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Summary. We investigate consistency properties of rational approximation
of prescribed type in the weighted Hardy spaceH2−(µ) for the exterior of
the unit disk, whereµ is a positive symmetric measure on the unit circle
T. The question of consistency, which is especially significant for gradient
algorithms that compute local minima, concerns the uniqueness of critical
points in the approximation criterion for the case when the approximated
function is itself rational. In addition to describing some basic properties of
the approximation problem, we prove formeasuresµ having a rational func-
tion distribution (weight) with respect to arclength onT, that consistency
holds only under rather restricted conditions.
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Notations

T, D, D̃ unit circle, openunit disk, complement inCof the closed
unit disk

Pn space of real polynomials of degree at mostn (if n < 0,
Pn = {0})

M1
n monic real polynomials of degreen having all their roots

in D
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M̃1
n real polynomials of degree at mostnwith constant coef-

ficient equal to1having all their roots outside the closure
of D

L2(µ), L2 real Hilbert spaces of square-summable functions with
respect to a finite positive measureµ symmetric onT
(i.e. invariant by complex conjugation), with respect to
the Lebesgue measuredθ onT

〈·, ·〉µ, 〈·, ·〉 (real valued) scalar products inL2(µ), in L2

‖.‖2,µ, ‖.‖2 norms inL2(µ), in L2

H2(µ),H2 real Hardy spaces of exponent 2 of the unit disk, closures
of the space of real polynomials inL2(µ), in L2

H2−(µ),H2− real Hardy spaces defined as the closures of the linear
span of{1/zk , k > 0} in L2(µ), in L2

Pµ
+, P+, P

µ
−, P− orthogonal projectionsL2(µ) → H2(µ), L2 → H2,

L2(µ)→ H2−(µ), andL2 → H2−
L∞,H∞ real Banach space of essentially bounded functions on

T, real subspace ofH2 of essentially bounded functions
R−

m,n subset of H2− consisting of rational functions
zn−m−1p/q with p ∈ Pm andq ∈M1

n

1 Introduction

We investigate consistency properties of rational approximation in the com-
plement inC of the closed unit disk, with the norm induced by that of a
weighted real Hardy spaceH2−(µ), whereµ is some finite positive measure
symmetric onT. Let us first state andcomment on the rational approximation
problem.

Pbµ(D̃,m, n): Givenf ∈ H2−(µ) and nonnegative integersm, n, find ra-
tional functionszn−m−1p/q ∈ R−

m,n which minimize

‖f − zn−m−1p/q‖22,µ =
1
2π

∫ 2π

0
|(f − zn−m−1p/q)(eiθ)|2dµ(θ).(1.1)

Themeasureµ onT involved in the definition of the norm above is assumed
to carry some kind of regularity: we consider the case of an absolutely
continuous measureµ which belongs to the Szegő class, that is

dµ = w(θ)dθ, 0 ≤ w ∈ L1, logw ∈ L1.(1.2)

It then follows from properties of the corresponding weighted Hardy space
H2−(µ) that the setR−

m,n of approximating functions is contained inH
2−(µ),

see Sect. 2 below.
ProblemPbµ(D̃,m, n) is standard in approximation theory. Ourmotiva-

tion for investigating rational approximation partly stems from system and
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control theory. Indeed, problemPbµ(D̃,m, n) is a well-posed and efficient
formulation for weighted model reduction issues in frequency domain iden-
tification of linear scalar systems that are stable, causal, and time invariant
[15,23,25]. For multivariable systems, model reduction amounts to solving
anH2 matrix rational best approximation problem of bounded MacMillan
degree [5].

The primary question of existence of a minimizer in problemPbµ(D̃,
m, n) can be answered positively as in the unweighted diagonal case (m =
n− 1, w = 1), see [1].

Using thedifferential framework inducedby the integral normonH2−(µ),
we can define the rational functions that arecritical pointsof the criterion
(1.1). These are thezn−m−1p/q ∈ R−

m,n at which the derivative of the
norm of the error‖f − zn−m−1p/q‖2,µ with respect to the coefficients of
p/q vanishes. Among them, lie local minima as well as global minima, but
possibly also saddle points or local maximums. The analysis of these critical
points forms the basis of our study of the above rational approximation
problem and we spend some time characterizing them.

The unweighted scalar case with degree(m,n) satisfyingm ≥ n − 1
has already been studied in a series of papers. Let us briefly review some of
the results that were obtained. Existence and generic uniqueness of a best
approximant, asymptotic properties, as well as an index theorem that gives
a global constraint on the set of critical points, have been established in [1,
4,6]; a gradient algorithm converging to a local minimum is also described
in [3]. From the index theorem, uniqueness of a critical point (hence of
a local and global minimum) is derived for some classes of functions, like
Markov functions or exponentials; see [8] and thebibliography therein. Such
uniqueness properties are of interest from a numerical viewpoint, since they
ensure the convergence of the above algorithm to the best approximant.

A first step in the study of the weighted diagonal approximation problem
Pbµ(D̃, n−1, n) inH2−(µ) appears in [19], where a resolution algorithm is
proposed for weightsw that are the square-modulus of reciprocals of poly-
nomials. In this connection, weighted Hardy spacesH2(µ), for measures
µ belonging to the Szegő class (1.2), have also been considered in [9] to
generalize results about uniform meromorphic approximation in the unit
disk (commonly as Adamjan–Arov–Krein theory) rather thanH2 rational
approximation.

We come now to the consistency issue. This is a quite standard notion
in numerical analysis of differential equations. Let us first explain what we
mean by consistency for problemPbµ(D̃,m, n). When the functionf itself
is an irreducible fraction inR−

m,n, it is obvious thatf minimizes (1.1), as
its own approximant. Still, in this case, the question arises whetherf is
the only critical point among the set of approximants. Byconsistency of
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the approximation problem, we mean that the answer to this question is in
the positive; see Definition 4.1 for a precise statement. For example, the
unweighted diagonal case (m = n−1) is known to be consistent [4] as well
as its matrix valued generalization [5].

This consistency property has strong consequenceswhen interpreting the
local minima found by an algorithm, based on a gradient method. Indeed, if
consistency fails, a local minimum, even of the right degree, that furnishes
a small error when approximating a rational function, can happen to be
far from the function to be identified. This pathological behaviour then
leads to computational difficulties when trying to recover the right degree
of the function, let alone the function itself. In a system theoretic setting,
consistency-like properties have already been investigated for least–squares
criteria. Sufficient conditions in the overparametrizing case (degree of the
approximant larger than the degree of the system) for uniqueness of critical
points and a counterexample to consistency in a matching order case (of
degreesm = 0, n = 2, and a weightw of the form |z2 − α2|4, α ∈
(−1, 1)) havebeengiven in [26]. Further counterexamples in theunweighted
case (withm = 0 and n = 3) and a discussion about the uniqueness
of critical points in more general situations also appear in [11,21]. The
consistency issue for different kinds of approximants, namely multivariate
Pad́e approximants, has also been studied in [10].

In this paper, we consider rational weightsw and demonstrate that con-
sistency holds only in a few cases that we specify. For example, we show
that the unweighted problem is consistent if and only ifn − 2 ≤ m. In
most other cases, we construct counterexamples which show that consis-
tency fails. In the special occurence where the degree of the numerator of
the approximants equals zero (m = 0), we prove that situations with two
distinct minima can occur (strong nonconsistency).

InSect. 2, wedescribe theweightedHardy spaces thatwe consider, along
with their main properties.We also display some of the characteristics of our
weighted rational approximation problem. In Sect. 3, we study the differen-
tial properties ofPbµ(D̃,m, n) and establish the critical points equations. In
Sect. 4, we derive a sufficient condition for consistency to hold and exhibit
cases where it is satisfied. In Sect. 5, we construct examples of nonconsis-
tency and, using a topological argument, we refine these examples to get,
under the additional condition thatm = 0, cases of strong nonconsistency.

2 WeightedH2 rational approximation

General properties of Hardy spaces can be found in [12,16,18,24]. Some
results on weighted Hardy spaces are given in [16,22]. We summarize in
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the following proposition a few of the well–known facts about Hardy spaces
associated with measures onT satisfying the Szeg̋o condition (1.2).

Proposition 2.1 ([13,16])If µ satisfies(1.2), then:

(i) The function1/z does not belong toH2(µ). In particular,H2(µ) /=
L2(µ).

(ii) The Lebesgue measure is absolutely continuous with respect toµ.
(iii) The weightw ∈ L1 can be written as

w = |h|2,(2.1)

for an outer functionh in H2, with 1/h in H2(µ).

Note thath can be chosen real since the weightw satisfiesw(θ) = w(−θ),
θ ∈ T. From Proposition 2.1, we deduce that the maps

f �→ hf, f �→ h̄f,(2.2)

are isometric isomorphisms fromL2(µ) ontoL2. Moreover, the restriction
of the first map toH2(µ) is an isometric isomorphism ontoH2, while the
restriction of the second map toH2−(µ) is an isometric isomorphism onto

H2−. Since1/h (resp.1/h̄) defines an analytic function inD (resp.D̃), for
any functionf inH2(µ) (resp.H2−(µ)), there is a functiong = (hf)(1/h)
(resp.g = (h̄f)(1/h̄)) analytic inD (resp.D̃), such that the non–tangential
limits of g agree withf almost everywhere with respect to the Lebesgue
measure. Furthermore,

lim
r→1

∫ 2π

0
|g(eiθ)− g(reiθ)|2dµ(θ) = 0.

