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We give an asymptotic upper bound asn→` for the entropy integral,Enswd
=−epn

2sxdlogspn
2sxddwsxddx, where pn is the nth degree orthonormal polynomial

with respect to a weightwsxd on f−1,1g which belongs to the Szegő class. We also
study two functionals closely related to the entropy integral. First, their asymptotic
behavior is completely described for weightsw in the Bernstein class. Then, as for
the entropy, we obtain asymptotic upper bounds for these two functionals when
wsxd belongs to the Szegő class. In each case, we give conditions for these upper
bounds to be attained. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1794842]

I. INTRODUCTION

In the framework of the density functional theory(see, e.g., Refs. 6 and 11), the physical and
chemical properties of fermionic systems are described by means of the single-particle probability
densities. IfCsrWd is the wave function of a single-particle system in a(D-dimensional) position

space, andĈspWd is the corresponding wave function in momentum space[that is, the Fourier
transform ofCsrWd], then the position and momentum densities of the system are given by

rsrWd = uCsrWdu2, gspWd = uĈspWdu2,

respectively. It is known that the Boltzmann–Gibbs–Shannon position–space entropy,

Ssrd = −E rsrWdlog rsrWddrW,

measures the uncertainty in the localization of the particle in space(lower entropy indicates a
more concentrated wave function, with the associated higher accuracy in predicting the localiza-
tion of the particle). The similar is true for the momentum–space entropy,

a)Corresponding author. Electronic mail: andrei@ual.es

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER 11 NOVEMBER 2004

42390022-2488/2004/45(11)/4239/16/$22.00 © 2004 American Institute of Physics

Downloaded 25 Mar 2005 to 134.206.85.206. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp

http://dx.doi.org/10.1063/1.1794842
http://dx.doi.org/10.1063/1.1794842


Ssgd = −E gspWdlog gspWddpW .

These quantities have importance in the study of the structure and dynamics of atomic and
molecular systems; we refer the reader to the survey5 and to references therein. BothSsrd andSsgd
also play a role in a generalization of the Heisenberg uncertainty relation: it has been established3

that for any pair of densitiesrsrWd andgspWd in D-dimensional space, we have the sharp inequality

Ssrd + Ssgd ù Ds1 + log pd, s1d

which expresses quantitatively the impossibility of the simultaneous localization of a pair of
observables with no common eigenstates.

It is well known that the wave function of many important systems, such asD-dimensional
harmonic oscillator and hydrogen atom, are expressible in terms of families of orthogonal poly-
nomials. It is not surprising that, as it has been shown in Refs. 4 and 13, the computation of the
entropiesSsrd andSsgd usually can be reduced to integrals involving these polynomials.

Let n be a positive unit Borel measure onD : =f−1,1g and let

pnsxd = gnp
j=1

n

sx − z j
sndd, gn . 0, n P N,

denote the corresponding sequence oforthonormalpolynomials such that

E pnsxdpmsxddnsxd = dmn, m,n P N.

We define theinformation entropyof the polynomialspnsxd as

En = Ensnd = −E pn
2sxdlog„pn

2sxd…dnsxd. s2d

Throughout the paper, we will assume that the orthogonality measuren is absolutely continuous
with respect to the Lebesgue measurel on D with the Radon–Nikodym derivative

dn/dl = n8sxd = wsxd, w P L1sDd.

For normalization purposes, we will always assume that the weightw is unitary, i.e.,

E
D

wsxddx= 1. s3d

The information entropy will be indistinctly denoted byEnsnd andEnswd. We follow this conven-
tion below for other notations.

The asymptotic behavior ofEn as n→` has a special interest in the study of the so-called
Rydberg states of quantum-mechanical systems. Besides physical motivations, there are some
fascinating aspects of this problem because of a certain universal behavior of related integrals, and
because of a close connection of the entropyEn with important functionals of the normalized zero
counting measures of the polynomialspn,

mn =
1

n
o
j=1

n

dz j
snd, n . 0,

and of the following probability measuresnn:
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dnnsxd = pn
2sxddnsxd, n ù 0

(note thatn0=n). Both measures are standard objects of study in the analytic theory of orthogonal
polynomials. For instance, the normalized zero counting measuremn is closely connected with the
nth root asymptotics ofpn, and as was shown in Ref. 12,nn is associated with the behavior of the
ratio pn+1/pn asn→`.

