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Abstract: This paper is concerned with the problem of best rational approximation of
given order n in the Hardy space H2. We show that, generically, all critical points converge
to the function in H2 as n increases to infinity. This property shows in turn that local
maxima can appear only for a finite range of orders. This has consequences on an algorithm
to find local minima previously described by some of the authors [3].

1 Introduction

Let us recall briefly the l2-approximation problem as described, for instance, in [2]. Consider
the real Hardy space H−2,R of functions f analytic in the complement of the closed unit disk

Ū , vanishing at infinity, that can be written f(z) =
∑∞

k=1 fkz
−k with fk ∈ R and such that

the norm ‖f‖2 =
∑

k f
2
k is finite. The assertions that the coefficients fk are real and square

integrable are respectively equivalent to the facts that the function f maps the real line into
itself and satisfies a growth condition at the frontier T of Ū :

sup
r>1

1

2π

∫ 2π

0

|f(reiθ)|2dθ <∞.

As in [2], let Pn be the set of real polynomials of degree at most n, and P1
n the subset of

monic polynomials of degree n whose roots are in U . Moreover, let Σ1
n ⊂ H−2,R consist of all

rational fractions h = p/q, where p ∈ Pn−1 and q ∈ P1
n. The problem is to minimize, for

arbitrary n, the criterion
Γnf (h) = ‖f − h‖2

where h is in Σ1
n.

The relevance to system theory of this question arises from the need of describing the
input-output behaviour of a given system (i.e. its transfer function) by a finite dimensional
model, whose transfer function is therefore rational. For more details, and a stochastic
interpretation of the l2 norm, we refer the reader to [1]. Of course, in this context, our
problem can only appear as the prototype of an integral criterion, which can admit many
variations and generalizations, putting for instance weight functions, additional constraints,
and going over to the multi-input multi-output case. In the sequel, however, we shall restrict
ourselves to the simple formulation given above.

Apart from a classical formulation using the so called normal equations [4], this problem
has been mostly tackled using differentiation, namely a gradient algorithm [6]. In [3], an
algorithm is described, which converges to a local minima by integrating numerically a
differential equation. In all three cases, critical points (i.e. points where the derivative is



zero) are on the saddle, because they are the ones that can be computed, and the trouble
comes of course from the possibility of having several local minima.

Let us take a closer look at the criterion Γnf (p/q) that we want to minimize. As q is
settled, the polynomial p is uniquely determined as the orthogonal projection of f onto the
n-dimensional linear subspace Vq of H−2,R defined by Vq = Pn−1/q. We shall denote by Lnf (q)
this projection and replace the former criterion by the following one:

ψnf (q) =

∥∥∥∥f − Lnf (q)

q

∥∥∥∥2 .
At each order, we get a set of critical points for this criterion and the goal of this paper is
to describe their asymptotic behavior. These critical points may be of two different kinds:
either Lnf (q) and q are coprime, in which case the point q is said to be irreducible, either they
share a common factor and we get a reducible point. When q is reducible, the variational
argument (due to Ruckebush) used in [1] to show that it cannot be a minimum applies as well
to show it cannot be a maximum either unless f is already rational. In the sequel, we shall
suppose that the element f of H−2,R to be approximated is not already a rational function
and we shall make the mild assumption that it is analytic on a domain strictly containing
the complement of the open disk U . Then we show that, generically, critical points converge
in l2-norm to the function f as the order (i.e. the degree of the polynomials) growths to
infinity. Using this fact, we deduce that critical points which are local maxima can only
appear for a finite range of orders.

2 Properties of the criterion ψnf and its critical points

As in [2], we introduce an other Hardy space H+
2,R, which contains analytic functions g in

the unit disk U , mapping the real axis into itself and such that

sup
r<1

1

2π

∫ 2π

0

|g(reiθ)|2dθ <∞.

