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1. Introduction 

The problem of finding a rational approximation to a holomorphic function in 

a domain 52 often arises in practice. Let us give an example from system theory which 

has first motivated our work [l]. 

System theory is concerned with the study of physical systems that can be described 

by a relation between inputs and outputs. When considering discrete time systems, it 

is a convention to denote by u(z)=Cksko ukzmk, UkER, k,eZ, a sequence of inputs 

where uk is applied at time t= k, and by Y(z)=~-~~~, YjZ-j, YjER, jOsZ, a sequence of 

outputs where yj occurs at time t =j. 
So, a discrete time system can be described by a map 

0: R(U/z)bR(U/z))> 
u + Y, 

where R((l/z)) is the set of truncated Laurent series. 

Usually, further assumptions are made on the system (linearity, causality, stationar- 

ity) so that g becomes a R((l/z))-homomorphism, and y can be written as a product of 

formal series 

wherefis an element of R[[l/z]], the set of formal power series in l/z. The study of 

such systems has been completely achieved in the case wherefis rational. 

In practical situation, one would like to deduce some useful description of a 

system from the experimental input-outputs data. Here, “useful description” means a 
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description of the previous form characterized by a rationalfof small size. Although 

such a model may fail to be exact, you can always compute someffrom some data. 

However, the more data you have at hand, the more the computedffits the situation; 

but at the same time, the bigger gets its size. 

So, the best thing one can hope is to find a rational function Y which could replace 

fin a satisfactory way. 

A mathematical meaning can be given to this problem through approximation 

theory. Indeed, to provide such an I’, the mathematician makes the assumption 

that ,f’ lies in a normed space and looks for a rational function which minimizes 

the norm of the difference ,f-r, and whose order does not exceed a given integer 

II. Since &R [ [l/z]], this space will be a set of holomorphic functions outside the 

unit disk. 

The purpose of this paper is to present some results that we have obtained on this 

problem by using differential tools, when the space is the real Hardy space Hz. 

Since the commonly used optimization algorithms give no solution to this problem, 

because of its ill-conditioning, our main goal was to propose a specific algorithm 

providing a local rational approximant. This was done, thanks to some helpful 

recursive structure we put in evidence. 

It must be noted that there may be several local approximants and even several 

global ones. However, from a practical point of view, the existence of several 

global approximants does not make much sense and raises the question of the 

well-posedness of the problem. Moreover, up to this day, it has not been 

proved that our algorithm can find all the local approximants and, thus, the 

global ones. In view of these considerations, the question of the uniqueness of 

the approximant seems to be of greatest importance. We shall give some results 

obtained in that direction. 

2. Rational approximation in H; 

Following the introduction, we settle ourselves in the set of holomorphic functions 

in the complement of the closed unit disk on the Riemann sphere, and we choose the 

measure of closeness between,fand a rational function r to be the Hardy norm 

1 ~,f‘(eir)-r(ei’)12 dt 
x 

Of course, f(e”) is not a priori defined, and for the above formula to make sense, we 

will have to restrict ourselves to a special class of functionsfthat we now proceed to 

define. 

In what follows, Q stands for the complement of the closed unit disk on the 

Riemann sphere, T for the unit circle and U for the open unit disk. 
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The Hardy space H2( Sz) is the space of functionsf; holomorphic in Q, and satisfying 

112 
I.f(r ei’)lz dt <m. 

If we write down the power series expansion, converging for IzI > 1, 

f(z)= c fk, 
k>Oz 

(2) 

it follows at once from Parseval’s equality that the integral in the left-hand side of (1) is 

equal to 

k 

so that ,f belongs to H,(Q) if and only if 

This establishes a one-to-one correspondence between H2(Q) and the subspace of 

L2(T) consisting of functions whose Fourier coefficients of positive rank are zero. This 

correspondence associates with f defined by (2) the function f’* in L2(T) defined by 

f*(e’@)= C akemikO. 
k20 

Thus, by definition, the coefficients of the power series expansion offat infinity are 

the Fourier coefficients off*. A more subtle relation between these two functions is 

thatf* is equal almost everywhere to the radial limit off[4]. As a consequence,f* is 

the natural extension offto the boundary of Sz, namely to the unit circle, and we shall 

no longer distinguish between f and f* unless otherwise stated. This allows us to 

consider H,(Q) as a closed subspace of L2(T) and, thus, as a Hilbert space. 

In the sequel, we shall only consider functions with real Fourier coefficients, or 

equivalently functions assuming real values for real arguments. They form a real 

subspace of H2(Q) denoted by H2,n(Q), which inherits a structure of real Hilbert 

space. 