If m andn are positive Borel measures onC, then theirmutual entropyis defined as

Ssu,vd = 5− ` if m is not n-absolutely continuous,

−E logSdm

dn
Ddm if m is n-absolutely continuous,

and theirmutual logarithmic energyas

Isn,md = −E E loguz− tudnstddmszd.

With these notations the entropy(2) is equivalently rewritten as

Ensnd = Ssnn,nd = − 2 log gn + 2n Ismn,nnd. s4d

In particular, from a classical Jensen’s inequality for integrals, it follows immediately that if both
m andn are unit measures onD, thenSsm ,ndø0, with equality if and only ifm=n. Hence,

Ensnd ø 0,

with equality if and only ifn=0.
Aptekarevet al.1 considered two subfamilies of the usual Szegő class of weights onD, namely

the Jacobi weights and the Bernstein-Szegő class(weights being bounded above, bounded away
from zero, and satisfying a Dini–Lipschitz condition). In this last case it is known that the
asymptotic formula for the orthogonal polynomialspn holds uniformly inD, asn tends to infinity.
With these assumptions it has been proved in Ref. 1 that

lim
n→`

Enswd = Ssr,wd + logs2d − 1, s5d

where

rsxd = 1/spÎ1 − x2d

denotes the Chebyshev unit weight onD. We are concerned here with the problem of whether a
weaker form of this equality holds in the Szegő class of weights. We will show that the right-hand
side of(5) is actually an asymptotic upper bound for the entropyEnswd when the weightw satisfies
the Szegő condition [see assumption(6) below]. Furthermore, the expression(2) for the entropy
can be naturally split into two functionals, which have simple asymptotic behaviors whenw
belongs to the Bernstein class(see Proposition 1). The situation with the Bernstein class is in a
sense optimal: the corresponding limits provide asymptotic upper bounds forw in the whole Szegő
class. We also give conditions for the entropy and the two functionals to tend to their upper bounds
as the degreen becomes large.

Finally, we must mention that in the case of an unbounded support of the weight of orthogo-
nality interesting results concerning the asymptotics of theEn and related functionals have been
obtained recently in Ref. 9.

II. STATEMENTS OF RESULTS

The weightedLp norm of a functionf with respect to a weightk on D will be denoted by
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ifiLpskd = SE
D

ufsxdupksxddxD1/p

, 1 ø p ø `.

We will simply write Lp whenk;1 on D.
Though our main interest in this paper lies in the Szegő class of weights, some other classes

appear at different places. We recall the definitions of these classes now.
The Erdős–Turan classET consists of weightswPL1 such thatw.0 almost everywhere on

D.
The Szegő classS consists of weightswPL1 such that

logsw0d P L1srd, s6d

where

w0sxd: = wsxd/rsxd = pÎ1 − x2wsxd

denotes the trigonometric weight corresponding tow. The fact thatw0PL1srd implies log+sw0d
PL1srd, where, as usual, we denote

log+sxd = maxhlogsxd,0j, x . 0.

Hence, condition(6) is actually equivalent to

Ssr,wd =E
D

log„w0sxd…rsxddx. − `. s7d

Note that(6) and (7) can equivalently be rewritten as logswdPL1srd and

E
D

log„wsxd…rsxddx. − `,

respectively.
Finally, theBernstein classB consists of weightsw such thatw0 is given by the reciprocal of

a positive polynomial onD. As it is well-known, the classB is an important class useful for
establishing asymptotic properties in the Szegő theory of orthogonal polynomials. Obviously, one
has the following inclusionsB,S,ET.

We will also use the notations

fnsxd: = pnsxdÎw0sxd, s8d

and forM .0,

DnsMd: = hx P D:ufnsxdu ù Mj. s9d

One of the main results of the paper is the following theorem.
Theorem 1: Assume that the weight w belongs to the Szegő classS. Then, for all M.Î2,

Enswd = Ssr,wd + logs2d − 1 −E
DnsMd

pn
2sxdlog+

„pn
2sxd…wsxddx+ os1d, n → `. s10d

As a simple consequence of the above formula, we obtain the following asymptotic upper bound
together with necessary and sufficient conditions for equality.