Hence, similar to the usual Hardy spaceH2, the weighted spaceH2(µ) can
be considered as a Hilbert space of analytic functions inD.

Finally, it is easily checked from the previous isomorphisms that the
following two orthogonal decompositions ofL2(µ) hold:

L2(µ) = H2(µ)⊕ (h/h)H2−(µ) = (h/h)H2(µ)⊕H2−(µ),(2.3)

and that, for anyf in L2(µ),

Pµ
+(f) = h−1P+(hf), Pµ

−(f) = (h)−1P−(hf).(2.4)

Let us now describe some properties of the approximation problem.
First, observe thatPbµ(D̃,m, 0) simply amounts to the usual polynomial

approximation of the functionzm+1 f(z) in L2(µ), the unique solution of
which is given by them+ 1 first terms of its expansion in the Szegő basis
associated with the measureµ, see [27, Chapter XI]. Note also that, in this
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case, the answer to the consistency issue is immediate since uniqueness of
a critical point holds. In order to consider truly rational approximation,we
assume hereafter that the degreen of the denominators of the approximants
satisfiesn ≥ 1.

ProblemPbµ(D̃,m, n) can be transformed into an equivalent problem
about functions that are analytic inside the unit disk. Indeed, applying the
involutive isometry ofL2(µ) defined by:

g	(z) = z−1 g(z−1),

which interchangesH2(µ) andH2−(µ), we get

Pbµ(D,m, n): Giveng ∈ H2(µ) and nonnegative integersm, n, minimize

‖g − p̃/q̃‖22,µ,

asp̃/q̃ ranges over the subset ofH2(µ) consisting of rational functions with
p̃ ∈ Pm and q̃ ∈ M̃1

n.
Next, the problem of minimizing the distance

‖ϕ− p/q‖22,µ

between any functionϕ in the ambient spaceL2(µ) and fractionsp/q with
p ∈ Pm andq ∈M1

n reduces to our problemPbµ(D̃,m, n). Indeed,

‖ϕ− p/q‖22,µ = ‖zn−m−1 ϕ− zn−m−1p/q‖22,µ,

and, using the second decomposition in (2.3), we have

zn−m−1 ϕ = ϕ1 + ϕ2, ϕ1 ∈ (h/h)H2(µ), ϕ2 ∈ H2−(µ).

By orthogonality, we deduce, sincezn−m−1p/q ∈ H2−(µ), that

‖ϕ− p/q‖22,µ = ‖ϕ1‖22,µ + ‖ϕ2 − zn−m−1p/q‖22,µ.

Hence, we are led to minimize‖ϕ2 − zn−m−1p/q‖22,µ, which isPbµ(D̃,
m, n) for the functionϕ2.

In order to establish the next property, we need an additional assumption
on the measuredµ, namely that the outer functionh such that (2.1) holds
also satisfies

h ∈ H∞, 1/h ∈ H∞.(2.5)

This implies, in view of the isomorphisms (2.2), that

L2(µ) = L2, H2(µ) = H2, H2−(µ) = H2
−,(2.6)

and that the norms‖.‖2,µ and‖.‖2 are equivalent. Note that the assumption
(2.5) is also necessary in order to have the identities (2.6). Indeed, it is well-
known that any multiplier onL2 has to belong toL∞ (cf. [29, Theorem
13.14]). Hence,h ∈ L∞ ∩H2 = H∞, and the same holds for its reciprocal
1/h.
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Proposition 2.2 (Normality property) Assume that the measureµ belongs
to the Szeg̋o class and satisfies assumption(2.5). Then, iff ∈ H2−(µ) is not a
rational function belonging toR−

m−1,n−1, any local minimumzn−m−1p/q

of Pbµ(D̃,m, n) with respect tof is such thatdeg q = n and p , q are
coprime.

Proof.Assume thatzn−m−1p/q ∈ R−
m,n is a reducible local minimum of

Pbµ(D̃,m, n)so thatzn−m−1p/q ∈ R−
m−ν,n−ν with0 < ν ≤ inf(m,n). To

obtain our result, we use a perturbation argument as follows. For any closed
subsetK of (−1, 1) with nonempty interior, there exists a neighbourhood
U of zero inR such that

∀a ∈ U, ∀b ∈ K,∥∥∥∥f − zn−m−1
(
p

q
+
azm−ν+1

(z − b)q
)∥∥∥∥2

2,µ

≥ ∥∥f − zn−m−1p/q
∥∥2

2,µ
.

Note thatzn−m−1(p/q+azm−ν+1/(z−b)q) ∈ R−
m,n. Expanding the norms

in terms of scalar products yields〈
a

(z − b)q ,
a

(z − b)q
〉

µ

− 2
〈
f − zn−m−1 p

q
,
azn−ν

(z − b)q
〉

µ

≥ 0.(2.7)

As a tends to zero, the left–hand side is of order

−2a
〈
f − zn−m−1p/q, zn−ν/(z − b)q〉

µ
.

Since (2.7) is satisfied regardless of the sign ofa, we must have

∀b ∈ K, 〈
f − zn−m−1p/q, zn−ν/(z − b)q〉

µ
= 0.(2.8)

On the other hand, the family{zn−ν/(z− b)q}b∈K spans a dense subspace
F of H2−. Indeed, assumeg ∈ H2− is orthogonal to this family. Then, by
definition of the scalar product inH2−, we have∫

zn−νg	(z)
(z − b)q(z)dz = 0,

or equivalently, by Hermite formula,

bn−νg	(b)− L(b) = 0,

whereL ∈ Pn−ν−1 denotes the polynomial interpolatingzn−νg	(z) at
the roots ofq. As this equality between two analytic functions inD holds
for b in a subsetK that admits accumulation points inD, we deduce that
zn−νg	(z) = L(z), which, in turn, impliesg	 = 0, sincedegL = n−ν−1.
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Consequently, the orthogonal complement ofF in H2− is zero; whence
F = H2−, as was to be proved. Next, by the assumption (2.5) onµ, H2−
andH2−(µ) share the same topology, so that the subspaceF is also dense
in the weightedH2−(µ). Now, (2.8) means thatf − zn−m−1p/q belongs to
the orthogonal complement ofF inH2−(µ); hence it is equal to zero, by the
preceding remark. This yields a contradiction with the assumption made on
f and finishes the proof. ��

As mentioned in the introduction, we shall now restrict our study to
the case of rational weights. It seems that such weights onT have not yet
receivedmuch attention in the literature. The only reference that the authors
know of is the article [17] where orthogonal polynomials with respect to
rational weights are investigated. Let us now give the precise definition of
the measuresdµ onT associated with rational weights. These measures are
the finite positive absolutely continuous ones, whose densities are equal to
the square modulus of a rational function. Namely,

dµ(eiθ) = |r(eiθ)|2 dθ , r = r0/r1 ,(2.9)

for some polynomialsr0 andr1. Throughout, we suppose that no roots of
r0 norr1 lie onT, and thatr0 andr1 are coprime. We also assume these two
polynomials to be monic since this only requires multiplying the measure
dµ by a positive constant. If

deg r0 = d0 , deg r1 = d1,

it will be convenient to say that the weight is of type(d0, d1). Moreover,
note from the definition (2.9) ofdµ that all the roots ofr0 andr1 can be
chosen inD \ {0}. In this way, we get in particular thatr0 ∈ M1

d0
and

r1 ∈ M1
d1
. Also, the derivativedµ/dθ onT equals the square modulus of

r̃0/r̃1 which, with our assumptions, belongs toH∞, and the same is true for
its reciprocal. Thus, condition (2.5) is satisfied, so that the identities (2.6)
hold in the case of rational weights.

For convenience, whendµ is a measure as in (2.9), we rename the
weighted rational approximation problemPbµ(D̃,m, n) as:

Pbr(m,n, d0, d1): Givenf ∈ H2− and two integersm,n ≥ 0, minimize

‖f − zn−m−1p/q‖22,µ

=
1
2π

∫ 2π

0
|(f − zn−m−1p/q)(eiθ)|2|r(eiθ)|2dθ,(2.10)

aszn−m−1p/q ranges overR−
m,n.

One should note aboutPbr(m,n, 0, d1) (that is, when the weightr only
consists of the reciprocal of a polynomial) that situations where the degrees



WeightedH2 rational approximation and consistency 529

satisfym > n + d1 − 1 can always be reduced to the so-called canonical
diagonal case wherem = n+d1−1. This merely means that, whend0 = 0,
some linear part of the approximants involved in the numerators does not
play any role in our problem, as soon as it is of degree larger than some given
constant. The proof is as follows. By definition of the weight inH2−(µ), we
have:

‖f − zn−m−1p/q‖2,µ = ‖z
d1f

r1
− zd1+n−m−1p

r1q
‖2.

In the unweighted spaceH2, we can apply [7, Lemma 2.2, Eq. (2.7)], which
implies that the last norm equals

‖P−
(
zm−n+1f/r1

)− π/r1q‖2 ,
for someπ ∈ Pn+d1−1. Hence,

‖f − zn−m−1p/q‖2,µ = ‖ r1
zd1

P−
(
zd1

r1
zm−n+1−d1f

)
− z−d1 π

q
‖2,µ.

Finally, observing that in the present situation the outer functionh defined
in (2.1) equals1/r̃1, we get by applying the second equality in (2.4) that

‖f − zn−m−1p/q‖2,µ = ‖Pµ
−
(
zm−n+1−d1 f

)
− z−d1π/q‖2,µ ,

which is just the quantity to minimize when considering the approximation
problemPbr(n+ d1 − 1, n, 0, d1) for the functionP

µ
−
(
zm−n+1−d1 f

)
.

