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We give an asymptotic upper bound ams- for the entropy integralE,(w)
=—[p3(x)log(p3(x))w(x)dx, where p, is the nth degree orthonormal polynomial
with respect to a weight/(x) on[—1, 1] which belongs to the Széglass. We also
study two functionals closely related to the entropy integral. First, their asymptotic
behavior is completely described for weighisn the Bernstein class. Then, as for
the entropy, we obtain asymptotic upper bounds for these two functionals when
w(x) belongs to the Szégclass. In each case, we give conditions for these upper
bounds to be attained. @004 American Institute of Physics.
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I. INTRODUCTION

In the framework of the density functional thedisee, e.g., Refs. 6 and)lthe physical and
chemical properties of fermionic systems are described by means of the single-particle probability
densities. If¥(r) is the wave function of a single-particle system iiCedimensional position

space, andif(f)) is the corresponding wave function in momentum spghat is, the Fourier
transform of¥'(r)], then the position and momentum densities of the system are given by

p()=[PDOR  ¥P) =[PH),

respectively. It is known that the Boltzmann—Gibbs—Shannon position—space entropy,

Slp) = —f p(Nlog p(Ndr,

measures the uncertainty in the localization of the particle in sgaeeer entropy indicates a
more concentrated wave function, with the associated higher accuracy in predicting the localiza-
tion of the particlg. The similar is true for the momentum—space entropy,
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S(v) =-f y(p)log ¥(P)dp.

These quantities have importance in the study of the structure and dynamics of atomic and
molecular systems; we refer the reader to the Slf’raexd to references therein. Bdp) andS(y)

also play a role in a generalization of the Heisenberg uncertainty relation: it has been established
that for any pair of densities(r) and y(p) in D-dimensional space, we have the sharp inequality

S(p) + S(y) = D(1 +log m), (1)

which expresses quantitatively the impossibility of the simultaneous localization of a pair of
observables with no common eigenstates.

It is well known that the wave function of many important systems, such-dénensional
harmonic oscillator and hydrogen atom, are expressible in terms of families of orthogonal poly-
nomials. It is not surprising that, as it has been shown in Refs. 4 and 13, the computation of the
entropiesS(p) and S(y) usually can be reduced to integrals involving these polynomials.

Let v be a positive unit Borel measure an =[-1,1] and let

n
P =%l x=&"), %>0, neN,
=1

denote the corresponding sequencerhonormalpolynomials such that

f Pr()Pr(¥)dr(X) = Sy MyN € N,

We define thanformation entropyof the polynomialsgp,(x) as

En=En(v) =~ f P0910g(p;())d(x). 2)

Throughout the paper, we will assume that the orthogonality measisr@bsolutely continuous
with respect to the Lebesgue measihren A with the Radon—Nikodym derivative
dvldh = v’ (x) =w(x), w e LYA).

For normalization purposes, we will always assume that the weighktunitary, i.e.,

f w(x)dx=1. (3
A

The information entropy will be indistinctly denoted By(v) andE,(w). We follow this conven-
tion below for other notations.

The asymptotic behavior d&, asn— o has a special interest in the study of the so-called
Rydberg states of quantum-mechanical systems. Besides physical motivations, there are some
fascinating aspects of this problem because of a certain universal behavior of related integrals, and
because of a close connection of the entrBpyvith important functionals of the normalized zero
counting measures of the polynomigls

l n
pn==2 8m, N>0,

and of the following probability measures:
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dvy(¥) = pA(x)dp(x), n=0

(note thatyy=v). Both measures are standard objects of study in the analytic theory of orthogonal
polynomials. For instance, the normalized zero counting measyieclosely connected with the
nth root asymptotics op,,, and as was shown in Ref. 12, is associated with the behavior of the
ratio pps1/ P, asn— oo,

If « andv are positive Borel measures oh then theirmutual entropyis defined as

—o jf w is notwv-absolutely continuous,
u,v) = d L .
Suv) —J Iog(d—’u)d,u if w is v-absolutely continuous,
14

and theirmutual logarithmic energgs

I(v,,u)=—ffIog|z—t|dv(t)d,u(z).
With these notations the entrop®) is equivalently rewritten as

En(v) = S(vn,v) == 2 109 ¥+ 2n (e, vy). (4)

In particular, from a classical Jensen’s inequality for integrals, it follows immediately that if both
w and v are unit measures ofy, thenS(u, v) <0, with equality if and only ifu=». Hence,

En(V) = 01

with equality if and only ifn=0.

