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We demonstrate that significant effects in the “superluminal propagation” of light pulses cannot be observed
without involving systems whose gain explodes outside the pulse spectrum. We explicitly determine the
minimum norm of the gain to attain given superluminal effects and the transfer function of the corresponding
optimal system. The gain norms, which would be required with the most efficient systems considered up to now
�dispersive media, photonic barriers� to attain the same effects, are shown to exceed the minimum by several
orders of magnitude. We finally estimate the largest superluminal advances which could be attained in a
realistic experiment.
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The apparently superluminal propagation of light pulses
has been observed with various systems, mainly with sys-
tems involving anomalously dispersive media or photonic
barriers. For reviews, see, e.g., �1–5�. In these experiments,
the envelope of the pulse having covered some distance L is
nearly identical to that of the incident pulse and in advance
of that of a pulse which has covered the same distance L at
the velocity c of light in vacuum. This surprising behavior is
not at odds with the relativistic causality. Indeed the signal
received at some time t is not the consequence of the signal
emitted at a well-defined time but of all the signals anterior
to t by more than L /c. Otherwise said, there is no cause-and-
effect relation between the homologous points of the enve-
lopes of the incident and transmitted pulses, and the wide-
spread statement that the pulse maximum leaves the system
before it even enters it is somewhat misleading. The phe-
nomenon is, however, quite puzzling and keeps it the subject
of an intense theoretical and experimental activity.

In fact, Mother Nature resists to a violation of her prin-
ciples even when this violation is only apparent and convinc-
ing experiments of superluminal transmission are very diffi-
cult to achieve. By convincing experiments, we mean
experiments where �i� the envelopes or the intensity profiles
of the pulses are detected in real time and true shape; �ii� the
transmitted pulse is directly compared to the pulse having
propagated at the velocity c; �iii� the superluminal advance a
is large compared to the optical period; �iv� it is significant
with respect to the pulse duration, say, larger than 10% of the
full width at half maximum �FWHM� of the intensity profile
�p; and �v� the pulse distortion �including noise and parasitic
signals� is small compared to the relative advance a /�p. Note
that �iii� is a consequence of �i� since the real-time detection
of the envelope requires a time constant large compared to
the optical period. There are few experiments meeting, even
approximately, the previous conditions �6–13�. Though all-
optical experiments are possible, only hybrid systems have
been used up to now. They combine an optical part, respon-
sible for the superluminal effects, and a wide-band electronic

device whose function is to normalize the amplitude of the
transmitted pulse. In most experiments, the transmission of
the optical part, usually a resonantly absorbing medium
�6,9–12� or a photonic barrier �7,8,14�, is low and the elec-
tronic device is an amplifier. One experiment �13� has evi-
denced significant superluminal effects with an active optical
part �amplifying medium�. The normalization is then
achieved by a suitable attenuation. In the following, we natu-
rally include the normalization device �amplifier or attenua-
tor� in the system under consideration.

As already noted in previous papers dealing with particu-
lar arrangements �see, e.g., �5��, large superluminal effects
are only attained with systems whose gain explodes outside
the pulse spectrum. We will show that this is true for any
physically realizable system and determine the lower limit to
the gain norm required to observe given superluminal ef-
fects. This result is of special importance since in a real
experiment the gain norm should be limited to avoid prob-
lems of noise �no matter its origin�, of instability, and of
hypersensitivity to parasitic signal and to localized defects in
the incident pulse profile �6�. Conversely restricting the gain
to realistic values determines the upper limit to the actual
observable effects.