3 Critical points

The aim of this section is to study our approximation problem with respect
to differentiation.

First, the following definition has to be given. The reversep̃ of the poly-
nomialp ∈ Pn is the polynomial such that

p̃(z) = zn p(1/z) ∈ Pn.

If n′ > n andp ∈ Pn is considered as an element ofPn′ (with vanishing
leading coefficients), then the two definitions ofp̃may be inconsistent. For
this reason,weshall alwaysspecifywhichPn is involved in thecomputation.

We identify the polynomial ofPn,

p(z) = pnz
n + · · ·+ p0,

with the vector(pn, . . . , p0). In this way,Pn is endowed with the Euclidean
topology ofRn+1. Similarly, identifying the polynomial ofM1

n,

q(z) = zn + qn−1z
n−1 + · · ·+ q0,
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with the vector(qn−1, . . . , q0),M1
n becomesanopensubset ofR

n. Differen-
tiating under the integral sign in (2.10), we see that themapPm×M1

n → R

given by
(p, q)→ ‖f − zn−m−1p/q‖22,µ(3.1)

is smooth, i.e. all partial derivatives of every order exist and are continuous.
Next, in order to obtain a criterion depending on the denominatorq only, we
characterize the optimal numeratorp∗ from f andq. Considering the partial
derivative of (3.1) with respect to the numeratorp, we obtain〈

f − p∗
zm−n+1q

,
Pm

zm−n+1q

〉
µ

= 0,(3.2)

which means that the unique optimalp∗ is the numerator of the orthogonal
projection off onto the subspacePm/z

m−n+1q ⊂ H2−(µ). Denoting this

numerator byLf,µ
m,n(q) ∈ Pm, we define a new mapψf,µ

m,n : M1
n → R as a

function ofq only, by

ψf,µ
m,n(q) = ‖f − Lf,µ

m,n(q)/zm−n+1q‖22,µ

= ‖f‖22,µ − ‖Lf,µ
m,n(q)/zm−n+1q‖22,µ.(3.3)

In particular, the mapψf,µ
m,n is bounded by‖f‖22,µ onM1

n.

Theorem 3.1 Let dµ be a measure onT such that(2.9) holds. Then, the
mapψf,µ

m,n :M1
n → R is smooth.

Proof. It is sufficient to prove the smoothness of the mapq �→ Lf,µ
m,n(q).

Let {Φµ,q
j }j≥0 denote the system of orthonormal polynomials onT for the

measuredµ/|q|2. The orthogonal polynomialΦµ,q
j has precisely degreej

and its roots lie inD [27, Thm. 11.4.1].
Choosing{Φµ,q

j }0≤j≤m as a basis forPm and applying the Christoffel–
Darboux formula for the Szegő kernel (see [27, Chapter XI]), we first get,
as in [2] or [19, Proposition 2], that the polynomialLf,µ

m,n(q) ∈ Pm is given
by

Lf,µ
m,n(q)(z) =

〈
f,
Φ̃µ,q

m+1(ξ)Φ̃
µ,q
m+1(z)− Φµ,q

m+1(ξ)Φ
µ,q
m+1(z)

ξm−n+1(1− ξz)q(ξ)

〉
µ

.

Next, recall thatµ is defined by (2.9) and introduce themeasure# defined on
T by d#(eiθ) = dθ/|r1(eiθ)|2; whencedµ(eiθ) = |r0(eiθ)|2 d#(eiθ). Write
{Φ�,q

j }j≥0 for the system of orthonormal polynomials onT associated with

the measured#/|q|2. Becauser0 ∈ M1
d0

and|r0(z)|2 = z−d0 r0(z) r̃0(z)
for z ∈ T, we get from [17, Theorem 1] that the orthonormal polynomials
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associated with the distributionsd# and dµ = |r0|2 d# are linked by a
determinantal relation of the form

r0(z) r̃0(z)Φ
µ,q
k (z) = αk(z) Φ̃

�,q
k+d0

(z) + βk(z)Φ
�,q
k+d0

(z), k ≥ 0,

whereαk ∈ Pd0−1 andβk ∈ Pd0 . Moreover, the coefficients of the poly-
nomialsαk andβk are given by determinants whose entries are the values
of zjΦ̃�,q

k+d0
(z) andzjΦ�,q

k+d0
(z) at the roots ofr0 andr̃0, for j = 0, . . . , d0.

Finally, the mapq �→ Φ�,q
j is smooth onM1

n. Indeed, the classical
induction formulas (see [27]):

Φ̃�,q
j (0) Φ̃�,q

j (z) = Φ̃�,q
j+1(0) Φ̃�,q

j+1(z) − Φ�,q
j+1(0)Φ�,q

j+1(z) , j ≥ 0 ,

Φ̃�,q
j (0)2 = Φ̃�,q

j+1(0)2 − Φ�,q
j+1(0)2 =

∑j
k=0 Φ

�,q
k (0)2 ,

canbe initializedbackwards for suchmeasuresd#sincewehave the relations

Φ�,q
j (z) = zj−n−d1 q(z) r1(z), j ≥ n+ d1 .

The last equation directly yields the smoothness ofq �→ Φ�,q
j for j ≥ n+d1.

The induction formula then allows one to deduce the same result for0 ≤ j <
n+d1 as soon as̃Φ

�,q
j (0)2 = Φ̃�,q

j+1(0)2 − Φ�,q
j+1(0)2 /= 0. This is always true

for q ∈M1
n, for the polynomialΦ

�,q
j+1(z)/Φ̃

�,q
j+1(0) belongs toM1

j+1; hence,

Φ�,q
j+1(0)/Φ̃�,q

j+1(0) which is the product of its zeros, necessarily satisfies

|Φ�,q
j+1(0)/Φ̃�,q

j+1(0)| < 1.
This establishes the claim, since each step of the composed mapq �→

Φ�,q
m+1+d0

�→ Φµ,q
m+1 �→ Lf,µ

m,n(q) is smooth forq ∈M1
n. ��

By definition, acritical point of ψf,µ
m,n will be anyq ∈M1

n such that the
derivative ofψf,µ

m,n vanishes at this point. We first use the integral form of
(3.2) to obtain in Proposition 3.2 a characterization of the optimal numerator
p in terms of division relations. Then, in Proposition 3.4, we characterize in
the same manner critical points ofPbr(m,n, d0, d1).

In the remainder of this paper, we assume themeasureµ to be of the type
(2.9) and we set throughout

l = n−m+ d1 − d0 − 1 .(3.4)

Proposition 3.2 Assumeq ∈M1
n is fixed inPbr(m,n, d0, d1) and set

E = f 	 q̃ − p̃, p ∈ Pm.

Then, the following two assertions are equivalent:

(i) The polynomialp ∈ Pm minimizes the weighted norm(2.10).
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(ii) If l > 0, there exist a polynomialA ∈ P l+d0−1 and a functionB ∈ H2

such that
zl r0 r̃0E − r̃1 q̃ A = r1 q B .(3.5)

If l ≤ 0, there exist a polynomialA ∈ Pd0−1 and a functionB ∈ H2

such that
r0 r̃0E − r̃1 q̃ A = z−l r1 q B .(3.6)

Remark.Assertion (ii) can be rephrased as follows. Ifl > 0, there exists a
polynomialA ∈ P l+d0−1 such thatr1q divideszl r0 r̃0E − r̃1 q̃ A in H2.
If l ≤ 0, there exists a polynomialA ∈ Pd0−1 such thatz−lr1q divides
r0 r̃0E − r̃1 q̃ A in H2.

Proof.By differentiating the quantity (2.10) with respect to the coefficients
of p, we get thatp/q leads to a minimum if and only if〈

zn−m−1+i/q, f − zn−m−1p/q
〉
µ

=
〈
zn−m−1+ir/q,

(
f − zn−m−1p/q

)
r
〉

= 0 , i = 0, . . . ,m .

Using the integral representation of theH2 scalar product and taking linear
combinations of the previous equations, we get

1
2iπ

∫
T

(
f 	(z)− p̃(z)

q̃(z)

)
zn−m−1 π(z)

q(z)
|r(z)|2 dz = 0 , ∀π ∈ Pm ,

or, equivalently,

1
2iπ

∫
T

zl E r0 r̃0
q̃ r̃1

(z)
π

q r1
(z) dz = 0 , ∀π ∈ Pm .(3.7)

Assume first thatl > 0. Write

q r1 = π1 π2 , π1 ∈ Pn−m+d1−1 , π2 ∈ Pm+1 .

Moreover, letF be theH2 function defined by:

F (u) =
π1(u)
2iπ

∫
T

zl E r0 r̃0
q̃ r̃1

(z)
dz

π1(z) (z − u) , ∀u ∈ D .(3.8)

On the one hand, ifα denotes a root ofq r1 with multiplicity ,, writingF (s)

for thesth derivative ofF , it holds that

F (s)(α) = 0 for 0 ≤ s ≤ ,− 1 ,(3.9)

or, equivalently, thatq r1 dividesF in H2. Indeed,

F (s)(u) =
s∑

j=0

s!
j!
π

(j)
1 (u)
2iπ

∫
T

zl

×E r0 r̃0
q̃ r̃1

(z)
dz

π1(z) (z − u)s−j+1 , ∀u ∈ D .(3.10)
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Let , = ,1 + ,2 where,i is the multiplicity ofα as a root ofπi, i = 1, 2.
When0 ≤ j ≤ ,1 − 1, thenπ(j)

1 (α) = 0. When,1 ≤ j ≤ , − 1, then
1 ≤ s− j + 1 ≤ ,2 for 0 ≤ j ≤ s; thus,σ1(z) = π1(z) (z − α)s−j+1 is a
factor ofq r1 of degree larger than or equal ton−m+ d1 andq r1 = σ1 σ2
for someσ2 ∈ Pm. Applying (3.7) withπ = σ2, we get that the integrand
in (3.10) vanishes atα, thereby establishing (3.9).