Changing z into z-l in the above construction defines another Hilbert space, 

known as the Hardy space of the unit disk, denoted by H2( U). This space consists of 

functions y holomorphic in U, satisfying the growth condition (l), where this time the 

sup should be taken over r < 1. If we write the power series expansion representing y in 

the unit disk: 

y(z)= c U,Zfl, 
?I>0 

we see as before that (3) is a necessary and sufficient condition for y to belong to 

H2(U). In the same fashion, H,(U) can be identified with the closed subspace of 

L’(T) consisting of functions whose Fourier coefficients of negative rank do vanish. 
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Again, this identification arises, in fact, by taking radial limits. 

Restricting ourselves to functions with real Fourier coefficients, we introduce a real 

subspace of HZ(U) that we should logically denote by Hz,n(U). We shall nevertheless 

prefer the notation H: for this real Hilbert space, and this discrepancy will soon 

disappear. 

Now, define the degree of a rational function to be max { d”p, d”q}, where p/q is an 

irreducible representation. 

The approximation problem that we want to study is the following: given an integer 

n and ~EH~,~( Q), find a minimum of the squared Hardy norm 

where p/q ranges over rational functions of degree at most n in H2,R(Q). 
Observe that a rational function belongs to H Z,R(Q) if and only if it can be written 

as p/q, where p and q are real polynomials satisfying d”p<d”qd II, and q has all its 

roots in the open unit disk. 

At this point it may be helpful for the reader to make some remarks. On the one 

hand, we restrict ourselves to real functions since we were first interested in this 

question through the identification problem described in the introduction. However, 

most of the results presented here are likely to have their complex counterparts 

although we shall not consider them. On the other hand, if we stated the problem in 

HZ.n(SZ)andnotinHT, which looks more natural, it was not solely to follow a system 

theory convention. It turns out that H2.R(Q) is technically easier to handle because the 

poles of the functions remain bounded. Moreover, the two formulations are really 

equivalent. This can be readily checked for z + l/z is an isometry between HZ,R(Q) and 

Hz that preserves rational functions and their degree. 

We shall first reduce the question to the case of functions fvanishing at infinity or, 

equivalently, whose Fourier coefficient of rank 0 is zero. These functions form a closed 

subspace of H2,R(S2) denoted by H;, and a rational function of Hz,R(Q) belongs to 

H, if and only if the degree of the numerator is strictly less than the degree of the 

denominator. Upon Euclidean division, any rational function p/qEH2,R(Q) can be 

written as c+r/q, where PER and r/qEH; has the same degree as p/q. Similarly, if 

feH2, R( Sz) is given by (2), we havef= a0 +fr , where,f, E H; . From Parseval’s equality, 

it follows that 

/I /I f-$ 2=,c-uo,2+ h-i II I/ 
2 

It is thus clear that the best we can do to minimize the above expression, is to choose 

c = ao, and to find the best approximation tofr among rational functions of degree at 

most n in H;. 
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The original question now turns into the following one: given an integer n and some 

~EH;, find a minimum of the squared norm 

I II .f-; 2, (4) 

where p/q ranges over rational functions in H; , subject to the constraint d”q d n. 

If we introduce the real subspace Li( T) c L2( T) consisting of functions having real 

Fourier coefficients, we have an orthogonal decomposition 

L;(T)=H;@H;. 

The scalar product of L;(T) is by definition 

x 
f(e")g(e") dr = & 

s T 

f(z)g(z) dzz 

AsZ=z-’ on T and the coefficients in the power series expansion of g are real, we also 

have 

This scalar product satisfies the two following obvious properties which will be of use 

in the sequel: 

(1) For all kEZ, the multiplication by zk is an isometry of L;(T), i.e. for all 

f; g&(T), 

(5) 

(2) for allf, g, h in L;(T) such thatfg andf(l/z)h are in L;(T). 

m ~)=<cLf(W)~). (6) 

The norm associated with this scalar product will still be denoted by 11 11, since it 

obviously induces the Hardy norm on Hi and H; 

The purpose of this paper is to present some results that have been obtained by 

the authors on this problem by using differential tools. Since we could not include all 

the proofs and still get a reasonably sized paper, we had to refer the reader to the 

literature on a couple of occasions. 

2.1. A difSerentia1 formulation 

Let us introduce the function 

4:(p,q)+ f-! 2, 
/I /I 4 

where p belongs to the set of polynomials of degree at most n- 1, denoted by 

RCzI.-I> and q belongs to the set of manic polynomials of degree n whose roots are 
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inside the unit disk, denoted by R [z], . Since the correspondence (p, q)+p/q fails to 

be injective due to possible cancellation of common factors, we may find several pairs 

which minimize 4 but correspond to the same argument of (4). In fact, this will only 

happen in a trivial case. 

Proposition 2.1. Ij”fi H; is not u rationalfilnction of degree strictly less than n, then the 

aryurnent qf uny local rninimunl oJ’(4) is an irreducible,fiaction whose degree is exactly n. 

Here, local is to be understood in the sense of the topology induced by H;. 

