can be chosen for the measule, we stick
here to this simple form, in order not to complicate the exposition and the computations.
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There exist polynomial@* € /\/l}n, such that the previous inequality is met,
for somec € (—1,1). For example, choosing the roots @f sufficiently
closeto 1, asin

- (- )

/ 1 /
=2" —i—m'(l—m,>zm_1—|—-~

) 1 m’'—1 1 m’
(5.10) +m 1_W z+ 1_ﬁ ,

satisfies the property, providing that the modulusisihot too small. Indeed,
the functionz — (1 — %)x is increasing for positive values af whence
the following inequalities hold fom’ > 3,

@<t

We havel + ¢*Q3 < 2, while

1\™ 1\™
6216277’#—1_2@0:777//2 1—7, -2 1——/
m

2\? 2
> — =24 —
—7<3> top

which implies (5.9), ifc has a modulus sufficiently close to 1. Choosipig

as in (5.10), we deduce that there exists sgjne (—1, 1), hence some*

as in (5.6), such that the determinant (5.8) vanishes. Thus, there exists an
associated nonzero solution to the system (5.7). Equivalently, we obtain two
polynomialsA* and B* of degreel with A* + 0 or B* # 0, such that

(5.11) 70O A* + rq*B* = 22P*,

where P* is some polynomial of degree. It follows from the previous
equation and the fact that* or B* does not identically vanish that, actually,
both A* and B* are distinct from zero. MoreoveR* cannot vanish as well
since, otherwiseg* would divideFlQ*A*. But this is impossible ag* has
all its roots inD Whereas?l@* has all its roots outsid® on one hand, and
q* has degreen’ = m — d; + 3 > 2 larger thandeg A* < 1 on the other
hand. In view of (5.4), we sét = P’ and obtain that = 2n=m=1(0/q)isa
critical point of Pb" (m, n, do, d1 ) when approximating the nonzero rational
Zn_m_IP/Q.

It remains to check tha?/(Q is irreducible. From the factorization 6f
in (5.3) and equality (5.4), this is equivalent to the coprimenegsaridzrg
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on one hand, and to the coprirgenes@éfandB* on the other hand. First,
if P(0) = 0, then the degree a? is less thann and equating coefficients
of degreem + 2 in (5.4) would give

Q1Ap + Q241 = 0.

But, from the system (5.7), we also deduce

(1 — CquQo)AO — CQQSQlAl = 0
The determinant of the two previous linear equationgigQ? + Q2(1 —
c?q;Qo). One then checks that, fa* as in (5.10) and, ¢ € (—1, 1), this
determinant and the determinant (5.8) cannot vanish simultaneously. Hence,

the two linear equations are independent, whetite- 0, which we know
is false. Consequently, the following assertion holds

() the polynomialP does not vanish at zero.
Second()” andB* are coprime. Indeed, from the system (5.7), we get
B*(z) = Q1+ Qo(1 — ¢;Qo)z,

up to some nonzero multiplicative constant. With the choice (5.10)"of
the root of B* equals

Q1 2

Qo(Qo—1)  (m/ —1)(y/1—4/m”2 — 1)

which is distinct from the root-m’/(m’ — 1) of multiplicity m’ of Q.
Hence, we have proved

(i) the polynomials? andQ* are coprime.

Finally, if P andry are coprime, the fractio?/Q is irreducible from

the previous discussion, and we are done. If not, there exists a partition
{1,...,do} =1UJ, J # 0, such that

(5.12) Plog) #0, i€l

(5.13) P(a;) =0, i€l

where they;'s denote the roots of, asin (4.5). By (5.4), (5.13) is equivalent
to

(5.14) FQ A* +1q*B)(1/ay) =0, i€

Sinceg* andA*, B* are respectively obtained from equating the determinant
(5.8) to zero and solving the system (5.7), we can consider the expression in
the left-hand side of (5.14) as a function whose variables are the real num-
berse, Qo, Q1, . . ., Qv —1 Or equivalently the polynomialg and@* of the
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forms given in (5.6) and (5.5). We will denote I, this function param-
eterized by the roat;. Also, observe thag*, A*, and B* are determined

in a way which makeg,. a real analytic function of its variables, defined

on the subset dR™ +! where (5.8) vanishes for somg € (—1, 1). Actu-

ally, the coefficients ofi* and B* are determined up to some multiplicative
constant, but this does not matter here, since (5.14) is homogeneous. Next,
we show that thé,,, i € J, are all distinct from the zero function by com-
puting their values for =1, Qy = 0, Q1 = 2, Qv—1 = 1, andQy = 0,

1 <k <m' —1,whenm’ > 2, where they are equal to

(@t +1)(2 = a" %) Ja]*?,
and forc = 2, Qg = 0, whenm’ = 2, where they are equal to
32Q%a 7 + 1)/ (2.