On theother hand, the residue formulaapplied toexpression (3.8) implies
that there exists some polynomialA ∈ Pn−m+d1−2 such that

F (u) = ul E r0 r̃0
q̃ r̃1

(u)−A(u) , ∀u ∈ D .

This, togetherwith (3.9) and the observation thatn−m+d1−2 = l+d0−1,
establishes (3.5).

Conversely, assume that (3.5) holds. The integral in (3.7) then becomes

1
2iπ

∫
T

Aπ

q r1
(z) dz +

1
2iπ

∫
T

B π

q̃ r̃1
(z) dz .

However, we get fromCauchy’s theorem that the two integrals above vanish
for π ∈ Pm. Indeed, in the first one,Aπ is of degree at mostn+ d1 − 2
while q r1 is exactly of degreen+ d1 and has no zero outside the closure
of D. In the second one, the integrand belongs toH2. This completes the
proof of the equivalence of (i) and (ii) whenl > 0.

Second, assumel ≤ 0 and write this time

z−l q r1 = π1 π2 , π1 ∈ Pd0 , π2 ∈ Pm+1 .

DefineF ∈ H2 as

F (u) =
π1(u)
2iπ

∫
T

E r0 r̃0
q̃ r̃1

(z)
dz

π1(z) (z − u) , ∀u ∈ D .(3.11)

Again, we get that (3.9) holds for every rootα of z−l q r1 with multiplicity
, and as before:

F (u) =
E r0 r̃0
q̃ r̃1

(u)−A(u) , ∀u ∈ D ,

for someA ∈ Pd0−1. Note that wheneverd0 = 0, thenA = 0. Finally, the
assertion that (ii) implies (i) can be proved as in the casel > 0. ��

FromProposition 3.2, we can gain some information on the behaviour of
the mapψf,µ

m,n on the boundary∂M1
n of the domainM1

n. This is the content
of the next corollary. It will be useful in the proof of Theorem 5.3. Note that
∂M1

n consists of monic polynomials whose roots are all of modulus at most
1 and at least one root is exactly of modulus 1.
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Corollary 3.3 If the functionf ∈ H2− is continuous on the closure of̃D,

then the mapsLf,µ
m,n andψf,µ

m,n admit continuous extensions to the boundary
∂M1

n of the domainM1
n. Moreover, if the limit pointq ∈ ∂M1

n has more
thanm roots of modulus 1, these continuity properties still hold atq without
the above assumption onf . In this case, we also haveLf,µ

m,n(q) = 0 and the
mapψf,µ

m,n assumes its maximal value‖f‖22,µ at q.

Proof. Let (qi) be a sequence of polynomials inM1
n which tends to a

polynomial q = q1q2 ∈ ∂M1
n, with q1 a monic polynomial of degree

n1 > 0 having all its roots of modulus 1 andq2 ∈ M1
n−n1

. The sequence

‖Lf,µ
m,n(qi)/qi‖22,µ remains bounded by‖f‖22,µ. Consider any subsequence

(qiν ) such thatLf,µ
m,n(qiν )/qiν converges to some rational functionpν/q,

pν ∈ Pm. This limit has a finiteL2 norm; whenceq1 dividespν . Hence, if
n1 > m, we havepν = 0, so that thewhole sequenceLf,µ

m,n(qi)/qi tends to 0,
which finishes the proof of the corollary in this case. Ifn1 ≤ m, we consider
the limits in relations (3.5) and (3.6) whenqiν tends toq. Indeed, one can
check that the polynomialA admits a limit by recalling that it is obtained
from the residue formula applied to expression (3.8) and that the functionf
is continuous up toT, and in particular at the roots ofq1. Consequently,B
admits a limit as well and we get

zl r0 r̃0 (f 	q̃ − p̃ν)− r̃1 q̃ A = r1 q B, A ∈ P l+d0−1, B ∈ H2,

if l > 0, and

r0 r̃0 (f 	q̃ − p̃ν)− r̃1 q̃ A = z−l r1 q B, A ∈ Pd0−1, B ∈ H2,

if l ≤ 0. We setp∗
ν = pν/q1 ∈ Pm−n1 . Sinceq1 is also a factor of̃pν ,

dividing the two previous relations byq1 leads to

zl r0 r̃0 (f 	q̃2 − p̃∗
ν)− r̃1 q̃2A = r1 q2B, A ∈ P l+d0−1, B ∈ H2,

if l > 0, and

r0 r̃0 (f 	q̃2 − p̃∗
ν)− r̃1 q̃2A = z−l r1 q2B, A ∈ Pd0−1, B ∈ H2,

if l ≤ 0. Consequently, applying Proposition 3.2, we derive that

p∗
ν = Lf,µ

m−n1,n−n1
(q2),

which shows that the limitpν/q = p∗
ν/q2 is independent of the particu-

lar subsequence(qiν ). Hence, the whole sequenceLf,µ
m,n(qi)/qi converges

to Lf,µ
m−n1,n−n1

(q2)/q2 if n1 ≤ m and the mapsLf,µ
m,n andψf,µ

m,n admit a
continuous extension to the boundary ofM1

n. ��
We now proceed with characterizing the critical points ofPbr(m,n,

d0, d1).
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Proposition 3.4 Letzn−m−1 p/q be a rational function inR−
m,n such that

p = δp0 , q = δq0 ,

for polynomialsp0, q0 such thatp0/q0 is irreducible andδ ∈M1
ν , 0 ≤ ν ≤

n. Set
E0 = f 	 q̃0 − p̃0.(3.12)

Then, the following two assertions are equivalent:

(i) The polynomialq is a critical point of the mapψf,µ
m,n defined by(3.3).

(ii) If l > 0, there exist a polynomialA ∈ P l+d0−1 and a functionB ∈ H2

such that
zl r0 r̃0E0 − r̃1 q̃0A = r1 q

2
0 δ B .(3.13)

If l ≤ 0, there exist a polynomialA ∈ Pd0−1 and a functionB ∈ H2

such that
r0 r̃0E0 − r̃1 q̃0A = z−l r1 q

2
0 δ B .(3.14)

Remarks.In the above reduction ofp/q, note that eitherp0 = 0 or ν ≤ m.
Assertion (ii) can be rephrased as follows. Ifl > 0, there exists a polynomial
A ∈ P l+d0−1 such thatr1q20δ dividesz

lr0r̃0E0−r̃1q̃0A inH2. If l ≤ 0, there
existsapolynomialA ∈ Pd0−1 such thatz−lr1q

2
0δ dividesr0 r̃0E0−r̃1 q̃0A

in H2.

Proof.Bydifferentiating the criterionwith respect to the coefficients ofpand
q, we get thatp/q is a critical point for (2.10) if and only if, fori = 0, . . . ,m
andj = 0, . . . , n, we have〈

zn−m−1 z
iq + zjp

q2
, f − zn−m−1p

q

〉
µ

=
〈
zn−m−1 z

iq + zjp

q2
r,

(
f − zn−m−1p

q

)
r

〉
= 0 .

This is equivalent to

1
2iπ

∫
T

(
f 	(z)− p̃(z)

q̃(z)

)
zn−m−1 π(z) δ(z)

q2(z)
|r(z)|2 dz = 0 ,

∀π ∈ Pm+n−ν ,

since the spacesPmq0 + Pnp0 andPm+n−ν coincide, by coprimeness of
p0 andq0. Substitutingr0/r1 for r and using (3.12), we obtain

1
2iπ

∫
T

zl E0 r0 r̃0
q̃0 r̃1

(z)
π

q20 δ r1
(z) dz = 0 , ∀π ∈ Pm+n−ν .(3.15)

Now, the remainder of the proof follows as in the proof of Proposition 3.2.
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If l > 0, we choose

F (u) =
π1(u)
2iπ

∫
T

zlE0 r0 r̃0
q̃0 r̃1

(z)
dz

π1(z) (z − u) , ∀u ∈ D ,

where

q20 δ r1 = π1 π2, π1 ∈ Pn−m+d1−1, π2 ∈ Pm+n−ν+1.

If l ≤ 0, we choose

F (u) =
π1(u)
2iπ

∫
T

E0 r0 r̃0
q̃0 r̃1

(z)
dz

π1(z) (z − u) , ∀u ∈ D ,

where

z−lq20 δ r1 = π1 π2, π1 ∈ Pd0 , π2 ∈ Pm+n−ν+1.

Here, we get thatq20 δ r1 dividesF in the first case, whilez−lq20 δ r1 divides
F in the second case. Using the residue formula to expressF , one obtains
(3.13) and (3.14). Again, the converse follows from Cauchy’s theorem by
plugging (3.13) and (3.14) into (3.15). ��

4 Consistency properties ofPbr(m, n, d0, d1)

First, we state preciselywhatwemeanby consistency. For fixed values of the
degreesm,n, d0, d1, introducePb(m,n, d0, d1) as the family of approxi-
mation problems{Pbr(m,n, d0, d1)}, whenr describes the set of rational
weights of type(d0, d1) defined in Sect. 2. Observe that the unweighted
family Pb(m,n, 0, 0) contains only problemPb1(m,n, 0, 0).