Proof. Assume that PO/q0 is a local minimum of (4), where pO and q. are coprime and 

d”q, <n. Then there will be an open set U of R containing zero such that 

Expanding this expression yields 

As a tends to zero, the principal part of the left-hand side becomes 

-2a(f-2, A>. 
For the inequality to be satisfied, we must have 

v’h, lhl<l, (.f-E. A)=0 

or, equivalently, 

From Cauchy’s formula applied to the function z-l (,f-po/qo) (zY’)EH i [4], we get 

(.1-E) (;)=o. 

where h is any real number such that 1 bl < 1. By analytic continuation, 

so that f is indeed rational of degree less than M. cl 

In the sequel, we assume implicitly that f‘ is not rational of order <n when we 

perform rational approximation at order n. 
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Proposition 2.1 proves that local minima of $ coincide with local minima of (4), just 

because restricted to pairs (p, q) such that p/q is irreducible, the function (p,q)+p/q 

has a good behavior (it is an embedding into H;). Now, the function 4 is differenti- 

able and we will study its critical points, namely zeros of its gradient vector fields. As 

we shall see later, the minimum we seek is indeed matched and, therefore, lies among 

the critical points of 4. 

The domain R[z]_ 1 x R[z]; of C$ is isomorphic to an open set of R*“, by 

identifying the polynomials 

p(Z)=po+plz+p2z2+.~~+p,-1Zn~1, 

q(z)=qO+qlz+q,z*+~~~+q,-lz”-l+z”, 

with the points (pn _ 1, . . . , pr , po) and (qn_ 1. . , ql, qO) of R”, respectively. 

Differentiating with respect to the pi’s, we see that every critical point (p, q) satisfies 

V&{l,...,n-1), 
( > 

,+; =O. 

Hence, if we denote by V, the n-dimensional linear subspace of H; generated by the 

z’/q for i=O, . . . . n- 1, we have that p/q is the projection offonto V,. This means that 

in our search for critical points, we can systematically restrict ourselves to pairs (p, q), 

where p/q is the projection offonto V,. In this way, p becomes a function of q denoted 

by L(q). 
Next, we shall use the following lemma. 

Lemma 2.2. Let h be ufunction qf’H; orthogonal to the linear space V,, where q is any 

polynomial of R[z]~-. Then every root oforder m qf the polynomial q is a zero of order 

m of the function h(l/z)/z of H:. 

Proof. The function h is orthogonal to V, if and only if for any complex polynomial 

u of degree at most n - 1, we have 

or, equivalently, by definition of the scalar product 

s T 

h(l/z);(z)g=O. 
z 

If M is a root of order m of the polynomial q, this implies that 

VlE{l, . . ..m}. 
dz 

h(llz)lz ==r)‘=O. 

Then, by the residue formula in H:, the following derivatives should vanish: 

VlE{O, . . . . m- 11, [h(l/z),‘z]“‘(a)=O. 
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Therefore, IX is a zero of order m of h(l/z)/z. 0 

Let us introduce the function g of H: defined by 

~(z)=f(l/z)l~, (8) 

and the reciprocal polynomial of q (of degree n): 

Cj(z)=z”q(l/z), 

which is of degree at most n and whose roots are the inverses of those of 4. Finally, 

although the degree of L(q) might be strictly less than (n- l), we shall also use the 

notation 

Z(;)(z)=P L(q)(l/z). 

Now, L(q) is a solution to the set of equations (7) in the variable p if and only if 

,f-L(q)/q is orthogonal to V4. Then, by&mma 2.2, every root of order m of the 

polynomial q is a zero of*r m of g-L(q)/+. 

Thus, the polynomial L(q) interpolates gi at the roots of q, and it is uniquely 

determined by this property. 

Proposition 2.3. The polynomiui L<) is the remainder ef the division in H: of g(i by q, 

i.e. 

gi=4q)q+~. (9) 

Moreover, the function 

t,(q)=gi-G 

4 

is the analytic part of the meromorphic function gi/q, and we have the integral 

representation formula (cf. [S]) 

from which we deduce an integral representation formula for L(q): 

VZEU, L&J=& TT(TI s - 4(5)--4(z) dt 

(5-z) . 

If we introduce the map $,, defined on R[z]; by 

then the expression (10) for z ensures the following properties of t+k,,. 

(10) 

Proposition 2.4. The map tin is u smooth function. Its critical points are the same as 

those of 4. 
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It must be noticed that $, can easily be expressed by means of the quotient u(q) 

appearing in (10). 

Proposition 2.5. Let q be a point R[z]i and v(q) the corresponding quotient, then 

k(q)= II dcl) II 2. 

Proof. Using (5) and (6) the value of the criterion at q is 

G L’T;;s 
9- p.g-- 

4 > 6 . 

Therefore, 

1.(4)=~/ g-~~I’=~~~~12=,,u(q),,2, 

the last equality coming out directly from the definition of the norm in L:(T). 0 

2.2. Critical points of $fn. 

We now turn to some divisibility properties at critical points. 

