USTL

Université des Sciences et Technologies de Lille

Math208 — Initiation à la modélisation mathématique Licence Sciences — Examen de février 2008 Durée: 2 heures — Documents et calculatrices non autorisés

Exercice 1:

Soit y une fonction réelle de la variable réelle t. Résoudre dans \mathbb{R} les trois équations différentielles du second ordre suivantes :

$$y'' - y' = \sin t$$
$$y'' - y' = \exp t$$
$$y'' - y' = \sin t + \exp t$$

Exercice 2:

Soit μ une constante réelle et y une fonction réelle de la variable réelle x. On considère alors l'équation différentielle suivante du 1er ordre :

$$y' = \mu y$$
$$y(0) = 1$$

- a) Quelle théorême indique qu'il existe une unique solution de cette équation différentielle?
- b) Donner cette solution.
- c) La méthode d'Euleur appliquée à cette équation avec le pas $h_n = 1/n$, où $n \in \mathbb{N}^*$, définit une suite $(y_{k,n})$ pour $k = 0, 1, 2, \ldots$. Donner la relation de récurence sur k qui existe entre les $y_{k,n}$.
- d) Quel élément $y_{k,n}$ devrait approcher y(1)?
- e) Avec le théorême de convergence de la méthode d'Euler, en déduire la limite à l'infini de $(1 + \mu/n)^n$.

Exercice 3:

On considère l'équation du pendule forcé par un terme périodique :

$$\ddot{\theta} + \theta = \sin((1+\varepsilon)t) \tag{1}$$

où ε est un paramètre de l'intervalle]-1,+1[, avec les conditions initiales

$$\theta(0) = 1 \quad ; \quad \dot{\theta}(0) = 0$$
 (2)

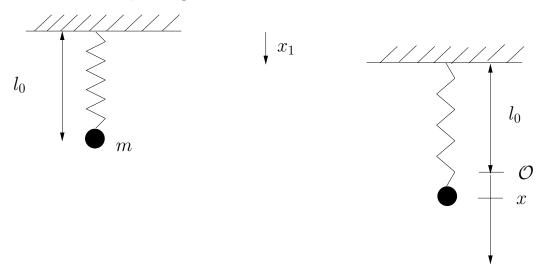
On rappelle que les notations $\dot{\theta}$ et $\ddot{\theta}$ désignent les dérivées première et seconde de θ par rapport au temps t.

1) Que représente θ d'un point de vue géométrique? Quelle est l'hypothèse faite pour que la partie libre de (1) représente l'équation d'un pendule?

- 2) Donner la solution de (1) avec les conditions initiales (2) dans le cas où $\varepsilon = 0$.
- 3) On suppose maintenant que $\varepsilon \neq 0$. Donner la solution de (1) avec les conditions initiales (2).
- 4) A \underline{t} fixé, faire tendre ε vers 0 afin de comparer la solution obtenue en 3) avec celle obtenue en 2).

Exercice 4

Un sismographe est un appareil destiné à mesurer l'amplitude d'une secousse sismique. Une masse m est suspendue à l'extrémité d'un ressort de raideur k. A l'équilibre, la longueur du ressort est l_0 . Lorsque la secousse sismique est produite, elle transmet au support un mouvement oscillatoire $x_1(t) = a \cos \Omega t$. On suppose que le mouvement de la masse m est amorti par un frottement de coefficient b, avec b petit.



- 1) Lorsque la masse de poids mg est au repos (dessin de gauche), faire le bilan des forces et en déduire une relation entre l_0 et m.
- 2) Ecrire l'équation du mouvement rectiligne de la masse m reperée par son abscisse x dans le repère d'origine \mathcal{O} (voir le dessin de droite). On précise que l'axe est orienté vers le bas. On tiendra compte de trois forces, à savoir le poids de la particule, la réaction du ressort, et la force de frottement égale à $-b\dot{x}$. Comme le repère considéré est en mouvement, il faudra rajouter à l'accélération $\ddot{x}(t)$ de la masse m l'accélération de \mathcal{O} , c'est à dire celle du support.
- 3) Determiner les solutions de l'équation homogène.
- 4) Calculer une solution particulière de l'équation complète que l'on cherchera sous la forme $x(t) = \alpha \cos(\Omega t) + \beta \sin(\Omega t)$, où α et β sont deux coefficients à déterminer.
- 5) On suppose b et k/m petits. Expliquer pourquoi l'appareil peut servir de sismographe.

Exercice 5

Soit n un entier non nul. On pose ω la première racine $n^{\text{ième}}$ de l'unité différente de 1 (c'est à dire: $\omega = \exp i \frac{2\pi}{n}$) et $z_k = \omega^k$. a) Calculer

$$S_p = \sum_{k=0}^{n-1} (z_k^p)$$

p étant un entier quelconque.

b) Soit \mathcal{F}_n la transformation de Fourier discrète d'ordre n:

$$\mathcal{F}_n: \quad \mathbb{C}^n \quad \to \quad \mathbb{C}^n \\
 \qquad (y_k) \quad \longmapsto \quad (c_j)$$

Donner (sans la démontrer) la formule qui donne les coefficients c_i en fonction des y_k .

- c) Les nombres y_k peuvent être vus comme les images d'une fonction f T-périodique aux points $x_k = \frac{k}{n}T$: $y_k = f(x_k)$. Expliquer alors l'utilité de la transformation \mathcal{F}_n pour cette fonction f dans le cadre de l'interpolation trigonométrique.
- d) Montrer que $y_k = f(x_k)$ définit une suite (y_k) n-périodique sur \mathbb{Z} . On étend les c_j pour $j \in \mathbb{Z}$ avec la même formule donnée en b). Prouver que la suite (c_j) est elle aussi n-périodique sur \mathbb{Z} .
- e) Montrer que si f est une fonction paire alors la suite (c_j) est paire $(c_j = c_{-j})$ pour tout j), et si f est impaire alors la suite (c_j) l'est aussi.