The operator f → fσ given by fσ(z) = 1
z
f̌(z) where f̌(z) = f(1

z
), defines an application

from H−2,R onto H+
2,R and conversely. Moreover the orthogonal sum L2,R(T ) = H+

2,R ⊕H
−
2,R

is a Hilbert space with the following scalar product

< f, g >=
1

2iπ

∫
T

f(z)g(z)
dz

z
.

As z̄ = z−1 on the unit circle T and the coefficients in the power series expansion of g are
real, we also have

< f, g >=
1

2iπ

∫
T

f(z)g(
1

z
)
dz

z
.

This scalar product verifies the two following obvious properties which will be used in the
sequel:

1) for all k ∈ Z, the multiplication by zk is an isometry of L2,R(T ), i.e. for
all f , g ∈ L2,R(T ),

< zkf, zkg >=< f, g >; (1)



2) for all f , g, h in L2,R(T ) such that fg and f̌h are in L2,R(T ),

< fg, h >=< g, f̌h > . (2)

Let f be the function of H−2,R to be approximated and let g = fσ, its image in the space

H+
2,R. With the assumption made on f , there exists a real λ > 1 such that g is analytic

in the open disk Uλ centered at 0 of radius λ. Let q in P1
n and q̃ defined as in [2] in the

following way:

q̃(z) = znq(
1

z
).

The Weierstrass division theorem (cf [5]) or more precisely its one dimensional version (also
known as the Hadamard representation, cf [7]), applied to the function gq̃ of H+

2,R shows
that there exists a unique function v(g, q) analytic in Uλ and a unique polynomial w(g, q) of
degree n− 1 such that:

gq̃ = v(g, q)q + w(g, q).

It follows from [2] that if you seek in the space of rational fractions Vq for the minimum

Lf (q)/q of ψnf , you get Lf (q) = w̃(g, q).
The quotient v(g, q) of the former division which we shall simply denote by v when no
confusion can arise, possesses the helpful property to give the value of the criterion ψnf at
the corresponding point q:

proposition 1. Let q be a point of P1
n and v the corresponding quotient,

‖v‖2 = ψnf (q).

Proof: Using (1) and (2), the value of the criterion at q is:

ψnf (q) =< f − L(q)

q
, f − L(q)

q
>=< g − L̃(q)

q̃
, g − L̃(q)

q̃
> .

Then

ψnf (q) =

∥∥∥∥∥g − L̃(q)

q̃

∥∥∥∥∥
2

=

∥∥∥∥qvq̃
∥∥∥∥2 = ‖v‖2,

the last equality coming out directly from the definition of the scalar product in L2,R(T ). �

We come now to a divisibility property at critical points which ensures the existence of
many zeros in the unit disk for the associated quotients v when the points are irreducible:

proposition 2. Let q, a point of P1
n, the two following assertions are equivalent:

(i) q is a critical point of ψnf .
(ii) q divides vL(q).
Then, if q is an irreducible critical point, q divides v.

Proof: Let q = zn + qn−1z
n−1 + ...+ q0 ∈ P1

n, q is a critical point iff:

∀i ∈ {0, ..., n− 1},
∂ψnf
∂qi

(q) = 0.



These partial derivatives are equal to

∂ψnf
∂qi

(q) = −2 < f − L(q)

q
,
∂

∂qi
(
L(q)

q
) >

= −2 < f − L(q)

q
,

∂
∂qi

(L(q))

q
> +2 < f − L(q)

q
,
ziL(q)

q2
> .

As L(q)/q is the orthogonal projection of f on the space Vq, the first term of the right-hand
side is zero, and

∂ψnf
∂qi

(q) = 2 < f − L(q)

q
,
ziL(q)

q2
> .

This set of derivatives vanishes iff for all polynomials P in Cn−1[z]

< f − L(q)

q
, P

L(q)

q2
>= 0.

From the definition of the scalar product, we get∫
T

(g − L̃(q)

q̃
)(z)P (z)

L(q)

q2
(z)dz = 0

or ∫
T

v(z)
q

q̃
(z)P (z)

L(q)

q2
(z)dz =

∫
T

v(z)
L(q)

q̃
(z)

P

q
(z)dz = 0.