Definition 4.1 The familyPb(m,n, d0, d1) is consistent if, for any weight
r of type(d0, d1) and any functionf which is a rational function:

f(z) = zn−m−1P

Q
(z) ∈ R−

m,n,(4.1)

with P andQ coprime, the criterionψf,µ
m,n, with dµ(eiθ) = |r(eiθ)|2dθ,

admitsf as its unique critical point. On the contrary, if there exist a weight
r and a functionf of the form(4.1)such thatψf,µ

m,n admits several critical
points, thenPb(m,n, d0, d1) is nonconsistent. If at least two distinct local
minima exist, thenPb(m,n, d0, d1) is strongly nonconsistent.

In this section, we prove the following theorem.
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Theorem 4.2 The familyPb(m,n, d0, d1), n ≥ 1, is consistent whenever
d0 ∈ {0, 1} andn−2 ≤ m+d1. In particular, the familyPb1(m,n, 0, 0) of
unweighted approximation problems of degree(m,n) is consistent whenever
n− 2 ≤ m.

Before displaying the proof, we need to restate Proposition 3.4 when the
functionf is of the form (4.1).

Proposition 4.3 Let f be given by(4.1)and letzn−m−1 p/q be a rational
function inR−

m,n as in Proposition3.4. Set

S0 = P̃ q̃0 − Q̃ p̃0.(4.2)

Then the following two assertions are equivalent:

(i) The polynomialq is a critical point of the mapψf,µ
m,n defined by(3.3).

(ii) If l > 0, there exist polynomialsA andB in P l+d0−1 such that

zl r0 r̃0 S0 − r̃1 q̃0 Q̃A = r1 q
2
0 δ B .(4.3)

If l ≤ 0, there exist polynomialsA andB in Pd0−1 such that

r0 r̃0 S0 − r̃1 q̃0 Q̃A = z−l r1 q
2
0 δ B .(4.4)

In particular, if l ≤ 0 andd0 = 0, equation(4.4) reduces toS0 ≡ 0.

Proof.Multiplying (3.13) byQ̃ and renaming̃QB asB, we get (4.3) withB
inH2. Moreover,B is obtained by dividing the polynomial on the left-hand
side of (4.3) by a polynomial with all roots inD. SinceB is inH2, these
roots necessarily cancel with some of the numerator, implying thatB itself
is a polynomial. Further,

deg zlr0r̃0S0 ≤ 2n+ d0 + d1 − ν − 1 and
deg r̃1q̃0Q̃A ≤ 3n−m+ 2d1 − ν − 2.

The second upper bound is larger than the first one byl > 0, so thatB can
be chosen of degree at most

3n−m+ 2d1 − ν − 2− deg r1q20δ = n−m+ d1 − 2 = l + d0 − 1.

This establishes (ii) whenl > 0. The proof in the casel ≤ 0 is similar. The
converse is immediate. ��

Next, evaluate (4.3) at the roots ofr0 andr̃0 (if d0 > 0) on the one hand,
and identify the coefficients ofzk in the polynomials in the right and left-
hand sides of (4.3), fork from 0 tol− 1 and from2n+d0 +d1− ν to 3n−
m+2d1−ν−2 on the other hand. This gives rise to2(l+d0) equations that
completely determine the twopolynomialsAandB inP l+d0−1. Similarly, if
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d0 > 0, evaluating (4.4) at the roots ofr0 andr̃0, gives rise to2d0 equations
that completely determine the two polynomialsA andB in Pd0−1. These
sets of equations comprise two linear systemswith respect to the coefficients
ofA andB. They are described in the next proposition, after someadditional
notations that we now introduce.

Set

r0(z) =
d0∏
i=1

(z − αi), αi ∈ D \ {0}.(4.5)

Also, put

N = 2n+ d1 − ν ,
and

a(z) = r1q0Q(z) ∈ PN , b(z) = r1q
2
0δ(z) ∈ PN , for l > 0,

a(z) = z−lr1q0Q(z) ∈ PN−l, b(z) = z−lr1q
2
0δ(z) ∈ PN−l,

for l ≤ 0.

Let ai andbi be the coefficients ofzi in the polynomialsa andb. Setd =
degA = degB, and letAi, Bi be the coefficients ofzi in the polynomials
A andB. Define the vectorU of dimension2(d+ 1):

U = [A0, . . . , Ad, B0, . . . , Bd]t,(4.6)

and, for some nonnegative integerk, the matrixM(k) of dimensions2d0×
2k:

M(k) =



ã(α1) . . . αk−1
1 ã(α1) b(α1) . . . αk−1

1 b(α1)
...

...
...

...
ã(αd0) . . . αk−1

d0
ã(αd0) b(αd0) . . . αk−1

d0
b(αd0)

αk−1
1 a(α1) . . . a(α1) αk−1

1 b̃(α1) . . . b̃(α1)
...

...
...

...
αk−1

d0
a(αd0) . . . a(αd0) αk−1

d0
b̃(αd0) . . . b̃(αd0)


.

Observe that the equationM(d + 1)U = 0 expresses the vanishing of the
polynomialsãA + bB and aÃ + b̃B̃ at α1, . . . , αd0 . For zeros ofr0 of
multiplicity h, h > 1, we replace the corresponding rows in the matrix by
those corresponding to the vanishing of the derivatives of order0, 1, . . . , h−
1 of the polynomials̃aA+ bB andaÃ+ b̃B̃, evaluated at that zero.

Furthermore, whenl > 0, introduce the matrixN of size2l×2(l+d0):
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N =



1 b0

aN−1
... 0 b1

... 0
...

... ... Ol,d0

...
... ... Ol,d0

...
... ... ...

...
... ... ...

aN−l+1 . . . . . . aN−1 1 bl−1 . . . . . . b1 b0
a0 a1 . . . . . . al−1 1 bN−1 . . . . . . bN−l+1

... ... ...
...

... ... ...
...

Ol,d0

... ...
... Ol,d0

... ...
...

0
... a1 0

... bN−1
a0 1



,

whereOl,d0 stands for the zero matrix of sizel × d0.

Remark.The abovematrix bears some resemblancewith thematriceswhose
determinants are involved in theSchur-Cohn algorithm concerning the num-
ber of zeros of a givenpolynomialπ in theunit disk [20,ChapterX,Sect. 43].
Whend0 = 0, they are identical except that, here, two sequences of coeffi-
cientsmust be considered, namely those of the polynomialsa andb, whereas
in the Schur-Cohn algorithm, only one sequence of coefficients appears,
namely that of the polynomialπ.

The following proposition, which is easily checked, describes the above
mentioned sets of linear equations using the notations just introduced.

Proposition 4.4 Let f be given by(4.1)and letzn−m−1 p/q be a critical
point ofPbr(m,n, d0, d1). Moreover, letU be the vector(4.6), consisting
of the coefficients of the polynomialsA andB satisfying(4.3)or (4.4). Then[M(d0 + l)

N
]
U = 0, if l > 0,(4.7)

and
M(d0)U = 0 if l ≤ 0.(4.8)

In particular, whenl > 0 andd0 = 0, equation(4.7) reduces toN U = 0,
whereas, whenl ≤ 0 andd0 = 0, equation(4.8) is empty.

We fix the values of the various degreesm,n, d0, d1 involved inPbr(m,n,
d0, d1) in order to discuss consistency properties. From Definition 4.1, con-
sistency holds if for anyf given by (4.1) and any critical pointzn−m−1 p/q,
one hasp = p0 = P andq = q0 = Q, or equivalentlyS0 = 0, for S0
defined in (4.2). However, depending on the value ofl, it follows from (4.3)
or (4.4) that if the polynomialsA andB do vanish identically, then so does
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S0. Further,A = B = 0 can be stated asU = 0. Hence, from Proposition
4.4, we get the following sufficient condition for consistency to hold:

if, for some prescribedl andd0, equation(4.7)or (4.8)admitsU = 0 as its
unique solution, thenPbr(m,n, d0, d1) is consistent for all integersm,n, d1
such thatn−m+ d1 = l + d0 + 1.

Using this property, we now proceed with the proof of Theorem 4.2.

Proof of Theorem 4.2.First, for d0 = 0 and l ≤ 0, the assertion follows
immediately from the last observation of Proposition 4.3.

Second, considerd0 = 0 andl = 1. In view of Proposition 4.4, we look
for vectorsU of size 2 such that:

N U = 0 ,

for the2× 2 matrixN given by

N =
[

1 b0
a0 1

]
.

The determinant ofN is equal to1 − a0 b0 which cannot vanish, because
the polynomialsa andb have all their roots inD. Hence, in this case, (4.7)
admits the unique solutionU = 0.

Finally, taked0 = 1 andl ≤ 0. Again from Proposition 4.4, we look for
vectorsU of size 2 that are solutions to (4.8), where the2× 2 matrixM(1)
is given by

M(1) =
[
ã(α1) b(α1)
a(α1) b̃(α1)

]
.

The determinant ofM(1) is equal to(ã b̃− a b)(α1) which cannot vanish,
since both Blaschke productsa/ã andb/b̃ are of modulus less than 1 inD.

��

5 Counterexamples to consistency

We now turn to cases where consistency fails. The nonconsistency will
be proved by exhibiting some critical pointszn−m−1p/q different from
the rationalf . We will look at particular critical points, namely those with
vanishingnumerator1p = 0. In viewof (3.3), thesepointsalwayscorrespond
to maximums of the criterionψf,µ

m,n.