Proposition 2.6. For qeR [z]; , the following assertions are equivalent: 

(i) q is a critical point of+,. 

(ii) q divides u(q)L(q). 

Thus, if q is an irreducible critical point (i.e. gcd(L(q), q)= l), q divides c(q). 

Proof. q=Zn+q,_lZn-l + + q0 is a critical point iff 

ViE{O, . . ..n-1}. 
a*, 
$q)=O. 

1 

These partial derivatives are computed as follows: 

f_U4) a(Uq)V%i 

4’ 4 

f-L(4) z’L(q) __-. 
4 ’ q2 

Since L(q)/q is the orthogonal projection offon the space V,, the first term of the 

right-hand side is zero, and 

By Lemma 2.2, this set of derivatives vanishes iff every root of order m of the 

polynomial q is a zero of order m of v(q)L(q). This proves the equivalence of the two 

assertions and Proposition 2.6. 0 
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Concerning reducible critical points, we have the following result. 

Proposition 2.7. Let psR [z],; he u critical point such that the ,fiaction L(p)/p is 

irreducible. Let r ER [ z]; and q = pr. Then 

(i) L(q)=rL(p) (j’r divides v(p); 

(ii) if L(q)= rL(p), we hatle the,fo/lowiny equivalence: q is a critical point qf deyree 

m+n @p is a critical point of deyree n and r diz:ides the quotient c(p)/p. 

Proof. Apply the division (9) to (14 and yfi: 

yP=L’(P)P+zG. 

Multiply the second equation by F: 

(11) 

Now divide v(p); by r: 

tl(p)F=z”r+r’. 

Plugging this expression in (1 I), we get 

ytj = t”q + (r’p + FG). 

where the second term on the right-hand side is of degree strictly less than m + n. Thus, 

we have 

i 

c(p)F=c(q)r+r’, 

LI-i-;)=pr’+Fz). (12) 

In order to prove (i), assume first that L(q) = rL(p) holds. Substituting in the second 

equation of (12), we have 

pr’=O 

and, hence, 

r’ = 0. 

The pair of equations (12) becomes then 

{ 

L(y)=rL(p), 

L.(P);= v(q)r. (13) 

Since r and F are coprime, the second equation of (13) shows that r divides v(p). 

Suppose, conversely, that rl t:(p). The first equation of (12) implies that r 1 r’. Since the 

degree of r’ is strictly less than that of r, it must be zero, reducing equation (12) to 

equation (13). 

Assume now that L(y)=rL(p) and let us prove (ii). 
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If q is a critical point, Proposition 2.6 implies that ql t’(q)L(q), that is by (13) 

and since r and pr are coprime, 

In particular, plu(p)l(p), i.e. p is critical. Note also that rl(u(p)/p)L.(p). Moreover, by 

(i), r 1 (t.( p)/p)p. As L(p) and p are relatively prime, we deduce that r I (u(p)/p). 

Conversely, the last relation implies that ql u(p). By the second equation of (13), we 

get q)(u(q)r/r”). Since the roots of r lie in the complement of the unit disk, q divides 

u(q)r and, hence, also u(q)rl(p). Thus, q divides u(q)L(q) and q is critical by 

Proposition 2.6. 0 

2.3. Qualitative properties qf the minima 

We are primarily concerned with the question of the existence of a minimum. It has 

been proven for a more general case that a minimum is always matched (cf. [S, l] for 

a shorter proof in a more general case). 

Another important question is uniqueness. It has been proven that uniqueness of 

the best approximant is a strongly generic property, that is, true on an open dense 

subset of H; (cf. Cl]). 

However, situations may arise where there are several absolute minima. For 

instance, consider a nonrational even function, for example ,f( z) = el”* - 1. Since the 

norm is invariant under the transformation z+ - - A1 if rO(z) is a best approximant, so is 

rO( -z). By Proposition 2.1 they are both of order IZ and it is easily shown that they 

cannot coincide if n is odd. In fact, the problem is not well-posed in the neighborhood 

of such anf; since one can perturbfslightly so as to obtain a best approximant which 

is close to TO(z) or to rO( -z) alternatively. 

Thus, it would be interesting to find conditions on the function to be approximated 

that ensure the uniqueness of an absolute minimum. 

As far as local minima are concerned, it is not even known whether their number is 

generically finite. It is clear that there can be no generic bound on this number. 

Consider the function of H: defined by 

1 
VzEU, g(z)=sin ____ 

1+&-z’ 

associated with some f~ H; by (8). 

This function vanishes at an arbitrarily large number of points as E+O. But, if 4 is 

a zero of g, then L(z-t)=O, and $i(z-t)= llfll’. S’ mce L(q)/q is the projection of 

f onto V,, we have 
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and thus z - 5 is a maximum of $ 1. 