If α is a root of order m of the polynomial q, this implies

∀l ∈ {1, ...,m},
∫
T

v(z)
L(q)

q̃
(z)

dz

(z − α)l
= 0.

Then, by the residue formula, the following derivatives should vanish:

∀l ∈ {0, ...,m− 1},
[
vL(q)

q̃

](l)
(α) = 0.

By induction, α is a zero of order m of vL(q). This proves the equivalence of the two
assertions and proposition 2. �

3 Asymptotic behaviour of critical points

We denote by Cn the subset of P1
n containing the critical points at order n, and we put

C = ∪nCn. By choosing a point in Cn for each n, we construct a sequence of quotients (vn).
In order to prove that the family of functions (vn) is normal, we use the integral representa-
tion:

v(z) =
1

2iπ

∫
Tµ

g(ξ)q̃(ξ)

q(ξ)

dξ

ξ − z
where µ is any real such that 1 < µ < λ. Using this expression we prove the

lemma 1. Let µ′ a real number such that 1 < µ′ < µ, there exists on the open set Uµ′ an
uniform bound for the set of functions (vn) which depends only on the function g.



Proof: On the unit circle T , the quotient q̃/q is of modulus 1. Then by using the maximum
principle over the complement of the unit disk U , we get

∀ξ ∈ C− U,
∣∣∣∣ q̃(ξ)q(ξ)

∣∣∣∣ ≤ 1.

This inequality is true on the circle Tµ so that:

∀z ∈ Uµ′ , |v(z)| ≤ 1

2π

(
sup
|z|=µ
|g|

)∫
Tµ

dξ

|ξ − z|
.

But for z ∈ Uµ′ , |ξ − z| is greater than µ− µ′ and we get the bound in question. �
We shall first consider the case when our sequence consists of irreducible points only. Note
that this is the case when it is obtained by repeatedly using a gradient algorithm for increas-
ing values of n as described in [3].

From such a sequence, take a subsequence (wp) which converges to a limit wlim uniformly
over all compact subsets of Uµ. Let µ′ such that 1 < µ′ < µ and suppose that the analytic
function wlim has no zeros on the circle Tµ′ . Then

∃N,∀n ≥ N,∀z ∈ Tµ′ , |wn(z)− wlim(z)| < |wlim(z)|.

By Rouché’s theorem, wn and wlim will have the same number of zeros in the open set Uµ′ ,
but using proposition 2, a quotient corresponding to an irreducible critical point of order n
has at least n zeros in U . As the order of points in the subsequence (wp) tends to infinity,
wlim must be equal to zero. This is a contradiction with the assumption made on the circle
Tµ′ . By letting µ′ vary continuously, we get a compact circular annulus containing infinitely
many zeros for wlim and thus this limit must vanish on the open disk Uµ. We just showed
that every convergent subsequence of (vn) converges to zero uniformly on every compact set
of Uµ. Since it is normal, this is true for the sequence (vn) itself.

By using the proposition 1, we get the l2-convergence of any sequence of irreducible
critical points to the function to be approximated as the order of points tends to infinity.
In order to generalize this fact to sequences containing also reducible points, we shall have
to restrict ourselves to functions with the property that Cn is finite for each n. This can be
proved to be generic in various contexts. For instance, it is shown in [1] that such functions
form a set of first category in the disc algebra of Uµ where µ > 1. We first prove the

proposition 3. Let p ∈ P1
n, a critical point such that the fraction Lf (p)/p is irreducible.

Let r ∈ P1
m and q = pr. Then

(i) Lf (q) = rLf (p) iff r divides v(g, p).
(ii) if (i) is verified, we have the following equivalence: q is a critical point iff p is a critical
point and r divides the quotient v(g, p)/p.