Corollary 1: Assume that the weight w belongs to the Szegő class S. Then the following
asymptotic upper bound for the entropy holds:

lim sup
n→`

Enswd ø Ssr,wd + logs2d − 1. s11d
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Moreover, for a subsequence nPL,N,

lim
nPL

Enswd = Ssr,wd + logs2d − 1, s12d

if and only if there exists a constant M.Î2, such that

lim
nPL

E
DnsMd

pn
2sxdlog+

„pn
2sxd…wsxddx= 0. s13d

In this case (13) is valid for all M.Î2.
Furthermore, (13) holds if there exists«.0 such that either

sup
nPL

E
D

slog+
„pn

2sxd…d1+«pn
2sxdwsxddx, ` or sup

nPL
E

D

„pn
2sxd…1+«wsxddx, `. s14d

Remark 1:Notice that the findings of Ref. 1 on Bernstein–Szegő polynomials are included in
Corollary 1 since forwPB, logsw0d is bounded and thefn are uniformly bounded inf−1,1g. In
contrast, the case of Jacobi polynomials requires some extra considerations. One knows that for
the orthonormal Jacobi polynomials there exists a constantc such that fornù0 andxP f−1,1g,

uPn
sa,bdsxdu ·SÎ1 − x +

1

n
Da+1/2SÎ1 + x +

1

n
Db+1/2

ø c/Îp.

Taking into account that herew0sxd=ps1−xda+1/2s1+xdb+1/2, we find that forpn=Pn
sa,bd,

„pnsxd…2+«w0sxd ø cÎpS 1 − x

sÎ1 − x + 1/nd2+«Da+1/2S 1 + x

sÎ1 + x + 1/nd2+«Db+1/2

,

and the second condition in(14) is satisfied.
Remark 2:An inequality weaker than(11) is a straightforward consequence of the asymptotic

behavior of the measuresnn. Indeed, if wPET, we know from Rakhmanov’s Theorem12 that
dnnsxd→rsxddx asn→` in the weak-* topology. It follows from the weak upper semicontinuity
of the mutual entropy(Ref. 7, Corollary 5.3) that lim supEnswd=lim supSsnn,wdøSsr ,wd. In
particular, it shows that if the weightw is in ET \S,

lim
n→`

Enswd = − `.

Nevertheless, it seems that a semicontinuity argument for the entropy does not allow us to explain
the additional term logs2d−1 occurring on the right-hand side of(12).

The information entropy for Chebyshev polynomials orthonormal with respect tor has been
computed in Refs. 4,14:

Ensrd = logs2d − 1, for n ù 1. s15d

Intuitively, Chebyshev polynomials are the most “uniformly” distributed polynomials, both for
eachn and asymptotically asn→`. This fact is formally set in the next corollary.

Corollary 2: If

lim sup
n→`

Enswd ù logs2d − 1, s16d

then w=r and Enswd=logs2d−1, nù1.
The proof is a simple consequence of inequality(11). Indeed, from this inequality, we see that

(16) can only happen ifSsr ,wd=0 that isr=w.
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Now we exploit the connection between the entropyEnswd and the mutual energyIsmn,nnd
given in (4). It is well known that in the classET bothmn andnn tend(asn→`) to the Chebyshev
(equilibrium) distribution given by the weightr on D. In particular, from the convexity properties
of the mutual energy it follows that

lim
n→`

Ismn,nnd = Isr,rd = logs2d.

What is more surprising is that the next term of the asymptotic expansion ofIsmn,nnd also exhibits
a “universal” behavior, in the sense that it does not depend on the choice of the weightw. Namely,
if the entropyEnswd satisfies(12), then the following result is a direct consequence of(4) and the
well known asymptotic behavior of the leading coefficient ofpn [see(29)].

Corollary 3: Assume w is a weight in the Szegő classS and condition (13) is satisfied. Then
the mutual energy Ismn,nnd has the following asymptotic expansion:

Ismn,nnd = logs2d −
1

2n
+ oS1

n
D, n P L, n → `.

This remarkable fact certainly deserves further study.
Another aim of the paper is to study two related functionalsFn andGn, whose sum equals the

entropy,

Enswd = Fnswd + Gnswd,

and which are defined by

Fnswd = −E
D

log„pn
2sxdw0sxd…pn

2sxdwsxddx= Ssfn
2r,rd, s17d

and

Gnswd =E
D

log„w0sxd…pn
2sxdwsxddx= − Sspn

2w,pn
2rd. s18d

We will see that the functionalFn also exhibits a “universal” behavior, whileGn is sensitive to
a particular choice of the weightw, and is related naturally with the mutual entropySsr ,wd.
FunctionalsFn andGn have a particularly nice behavior forw in the Bernstein classB:

Proposition 1: Let S be a polynomial of degree2N sNù0d such that Ssxd.0 for xPD, and
assume that the orthogonality weight satisfies

w0sxd =
1

Ssxd
, x P D.