Aptekarevet al considered two subfamilies of the usual Szetpss of weights ok, namely
the Jacobi weights and the Bernstein-Szetass(weights being bounded above, bounded away
from zero, and satisfying a Dini—Lipschitz conditiorin this last case it is known that the
asymptotic formula for the orthogonal polynomigisholds uniformly inA, asn tends to infinity.
With these assumptions it has been proved in Ref. 1 that

lim En(w) = S(p,w) +1og(2) - 1, (5

n—oe

where

p(x) = L/(m1-x?)

denotes the Chebyshev unit weight anWe are concerned here with the problem of whether a
weaker form of this equality holds in the S#egass of weights. We will show that the right-hand
side of(5) is actually an asymptotic upper bound for the entr&piw) when the weightv satisfies
the Szeg condition[see assumptio(6) below]. Furthermore, the expressi@®) for the entropy
can be naturally split into two functionals, which have simple asymptotic behaviors when
belongs to the Bernstein clagsee Proposition)1 The situation with the Bernstein class is in a
sense optimal: the corresponding limits provide asymptotic upper boundsifiche whole Szeg
class. We also give conditions for the entropy and the two functionals to tend to their upper bounds
as the degrea becomes large.

Finally, we must mention that in the case of an unbounded support of the weight of orthogo-
nality interesting results concerning the asymptotics ofEh@nd related functionals have been
obtained recently in Ref. 9.

Il. STATEMENTS OF RESULTS

The weighted_P norm of a functionf with respect to a weight on A will be denoted by
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1/p
[fllLp = (J |f(X)|pk(X)dX> , lspsoo.
A

We will simply write LP whenk=1 onA.

Though our main interest in this paper lies in the Szelgss of weights, some other classes
appear at different places. We recall the definitions of these classes now.

The Erdgs—Turan classc7 consists of weightsv e L* such thatw>0 almost everywhere on
A.

The Szed classS consists of weightsv e L' such that

log(wg) € LY(p), (6)

where

Wo(X): = W(X)/p(x) = 71 = x2W(X)

denotes the trigonometric weight correspondingmoThe fact thatw, e LY(p) implies lod (W)
e LY(p), where, as usual, we denote

log*(x) = maxXlog(x),0}, x> 0.

Hence, condition(6) is actually equivalent to

Slp,w) = J log(wo(X)) p(X)dx > — 0. ()
A

Note that(6) and(7) can equivalently be rewritten as lag < L(p) and

f log(w(x)) p(x)dx > — o,
A

respectively.

Finally, theBernstein clas$3 consists of weightsv such that, is given by the reciprocal of
a positive polynomial om. As it is well-known, the clas$3 is an important class useful for
establishing asymptotic properties in the Sz#weory of orthogonal polynomials. Obviously, one
has the following inclusion8 C SC £7.

We will also use the notations

F(X): = Pr(3) \Wo(x), (8)
and forM >0,
A (M): ={x e A:|f,(x)| = M}. (9)

One of the main results of the paper is the following theorem.
Theorem 1: Assume that the weight w belongs to the z#gssS. Then, for all M> \/E,

E,(w) =S(p,w) +log(2) - 1 —f pﬁ(x)log*(pﬁ(x))w(x)dx+ 0o(1), n— o, (10
Ap(M)

As a simple consequence of the above formula, we obtain the following asymptotic upper bound
together with necessary and sufficient conditions for equality.