Note that the normalizatioA, = 1 has been chosen and that, here, arbitrary
values of the variables Qg, Q1, . . ., @,v_1 such that the determinant (5.8)
vanishes for some real numbgfcan be considered. Sineg is a nonzero
complex number of modulus less than 1, the two previous quantities cannot
vanish (whenm’ = 2, choose e.gQ; = 1/2if dy > 2and@; = 1
otherwise), which proves our contention. Denote\dy the point inR™ +1
corresponding to the polynomi@¥ in (5.10) and the polynomial, in (5.6),

so that (5.14) rewrites

Since the produqt—[zej w, 1S anonzero real analytic function, it cannot be
identically zero in a neighbourhood @#ft, in particular in a neighbourhood

Uy such that assertions (i), (i) above and also (5.12) remain satisfied. Hence,
there exists a poinM’ € U such thaf [, ; Fi,, (M') # 0 and it leads to

an irreducible fractionP/ which satisfies aII of our requirements. This
achieves the construction of an irreducible fractfos 2"~ P/Q such
thatPb" (m, n, do, d1) admits a critical point distinct fronf, whenl > 2.

Casel < 0. Here, we assume that the polynomig| which is of degree
dy > 2 by assumption, has at least two distinct real regt@ndas so that

ro(2) = (2 —a1)(z — @2)1r0,dy—2,  T0,dy—2 € Mcllo—2-

Choose the) andq as multiple of(z — )79 4, —2 @andrg 4,2, respectively
(recall thatdg < n — 1), and write

(5.15) Q(z) = (2 — a2)ro,4y—2Q" (2), q(2) = ro,dy—2q"(2),

whereQ* andg* belong toM],_,; ., andM,,_,; .o. Asrg 4, dividesq
and is prime with (2 we deduce from (5.2) that it also dividdsSimilarly,
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since(1 — apz)7rp gy—2 divides@ and is prime withz~!r, ¢, it divides B.
Hence, performing simplification in (5.2) leads to

(5.16) (z—a1)(z—az)(1 — alz)ﬁ — 771@*A* = z_lrlq*B*,

with deg A* < 1 anddeg B* = 0. Equation (5.16) implies that the polyno-
mial 7.Q" A* + z~lr ¢* B* vanishes atv;, ap and 1/cy. With

A*(z) = Ao+ Ay, B*(z) = Bo,

we get three linear equations which can be written in matrix form as

"1Q (1) amQ () alrig*(an) | [ A
(5.17) ?1@*(612) agﬂé*(ag) a;lrlq*(ag) By | =0.
ar ™M rQ*(ar) a7 mQ*(ar) g () By
Asinthe previous case, we show that the determinant of this system vanishes.
Suppose first that we are in the limit case where the polynoraial) =
2% 41 = 71(z). Then,r; can be factorized in (5.17) and we ignore it in

the following computations. We set = n — dy + 1 > 2 and choos&)*
andgq* of the special forms

(5.18) Q' (2)=(z+Q0)", ¢(2)=2""T"+¢,

whereQ)y , ¢ € (—1,1). Then, the3 x 3 matrix in (5.17) can be rewritten
as

(1+Qoan)”  ar(l+Qoar)" ay'(ay ™ + gp)
(519) | (1+Qoa2)" aa(l+Qoa2)" ay'(az ™ +qf)
al_lH(oq + Qo)" al_l(al +Qo)" 14 gjay +1
We compute its determinant in the limit case where the moduf)oind
¢; 9o to 1. For instance, we get fQ)y = 1 andg; = 1,

(1+a)"[(1+ )" oy oy (af — 1)
(5.20) X (1+ a1 + (1 + )" ¢,
and, forQy = 1 andgj = —1,

(1+a)™[(1+ )" o7lag (a2 = 1)
(5.21) X (a1 —1) + (1 + a)" Cy),

where(C; and(Cy are some algebraic quantities dependingh@rand as.
Let us denote respectively @y, (a1, ag) and Dz (a1, ag) the second factor
in (5.20) and (5.21).
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If n/ is even, we have

/

Dl(()él,—l) =0, Dg(al,—l)ZQ(—Oé ) (1—()[1)(1—|—a1) ,

and

0D,

5 “——Lay,—1) = (=)@ + Dagl (e = 1)1+ )",
0%

while if n’ is odd, we have

l

Dl(al, —1) = —2(—&1) (1 — a1>(1 + Oll) ; DQ(OCl, —1) = 0,

and

0D,

Ba, @1, —1) = (=17 + Dar'(af = DA+ ar)”
%

Note that, since)’ > 2, the above derivatives do not depend on the actual
values ofC; andCs. Whenr' is even, the sign of the derivative @f; at

as = —1 is opposite to the sign db, and, whem' is odd, the sign of the
derivative of D is opposite to the sign ab,. It follows that, in all cases,
(5.20) and (5.21) are of opposite signs whentends to—1 from above.