The problem is studied in the frame of the linear
systems theory �15�. We denote by e�t� and s�t� the enve-
lopes of the incident and transmitted pulses, and by E���
=�−�

� e�t�exp�−i�t�dt and S��� their Fourier transforms. The
envelopes are assumed to be slowly varying at the scale of
the optical period. Their Fourier transforms are then concen-
trated around 0 in a region of width small compared to the
optical frequency. In all the sequel, t designates the local
time, equal to the real time in e�t� and retarded by the lumi-
nal transit time L /c in s�t�. The system is characterized by its
impulse response h�t� or its transfer function H���, such that
s�t�=h�t� � e�t� and S���=H���E���. We assume that E���
and H��� have a finite energy and that H���, the Fourier
transform of h�t�, has a continuation H�z� in the complex
plane �z=x+ iy=�ei��. In our local time picture, the relativ-
istic causality imposes that h�t�0�=0. Otherwise said, H�z�
belongs to L2�R�, the Hilbert space of functions F�z� square
summable on the real line R endowed with the norm �F�R*Electronic address: bernard.segard@univ-lille1.fr
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such that �F�R
2 =�−�

� �F����2d� and, more precisely, to the
Hardy space H2��−� of functions F analytic in the lower half
plane �− �y�0� which are the Fourier transforms of causal
functions f �L2�0,�� �16�.

We want s�t� to be as close as possible to e�t+a� where a
is the superluminal advance �a�0�. In L2 norm, the distor-
tion is defined by

D =
�e�t + a� − s�t��R

�e�t��R
=

��Ha − H�E�R
�E�R

, �1�

where Ha=ei�a is the transfer function of the noncausal sys-
tem perfectly achieving the advance a without any distortion.
With a real �causal� system, the distortion will be low if
H����Ha��� in the region around �=0 where �E���� is
concentrated.

To keep tractable calculations, we consider the case
E���=E0 for �����c and 0 elsewhere. By taking E0=	 and
�c=1, this amounts to take as reference a pulse of intensity
profile �e�t��2=sin2 t / t2 �FWHM �p=2.78�. The distortion
then reads D= �Ha−H�I /	2 where �F�I denotes the norm
L2 of F restricted to I= �−1,1�. In the situations of physical
interest D
1 and �H�R

2 = �H�I
2+ �H�J

2�2+ �H�J
2 where J= �

−� ,−1�� �1,��. In this model, the problem may then be
stated: given a�0 and D�0, minimize Q= �H�J under the
constraints H�H2��−� and �Ha−H�I�D	2.

Based upon a conformal map that sends the unit disk D
��=1� onto the lower half plane, we introduce the map F̃
=��F� defined by

F̃�z� = ��F��z� =
	2	

1 − z
F
 1 + z

2i�1 − z�� . �2�

It is an isometry from L2�R� to the Hilbert space L2�T� of the
unit circle T endowed with the norm �F�T such that �F�T

2

=�0
2	�F�ei���2d� /2	. It sends the subspace H2��−� onto the

corresponding Hardy space H2�D� of the unit disk D. We

denote by Ĩ and J̃ the subarcs of T, transforms of I and J by
the map �. Then this map allows one to restate the problem
in the unit disk D instead of the lower half plane: given a

�0 and D�0, minimize Q= �H̃�J̃ under the constraints H̃

�H2�D� and �H̃a− H̃�Ĩ�D	2.

Stated with a general function K̃�L2�Ĩ� instead of the

particular H̃a, this question has been originally considered in
�16� and more recently in �17�, with important extensions.

The solution H̃opt of the problem exists and is unique. Note

that, in our case �K̃= H̃a�, the constraint �Ha−H�I�D	2 is

saturated, i.e., �Ha−H�I=D	2. The solution H̃opt can for-
mally be written under the analytic form �17�

H̃opt = �1 + 
��−1PH2�Ĥa� . �3�

In this expression Ĥa is defined as H̃a on Ĩ and 0 on J̃, PH2

denotes the orthogonal projection from L2�T� onto H2�D�,
and � is the so-called Toeplitz operator �17� acting on

H2�D�. It is such that ��F̃�= PH2�F̌� where F̌ is defined as F̃

on J̃ and 0 on Ĩ. Finally, 
� �−1,�� is an implicit parameter.