Proof: Apply the above mentioned division theorem to gq̃ and gp̃:

gq̃ = v(g, q)q + L̃f (q) and gp̃ = v(g, p)p+ L̃f (p).

Multiply the second equation by r̃:

gq̃ = v(g, p)r̃p+ r̃L̃f (p). (3)



Let us denote v(g, p) by vp and divide vpr̃ by r:

vpr̃ = v(vp, r)r + L̃vσp (r).

Plugging this expression in (3), we get

gq̃ = v(vp, r)q + (L̃vσp (r)p+ r̃L̃f (p))

and the second term on the right-hand side is of degree strictly lower than that of q. Thus
we have 

vpr̃ = v(g, q)r + L̃vσp (r)

L̃f (q) = pL̃vσp (r) + r̃L̃f (p).

(4)

In order to prove (i), suppose first that Lf (q) = rLf (p) holds. Applying to the second

equation of (4) the assumption that r divides Lf (q), and hence that r̃ divides L̃f (q) we get
(using the usual notation for division)

r|p̃Lvσp (r).

As roots of p̃ lie in the complement of the unit disk, r divides Lvσp (r). But Lvσp (r) is the
remainder of a division by r and then it must be zero. The previous pair of equations
becomes 

Lf (q) = rLf (p),

vpr̃ = v(g, q)r.
(5)

The second equation of (5) shows that r divides vp.

Conversely, suppose that r|vp. The first equation of (4) implies that r|L̃vσp (r). As the degree

of L̃vσp (r) is strictly lower than that of r, it must be zero and (4) reduces as in the former
case to (5).
Suppose now that the assertions of (i) are verified and let prove (ii). By proposition 2, the
fact that q is a critical point means that q|v(g, q)Lf (q) i.e.

pr|vp(
r̃

r
)rLf (p) or pr|vpLf (p)

which yields that p|vpLf (p) i.e. p is critical. This yields also that r|(vp
p

)Lf (p). Moreover as

(i) is verified, r|(vp
p

)p. As Lf (p) and p are relatively prime, we deduce that r|vp
p

. Conversely,

this last relation implies that q|vp. By the second equation of (5), we get q|v(g, q) r
r̃
. As roots

of r̃ lie in the complement of the unit disk, q divides v(g, q)r and in particular v(g, q)rLf (p).
Then using the first equation of (5), q divides v(g, q)Lf (q) and q is critical. �
If critical points are irreducible, there exists an order over which the corresponding quotients
v have more than any preassigned number of zeros. To get our generalization, we prove that
such an order exists even in the case of reducible points. Following proposition 3, these
points are generated by adjoining to irreducible critical points q of lower order, zeros from
v/q. We show that for a fixed order, the number of such zeros is bounded from above. Let
In be the subset of Cn containing irreducible critical points of order n and let q in In. We



denote by Z(v/q), the number of zeros of the quotient v/q in the disk U . Then Z(v/q) is
finite. Indeed, with the assumption made on f , the quotient v is analytic on the open set
Uλ which contains the compact disk Ū . If Z(v/q) is not finite, v vanishes in U which means
that the function f to approximate is already a rational fraction, but we discarded this case
in the introduction. Let us set one more notation:

Rn = max{Z(v/q), q ∈ In},

then Rn is finite. It is obvious when In itself is finite. Otherwise, let suppose that Rn is
not finite, then we can select a sequence of critical points (ql) in In whose corresponding
quotients (vl) have a number of zeros growing to infinity. From this sequence, we can extract
as before a subsequence which tends to zero. But this means that there is a sequence of
critical points of order n which converges to the function f and then f is again rational.
Indeed, we have

gq̃l = vlql + L̃f (ql). (6)