Theorem 5.1 The familyPb(m,n, d0, d1) is nonconsistent whenever

1 Such points have been termed degenerate in [26], but we avoid this terminology, since
it may be confused with the usual one from differential geometry, where it means critical
points whose matrix of second order derivatives (the Hessian matrix) is degenerate.
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(i) l ≥ 2 andd1 ≤ m+ 1, or

(ii) l = 1 and1 ≤ d0 ≤ n− 2, or

(iii) l ≤ 0 and2 ≤ d0 ≤ n− 1.

More precisely, for any polynomialr0 ∈ M1
d0

(having at least one (resp.
two distinct) real roots whenl = 1 (resp.l ≤ 0)), there exist polynomials
r1 ∈ M1

d1
, P ∈ Pm andQ, q ∈ M1

n such that the reducible rational

functionzn−m−1p/q, with p = 0, is a critical point ofψf,µ
m,n, with dµ =

|r0/r1(eiθ)|2dθ, when approximating the rational functionzn−m−1P/Q.

Remark.In case (i), we get from the definition (3.4) ofl and the inequality
d1 ≤ m + 1 that the degreed0 of the weight’s numerator satisfiesd0 ≤
n− 2− (m− d1 + 1).

Corollary 5.2 The unweighted problemPb1(m,n, 0, 0) is consistent if and
only if n− 2 ≤ m.

Proof. This is a direct consequence of Theorem 4.2 and assertion (i) of
Theorem 5.1. ��
Remark.Here, it may be interesting to note that the same condition on the
degrees also appears in a totally different problem, namely that of com-
paring the errorsEr(f) andEc(f), f a continuous real function on the
interval [−1, 1], in real and complex rational Chebyshev approximation of
fixed degree(m,n). It was proved in [14,28] that the infimum of the ratios
Ec(f)/Er(f), asf describes the set of continuous real–valued functions on
[−1, 1] distinct from the rational functions of type(m,n) with coefficients
in R, equals zero ifn − 2 > m. It was also conjectured that the above
infimum is positive whenn− 2 ≤ m.

Figure 1 illustrates the results of Theorems 4.2 and 5.1. It shows the
different knowncasesof consistency (representedby “* ”) or nonconsistency
(represented by “✷”) according to the various degreesm, n, d0, d1. The
horizontal dashed lines correspond to the valuesn − 1, n − 2, or n − 2 −
(m − d1 + 1) of d0 when l ≤ 0, l = 1, or l ≥ 2, respectively. It is very
likely that larger values ofd0 also correspond to cases of nonconsistency.
Also, note that the definition ofl and the fact thatd1 is a nonnegative integer
impliesd0 ≥ (n−m−1)−l. Hence, in Fig. 1, only points located above the
lineLwith equationd0 = (n−m−1)− l are to be taken into consideration.

In the special case when the degree of the numerator equals zero, we
strengthen our results to strong nonconsistency properties. This will be
achieved by following an observation of Söderstr̈om (cf. [26]).

Theorem 5.3 The familyPb(m,n, d0, d1) is strongly nonconsistent when-
everm = 0 and one of the three conditions of Theorem5.1holds.
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L
************

*********** 1

d

1 l=n-m+d  -d  -1

0

1 0

Fig. 1. Consistency (* ) or nonconsistency (✷) according to the values ofl andd0

Proof of Theorem 5.1.As mentioned at the beginning of this section, we
consider critical pointszn−m−1p/q with vanishing numeratorp = 0. With
the notations of Proposition 3.4, such points satisfy

δ = q, q0 = 1, p0 = 0.

Plugging these identities in the critical point equations (4.3) and (4.4) leads
to

zlr0r̃0P̃ − r̃1Q̃A = r1qB, if l > 0,(5.1)

and
r0r̃0P̃ − r̃1Q̃A = z−lr1qB, if l ≤ 0,(5.2)

whereA andB have degrees at mostl+ d0− 1 in (5.1) andd0− 1 in (5.2).
In order to construct explicitly critical points, we need to reduce the size of
the matrices in (4.7) and (4.8) or, equivalently, to reduce the degrees of the
involved polynomialsA andB. To achieve this, the main idea will be to
choose both denominatorsQ andq as multiples of the weight’s numerator
r0 (or of a large part of it).

Casel ≥ 2.We show that, for any numeratorr0 ∈M1
d0
of a measuredµ as

in (2.9), equation (5.1) is satisfied by some polynomialsP , Q, andq such
thatP/Q is an irreducible fraction, hence distinct from the critical point
zn−m−1p/q ≡ 0. We choose bothQ andq as multiples ofzl−2r0, which is
always possible since the assumptiond1 ≤ m+ 1 implies

deg zl−2r0 = n−m+ d1 − 3 < n = degQ = deg q,

and write

Q(z) = zl−2r0(z)Q∗(z), q(z) = zl−2r0(z)q∗(z),(5.3)

where bothQ∗ andq∗ belong toM1
m−d1+3. We then have

deg zlr0r̃0P̃ ≤ n+ d0 + d1 − 1, deg r̃1Q̃A ≤ n+ d0 + d1 + 1,
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which, in view of (5.1), implies thatdeg r1qB ≤ n+ d0 + d1 + 1; that is,
degB = d0 + 1. Moreover, aszl−2r0 dividesq and is prime with̃r1Q̃, we
deduce from (5.1) that it also dividesA. Similarly, sincẽr0 dividesQ̃ and is
prime withr1q, it dividesB. Performing these simplifications in (5.1) leads
to

z2P̃ − r̃1Q̃∗
A∗ = r1q

∗B∗,(5.4)

with degA∗ , degB∗ ≤ 1. Put

A∗(z) = A0 +A1z, B∗(z) = B0 +B1z.

We also set

m′ = m− d1 + 3 ≥ 2

and

Q∗(z) = zm′
+Qm′−1z

m′−1 + · · ·+Q0.(5.5)

Moreover, we fixq∗ andr1 as2

q∗(z) = zm′
+ q∗

0, r1(z) = zd1 + c,(5.6)

whereq∗
0 andc are some real numbers in(−1, 1), c /= 0. Equation (5.4)

entails that the two first and last coefficients of the polynomialr̃1Q̃
∗
A∗ +

r1q
∗B∗ of degreem+ 4 vanish. This can be written in matrix form as

1 0 cq∗
0 0

Qm′−1 1 0 cq∗
0

cQ0 cQ1 1 0
0 cQ0 0 1



A0
A1
B0
B1

 = 0,(5.7)

whose determinant equals

(1− c2q∗
0Q0)2 + c2q∗

0Q1Qm′−1.(5.8)

The values of this expression atq∗
0 = 1 andq∗

0 = −1 are

1+c4Q2
0 +c2(Q1Qm′−1−2Q0) and 1+c4Q2

0−c2(Q1Qm′−1−2Q0),

respectively, which are of opposite signs if and only if

1 + c4Q2
0 < |c2(Q1Qm′−1 − 2Q0)|.(5.9)

2 Although more general denominatorsr1 can be chosen for the measuredµ, we stick
here to this simple form, in order not to complicate the exposition and the computations.
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There exist polynomialsQ∗ ∈M1
m′ such that the previous inequality ismet,

for somec ∈ (−1, 1). For example, choosing the roots ofQ∗ sufficiently
close to 1, as in

Q∗(z) =
(
z +
(

1− 1
m′

))m′

= zm′
+m′

(
1− 1

m′

)
zm′−1 + · · ·

+m′
(

1− 1
m′

)m′−1

z +
(

1− 1
m′

)m′

,(5.10)

satisfies theproperty, providing that themodulusofc is not too small. Indeed,
the functionx → (1− 1

x

)x
is increasing for positive values ofx; whence

the following inequalities hold form′ ≥ 3,(
2
3

)3

≤
(

1− 1
m′

)m′

≤ 1.

We have1 + c4Q2
0 < 2, while

Q1Qm′−1 − 2Q0 = m′2
(

1− 1
m′

)m′

− 2
(

1− 1
m′

)m′

≥ 7
(

2
3

)3

= 2 +
2
27
,

which implies (5.9), ifc has a modulus sufficiently close to 1. ChoosingQ∗
as in (5.10), we deduce that there exists someq∗

0 ∈ (−1, 1), hence someq∗
as in (5.6), such that the determinant (5.8) vanishes. Thus, there exists an
associated nonzero solution to the system (5.7). Equivalently, we obtain two
polynomialsA∗ andB∗ of degree1 with A∗ /= 0 orB∗ /= 0, such that

r̃1Q̃
∗
A∗ + r1q

∗B∗ = z2P ∗,(5.11)

whereP ∗ is some polynomial of degreem. It follows from the previous
equation and the fact thatA∗ orB∗ does not identically vanish that, actually,
bothA∗ andB∗ are distinct from zero. Moreover,P ∗ cannot vanish as well
since, otherwise,q∗ would divider̃1Q̃

∗
A∗. But this is impossible asq∗ has

all its roots inD whereas̃r1Q̃
∗
has all its roots outsideD on one hand, and

q∗ has degreem′ = m − d1 + 3 ≥ 2 larger thandegA∗ ≤ 1 on the other
hand. In view of (5.4), we setP = P̃

∗
and obtain that0 = zn−m−1(0/q) is a

critical point ofPbr(m,n, d0, d1)when approximating the nonzero rational
zn−m−1P/Q.

It remains to check thatP/Q is irreducible. From the factorization ofQ
in (5.3) and equality (5.4), this is equivalent to the coprimeness ofP andzr0
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on one hand, and to the coprimeness ofQ̃
∗
andB∗ on the other hand. First,

if P (0) = 0, then the degree of̃P is less thanm and equating coefficients
of degreem+ 2 in (5.4) would give

Q1A0 +Q2A1 = 0.