It is the unique real number such that �Ha−H�I=D	2.
From a computational viewpoint, it appears natural to

consider Q and D as functions of 
 �17�. It follows from Eq.
�3� that Q and D, respectively, increases and decreases as 

decreases. As 
→−1, Q→� while D→0. In physical terms,
this confirms that a low distortion will always be paid at the

price of a large gain norm. We have then �Hopt�R= �H̃opt�T
�Q.

Given a and D, the previous analysis leads to the follow-
ing algorithm for the computation of the minimum gain norm

Q and the corresponding function H̃opt: �i� Choose 
�−1

and compute H̃opt given by Eq. �3�. �ii� Compute D. If it is
too large �resp. small�, decrease �resp. increase� 
. Go to �i�.
Such a dichotomy algorithm has been implemented in the
software package HYPERION developed at Institut National de
Recherche en Informatique et Automatique �INRIA� by the
APICS team �18�. See, also, �19� for a closely related algo-
rithm. Equation �3�, which is infinite dimensional, is ap-
proached by truncating the expansions of the involved func-
tions so as to consider only their Fourier coefficients of
indices −N� j�N. The optimal transfer function Hopt��� is
finally obtained by inverting Eq. �2�

Hopt��� =
	2/	

2i� + 1
H̃opt
2i� − 1

2i� + 1
� . �4�

Note that Hopt��� behaves as 1/ i� for ���→�. This behavior
is that of a first-order filter as used in every detection chain.
Any further filtering of the high frequencies will obviously
damage the performances of the system. To close this short
presentation of our minimization procedure, we remark that
it mainly lies on the separation of the spectral domains where
the distortion and the gain norm are computed. We have
chosen the pulse profile leading to the simplest calculations
but the procedure might be adapted to any pulse provided
that its Fourier transform has a compact support.

Calculations of the minimum gain norm Q, of the corre-
sponding transfer function Hopt��� and of the transmitted sig-
nal s�t�, have been made for a /�p �resp. D� ranging from
0.36 to 2.2 �resp. 2% to 30%�. Satisfactorily enough, the
optimal system would allow one to conciliate significant ad-
vance, moderate distortion, and reasonable gain. For in-
stance, a=�p with D=15% would be obtained for Q=100.
Figure 1 shows the overall frequency dependence of the am-

FIG. 1. Amplitude gain G and phase � �radian� of the optimal
system as functions of the frequency. Parameters: a=�p and D
=15%.
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plitude gain G���= �Hopt���� and of the phase ����
=arg�Hopt���� in this reference case. As expected, the gain
reaches its peak value near the frontiers of the “stop band”
�in fact, the useful band for superluminal systems�. The short
ringing close to these frontiers originates from the finite
number of Fourier coefficients used in the calculations �N
=2000�. The asymptotic values of the phase are �= ±9	 /2
for �= ��, in agreement with Eq. �4�. The extra phase ro-
tation of 8	 entails that Hopt�z� has four zeros in the half
plane y�0 and, consequently, that Hopt��� is not minimum
phase �15�. The differences �G=G−1 and ��=�−�a for
−1���1 �Fig. 2� illustrate how Hopt��� deviates from the
ideal transfer function Ha=ei�a in the useful band. We re-
mark that the group advance ag= �d� /d���=0 differs from the
effective advance a by an amount approximately equal to the
distortion �in our local time picture ag=L /c−L /vg where vg
is the group velocity�. Finally, the envelope s�t�, the inverse
Fourier transform of Hopt���E���, and the intensity profile
�s�t��2 of the transmitted pulse are displayed Fig. 3.