Then

Fnswd = logs2d − 1, for n . N. s19d

Moreover,

lim
n→`

Gnswd = Ssr,wd, s20d

and this limit takes place with a geometric rate. Consequently, the same holds true for the limit in
(5).

The conjecture that constant entropyEnswd is a (yet another) characterization of Chebyshev
polynomials[cf. (15)] belongs to Golinsky. We were able to prove it in the Bernstein classB.

Proposition 2: Let wPB such that Enswd is constant for all sufficiently large n. Then w=r.
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Since Bernstein weights are suitable as approximation tool for the whole Szegő class, we
could expect the asymptotic behavior from Proposition 1 to hold in a more general setting.
Nevertheless, the behavior of the entropy, as well as the behavior of the two functionalsFn andGn

is extremely sensitive to the growth ofpn
2w, which may affect convergence. In general, the

following expression for the first functionalFn holds true:
Theorem 2: Assume the weight w belongs to the Szegő classS. Then, for all M.Î2,

Fnswd = logs2d − 1 −E
DnsMd

log„fn
2sxd…fn

2sxdrsxddx+ os1d, n → `. s21d

Again, as a simple consequence of the above formula, we get the following corollary.
Corollary 4: Assume the weight w belongs to the Szegő class S. Then, the following

asymptotic upper bound for Fn holds:

lim sup
n→`

Fnswd ø logs2d − 1. s22d

Moreover, for a subsequence nPL,N,

lim
nPL

Fnswd = logs2d − 1, s23d

if and only if there exists a constant M.Î2, such that

lim
nPL

E
DnsMd

fn
2sxdlog„fn

2sxd…rsxddx= 0, s24d

for fn and DnsMd defined in (8) and (9), respectively. In this case, (24) is valid for every M.Î2.
Furthermore, (24) holds if there exists an«.0 such that either

sup
nPL

E
D

slog+
„fn

2sxd…d1+«fn
2sxdrsxddx, ` or sup

nPL
E

D

„fn
2sxd…1+«rsxddx, `. s25d

Remark 3:The method of proof of Theorem 2 can be applied to larger classes of weights. In
fact, we only need anL2 asymptotics of the polynomialspn on the supportD of the measuren, and
that has been extended beyond the Szegő class. For instance, using our technique we can prove
that (11) is valid for weightswPFsdinid, introduced in Ref. 8.

Remark 4:Apparently, a necessary condition for(25) is thatw0 logsw0dPL1srd [cf. with (6)].
If logsw0dPL` then there is equivalence between conditions(13) and(24), and between(14) and
(25), respectively.

Concerning the second functionalGn, we use a result from Ref. 10 to deduce the following
proposition.

Proposition 3: Assume the weight w belongs to the Szegő classS and log+sw0dPL`; then

lim sup
n→`

Gnswd ø Ssr,wd =E
D

log„w0sxd…rsxddx. s26d

Similarly, assume thatlog−sw0dPL`; then

lim inf
n→`

Gnswd ù Ssr,wd =E
D

log„w0sxd…rsxddx. s27d

Hence, iflogsw0dPL`, then

lim
n→`

Gnswd = Ssr,wd.
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Furthermore, if the weight w belongs to the setET \S, the assumptionlog+sw0dPL` still implies
inequality (26). In this case, (26) simplifies tolimn→`Gnswd=−`.

III. PROOFS OF THEOREMS 1 AND 2, COROLLARIES 1 AND 4

Before entering the proofs of our results, let us state two preliminary lemmas. The first one is
borrowed from Ref. 1.

Lemma 1 (Ref. 1, Lemma 2.1): Let g be a continuous function onR, gsu+pd=gsud, f
PL1sf0,pgd, and letgsud be a function that is measurable and almost everywhere finite onf0,pg.
Then, as n→`,

E
0

p

g„nu + gsud…fsuddu → 1

p
E

0

p

gsudduE
0

p

fsuddu.

As remarked in Ref. 1, whengsud=0 andgPL`f0,pg, the statement of the lemma becomes a
well-known result of Fejer; cf. Ref. 2, Chap. I, Sec. 20.