Now, by Rolle’s theorem, the function $r has an arbitrarily large number of local 

minima, and this property remains valid when the map is slightly deformed. 

An even more pathological example is the following. Let g be a Blaschke pro- 

duct with an infinite sequence of real zeros {x,,> converging to 1. For instance, let 

a,,= 1 - lln2, and put 

where the product converges since I:= I (1 - 1 x, I) < a [4]. Since g has infinitely many 

zeros inside the unit disk, the previous argument shows that the corresponding 

function $r has infinitely many minima. 

To avoid such problems we shall assume that the function y is analytic in a wider 

domain. Such a condition prevents y from having a sequence of zeros accumulating on 

the unit circle. More precisely, unless otherwise indicated, we shall assume that the 

function y is holomorphic in an open disk U, of radius r with r > 1. Hereafter, we shall 

use the notation U, for the open disk of radius p and T, for the circle of radius p. 

3. Extension of tin to a compact set 

Let d, be the closure in R” of the set R[z];; this compact set consists of manic 

polynomials of degree n whose roots are of modulus less than or equal to 1. 

Our assumption previously made on g allows us to proceed to such an extension. In 

fact, it allows us to extend $,, to a smooth function in a neighborhood of d, and this 

will be useful in the sequel. 

Denote by P,. the open neighborhood of d, consisting of manic polynomials whose 

roots are of modulus strictly less than r. 

Proposition 3.1. !f‘~ is holomorphic in U,, then I),, extends to a smooth function 

I/J,, : P,+R. 

Proof. We first extend the function L by putting 

(14) 

where p < r is an upper bound for the moduli of the roots of q. 

By Cauchy’s formula this expres% agrees with (10) when q~R[z],. This exten- 

sion is clearly smooth. Note that L(q) is still the remainder of the division (9). 

Now, it follows from (7) that for all qER[z], 

<.1’-Uq)/q, Uq)lq) =o, 
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so that $n writes 

~“(4)=llfl12-(1;~(4)/4). 

Therefore, it is sufficient to extend smoothly the functions 

q’(L;)=&j/$$K 

As before, we can define these functions on P, by putting 

3.1. The structure of A,, 

Proposition 3.2. The set A,, is homeomorphic to the closed unit ball B” of R”. 

For the proof of this proposition we refer to [2]. 

By this result, the boundary aA, of A, is homeomorphic to the (n- I)-dimensional 

sphere S,_ 1. However, it is not smooth as one can see by looking at d2, which is 

a triangle. The smooth part of ?A, consists of those polynomials having exactly one 

irreducible factor over R whose roots are of modulus 1. Indeed, define the maps 

41: 2~4, 

P-+ - l)P> 

~_l:d’,_l+A,, 

P-G + l)P> 

&:I- l,l[ x &+An, 

(IX, p)+(z2 + 2az + l)p, 

where 6, is the interior of d,. One can check that they are embeddings. The smooth 

part of dA, is thus the union of the images of c#~, c#_ 1 and (PC. 

3.2. Properties of $,, on dA, 

Proposition 3.3. Let q EdA,, be such that q = xp, where all the roots of x are of modulus 1, 

and peik, where d”p=k. Then L(q)=xL(p) and $,,(q)=$Jp). 

Proof. Write the division of .@ by p as 

Multiplying by X yields 

Y4=4P)Pi+Gi 
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Since the roots of x are of modulus 1, ;? = k x; hence, 

Lri;;=G). 

The second assertion is then obvious. 0 

The next result concerns the behavior of the gradient V$,, of the function +,, on ad,,. 

Proposition 3.4. Let PEA,,_ I, and x= 4l(p) or +_ l(p). The projection ofV~/~~(x) on aA,, 

coincides with V$,t_l(p). !fx=4,(c(, p), c(E]- 1, l[, then the projection of V/,,(x) on 

the tangent space T,ZA,, lies in the s&space C/I.-(X, dnm2), where it coincides with 

W,-Z(P). 

Proof. Observe first that &I (6,,_, ) is an open subset of a (n - 1)-dimensional linear 

subspace of R” (consisting of polynomials which have the root 1). Thus, it makes sense 

to speak of the projection on this part of the boundary. 

Now, we show the result for x=$~(P). 

From Proposition 3.3, the following diagram commutes. 

Differentiating using the chain rule, we obtain the equality between Jacobian 

matrices 

where the notation J($n)X refers to the Jacobian matrix of $, at the point x. But 

J($,),=‘V$,(.x) and the columns of 5(~$~), generate the tangent space T,dA,, and 

this proves our contention. 

The proof is similar in the remaining cases. 0 

Proposition 3.5. Let p he a minimum of *,,_ 1, and .x=4l(p) or C&~(P) or else 4,(a, p) 

with r~] - 1, l[, then Q?,(s) is orthogonal to T,c?A, and poirlts outwards (if‘nonzero). 