The efficiency of a superluminal system may be charac-
terized by its ability to achieve given effects with gains as
small as possible. As above noticed, the gain of all the opti-
mal systems has the same asymptotic behavior �G�1/��
and reaches its peak value M near �= ±1. Consequently, Q
and M are roughly proportional and can indifferently char-
acterize the system gain. The peak gain M, independent of
the frequency scaling, is retained in the sequel. This choice

facilitates the comparison of the optimal systems with the
most efficient systems used or proposed up to now. Since
high optical gains exaggerate the problems of instability and
noise �amplified spontaneous emission�, and are difficult to
achieve with the suitable frequency profile �13�, we restrict
ourselves to systems whose optical element, responsible for
the superluminal effects, is passive. More specifically, we
consider a dilute medium involving �a� an isolated absorp-
tion line �6,9–12� or �b� a doublet of absorption line �5�, and
a uniform Bragg grating written �c� on a classical optical
fiber �8� or �d� on a hollow fiber. Since all these elements are
almost transparent outside the low-transmission region �the
useful band�, the peak gain M is nothing but the gain of the
amplifier used to normalize the amplitude of the transmitted
pulse. The transfer functions are optimized by adjusting the
system parameters with a genetic algorithm. A rapid conver-
gence is obtained by starting the calculations with initial val-
ues such that H�0�=1 and ag=a. For the doublet �b�, the
initial value of the line splitting is chosen such that the
second-order distortion cancels �5�. Figure 4 shows the re-
sults obtained for a reference distortion D=15% and M rang-
ing from 10 to 3�104. There is no need of a lens to see that
the optimal system is much more efficient that the systems
�a�, �b�, �c�, and �d� to attain large superluminal advances.
For instance, a peak gain M =84 theoretically suffices to ob-
serve an advance a=�p with D=15% �Fig. 1� but values as
large as 1600, 3400, 6.4�106, and 4.9�107 would be re-
quired with the systems �b�, �d�, �a�, and �c�, respectively
�20�. The latter dramatically increase if a lower distortion is
required. Again for a=�p but with D=7% they raise to 7.9
�104, 2.1�107, 2.3�1014, and 4.9�1015 while M only
reaches 174 for the optimal system. By comparison, we
stress that achieving experiments with systems whose peak
amplitude gain exceeds 104 is absolutely unrealistic.

The situation is much less catastrophic when one exam-
ines the superluminal effects that can be attained for a fixed
peak gain. Taking M =1000 �realizable in a careful experi-
ment� and D=15% as reference values, Fig. 4 shows that the
relative advance a /�p attained with the simplest arrangement
�medium with an isolated absorption line� is only 2.4 times
below the theoretical limit �1.6� and that the ratio falls to 1.7
by involving a line doublet. Using nonuniform fiber-Bragg
gratings could further reduce this ratio. Indeed, at least in
principle, these elements allow one to synthesize any transfer
function in transmission as long as it is minimum phase �21�.

FIG. 2. Frequency dependence of �G=G−1 and of ��=�
−�a in the useful band. The group advance ag deviates from a by
�a= �d���� /d���=0, that is �a�−0.40 and �a /a�−14%. The pa-
rameters are the same as in Fig. 1.

FIG. 3. Intensity profile of the pulse transmitted by the optimal
system �full line�. The profiles of the incident pulse advanced by
a=�p �dotted line� and the main lobe of the incident pulse �dashed
line� are given for reference. Inset: Envelopes s�t� �full line� and
e�t+a� �dotted line�. The parameters are the same as in Fig. 1.

FIG. 4. Relation between the peak gain M and the relative ad-
vance a /�p for a given distortion �D=15% �. ��� stands for the
optimal system while �a�, �b�, �c�, and �d�, respectively, relate to the
so-designated systems �see text�.
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This restriction entails that the optimal transfer function �not
minimum phase�, and thus the upper limit to the advance,
could be approached but not equaled with these systems. The
same remark applies to the dispersive media whose transfer
function is the exponential of a causal function and is thus
also minimum phase �5�. Anyway, whatever the system is,
superluminal advances exceeding two times the full width at
half maximum of the pulse intensity profile are unattainable.
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