As the second main ingredient in our proofs let us recall the Szegő asymptotics forfnsxd
=Îw0sxdpnsxd: if

gnsxd = Î2cos„n arccosx + gsxd…,

where

gsxd =
1

2p
E

D

log w0sxd − log w0std
x − t

Î1 − x2

1 − t2
dt

is the harmonic conjugate function to logw0; then in the Szegő classS, one has

lim
n→`

ifn − gniL2srd = 0, s28d

and

lim
n→`

logSgn

2nD = −
1

2
„logs2d + Ssr,wd…. s29d

The mutual entropy on the right-hand side of(29) is known as the Szegő constant for the weight
w. Since the entropy integral is very sensitive to the growth offn

2=pn
2w0, the following lemma will

be useful; roughly speaking, it shows that the subsetsDnsMd, defined in(9), have no influence on
the L2 asymptotics(28):

Lemma 2: For wPS,

lim
n→`

E
DnsMd

rsxddx= 0, s30d

for every M.Î2. Furthermore, let f˜n, nù0, be the sequence of truncated functions,

f̃ nsxd: = H fnsxd, for x P D \ DnsMd,

1, for x P DnsMd.
s31d

Then

lim
n→`

i f̃ n − gniL2srd = 0. s32d

Proof: Observe first that by the Cauchy–Schwarz inequality,
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E
D

ufn
2sxd − gn

2sxdursxddxø ifn + gniL2srd · ifn − gniL2srd ø sifniL2srd + igniL2srdd · ifn − gniL2srd,

so that

E
D

ufn
2sxd − gn

2sxdursxddxø s1 +Î2difn − gniL2srd. s33d

Now we can show that the Chebyshev(and hence, Lebesgue) measure ofDnsMd is asymptotically
vanishing: by(33),

sM2 − 2dE
DnsMd

rsxddxø E
DnsMd

sfn
2sxd − 2drsxddx

ø E
DnsMd

ufn
2sxd − gn

2sxdursxddxøs1 +Î2difn − gniL2srd,

the right-hand side tending to zero asn→` by (28); this proves(30). Moreover, sinceu f̃ nsxd u
=1 andugnsxd u øÎ2 for xPDnsMd, we have by(33),

i f̃ n − gniL2srd
2 =E

D\DnsMd
ufnsxd − gnsxdu2rsxddx+E

DnsMd
u f̃ nsxd − gnsxdu2rsxddx

øs1 +Î2difn − gniL2srd + 3E
DnsMd

rsxddx.

It remains to use(28) and (30) to see that(32) is satisfied. h

A. Proof of Theorem 1

Fix arbitraryM .Î2 and letDnsMd and f̃ be as defined in(9) and(31), respectively. We write
the entropy as

Enswd = Ssfn
2r,wd = Ssgn

2r,wd + fSs f̃ n
2r,wd − Ssgn

2r,wdg + fSsfn
2r,wd − Ss f̃ n

2r,wdg. s34d

In three steps let us prove that the first term on the right has as a limit the first three terms on the
right-hand side of(1), the second term tends to 0, and the third term is asymptotically negative and
related to the integral in(1).

Let

Rsyd = y2 logsy2d, y P R.

From Lemma 1 we get

lim
n→`

Ssgn
2r,wd = − lim

n→`
E

0

p

Rsgn„cossud…d
du

p
+ lim

n→`
E

0

p

logsw0„cossud…dgn
2
„cossud…

du

p

= −E
0

p

R„
Î2 cossud…

du

p
+E

0

p

2 cos2sud
du

p
E

0

p

logsw0„cossud…d
du

p

= E1srd + Ssr,wd = logs2d − 1 +Ssr,wd. s35d

Hence the first term on the right-hand side of(34) has the required limit. The second term in(34)
can be written as
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Ss f̃ n
2r,wd − Ssgn

2r,wd =E
D

FRS f̃ nsxd
Îw0sxd

D − RS gnsxd
Îw0sxd

DGwsxddx. s36d

Recall that bothf̃ n andgn are uniformly bounded onD by M, and hence forxPD,

URS f̃ nsxd
Îw0sxd

DUw0sxd ø uR„ f̃ nsxd…u + ulog„w0sxd…u f̃ n
2sxd ø M2 log M2 + M2ulog„w0sxd…u = :hsxd,

wherehPL1srd by assumption(6). Similarly,

URS gnsxd
Îw0sxd

DUw0sxd ø hsxd, x P D.

The integral in(36) will be split into two parts depending on whetherw0 is small or large. Fix an
arbitrary 0,«,1; by the monotone convergence theorem there exists a constantC=Cs«d such
that

0 ø E
hsxd.C

hsxdrsxddx=E
D

hsxdrsxddx−E
hsxdøC

hsxdrsxddx, «.