Proof. Write down the Taylor expansion of I/I, in the neighborhood of x: 

~~,(.x+II)=IC/,,(_Y)+ V$,(s)*h+e(h) llhl12, 

where ‘L*” stands for the scalar product in R”. 

If h is sufficiently small, the sign of IC/,,(x + h)- $n(.x) agrees with the sign of 

Vt,bn( x) * h, provided V$,( x) # 0. 

Now denote by qX the outward normal vector to the boundary aA, [3]. We have 

.xslz~&, o h.q,<O. 
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Suppose that Vln(x) points inwards. For all h such that x+h~A,, we have 

h* pVn(x)>O, 

and thus 

This implies L(x)/x is a minimum of (4). Since L(x)/x = L(p)/p with d”p = n - 1, this 

contradicts Proposition 2.1. 0 

3.3. An algorithm 

We shall make two extra assumptions in this section. First, we shall assume that 

V> does not vanish on dAk if 1 6 k 6 n. Second, we shall ask all critical points of tj: in 

A, to be nondegenerate for k as above, i.e. to have a second derivative which is 

a nondegenerate quadratic form. These two properties hold generically [l]. They 

ensure in particular that critical points in Ak are finite in number. 

The algorithm proceeds as follows. 

(0) Choose an initial point qO. 

(1) Integrate the vector field ~ V$,, from the initial conditions (qO, $,,(qO)): 

l We reach a local minimum xyf end. 

l We reach the boundary dA,,--2. 

(2) You are at the point q,, of (?A,: 

Integrate the vector field -Vt+bk from the initial conditions (qi, ok): 

l We reach a minimum at order k<n-+(3). 

l We reach the boundary of A,--*(2) replacing n by k. 

(3) You are at a minimum q,Eik of ijjk: 

Integrate the vector field - Ejk+ 1 from the initial conditions ((z+ l)q,, 

1Clk(4*)). 
l We reach a minimum at order k+ 1 

- if k+ 1 <n-+(3) replacing k by k+ 1; 
_ if k+ 1 =n-+end. 

l We reach c7A k+1-+(2) replacing n by k+ 1. 

Let us make some remarks concerning this algorithm: 

(1) As saddles are unstable critical points we cannot stop on them; thus, we meet 

only the minima. 

(2) This algorithm is based on the recursiveness of the function Ic/, described in 

Propositions 3.3 and 3.5. Proposition 3.3 provides new initial conditions when we 

meet the boundary. Proposition 3.5 allows to penetrate inside Ak+ 1 from a boundary 

point which corresponds to a minimum at order k. 

(3) For q=xp, where x has all its roots of modulus 1, and PEAR, define a function 

$ by $(q)=$k(p). At each step of the algorithm, the function $ decreases. Thus, we 
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cannot meet twice the same minimum. Since the number of minima is finite under the 

foregoing hypothesis, the algorithm necessarily comes to an end. 

It must be noted that this algorithm provides us with a local minimum and not 

necessarily a global one. We do not even know whether there exists a finite set of 

initial points (for example, all the boundary points corresponding to minima at order 

II- 1) which allows us to exhaust the set of local minima in A,,. Since the number of 

such minima can be arbitrarily large (cf. Section 2.3) anyway, the combinatorial 

complexity might increase too much with the order. 

On the contrary, a particularly favorable circumstance occurs when the function 

has only one local minimum. It would be most interesting to find some classes of 

functions to be approximated that exhibit this property. We shall report on this 

problem in the next section, but this research is still under investigation. 

In [2] we proved a theorem analogous to the Poincare-Hopf index theorem [3] for 

all vector fields V+,, on A,, associated with our approximation problem. 

Recall the index of a vector field u at an isolated zero .x0 is the degree of the 

directional map 

s,+ Y-l, 

n(.u-so) 

s+~IL’(.Y-_xo)~I’ 

where S, is any small sphere around x0. 

Our assumption on y ensures that the index of V$,, at a critical point of $,, is 

generically well-defined. When defined, the index is equal to (- l)‘, where e is the 

number of negative eigenvalues of the Hessian matrix of $,, provided the latter is 

nondegenerate. 

Theorem 3.6. [f‘y is holomorphic in U,, then genericull~~ the sum of the indices of ~ VI+!J~ 

ocer ~111 critical points is equd to 1. 

In particular, this result has the advantage of bringing down the global problem of 

the uniqueness of a minimum into a local one. 

Indeed, if for some,f; the index at any critical points of $,, is equal to 1, then the 

function $,I has necessarily a unique minimum from the index theorem. 

For instance, this gives some results on Stieltjes functions, 

where p is a positive measure. 

We prove that there exists a value O<i.< 1 such that Stieltjes functions for which 

the support of the measure /1 lies in [0, A] have a unique local minimum and, hence, 

a fortiori, a unique approximant. This result is to appear in a forthcoming paper. 
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4. Asymptotic properties 

Throughout this section, we assume that f is not a rational function. 