Corollary 1: Assume that the weight w belongs to the &zdgssS. Then the following
asymptotic upper bound for the entropy holds:

lim supE,(w) < S(p,w) +log(2) - 1. (11

n—o
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Moreover, for a subsequencesM\ CN,
lim E,(w) = S(p,w) +log(2) - 1, (12
neA

if and only if there exists a constant M2, such that
lim f PA(X)log* (P(x)w(x)dx= 0. (13
neA Ay(M)

In this case (13) is valid for all M> 2.
Furthermore, (13) holds if there exists>0 such that either

sup| (log*(pA(x))**pa(wW(x)dx < or sup (P2(x))F*w(x)dx < . (14)
neA A ne A

Remark 1:Notice that the findings of Ref. 1 on Bernstein—Szeglynomials are included in
Corollary 1 since fow € B, log(wp) is bounded and thé&, are uniformly bounded ifi-1,1]. In
contrast, the case of Jacobi polynomials requires some extra considerations. One knows that for
the orthonormal Jacobi polynomials there exists a constanich that fom=0 andx e [-1,1],

a+1/2 1 p+1/2 —
|P§1“’B)(X)| -<\'1—X+ ﬁ) (\r’l +X+ H) <c/Vm.

Taking into account that hengy(x) = (1 -x)***2(1+x)A*12, we find that forpn:P;"'ﬂ),

— 1-x at+l/2 1+X B+1/2
(Pa(X)Z*Wo(X) < C\"W( ) | ’
P 0 (V1 —x+ 1/n)2*e (V1 +x+ 1/n)2*e

and the second condition (14) is satisfied.

Remark 2:An inequality weaker tha(ll) is a straightforward consequence of the asymptotic
behavior of the measures, Indeed, ifwe £7, we know from Rakhmanov's Theorémthat
dvp(x) — p(x)dx asn— o in the weak-* topology. It follows from the weak upper semicontinuity
of the mutual entropyRef. 7, Corollary 5.3 that lim supE,(w)=lim sup S(v,,w)=<S(p,w). In
particular, it shows that if the weight is in E7\S,

lim Ej(w) =— oo,
n—oe
Nevertheless, it seems that a semicontinuity argument for the entropy does not allow us to explain
the additional term lo@)—1 occurring on the right-hand side @f2).
The information entropy for Chebyshev polynomials orthonormal with respeethis been
computed in Refs. 4,14:

E.(p)=log(2) -1, for n=1. (15

Intuitively, Chebyshev polynomials are the most “uniformly” distributed polynomials, both for
eachn and asymptotically an— 0. This fact is formally set in the next corollary.
Corollary 2: If

lim supE,(w) =log(2) - 1, (16)
n—oc

then w=p and E(w)=log(2)-1, n=1.
The proof is a simple consequence of inequdlity). Indeed, from this inequality, we see that
(16) can only happen iS(p,w)=0 that isp=w.
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Now we exploit the connection between the entrégpyw) and the mutual energy u,,, vy,)
given in(4). It is well known that in the clas§7 both u, and v, tend(asn— ) to the Chebyshev
(equilibrium) distribution given by the weight on A. In particular, from the convexity properties
of the mutual energy it follows that

,Lmll(“”’ vn) =1(p,p) = 109(2).
What is more surprising is that the next term of the asymptotic expansidmgfr,) also exhibits
a “universal” behavior, in the sense that it does not depend on the choice of the welgdainely,
if the entropyE,(w) satisfieg12), then the following result is a direct consequencéyfand the
well known asymptotic behavior of the leading coefficientpgfisee(29)].
Corollary 3: Assume w is a weight in the SéedassS and condition (13) is satisfied. Then
the mutual energy(l,, v,) has the following asymptotic expansion:

1 1
| (e, v) = log(2) = % + O(H)y neA, n—o.
This remarkable fact certainly deserves further study.
Another aim of the paper is to study two related functiorigl&ndG,,, whose sum equals the
entropy,

En(w) = Fr(w) + Gp(w),
and which are defined by
Faw) = - f log(PA(X)Wo(X)) pAX)W(X)dx = S(f2p, p), 17
A

and

Gy(w) = f log(Wo(x)) pA(X)W(X)dx = — S(p2w, p2p) . (18)
A

We will see that the functionat, also exhibits a “universal” behavior, whif®, is sensitive to
a particular choice of the weight, and is related naturally with the mutual entrofp,w).
FunctionalsF,, and G,, have a particularly nice behavior far in the Bernstein class:

Proposition 1: Let S be a polynomial of degrgd (N=0) such that $)>0 for xe A, and
assume that the orthogonality weight satisfies

1
Wo(X) = ——, XeA.

SX)’
Then
Fo(w) =log(2) -1, for n>N. (19
Moreover
lim Gp(w) = S(p,w), (20)

n—oe

and this limit takes place with a geometric rate. Consequently, the same holds true for the limit in
(5).
The conjecture that constant entrogy(w) is a (yet another characterization of Chebyshev
polynomials[cf. (15)] belongs to Golinsky. We were able to prove it in the Bernstein dfss
Proposition 2: Let we B such that E(w) is constant for all sufficiently large.nmhen we=p.
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Since Bernstein weights are suitable as approximation tool for the whole Stass, we
could expect the asymptotic behavior from Proposition 1 to hold in a more general setting.
Nevertheless, the behavior of the entropy, as well as the behavior of the two funcigrald G,
is extremely sensitive to the growth mﬁw which may affect convergence. In general, the
following expression for the first function&, holds true: _

Theorem 2: Assume the weight w belongs to the $zelgssS. Then, for all M> 2,

Fo(w) =log(2) -1 - f log(f2()) FA(x)p(x)dx+0(1), n— . (21)
Ap(M)
Again, as a simple consequence of the above formula, we get the following corollary.
Corollary 4: Assume the weight w belongs to the 3zetpss S. Then, the following
asymptotic upper bound for,Fholds

lim supF,.(w) <log(2) - 1. (22

n—o

Moreover, for a subsequencesM\ C N,
lim F,(w)=log(2) - 1, (23)
neA

if and only if there exists a constant MV’E, such that

lim f f2(x)log(f3(x))p(x)dx=0, (24)

neA An(M)

for f, and A,(M) defined in (8) and (9), respectively. In this case, (24) is valid for evel:yd\a.
Furthermore, (24) holds if there exists ar>0 such that either

sup| (log"(f£(x))***fi(xp()dx <= o sup| (F00)"**p(x)dx<=. (25
ne A neAJp

Remark 3:The method of proof of Theorem 2 can be applied to larger classes of weights. In
fact, we only need ah? asymptotics of the polynomiafs, on the suppor\ of the measure, and
that has been extended beyond the 8zelgss. For instance, using our technique we can prove
that (11) is valid for weightsw e F(dini), introduced in Ref. 8.

Remark 4Apparently, a necessary condition f@5) is thatw, log(wp) e L(p) [cf. with (6)].
If log(wp) e L™ then there is equivalence between conditigt® and(24), and betweeri14) and
(25), respectively.

Concerning the second function@},, we use a result from Ref. 10 to deduce the following
proposition.

Proposition 3: Assume the weight w belongs to the &ztassS and log(wp) € L*; then

lim supG,(w) < S(p,w) =f log(wp(X)) p(x)dx. (26)
A

n—oe

Similarly, assume thdbg (wp) e L”; then

n—oe

lim inf G,(w) = S(p,w) =f log(wp(x)) p(x)dx. (27)
A
Hence, iflog(wp) € L”, then

lim G,(w) = S(p,w).

n—o
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Furthermore, if the weight w belongs to the $80\S, the assumptioog*(w) e L* still implies
inequality (26). In this case, (26) simplifies ltm,,_...G,(w)=—cc.

IIl. PROOFS OF THEOREMS 1 AND 2, COROLLARIES 1 AND 4

Before entering the proofs of our results, let us state two preliminary lemmas. The first one is
borrowed from Ref. 1.

Lemma 1 (Ref. 1, Lemma 2.1): Let g be a continuous functioR og(6+7)=g(0), f
e LY([0,7]), and lety(6) be a function that is measurable and almost everywhere finif@® pim].
Then, as A~ o,

fﬂg(n0+ v(0)f(6)do — lfwg(él)dérfw1‘(0)d6'.
0 m™Jo

0

As remarked in Ref. 1, when(6)=0 andg e L*[0,], the statement of the lemma becomes a
well-known result of Fejer; cf. Ref. 2, Chap. I, Sec. 20.