The functions vl converge uniformly to zero on Ū and the polynomials ql and q̃l are also

bounded on Ū as their degree and their coefficients are. Then by (6), L̃f (ql) is bounded. We

can successively extract two subsequences such that L̃f (ql) and q̃l will converge respectively
to some polynomials p and q, uniformly on Ū . By taking the limit, the equation (6) becomes
gq = p on Ū and thus f is equal to p̃/q̃.
As a conclusion, at order n+Rn, quotients v corresponding to irreducible critical points as
well as reducible ones which come from irreducible points of order n have all at least n zeros.
At order maxp≤n{p + Rp} + 1, no critical point comes from an irreducible one of order less
than or equal to n. Thus all the corresponding quotients have more than n zeros. This is
the result we needed and finally, we proved the

theorem 1. Let f , be a function of the Hardy space H−2,R, distinct from a rational fraction,
analytic on a open domain containing the complement of the unit disk U . Let (vn) be a
sequence of quotients corresponding to irreducible critical points qn whose orders tend to
infinity. Then the sequence (vn) converges uniformly to zero on every compact subset of
an open set containing the closed unit disk Ū .Consequently, the sequence of critical points
(Lf (qn)/qn) tends to the function f , accordingly to the l2-norm. Generically, the assumption
that qn is irreducible can be dropped.

4 Finiteness of the number of orders where local max-

ima appear

Let us restate theorem 1 in the following manner: if f is non rational, then for any ε > 0,
there exists n0 such that any irreducible critical point q of order n > n0 satisfies Ψn

f (qn) < ε.
Now, let q be a critical point of order n. We shall show that it cannot be a local maximum

if n is large enough. First, we can assume q is irreducible. The partial derivatives of the
criterion < f − L(q)

q
, f − L(q)

q
> at q vanish ie:

∀i ∈ {0, ..., n− 1}, < f − L(q)

q
,
∂

∂qi

(
L(q)

q

)
>= 0



or

∀i ∈ {0, ..., n− 1}, < f − L(q)

q
,

∂
∂qi

(L(q))

q
> − < f − L(q)

q
,
ziL(q)

q2
>= 0.

As L(q)
q

is the orthogonal projection of f on the space Vq, we know that

∀k ∈ {0, ..., n− 1}, < f − L(q)

q
,
zk

q
>= 0, (7)

so the last equality reduces to

∀i ∈ {0, ..., n− 1}, < f − L(q)

q
,
ziL(q)

q2
>= 0. (8)

Combining (7) and (8), we get

< f − L(q)

q
,
r1L(q) + r2q

q2
>= 0

where r1 and r2 are any polynomials in Pn−1. But q and L(q) are relatively prime and the
last equality is equivalent to

< f − L(q)

q
,
P

q2
>= 0, (9)

P being any polynomial of P2n−1.
Now, we come again to equalities (7). Taking partial derivatives leads us to

∀i ∈ {0, ..., n− 1},− <
∂

∂qi

(
L(q)

q

)
,
zk

q
> − < f − L(q)

q
,
zk+i

q2
>= 0.

Using (9), the second term in the left-hand side is zero and we get the orthogonality relations:

∀k ∈ {0, ..., n− 1}, < ∂

∂qi

(
L(q)

q

)
,
zk

q
>= 0. (10)

Next, we shall use the following

lemma 2. Let h be a function of H−2,R orthogonal to the linear space Vp, where p is any
polynomial of P1

n. Then p̃ divides h.

Proof: Let ξi, be the complex roots of the polynomial p ie:

p(z) =
∏

(z − ξi).

For each root ξi, the function h will be orthogonal to the quotient 1/(z − ξi). Using the
definition of the scalar product, we get∫

T

h(1
z
)

z − ξi
dz

z
= 0.

From Cauchy’s formula applied to the function h(1/z)/z, we deduce that

∀i ∈ {0, ..., n}, h(
1

ξi
) = 0



which means that p̃ divides h. �
Now, apply this lemma to the functions ∂

∂qi
(L(q)

q
) which are orthogonal to the space Vq (cf

(10)). There exist polynomials νi of P1
n−1 such that:

∀i ∈ {0, ..., n− 1}, ∂
∂qi

(
L(q)

q

)
=

q̃

q2
νi.