By continuity, this is still true wher)y remains close to 1 an@, < 1.
Hence, for such a value 6fy, we infer that there exists somgin (—1, 1) at

which the determinant of (5.19) vanishes. To summarize, we have shown the
existence ofy; andas in (—1,1), Q* € M;, andg* € M., ,, of the forms
(5.18) such that (5.19) has zero determinant. Hence, when considering these
special values, we get a nonzero solution to the system (5.17). Equivalently,
we obtain two polynomialgd* andB* of degree at modtand0 with A* £ 0

or B* # 0, such that

(522) Q A*+:l¢'B* = (z—a1)(z —a2)(1 — an2) P*,

where P* is some polynomial of degree. Observe, from the previous
equation that, actually, botd* and B* are distinct from zero. AlsoP*
cannot identically vanish, since, otherwigé,would divideQ*A* hence
A*. But this is impossible ag* has degre@’ > 2 larger thandeg A* = 0.
In view of (5.16), we sef® = P and obtain tha = "™~ L(0/q)is a
critical point of Pb" (m, n, dy, d1 ) when approximating the nonzero rational
zn—m—lP/Q.

Next, concerning the irreducibility oP/Q, from the factorization of
Q@ in (5.15), we have to check thd& does not vanish at the roots aof
(exceptedn;) on one hand, and thd? and Q* are coprime on the other
hand. Using (5.22), this last assertion is equivalent to the coprimeness of

~k . . . . .
B* and(@ , which is obvious sincé3* is a nonzero real number. F and
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ro(z)/(z — ) are not coprime, we can again use a perturbation argument
as in the previous case, by considering the expressions

(Q A* + 27 '¢*B)(1/aw), i=2,...,do,

where thew;'s denote, as usual, the rootsgf Sinceq*, A*, andB* are
determined by the vanishing of the determinant of (5.19) and from the system
(5.17), these expressions can still be seen as real analytic functions of the
coefficients of the polynomiaD*, parameterized by the roat. Choosing
some special value f@*, one can check that these functions are all distinct
from zero, hence that a slight changepfs possible, if necessary, in order
to get an irreducible fractio®/Q.

In order to consider nontrivial weights, observe finally that, by conti-
nuity, all the previous discussion remains correct when perturbing the weight
r1(z) = 2% + 1tory(z) = 2% + ¢, ¢ < 1 in a neighbourhood of 1.

Casel = 1. As will become clear, this case may be seen as a combination
of the two previous cases. Here, we assume that the polynegpiahich

is of degreel, > 1 by assumption, has at least one real r@pso0 thatr
factorizes as

ro(2) = (2 — a1)ro,dy-1(2),  T0do—1 € Mtli(rl‘

Then, we choose bot) andg as multiple ofrg 4,1 (recall thatdy < n—2)
and write

Q(2) = ro,dy—1Q"(2), q(z) = 10,dyg—14"(2),

where@* andg* belong toM}HlOH. Sincery 4,1 dividesq and is prime
with ?1@, we deduce from (5.1) that it also divides Similarly, since
T0,do—1 divides @ and is prime withry ¢, it divides B. Hence, performing
simplification in (5.1) leads to

(5.23) 2(z —a1)(1 — a12)P — 7Q A* = rig"B*,
with deg A* = 1 anddeg B* = 1. Equation (5.23) entalls on the one hand,
that the first and last coefficients of the polynormad;) A* + rig*B* of

degreen + 4 vanish and, on the other hand, that it vanishes,and1/«; .
With r1(2) = 24 + ¢,

A*(z) = Ao+ A2, B*(z) = By + Bz,
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and@);, andg; denoting respectively the constant coefficient§ofandg*,
we get four linear equations which can be written in matrix form as

1 0 cqp 0 Ag

1@ () a@ () mg'(ar) onrg*(en) | [Ar| _
a1 @ (a1) MQ*(a1) aimig (o) Tq (oq) By
0 cQf 0 1 By

(5.24)
Here, one may remark that the first and fourth lines of the matrix are similar
to those met in the matrix (5.7) corresponding to the ¢ase2, while the
second and third lines are similar to those met in (5.17) corresponding to
the casd < 0. As in the previous cases, we show that the determinant of
this system can happen to vanish.