As the second main ingredient in our proofs let us recall the &zsymptotics forf,(x)
= \Wo(X)pa(): if

On(X) = \Ecos{n arccosx + y(x)),

where

2
X
dt

T on X —t 1-t2

/%) = 1f log wy(x) — log wp(t) /1 -
A

is the harmonic conjugate function to leg; then in the SzefclassS, one has
I!im 2= Gnllz) =0, (28

and

lim |og(§> =- %(Iog(Z) +S(p,W)). (29)

n—o

The mutual entropy on the right-hand side(29) is known as the Szégconstant for the weight
w. Since the entropy integral is very sensitive to the growtl‘ﬁGfpﬁw , the following lemma will
be useful; roughly speaking, it shows that the subagtM), defined in(9), have no influence on
the L? asymptoticg28):

Lemma 2: For we S,

lim f p(X)dx=0, (30)
n—o An(M)

for every M> 2. Furthermore, Ief;, n=0, be the sequence of truncated functions

(31

= f(x), for xeA\A(M),
()= 1, for xe A,(M).

Then

r'j”:c”fn = OnllLz,) = 0. (32

Proof: Observe first that by the Cauchy—Schwarz inequality,
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f |fﬁ(x) - gﬁ(x)|p(x)dx <|f,+ gn||L2(p) = gn||L2(p) = (||fn||L2(p) + ||gn||L2(p)) |Ifn - gn”Lz(p)!
A

so that

f 1£2(x) = 20| p(0dx =< (1 +2)[[f = gl L2, - (33
A

Now we can show that the Chebysh@nd hence, Lebesgumeasure ofA,(M) is asymptotically
vanishing: by(33),

(M?-2) f p(x)dx < f (f2(x) = 2)p(x)dx
Ap(M) An(M)

< f 1£2(x) = 20| p(9dx= (1 +V2)[|f = GullL2(0)
Ap(M)

the right-hand side tending to zero as- by (28); this proves(30). Moreover, sincd?n(x)|
=1 and|g,(x)| <2 for xe A,(M), we have by(33),

”fn - gn”iZ(p) = f

A\AL(M)

|Fa(X) = gn(X)[Zp(X)dx + f [F2(%) = 9n(02p(x)dx

Ap(M)

= (L2~ gz + 3 f o
)

n(M

It remains to us€28) and(30) to see that32) is satisfied. O

A. Proof of Theorem 1

Fix arbitraryM > V2 and letA (M) andf be as defined i69) and(31), respectively. We write
the entropy as

Eq(w) = S(fZp,w) = Sgip.w) +[S(Fop,w) = Sgip,w)] + [S(Fpw) - S{Fpw)]. (34
In three steps let us prove that the first term on the right has as a limit the first three terms on the
right-hand side of1), the second term tends to 0, and the third term is asymptotically negative and
related to the integral igl).
Let
R(y)=y*log(y?), y e R.

From Lemma 1 we get

lim S(@Zpw) = - lim J " Rig(cot )2 + iim f " log(we(cos ) gi(cos ) %
n—oo n—«Jq n—xJq ™

=- JWR(\E cos{ﬂ))d—g + JWZ co§(0)d—0fwlog(wo(cos(0)))d—0
0 u 0 m™Jo T
=Ei(p) + S(p,w) =10g(2) - 1 +S(p,w). (39

Hence the first term on the right-hand side(84#) has the required limit. The second term(84)
can be written as
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S(fp,w) - S(gZp,w) = J {R(L—X)) - R(&)]w(x)dx. (36)
A VWo(X) VWo(X)

Recall that botﬁn andg, are uniformly bounded o by M, and hence fok e A,

(s
VWo(X)

whereh e L(p) by assumptior(6). Similarly,

‘R< gn(X)))

\’Wo(X

wo(x) < [R(T4(x)] + [log(we(x))[F3(x) < M? log M2+ M?[log(wo(x))| = :h(x),

Wo(X) < h(x), xeA.