Defining t : =M2 exps−C/M2d we see thatw0sxd,t implies thathsxd.C, and hence

UE
w0sxd,t

FRS f̃ nsxd
Îw0sxd

D − RS gnsxd
Îw0sxd

DGwsxddxU ø 2E
w0sxd,t

hsxdrsxddxø 2«.

On the other hand, ifw0sxdùt, then

U f̃ nsxd
Îw0sxd

U ø
M

Îw0sxd
ø

M
Ît

= eC/s2M2d = :C1,

and the same inequality is valid forgn/Îw0. Taking into account thatR is smooth,

URS f̃ nsxd
Îw0sxd

D − RS gnsxd
Îw0sxd

DU ø max
uyuøC1

uR8syduU f̃ nsxd
Îw0sxd

−
gnsxd

Îw0sxd
U

ø max
uyuøC1

u2ys1 + logsy2dduU f̃ nsxd
Îw0sxd

−
gnsxd

Îw0sxd
U

ø C2U f̃ nsxd
Îw0sxd

−
gnsxd

Îw0sxd
U ,

with C2: =maxh4e−3/2,2C1(1+logsC1
2d)j. Hence, using the Cauchy–Schwarz inequality,

UE
w0sxdùt

FRS f̃ nsxd
Îw0sxd

D − RS gnsxd
Îw0sxd

DGwsxddxU ø C2is f̃ n − gndÎw0sxdiL1srdøC2i f̃ n − gniL2srd,

which by (32) tends to 0 asn→`. Taking into account that«P s0,1d was chosen arbitrarily, we
conclude that

Ss f̃ n
2r,wd − Ssgn

2r,wd → 0, n → `. s37d

Thus, for establishing the expression for the entropy in Theorem 1, it only remains to examine the

last bracket on the right-hand side of(34). Notice that sincef̃ n= fn on D \DnsMd,
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Ssfn
2r,wd − Ss f̃ n

2r,wd=−E
DnsMd

pn
2sxdlog„pn

2sxd…wsxddx+E
DnsMd

logX 1

w0sxd
Drsxddx

=−E
DnsMd

pn
2sxdlog+

„pn
2sxd…wsxddx+E

D̃nsMd
pn

2sxdulog„pn
2sxd…uwsxddx

−E
DnsMd

log„w0sxd…rsxddx,

where

D̃nsMd = hx P DnsMd:pn
2sxd , 1j , DnsMd.

Observing that, forpn
2sxdø1, we have 0øpn

2sxd u log(pn
2sxd) u ø1, we obtain

0 ø E
D̃nsMd

pn
2sxdulog„pn

2sxd…uwsxddxø E
DnsMd

wsxddx=E
DnsMd

w0sxdrsxddx.

Sincew0PL1srd, logsw0dPL1srd, by the absolute continuity of the Lebesgue integral, relation
(30) implies that

lim
n→`

E
DnsMd

w0sxdrsxddx= 0, and lim
n→`

E
DnsMd

log„w0sxd…rsxddx= 0, s38d

showing that

Ssfn
2r,wd − Ss f̃ n

2r,wd = −E
DnsMd

pn
2sxdlog+

„pn
2sxd…wsxddx+ os1d, n → `. s39d

Hence, gathering(35), (37), and(39) in (34), we get(10). h

B. Proof of Corollary 1

Since

E
DnsMd

pn
2sxdlog+

„pn
2sxd…wsxddxù 0,

relation(11) is a trivial consequence of Theorem 1. Suppose now that(13) holds for someM .Î2,
then(12) follows immediately from(10). Conversely, if(12) is true then it follows from Theorem
1 that (13) holds for allM .Î2.