4.1. Asymptotic behavior of critical points 

We denote by V, the subset of R[z]; containing the critical points at order n. By 

choosing points in the union of the sets of critical points at each order, we construct 

a sequence of quotients (v,) of the form u( q,,), for some sequence qn of critical points. 

In order to prove that the family of functions (0,) is normal, we use the integral 

representation 

where p is any real number such that 1 <p<r. Using this expression we show 

Lemma 4.1. 

Lemma 4.1. Let p’ be a real number such that 1 <p’<p. There exists on the open set 
U,, a uniform bound for the set offunctions (u,) which depends only on the function g. 

Proof. On the unit circle T, the quotient i/q is of modulus 1. Then by using the 

maximum principle over the complement of the unit disk U, we get 

V(EC-u, 40 61. 
I- I q(5) 

This inequality is true on the circle T, so that 

But for ZE U,. , I( - z I is greater than p-p’ and we get the bound in question. 0 

Every sequence of quotients (c,) associated with critical points of J/, is thus normal 

on the open disk U,. 

We are interested in those sequences in which the order of the points tends to 

infinity, i.e. there is no subsequence with an infinite number of elements sharing the 

same order. 

We shall first discard reducible points from the sequence (II,) so that we get a new 

sequence denoted by (w,). From such a sequence, take a subsequence (w,) which 

converges to a limit M.‘lim uniformly over all compact subsets of U,. Let p’ be such that 

1 <p’<p and suppose that the analytic function Wlim has no zeros on the circle T,,. 
Then 

3N, Vn> N, VZET,~, IW~~z~~wWlim~Z~I~IWlim~Z~I~ 
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By Rouche’s theorem, IV, and IV,~,,, will have the same number of zeros in the open set 

U,., but using Proposition 2.6, a quotient corresponding to an irreducible critical 

point of order n has at least IZ zeros in U. As the order of points in the subsequence ( wp) 

tends to infinity, ~~lim must be equal to zero. This is a contradiction with the 

assumption made on the circle T,,. By letting $ vary continuously, we get a compact 

circular annulus containing infinitely many zeros for w,~,,, and, thus, this limit must 

vanish on the open disk U,. We just showed that every convergent subsequence of 

(w,) converges to zero uniformly on every compact set of U,. But then, it is true for the 

sequence (M’,) itself. If not, there would exist an c > 0 and a subsequence (w,) such that 

vp, 3, j\VP(Z)l>C. 

But from the normal sequence (cl.,,), we can extract a convergent subsequence which 

will converge to zero by the previous argument. This is a contradiction and we are 

done. By using Proposition 2.5, we get the /2-convergence to f‘ of any sequence 

L(q,)/q,, where q,, is a sequence of irreducible critical points, as their order tends to 

infinity. 

If critical points are irreducible, there exists an order over which the corresponding 

quotients r(q) have more than any preassigned number of zeros. To get a more 

general result, we prove that such an order exists even in the case of reducible points. 

Following Proposition 2.7, these points are generated by adjoining to irreducible 

critical points 4 of lower order, zeros from v(q)/q. We show that for a fixed order, the 

number of such zeros is bounded from above. Let IV,, be the subset of V’, containing 

irreducible critical points of order n and let q~ IV,. We denote by Z(v(q)/q), the 

number of zeros of the quotient ~(q)/q in the disk U. Then Z(r(q)/q) is finite. Indeed, 

with the assumption made on,f; the quotient t(q) is analytic on the open set U, which 

contains the compact disk U. If Z(o(q)/q) is not finite, v(q) vanishes in U which 

means that the function ,f to approximate is already a rational fraction, but we 

discarded this case. Let us set one more notation: 

R,=max {Z(r(q)/q), q~w,,), 

then R,, is finite. This is obvious when W,, itself is finite. Otherwise, let us suppose that 

R, is not finite, then we can select a sequence of critical points (qt) in W, whose 

corresponding quotients (ct) have a number of zeros growing to infinity. From this 

sequence, we can extract as before a subsequence which tends to zero. But this means 

that there is a sequence of critical points of order IZ which converges to the function5 

We have then 

sut = L’lqt + Giii (15) 

The functions ul converge uniformly to zero on U as before, and the polynomials qt 

and Gt are also bounded on U as their degree and their coefficients are. Then, by (15), 

Lx) is bounded. We can successively extract two subsequences such that Lm and Gr 

will converge, respectively, to some polynomials p and q, uniformly on U. Taking the 
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limit, equation (15) becomes 

g4=p 

and, thus, f is equal to i/G, contradicting again our assumptions. 

As a conclusion, at order n + R,, quotients v(q) corresponding to irreducible critical 

points as well as reducible ones which come from irreducible points of order n all have 

at least n zeros. At order 

max{p+R,}+l, 
p<ll 

no critical point comes from an irreducible one of order less than or equal to n. Thus, 

all the corresponding quotients have more than n zeros. This is the result we needed 

and, finally, we proved the following theorem. 