The integral in(36) will be split into two parts depending on whetheg is small or large. Fix an
arbitrary 0<e<1; by the monotone convergence theorem there exists a cortabfe) such
that

Osf h(x)p(x)dx=f h(x)p(x)dx—f h(x)p(x)dx < .
h(x)>C A h(x)<C

Defining 7: =M? exp(—C/M?) we see that,(x) < 7 implies thath(x) >C, and hence

f [R( fn(i) —R( M)]W(X)dx
Wo()<7 VWo(X) VWo(X)

On the other hand, ifvy(x) = 7, then

< Zf h(x)p(x)dx < 2¢.
Wo(X) <7

%)
VWo(X)

M M
< < —

2
< =etCMI =,
WWo(X) VT

and the same inequality is valid fgﬁ/on. Taking into account thaR is smooth,

"f'n<x>) (gn<x>) T g
R -R| = < max|R'(y)| | o= - 2L
(dwo(x) w0} | = TR T ™ Voo

< max|2y(1 + log(y?))|

lyl<Cy

W0 00 ‘
Wo(X)  VWo(X)

o0 gu®)
Wo(0) VW)

with C,: =max4e %/2,2C,(1+log(C?))}. Hence, using the Cauchy—Schwarz inequality,

f lR( f,,(_x)) —R( w)]w(x)dx
Wo(X)=7 VWo(X) VWo(X)

which by (32) tends to 0 as:— . Taking into account that € (0,1) was chosen arbitrarily, we
conclude that

=2

= CZ”Gn - gn)\/WO(X)”Ll(p)$C2|ﬁn - gr‘IHLZ(p)!

S(f2p,w) - S(g2p,W) — 0, n— o, (37)

Thus, for establishing the expression for the entropy in Theorem 1, it only remains to examine the
last bracket on the right-hand side @4). Notice that since,=f, on A\A,(M),
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S(f2p,w) - S(f2p,w)=— f )p(x)dx

AyM

2 2
| Pr)log(py(x)widx + f o IOg(Wo(X)

== f p2(x)log* (PA(X))w(x)dx + ﬁ PA(X)log(PA(x) [w(x)dx
A(M

n ) An(M)
- f log(wo(x)) p(x)dX,
Ap(M)

where
An(M) = {X & Ay(M):p2(x) < 1} C An(M).
Observing that, fop?(x) <1, we have 6= p2(x)|log(p3(x))| <1, we obtain
0< J~ p2(x)|log(p2(x)) [w(x)dx < J w(x)dx=J Wo(X) p(x)dX.
Ap(M) Ap(M) Ap(M)

Sincew, € LY(p), log(wp) € LY(p), by the absolute continuity of the Lebesgue integral, relation
(30) implies that

Iimf wo(X)p(x)dx=0, and Iimf log(wy(x))p(x)dx=0, (38)
n—=J A (M) n—=J A (M)
showing that
S(f2p,w) - S(f2p,w) = - f PA()log* (PA(X))W(X)dx+0(1), n— . (39
Ap(M)
Hence, gathering35), (37), and(39) in (34), we get(10). O

B. Proof of Corollary 1

Since

J p2(x)log* (PA(x))w(x)dx = 0,
An(M)

relation(11) is a trivial consequence of Theorem 1. Suppose now(ft&tholds for someM > VE,
then(12) follows immediately from(10). Conversely, if12) is true then it follows from Theorem
1 that(13) holds for allM > 2.

In order to prove thagl4) is sufficient for(13), notice that, by Hélder’s inequality,

1/(1+¢)
J ( pﬁ(X)log+(pﬁ(X))W(X)dXS< f pﬁ(X)(Iog*(pﬁ(X)))“SW(X)dX)
An(M) A

n(M)

1-1(1+¢)
) (40

X ( J p2A(x)w(x)dx
Ap(M)

Furthermore,
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f PEOW(X)dx < f [f2(x) = GA() Ip(x)dx+ J g5(x)p(x)dx
Ap(M) Ay(M) Ap(M)

n(M

< f [F200 = gA(x)Ip(x)dx+ 2 f p(x)dx
Ap(M) A

n(M)

=1+ Dy~ gl +2[ p00x=ow), n=
where we have use@8), (30), and(33).
If we assume that the first condition {&4) holds, then the first factor on the right-hand side
of (40) is uniformly bounded im, and(13) follows.
Finally, notice that the second condition (b4) implies the first one since 16¢g) <z for z
=0, and hence

1+g\t* 1+g\l*
(Iog+(y))l+5 - (T) (log+(ys/(l+£)))l+£ < ( . ) ys, y= 0.