In order to prove that(14) is sufficient for(13), notice that, by Hölder’s inequality,

E
DnsMd

pn
2sxdlog+

„pn
2sxd…wsxddxøSE

DnsMd
pn

2sxdslog+
„pn

2sxd…d1+«wsxddxD1/s1+«d

3SE
DnsMd

pn
2sxdwsxddxD1−1/s1+«d

. s40d

Furthermore,
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E
DnsMd

pn
2sxdwsxddxø E

DnsMd
ffn

2sxd − gn
2sxdgrsxddx+E

DnsMd
gn

2sxdrsxddx

øE
DnsMd

ffn
2sxd − gn

2sxdgrsxddx+ 2E
DnsMd

rsxddx

øs1 +Î2difn − gniL2srd + 2E
Dn

rsxddx= os1d, n → `,

where we have used(28), (30), and(33).
If we assume that the first condition in(14) holds, then the first factor on the right-hand side

of (40) is uniformly bounded inn, and(13) follows.
Finally, notice that the second condition in(14) implies the first one since log+szdøz for z

ù0, and hence

„log+syd…1+« = S1 + «

«
D1+«

„log+sy«/s1+«dd…1+« ø S1 + «

«
D1+«

y«, y ù 0.

h

C. Proof of Theorem 2

Our proof for Theorem 2 follows closely the arguments of the proof of Theorem 1, but some
parts simplify. As before letRsyd=y2 logsy2d, yPR, and fix M .Î2. We write the functional as
follows:

Fnswd =E
D

f− R„gnsxd…grsxddx+E
D

fR„gnsxd… − R„ f̃ nsxd…grsxddx+E
D

fRs f̃ nsxdd

− R„fnsxd…grsxddx. s41d

Here the first integral on the right-hand side of(41) has the limitE1srd=logs2d−1 by Lemma 1.
The last one can be written as

E
D

fR„ f̃ nsxd… − R„fnsxd…grsxddx= −E
DnsMd

log„fn
2sxd…fn

2sxdrsxddxø 0,

the right-hand side coinciding with the integral in(21). Thus Theorem 2 follows by showing that

the second integral on the right-hand side of(41) is asymptotically vanishing. Recalling thatu f̃ nsxdu
and ugnsxdu are uniformly bounded byM for all nù0 andxPD, we obtain

UE
D

fR„gnsxd… − R„ f̃ nsxd…grsxddxU
ø max

yPf−M,Mg
uR8syduE

D

ugnsxd − f̃ nsxdursxddx

øM2s1 + log M2dign − f̃ niL1srd ø M2s1 + log M2dign − f̃ niL2srd,

the term on the right tending to zero asn→` by (32). h

D. Proof of Corollary 4

Since
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E
DnsMd

fn
2sxdlog„fn

2sxd…rsxddxù 0,

relation(22) is a trivial consequence of Theorem 2. Suppose now that(24) holds for someM .Î2;
then(23) follows immediately from(21). Conversely, if(23) is true then it follows from Theorem
2 that (24) holds for allM .Î2.

In order to prove that the first condition in(25) (which clearly is weaker than the second one)
is sufficient for(24), notice that, by Hölder’s inequality,

E
Dn

fn
2sxdlog+

„fn
2sxd…rsxddxø SE

Dn

fn
2sxdslog+sfn

2sxddd1+«rsxddxD1/s1+«dSE
Dn

fn
2sxdrsxddxD1−1/s1+«d

,

and we may conclude as in the proof of Corollary 1 that the second factor on the right-hand side
tends to zero. h

IV. PROOFS OF PROPOSITIONS 1, 2, AND 3

A. Proof of Proposition 1

Let us make the change of variablesx=sz+1/zd /2. It is well known that sinceSsxd.0 on D
we may writeS as

Ssxd = uqszdu2 = qszdqs1/zd, s42d

with q a polynomial of degree 2N with real coefficients having all its zeros outside the disk and
qs0d.0. Moreover,

pnsxd =
1
Î2

„znqsz−1d + z−nqszd… s43d

is the orthonormal polynomial of degreen.N with respect to the Bernstein weightr /S. Intro-
ducing the Blaschke product,

Bnszd = z2nqs1/zd/qszd, n ù N, s44d

we find that

pn
2sxdw0sxd = 1

2u1 + Bnszdu2 = 1 + 1
2„Bnszd + Bns1/zd…, uzu = 1.

Since, forn.N, Bns0d=0, andBn is analytic in the disk, we have

logs2d − Fnswd = logs2d +E log„pn
2sxdw0sxd…pn

2sxdw0sxdrsxddx

=
1

2p
E

uzu=1
log(u1 + Bnszdu2)F1 +

1

2
„Bnszd + Bns1/zd…Gudzu

=ReS 1

2pi
E

uzu=1
log„1 + Bnszd…f2 + Bnszd + Bns1/zdg

dz

z D .