But, from the system (5.7), we also deduce

(1− c2q∗
0Q0)A0 − c2q∗

0Q1A1 = 0.

The determinant of the two previous linear equations isc2q∗
0Q

2
1 +Q2(1 −

c2q∗
0Q0). One then checks that, forQ∗ as in (5.10) andc, q∗

0 ∈ (−1, 1), this
determinant and the determinant (5.8) cannot vanish simultaneously. Hence,
the two linear equations are independent, whenceA∗ = 0, which we know
is false. Consequently, the following assertion holds

(i) the polynomialP does not vanish at zero.
Second,Q̃

∗
andB∗ are coprime. Indeed, from the system (5.7), we get

B∗(z) = Q1 +Q0(1− c2q∗
0Q0)z,

up to some nonzero multiplicative constant. With the choice (5.10) ofQ∗,
the root ofB∗ equals

Q1

Q0(c2q∗
0Q0 − 1)

=
2

(m′ − 1)(
√

1− 4/m′2 − 1)
,

which is distinct from the root−m′/(m′ − 1) of multiplicity m′ of Q̃
∗
.

Hence, we have proved

(ii) the polynomialsP andQ∗ are coprime.
Finally, if P and r0 are coprime, the fractionP/Q is irreducible from
the previous discussion, and we are done. If not, there exists a partition
{1, . . . , d0} = I ∪ J , J /= ∅, such that

P (αi) /= 0, i ∈ I,(5.12)

P (αi) = 0, i ∈ J,(5.13)

where theαi’s denote the roots ofr0 as in (4.5). By (5.4), (5.13) is equivalent
to

(r̃1Q̃
∗
A∗ + r1q

∗B∗)(1/αi) = 0, i ∈ J.(5.14)

Sinceq∗ andA∗,B∗ are respectively obtained fromequating thedeterminant
(5.8) to zero and solving the system (5.7), we can consider the expression in
the left-hand side of (5.14) as a function whose variables are the real num-
bersc,Q0, Q1, . . . , Qm′−1 or equivalently the polynomialsr1 andQ∗ of the
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forms given in (5.6) and (5.5). We will denote byFαi this function param-
eterized by the rootαi. Also, observe thatq∗, A∗, andB∗ are determined
in a way which makesFαi a real analytic function of its variables, defined
on the subset ofRm′+1 where (5.8) vanishes for someq∗

0 ∈ (−1, 1). Actu-
ally, the coefficients ofA∗ andB∗ are determined up to somemultiplicative
constant, but this does not matter here, since (5.14) is homogeneous. Next,
we show that theFαi , i ∈ J , are all distinct from the zero function by com-
puting their values forc = 1, Q0 = 0, Q1 = 2, Qm′−1 = 1, andQk = 0,
1 < k < m′ − 1, whenm′ > 2, where they are equal to

(αd1
i + 1)(2− αm′−3

i )/αm+2
i ,

and forc = 2,Q0 = 0, whenm′ = 2, where they are equal to

3(2Q2
1α

d1−2
i + 1)/(2αm+1

i ).

Note that the normalizationA0 = 1 has been chosen and that, here, arbitrary
values of the variablesc,Q0, Q1, . . . , Qm′−1 such that the determinant (5.8)
vanishes for some real numberq∗

0 can be considered. Sinceαi is a nonzero
complex number of modulus less than 1, the two previous quantities cannot
vanish (whenm′ = 2, choose e.g.Q1 = 1/2 if d1 ≥ 2 andQ1 = 1
otherwise), which proves our contention. Denote byM, the point inRm′+1

corresponding to the polynomialQ∗ in (5.10) and the polynomialr1 in (5.6),
so that (5.14) rewrites

Fαi(M) = 0, i ∈ J.
Since the product

∏
i∈J Fαi is a nonzero real analytic function, it cannot be

identically zero in a neighbourhood ofM, in particular in a neighbourhood
U0 such that assertions (i), (ii) above and also (5.12) remain satisfied. Hence,
there exists a pointM′ ∈ U0 such that

∏
i∈J Fαi(M′) /= 0 and it leads to

an irreducible fractionP/Q which satisfies all of our requirements. This
achieves the construction of an irreducible fractionf = zn−m−1P/Q such
thatPbr(m,n, d0, d1) admits a critical point distinct fromf , whenl ≥ 2.

Casel ≤ 0. Here, we assume that the polynomialr0, which is of degree
d0 ≥ 2 by assumption, has at least two distinct real rootsα1 andα2 so that

r0(z) = (z − α1)(z − α2)r0,d0−2, r0,d0−2 ∈M1
d0−2.

Choose thenQ andq asmultiple of(z−α2)r0,d0−2 andr0,d0−2, respectively
(recall thatd0 ≤ n− 1), and write

Q(z) = (z − α2)r0,d0−2Q
∗(z), q(z) = r0,d0−2q

∗(z),(5.15)

whereQ∗ andq∗ belong toM1
n−d0+1 andM1

n−d0+2. As r0,d0−2 dividesq

and is primewith̃r1Q̃, we deduce from (5.2) that it also dividesA. Similarly,
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since(1 − α2z)r̃0,d0−2 dividesQ̃ and is prime withz−lr1q, it dividesB.
Hence, performing simplification in (5.2) leads to

(z − α1)(z − α2)(1− α1z)P̃ − r̃1Q̃∗
A∗ = z−lr1q

∗B∗,(5.16)

with degA∗ ≤ 1 anddegB∗ = 0. Equation (5.16) implies that the polyno-
mial r̃1Q̃

∗
A∗ + z−lr1q

∗B∗ vanishes atα1, α2 and1/α1. With

A∗(z) = A0 +A1z, B∗(z) = B0,

we get three linear equations which can be written in matrix form as r̃1Q̃
∗
(α1) α1r̃1Q̃

∗
(α1) α−l

1 r1q
∗(α1)

r̃1Q̃
∗
(α2) α2r̃1Q̃

∗
(α2) α−l

2 r1q
∗(α2)

α−l+1
1 r1Q

∗(α1) α−l
1 r1Q

∗(α1) r̃1q̃
∗(α1)


A0
B0
B1

 = 0.(5.17)

As in thepreviouscase,weshow that thedeterminant of this systemvanishes.
Suppose first that we are in the limit case where the polynomialr1(z) =
zd1 + 1 = r̃1(z). Then,r1 can be factorized in (5.17) and we ignore it in
the following computations. We setn′ = n − d0 + 1 ≥ 2 and chooseQ∗
andq∗ of the special forms

Q∗(z) = (z +Q0)n′
, q∗(z) = zn′+1 + q∗

0,(5.18)

whereQ0 , q
∗
0 ∈ (−1, 1). Then, the3× 3 matrix in (5.17) can be rewritten

as  (1 +Q0α1)n′
α1(1 +Q0α1)n′

α−l
1 (αn′+1

1 + q∗
0)

(1 +Q0α2)n′
α2(1 +Q0α2)n′

α−l
2 (αn′+1

2 + q∗
0)

α−l+1
1 (α1 +Q0)n′

α−l
1 (α1 +Q0)n′

1 + q∗
0α

n′+1
1

 .(5.19)

We compute its determinant in the limit case where the moduli ofQ0 and
q∗
0 go to 1. For instance, we get forQ0 = 1 andq∗

0 = 1,

(1 + α1)n′
[(1 + α1)n′

α−l
1 α

−l
2 (α2

1 − 1)

×(1 + αn′+1
2 ) + (1 + α2)n′

C1],(5.20)

and, forQ0 = 1 andq∗
0 = −1,

(1 + α1)n′
[(1 + α1)n′

α−l
1 α

−l
2 (α2

1 − 1)

×(αn′+1
2 − 1) + (1 + α2)n′

C2],(5.21)

whereC1 andC2 are some algebraic quantities depending onα1 andα2.
Let us denote respectively byD1(α1, α2) andD2(α1, α2) the second factor
in (5.20) and (5.21).
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If n′ is even, we have

D1(α1,−1) = 0, D2(α1,−1) = 2(−α1)−l(1− α2
1)(1 + α1)n′

,

and

∂D1

∂α2
(α1,−1) = (−1)−l(n′ + 1)α−l

1 (α2
1 − 1)(1 + α1)n′

,

while if n′ is odd, we have

D1(α1,−1) = −2(−α1)−l(1− α2
1)(1 + α1)n′

, D2(α1,−1) = 0,

and

∂D2

∂α2
(α1,−1) = −(−1)−l(n′ + 1)α−l

1 (α2
1 − 1)(1 + α1)n′

.

Note that, sincen′ ≥ 2, the above derivatives do not depend on the actual
values ofC1 andC2. Whenn′ is even, the sign of the derivative ofD1 at
α2 = −1 is opposite to the sign ofD2 and, whenn′ is odd, the sign of the
derivative ofD2 is opposite to the sign ofD1. It follows that, in all cases,
(5.20) and (5.21) are of opposite signs whenα2 tends to−1 from above.
By continuity, this is still true whenQ0 remains close to 1 andQ0 < 1.
Hence, for such a value ofQ0, we infer that there exists someq∗

0 in (−1, 1) at
which the determinant of (5.19) vanishes. To summarize, we have shown the
existence ofα1 andα2 in (−1, 1),Q∗ ∈M1

n′ andq∗ ∈M1
n′+1 of the forms

(5.18) such that (5.19) has zero determinant. Hence, when considering these
special values, we get a nonzero solution to the system (5.17). Equivalently,
we obtain two polynomialsA∗ andB∗ of degree atmost1 and0withA∗ /= 0
orB∗ /= 0, such that

Q̃
∗
A∗ + z−lq∗B∗ = (z − α1)(z − α2)(1− α1z)P ∗,(5.22)

whereP ∗ is some polynomial of degreem. Observe, from the previous
equation that, actually, bothA∗ andB∗ are distinct from zero. Also,P ∗

cannot identically vanish, since, otherwise,q∗ would divideQ̃
∗
A∗, hence

A∗. But this is impossible asq∗ has degreen′ ≥ 2 larger thandegA∗ = 0.
In view of (5.16), we setP = P̃

∗
and obtain that0 = zn−m−1(0/q) is a

critical point ofPbr(m,n, d0, d1)when approximating the nonzero rational
zn−m−1P/Q.