C. Proof of Theorem 2

Our proof for Theorem 2 follows closely the arguments of the proof of Theorem 1, but some
parts simplify. As before leR(y)=y? log(y?), y € R, and fixM > 2. We write the functional as
follows:

Fa(w) = f [— R(gn(¥)) ]p(x)dx+ f [R(gn(¥)) = R(F(x))]p(x)dx + f [R(FA(x)
A A A

= R(fn(¥) Jp(x)dx. (41)

Here the first integral on the right-hand side(df) has the limitE;(p)=log(2)-1 by Lemma 1.
The last one can be written as

f [R{Fa(0)) = R(Fo(0)) Ip(x)dx= = f log(f3(x) f(x)p(x)dx =0,
A Ap(M)
the right-hand side coinciding with the integral(@l). Thus Theorem 2 follows by showing that

the second integral on the right-hand sideg4ff) is asymptotically vanishing. Recalling tHE,I;(x)|
and|g,(x)| are uniformly bounded b for all n=0 andx € A, we obtain

‘ f [RA(gn(¥)) = R(F,(x))]p(x)dx
A

< max [R'(y)| f 19n(%) = To(X)] p(x)dx
ye[-M,M] A

= M2(1 + IOg M2)||gn - fn”Ll(p) = Mz(l + Iog MZ)”gn - fn”LZ(p)!

the term on the right tending to zero as- by (32). O

D. Proof of Corollary 4

Since
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f 120010g(f30)p(x)dx= 0,
Ap(M)

relation(22) is a trivial consequence of Theorem 2. Suppose now(#@tholds for somevl > V’E;
then(23) follows immediately from21). Conversely, if(23) is true then it follows from Theorem
2 that(24) holds for allM > 2.

In order to prove that the first condition {@5) (which clearly is weaker than the second pne
is sufficient for(24), notice that, by Holder’s inequality,

1/(1+e) 1-1/1+e)
f fﬁ(X)log+(fﬁ(X))p(><)dX$< f fﬁ(X)(Iog+(fﬁ(><)))“‘9p(X)dX> ( f fﬁ(X)p(X)dX) :
A A A

n n n

and we may conclude as in the proof of Corollary 1 that the second factor on the right-hand side
tends to zero. O

IV. PROOFS OF PROPOSITIONS 1, 2, AND 3

A. Proof of Proposition 1

Let us make the change of variabbes(z+1/2)/2. It is well known that sincé&(x) >0 on A
we may writeS as

S(x) =a(2|*=a(2a(1/2), (42)

with g a polynomial of degree® with real coefficients having all its zeros outside the disk and
g(0)>0. Moreover,

1
Pn(X) = E(Z”Q(Z_l) +77q(2)) (43

is the orthonormal polynomial of degree>N with respect to the Bernstein weightS. Intro-
ducing the Blaschke product,

B.(2) = 2"q(1/2)/q(z), n=N, (44

we find that

PEX)W(X) = 3|1 +B,(2)|2=1+3(B,(2) + B,(1/2), |4=1.

Since, forn>N, B,(0)=0, andB,, is analytic in the disk, we have
log(2) - Fy(w) = log(2) + J log(PA(X)Wo(X)) PA(X)Wo(X) p(x)dX

== | togr Bn<z>|2)[1 + (B2 + Bnu/z))} a2

TJ|z=1

=Re<i.J log(1 +B(2))[2 +By(2) + Bn(llz)]d—z> :
2l lZ=1 z

Since|B,(2)| <1 for |z|] <1, the function logl+B,)[2+B,] is holomorphic inside the disk and
vanishes at the origin. Thus,

log(2) - F(w) = Re(ij log(1 + Bn(z))Bn(llz)d—Z> (45)
27l l2=1 Z
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f log(1 +B,(2) dz (46)
27 )21 B2 z )’

where we have used thBf(1/2)=1/B,(z). Observe that the last integrand is analytic in a neigh-
borhood of the unit circle, and we can integrate along a smaller ¢iicle <1, wherelB, ()| <1.
Replacing the log by its uniformly convergent Taylor expansion we get finally that this integral
equals 1, which provegl9).