Since uBnszd u ,1 for uzu ,1, the function logs1+Bndf2+Bng is holomorphic inside the disk and
vanishes at the origin. Thus,

logs2d − Fnswd = ReS 1

2pi
E

uzu=1
log„1 + Bnszd…Bns1/zd

dz

z D s45d
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=ReS 1

2pi
E

uzu=1

log„1 + Bnszd…
Bnszd

dz

z D , s46d

where we have used thatBns1/zd=1/Bnszd. Observe that the last integrand is analytic in a neigh-
borhood of the unit circle, and we can integrate along a smaller circleuzu =r ,1, whereuBnszd u ,1.
Replacing the log by its uniformly convergent Taylor expansion we get finally that this integral
equals 1, which proves(19).

On the other hand, by a similar reasoning we have

Gnswd =E
−1

1

log„w0sxd…pnsxd2wsxddx

= − 2ReS 1

2pi
E

uzu=1
log„qszd…F1 +

1

2
„Bnszd + Bns1/zd…GudzuD

= − 2 log„qs0d… −
1

2pi
E

uzu=1
log„qszd…Bns1/zd

dz

z
. s47d

Note that in the last expression of(47), taking the real part is not necessary sinceq andBn are real
functions. Integrating now alonguzu =R.1, we observe thatuBns1/zdu becomes geometrically
small, there which yields a geometric rate of convergence for

lim
n→`

Gnswd = − 2 log„qs0d… = − Re
1

p
E

uzu=1
log„qszd…

dz

z
= Ssr,wd,

which proves(20). h

B. Proof of Proposition 2

From the computations ofFnswd andGnswd in the proof of Proposition 1, see(45) and (47),
we know thatEnswd is constant forn large, sayn.N0.N, if and only if

1

2pi
E

uzu=1

BNs1/zdlog„qszd…
z2n−2N

dz

z
= 0, n . N0, s48d

where the polynomialq and the Blaschke productBN are defined by(42) and (44), respectively.
Since log(qszd) is analytic in some neighborhoodU of the unit disk, we may conclude that
log(qszd)BNs1/zd is meromorphic inU, and thus can be written as

BNs1/zdlog„qszd… = rszd + fszd, zP U, s49d

wherer is a rational function such thatz2Nqs1/zdrszd is a polynomial of degree at most 2N−1, and
f is analytic inU. Sincer is analytic outside the unit disk and grows like at most 1/z at infinity,
we deduce

1

2pi
E

uzu=1

rszd
z2n−2N

dz

z
= 0, n . N0,

which implies, together with(48) and (49), that

1

2pi
E

uzu=1

fszd
z2n−2N

dz

z
= 0, n . N0.

Hence, all sufficiently high even Taylor coefficients off vanish. As a consequence,fszd+ fs−zd
=Pszd is a polynomial, and
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BNs1/zdlog„qszd… + BNs− 1/zdlog„qs− zd… = rszd + rs− zd + Pszd, uzu ø 1. s50d

Since the right-hand side of(50) is a rational function, the principle of analytic continuation
applies, showing that(50) actually holds everywhere inC. First, assume that the polynomialq is
even, that isqszd=qs−zd, zPC. Then, it follows from(50) that log(qszd) is a rational function so
thatq can only be a constant, namely 1 by the normalization(3) of the weightw. Second, assume
that the polynomialq is not even(hence different from a constant). It implies the existence of
some rootaPC of q such that eitherqs−adÞ0 or −a is a root ofq of different multiplicity than
that of a. Note thataÞ0 since, by assumption,qs0d.0. Then we get a contradiction. Indeed, in
view of the definition(44) of BN, we readily observe that the left-hand side of(50) has a branch
point ata while the right-hand side has not. Hence,qszd is constant, equal to 1, and the proof of
Proposition 2 is finished. h

C. Proof of Proposition 3

Choosingp=2 andg= ulogsw0dwu1/2PL1 in Theorem 2 of Ref. 10 shows that

lim inf
n→`

E
D

ulog„w0sxd…upn
2sxdwsxddxù E

D

ulog„w0sxd…ursxddx, s51d

for any weightw in the Erdős–Turan classET. If log+sw0dPL`, there exists a constantC.1 such
that w0sxdøC, xPD. Henceulogsw0/Cd u =−logsw0/Cd and substracting logsCd to both sides of
(51), we get(26) since

E
D

rsxddx=E
D

pn
2sxdwsxddx= 1.

A similar reasoning shows(27) when log−sw0dPL`. Since this argument applies for any weight in
the Erdős–Turan class, the last assertion in the proposition also follows. h
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