We first suppose that (z) = 2% + 1 = 71(z). Again,r; can be factor-
ized in (5.24) and we proceed without it. We &#ét=n — dy +1 > 3 and
choose)* andqg* of the special forms

(5.25) Q*(2) = (z+Q0)",  ¢*(z) =2" +q,
where@ andgg are some real numbers (r-1, 1). Then, thet x 4 matrix
in (5.24) rewrites as
1 0 4% 0
(14 Qoar)™ / aj(l+ Qom)” (o + qS), aj(of + qIS)
ai(ar + Q)" (a1 + Q)" ar(l+ggar) 1+ g5oy
0 Qo 0 1
(5.26)

We compute the previous determinant in the limit case whkrandg; are
of modulus 1. For instance, we get iQp = 1 andg; = 1,

(1—a)A+at —(1+a)™)?,

which is positive asy; is of modulus less than 1, and fg}, = 1 and
QS = _1’

(1+aq) ((1 —ap)(1— o/f,) —(1+ al)n’ﬂ)
X ((1 —a)(1+a)" P —(1— a?')) _

Denoting respectively by, («1) and Dy (1) these two expressions, we
have

Dy(0) =0, D4(0)=0, DY0)=—2(n'+2)(n —2)<0,

from which we deduce thaD,; and D, are of opposite signs as, comes
close to zero. By continuity, this is still true wheépy < 1 remains in a
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neighbourhood of 1. Thus, for such a valueg, there existg in (—1,1)
forwhich the determinant of (5.26) vanishes. Consequently, we geta nonzero
solution to the system (5.24) or, equivalently, two polynomi&isand B*

of degree at most with A* + 0 or B* + 0, such that

(5.27) Q A"+ ¢ B* = z2(z —a1)(1 — a1z)P*,

where P* is some polynomial of degreer. Observe, from the previous
equation that, actually, botd* and B* are distinct from zero. AlsoP*
cannot identically vanish, since, otherwigé,would divide@*A* hence
A*. But this is impossible ag* has degree’ > 3 larger thandeg A* < 1.

In view of (5.23), we se” = P~ and obtain that = 2"~ L(0/q)is a
critical point of Pb" (m, n, do, d1) when approximating the nonzero rational
Zn_m_IP/Q.

Again, the irreducibility of the fractio®®/() can be obtained by using a
perturbation argument as in the two previous cases. The case of a nontrivial
weightr; (z) = z% + ¢, with ¢ close to 1, can still be obtained by continuity
from the limit situation where = 1. O

Proof of Theorem 5.F:irst, observe that the proof of Theorem 5.1 is based on
the vanishing of a determinant involving the coefficients of the denominators
q and@. Assume thag) is fixed. By the identification oM. with an open
subset ofR™ that was described at the beginning of Sect. 3, this determinant
equals zero if and only if the poit1 whose coordinates are the coefficients
of ¢ belongs to some hypersurfage in R™. It is shown in the proof of
Theorem 5.1 that, if any one of the conditions (i), (ii) or (iii) is satisfied,
then there exist polynomialsand@ in M such that the point belongs
to . Hence, in this case, the hypersurfatintersects\. . The numerator
P of the functionf was then subsequently obtained from the critical points
equations (5.1) or (5.2). When = 0, this P reduces to a real number and
since it is only determined up to a constant multiplicative factor, one can set
P(z) = 1 asq € M., describes{. Consequentlyb” (0, n, dy, d1) admits
a whole set of reducible critical poin{g™'p/q, p = 0, ¢ € ML NH}
when approximating the unique functigiiz) = 2"~ 1/Q( ).

Second, sincg = 0 wheng € M!N#H,the crlterlonl/zo *is constant on
M.} NH and equal to its maximum value, namﬂﬁ”m On the boundary

of M., it has the same value, since we are assuming 0 (see Corollary
3.3).

Third, the setM!, when identified to an open subset®f, is home-
omorphic to the open unit ball &™ (cf. [4]). Since the hypersurfacH
intersectsM}., we obtain a partition of the closure ¢ft, into at least two
compact subsetdg; andU,, with nonempty interiors, separated By Since
1/;(’; 1 takes its maximum value on the boundaries of these two subsets, we can
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conclude, as &lerstdbm did in the simpler case when= 2 (cf [26]), that
¢g;¢; must have a minimum i&/; as well as inJ;. This shows the existence
of at least two relative minima and finishes the proof of the theorem
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