On the other hand, by a similar reasoning we have

1
Gn(w) = f log(Wo(X)) pa(X)?W(x)dx
-1
1 1
=- 2Re<—_f Iog(q(z)){l +=(B,(2) + Bn(llz))} |d21>
2 l4=1 2

1 d
==2log(q(0)) - Py f ‘ |09(0|(Z))Bn(1/2);Z : (47
T z=1

Note that in the last expression @f7), taking the real part is not necessary siga@ndB,, are real
functions. Integrating now alon{g| =R>1, we observe thalB,(1/z)| becomes geometrically
small, there which yields a geometric rate of convergence for

n—oe

1 d
lim Gp(w) = -2 log(q(0)) = - Re; f | Iog(q(Z));Z =S(p,w),
z=1
which proves(20). O

B. Proof of Proposition 2

From the computations df,(w) andG,(w) in the proof of Proposition 1, se&5) and(47),
we know thatE(w) is constant fom large, sayn>Ny> N, if and only if

27i 202N =0, n>Ny, (48)
where the polynomiat] and the Blaschke produ@&y are defined by42) and(44), respectively.
Since lodq(z)) is analytic in some neighborhodd of the unit disk, we may conclude that
log(q(2))By(1/2) is meromorphic in4, and thus can be written as

1 f Bn(1/2)log(q(2)) dz
|z7=1 z

Bn(1/2)log(q(2) =r(2) +f(2), ze U, (49

wherer is a rational function such thatNg(1/2)r(2) is a polynomial of degree at mosk2 1, and
f is analytic ini/. Sincer is analytic outside the unit disk and grows like at most &t infinity,

we deduce
= '@ d_z_ 0, n>N
21 lZ=1 ZZn—ZN z o o
which implies, together witti48) and (49), that
1 f(z) dz
— = O, n> No.

2 l2=1 27N 7z

Hence, all sufficiently high even Taylor coefficients fokanish. As a consequenclz) +f(-2)
=P(2) is a polynomial, and
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Bn(1/2)l0g(q(2)) + By(= 1/2)log(a(=2) =r(2) +r(-2) + P(2), |7 <1. (50)

Since the right-hand side @b0) is a rational function, the principle of analytic continuation
applies, showing that0) actually holds everywhere ifi. First, assume that the polynomiglis
even, that ig)(2)=q(-2), ze C. Then, it follows from(50) that logq(z)) is a rational function so
thatqg can only be a constant, namely 1 by the normaliza®)rof the weightw. Second, assume
that the polynomialy is not even(hence different from a constanit implies the existence of
some roota € C of g such that eitheq(-a) # 0 or —« is a root ofq of different multiplicity than
that of @. Note thata # 0 since, by assumptiog(0) > 0. Then we get a contradiction. Indeed, in
view of the definition(44) of By, we readily observe that the left-hand side(80) has a branch
point ata while the right-hand side has not. Henggz) is constant, equal to 1, and the proof of
Proposition 2 is finished. U

C. Proof of Proposition 3

Choosingp=2 andg=|log(wo)w|*? e L* in Theorem 2 of Ref. 10 shows that

lim inf f llog(wo(x)) [P W(x)dx = J llog(wg()|p(x)clx, (51)
A A

n—oe

for any weightw in the Erdss—Turan clasg7. If log*(wp) € L, there exists a consta@t>1 such
that wy(x) <C, x e A. Hence|log(wy/C)|=—log(w,/C) and substracting Id€) to both sides of
(51), we get(26) since

f p(x)dx= f pA(x)w(x)dx=1.
A A

A similar reasoning show®7) when log(wg) e L*. Since this argument applies for any weight in
the Erdds—Turan class, the last assertion in the proposition also follows. O
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