Theorem 4.2. Let f be a function in the Hardy space H;, distinct from a rational 

fraction, analytic on an open domain containing the complement of the unit disk U. Let 

(v,) be a sequence of quotients corresponding to critical points qn whose orders tend to 

infinity. Then the sequence (v,) converges uniformly to zero on every compact subset of 

an open set containing the closed unit disk 0. Consequently, the sequence of critical 

points (L(q”)/q,,) tends to the.functi0n.f; according to the 12-norm. 

4.2. Finiteness qf the number of orders where local maxima appear 

We shall first investigate the case where the critical point q in R [z]; is irreducible. 

The partial derivatives of the criterion (f- L(q)/q, f- L(q)/q) at q vanish, i.e. 

ViE{O, . . ..n- l}, c/L!$C(~))=o 

or 

ViE{O, . . . . n- l}, 
( 

f_L(4) a(L(9))/a9i _ 

4’ 4 >( 

f_L(4) ziL(9) 
~~ TO. 

4 ’ q2 > 

As L(q)/q is the orthogonal projection off on the space V,, we know that 

VkE(O, . , n - 1 }, (f-y&O, 

and the last equality reduces to 

ViEtO, . . . . n-l}, 
( 

,/_%I) z’U9) ~~ =o. 
4 ’ q2 \ 

Combining (16) and (17) we get 

(16) 

(17) 
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where r1 and r2 are any polynomials in R [ z],, _ r But q and L(q) are relatively prime 

and the last equality is equivalent to 

(18) 

P being any polynomial of R [ z] 2n _ r. 

Let us come back to (16). Taking partial derivatives yields 

Using (18), the second term in the left-hand side is zero and we get the orthogonality 

relations: 

(19) 

Now, it follows from Lemma 2.2 that 4 divides a(L(q)/q)/aqi. Consequently, there 

exist polynomials 11~ of R[z];_ 1 such that 

a L(q) 4 ViEjO, . . ..n-l). - ~ aqi q =qZ”i. 
( ) 

Moreover, the polynomials vi, for i = 0, . . . , n - 1, are linearly independent. Indeed, let 

(I.i)i= 0. n _ 1 be a family of real numbers such that 

Then 
n-1 

C 3.i4Vj=O, 
i=O 

or 

~ (~(~))ii=O, 

i=O 

This yields 

n-1 n-1 

4 . c 
au4 

/li ~--L(q) C i.iZ’=O 
L 

i=O i=O 

and the polynomial q must divide the sum Cy_i 3.iZ’ which is of degree n - 1. AS q is of 

degree n, we get 

n-1 

C 3.iZ’=O 

i=O 
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and each real number ~“i is zero, which proves the independence of the polynomials Vi. 

Now, we can evaluate the variation of the criterion at the critical point q, using the 

Hessian matrix H whose entries are by definition 

a2 
~ .f- 
aqi a4j t 

LI:‘l.r_y 
\ 

that we compute as 

_2A l f_uq) a L(q) 
aqi 4 ‘aqj 4 > 

and using (18) we get 

But 

and using (18) again, we obtain 

Now, the variation of the criterion in a neighborhood of the critical point q following 

a direction given by the real vector (I.,,, . . . . i.,_ r) in the space R[z]; is 

I .o 

A,(j-o , . . . . i,,_,)=(i,, . . . . i,_,)H r i i . 

A-1 

As the family of polynomials (\‘i)i=O. ,, ,. n_ I is independent, we choose the numbers 2.i 

such that 

n-1 

C i.iVi=L(q). 
i=O 
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The value of 34,(1.,,, . . . . i.,_r) becomes 

On the other hand, 

au41 ( > %i 

q=ziL(q)+ijvi. . 

Using this equality together with (18) gives the following expression for id,. 

II L(q) = ______ + f-p II i: “:“I, _@’ j,i,‘i 

*I II l 
r=O 

‘; 
L(q) = -2 f-W, CL@) 

2,,+,,=_2,,.f_+,, ;a,,, > 

As the order of q increases, Ilj- L(q)/q 11 tends to zero, and the variation following the 

chosen direction becomes positive which means that the critical point 4 may not be 

a maximum. 

Suppose now that q is reducible. We shall get our result by using the more general 

fact that in any case, i.e. at every order, a reducible point may not be either 

a maximum or a minimum. For a minimum, this is Proposition 2.1; the proof is easy 

to modify in the case of a maximum, and this we leave to the reader. 

Theorem 4.3. Let f‘be a,finction as in Theorem 3.6. Then, critical points which are local 

ma.xima can only appear .for a ,$nite ranye of orders. 

Note, in particular, that Theorem 4.3 implies that the global minimum can be 

attained from some (unfortunately unknown!) initial condition on ?A, by integrating 

the vector field - O$, provided n is large enough. 
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