Next, concerning the irreducibility ofP/Q, from the factorization of
Q in (5.15), we have to check thatP does not vanish at the roots ofr0
(exceptedα1) on one hand, and thatP andQ∗ are coprime on the other
hand. Using (5.22), this last assertion is equivalent to the coprimeness of
B∗ andQ̃

∗
, which is obvious sinceB∗ is a nonzero real number. IfP and
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r0(z)/(z − α1) are not coprime, we can again use a perturbation argument
as in the previous case, by considering the expressions

(Q̃
∗
A∗ + z−lq∗B∗)(1/αi), i = 2, . . . , d0,

where theαi’s denote, as usual, the roots ofr0. Sinceq∗, A∗, andB∗ are
determinedby thevanishingof thedeterminant of (5.19) and from thesystem
(5.17), these expressions can still be seen as real analytic functions of the
coefficients of the polynomialQ∗, parameterized by the rootαi. Choosing
some special value forQ∗, one can check that these functions are all distinct
from zero, hence that a slight change ofQ is possible, if necessary, in order
to get an irreducible fractionP/Q.

In order to consider nontrivial weightsr1, observe finally that, by conti-
nuity, all the previous discussion remains correctwhenperturbing theweight
r1(z) = zd1 + 1 to r1(z) = zd1 + c, c < 1 in a neighbourhood of 1.

Casel = 1. As will become clear, this case may be seen as a combination
of the two previous cases. Here, we assume that the polynomialr0, which
is of degreed0 ≥ 1 by assumption, has at least one real rootα1 so thatr0
factorizes as

r0(z) = (z − α1)r0,d0−1(z), r0,d0−1 ∈M1
d0−1.

Then, we choose bothQ andq asmultiple ofr0,d0−1 (recall thatd0 ≤ n−2)
and write

Q(z) = r0,d0−1Q
∗(z), q(z) = r0,d0−1q

∗(z),

whereQ∗ andq∗ belong toM1
n−d0+1. Sincer0,d0−1 dividesq and is prime

with r̃1Q̃, we deduce from (5.1) that it also dividesA. Similarly, since
r̃0,d0−1 dividesQ̃ and is prime withr1q, it dividesB. Hence, performing
simplification in (5.1) leads to

z(z − α1)(1− α1z)P̃ − r̃1Q̃∗
A∗ = r1q

∗B∗,(5.23)

with degA∗ = 1 anddegB∗ = 1. Equation (5.23) entails, on the one hand,
that the first and last coefficients of the polynomialr̃1Q̃

∗
A∗ + r1q

∗B∗ of
degreem+4 vanish and, on the other hand, that it vanishes atα1 and1/α1.
With r1(z) = zd1 + c,

A∗(z) = A0 +A1z, B∗(z) = B0 +B1z,
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andQ∗
0 andq

∗
0 denoting respectively the constant coefficients ofQ∗ andq∗,

we get four linear equations which can be written in matrix form as
1 0 cq∗

0 0
r̃1Q̃

∗
(α1) α1r̃1Q̃

∗
(α1) r1q

∗(α1) α1r1q
∗(α1)

α1r1Q
∗(α1) r1Q

∗(α1) α1r̃1q̃
∗(α1) r̃1q̃

∗(α1)
0 cQ∗

0 0 1



A0
A1
B0
B1

 = 0.

(5.24)
Here, one may remark that the first and fourth lines of the matrix are similar
to those met in the matrix (5.7) corresponding to the casel ≥ 2, while the
second and third lines are similar to those met in (5.17) corresponding to
the casel ≤ 0. As in the previous cases, we show that the determinant of
this system can happen to vanish.

We first suppose thatr1(z) = zd1 + 1 = r̃1(z). Again,r1 can be factor-
ized in (5.24) and we proceed without it. We setn′ = n− d0 + 1 ≥ 3 and
chooseQ∗ andq∗ of the special forms

Q∗(z) = (z +Q0)n′
, q∗(z) = zn′

+ q∗
0,(5.25)

whereQ0 andq∗
0 are some real numbers in(−1, 1). Then, the4× 4 matrix

in (5.24) rewrites as
1 0 q∗

0 0
(1 +Q0α1)n′

α1(1 +Q0α1)n′
(αn′

1 + q∗
0) α1(αn′

1 + q∗
0)

α1(α1 +Q0)n′
(α1 +Q0)n′

α1(1 + q∗
0α

n′
1 ) 1 + q∗

0α
n′
1

0 Qn′
0 0 1

 .
(5.26)
We compute the previous determinant in the limit case whereQ0 andq∗

0 are
of modulus 1. For instance, we get forQ0 = 1 andq∗

0 = 1,

(1− α2
1)(1 + αn′

1 − (1 + α1)n′
)2,

which is positive asα1 is of modulus less than 1, and forQ0 = 1 and
q∗
0 = −1,

(1 + α1)
(
(1− α1)(1− αn′

1 )− (1 + α1)n′+1
)

×
(
(1− α1)(1 + α1)n′−1 − (1− αn′

1 )
)
.

Denoting respectively byD1(α1) andD2(α1) these two expressions, we
have

D2(0) = 0, D′
2(0) = 0, D′′

2(0) = −2(n′ + 2)(n′ − 2) < 0,

from which we deduce thatD1 andD2 are of opposite signs asα1 comes
close to zero. By continuity, this is still true whenQ0 < 1 remains in a



WeightedH2 rational approximation and consistency 551

neighbourhood of 1. Thus, for such a value ofQ0, there existsq∗
0 in (−1, 1)

forwhich thedeterminant of (5.26) vanishes.Consequently,wegetanonzero
solution to the system (5.24) or, equivalently, two polynomialsA∗ andB∗
of degree at most1 with A∗ /= 0 orB∗ /= 0, such that

Q̃
∗
A∗ + q∗B∗ = z(z − α1)(1− α1z)P ∗,(5.27)

whereP ∗ is some polynomial of degreem. Observe, from the previous
equation that, actually, bothA∗ andB∗ are distinct from zero. Also,P ∗

cannot identically vanish, since, otherwise,q∗ would divideQ̃
∗
A∗, hence

A∗. But this is impossible asq∗ has degreen′ ≥ 3 larger thandegA∗ ≤ 1.
In view of (5.23), we setP = P̃

∗
and obtain that0 = zn−m−1(0/q) is a

critical point ofPbr(m,n, d0, d1)when approximating the nonzero rational
zn−m−1P/Q.

Again, the irreducibility of the fractionP/Q can be obtained by using a
perturbation argument as in the two previous cases. The case of a nontrivial
weightr1(z) = zd1 + c, with c close to 1, can still be obtained by continuity
from the limit situation wherec = 1. ��
Proof of Theorem 5.3.First, observe that theproof of Theorem5.1 is basedon
the vanishing of a determinant involving the coefficients of the denominators
q andQ. Assume thatQ is fixed. By the identification ofM1

n with an open
subset ofRn that was described at the beginning of Sect. 3, this determinant
equals zero if and only if the pointMwhose coordinates are the coefficients
of q belongs to some hypersurfaceH in R

n. It is shown in the proof of
Theorem 5.1 that, if any one of the conditions (i), (ii) or (iii) is satisfied,
then there exist polynomialsq andQ inM1

n such that the pointM belongs
toH. Hence, in this case, the hypersurfaceH intersectsM1

n. The numerator
P of the functionf was then subsequently obtained from the critical points
equations (5.1) or (5.2). Whenm = 0, thisP reduces to a real number and
since it is only determined up to a constant multiplicative factor, one can set
P (z) = 1 asq ∈M1

n describesH. Consequently,Pbr(0, n, d0, d1) admits
a whole set of reducible critical points{zn−1p/q, p = 0, q ∈ M1

n ∩ H}
when approximating the unique functionf(z) = zn−1/Q(z).

Second, sincep = 0whenq ∈M1
n∩H, the criterionψf,µ

0,n is constant on
M1

n ∩H and equal to its maximum value, namely‖f‖22,µ. On the boundary
ofM1

n, it has the same value, since we are assumingm = 0 (see Corollary
3.3).

Third, the setM1
n, when identified to an open subset ofR

n, is home-
omorphic to the open unit ball ofRn (cf. [4]). Since the hypersurfaceH
intersectsM1

n, we obtain a partition of the closure ofM1
n into at least two

compact subsetsU1 andU2, with nonempty interiors, separated byH. Since
ψf,µ

0,n takes itsmaximumvalue on the boundaries of these two subsets, we can
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conclude, as S̈oderstr̈om did in the simpler case whenn = 2 (cf [26]), that
ψf,µ

0,n must have a minimum inU1 as well as inU2. This shows the existence
of at least two relative minima and finishes the proof of the theorem.��
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