Moreover, the polynomials νi are linearly independent. Indeed, let (λi), a family of real
numbers such that

∑
λiνi = 0. Then

∑
λiq̃νi = 0 or∑(

∂

∂qi

(
L(q)

q

))
λi = 0.

This yields

q
∑

λi
∂L(q)

∂qi
− L(q)

∑
λiz

i = 0

and the polynomial q must divide the sum
∑
λiz

i which is of degree n− 1. As q is of degree
n, we get that ∑

λiz
i = 0

and each real number λi is zero which proves the independency of the polynomials νi.
Now, we can evaluate the variation of the criterion at the critical point q, using the hessian
matrix H whose entries are by definition:

∂2

∂qi∂qj
< f − L(q)

q
, f − L(q)

q
>

or

−2
∂

∂qi
< f − L(q)

q
,
∂

∂qj

L(q)

q
>

= −2

[
− <

∂

∂qi

(
L(q)

q

)
,
∂

∂qj

(
L(q)

q

)
> + < f − L(q)

q
,
∂

∂qi

∂

∂qj

(
L(q)

q

)
>

]
= 2

[
<
νi
q
,
νj
q
> − < f − L(q)

q
,
∂

∂qi

(
q̃

q2
νj

)
>

]
= 2

[
<
νi
q
,
νj
q
> − < f − L(q)

q
,
q̃

q2
∂νj
∂qi

> − < f − L(q)

q
, νj

∂

∂qi

(
q̃

q2

)
>

]
and using (9), we get

2

[
<
νi
q
,
νj
q
> − < f − L(q)

q
, νj

∂

∂qi

(
q̃

q2

)
>

]
.

But
∂

∂qi

(
q̃

q2

)
=

1

q4
[q2zn−i − 2q̃qzi] =

zn−i

q2
− 2q̃

zi

q3
,

so by (9) again, we obtain

∂2

∂qi∂qj
< f − L(q)

q
, f − L(q)

q
>= 2

[
<
νi
q
,
νj
q
> + < f − L(q)

q
, 2
q̃ziνj
q3

>

]
.



Now, the variation of the criterion in a neighbourhood of the critical point q following a
direction given by the real vector (λ1, ..., λn) in the space P1

n is

∆q(λ1, ..., λn) = (λ1, ..., λn)H


λ1
.
.
.
λn

 .

As the family of polynomials (νi) is independent, we choose the numbers λi such that∑
λiνi = L(q).

The value of (1
2
)∆q(λ1, ..., λn) becomes

∑
λiλj

[
<
νi
q
,
νj
q
> + < f − L(q)

q
, 2
q̃ziνj
q3

>

]
or

<
L(q)

q
,
L(q)

q
> + < f − L(q)

q
, 2
q̃

q3
L(q)

[∑
λiz

i
]
> .

On the other hand (
∂L(q)

∂qi

)
q = ziL(q) + q̃νi.

Using this equality together with (9) gives the following expression for (1
2
)∆q:∥∥∥∥L(q)

q

∥∥∥∥2 + < f − L(q)

q
,−2

q̃2

q3

∑
λiνi >

=

∥∥∥∥L(q)

q

∥∥∥∥2 − 2 < f − L(q)

q
,
q̃2

q3
L(q) >

≥
∥∥∥∥L(q)

q

∥∥∥∥2 − 2

∥∥∥∥f − L(q)

q

∥∥∥∥∥∥∥∥L(q)

q

∥∥∥∥ .
As the order of q growths,

∥∥∥f − L(q)
q

∥∥∥ tends to zero, then the variation following the chosen

direction becomes positive which means that the critical point q may not be a maximum.

theorem 2. Let f , be a function as in theorem 1. Then, critical points which are local
maxima can only appear for a finite range of orders.

References

[1] L. Baratchart, Sur l’approximation rationnelle l2 pour les systèmes dynamiques linéaires,
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