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Rational Approximation in the 
Real Hardy Space//2 and Stieltjes Integrals: 

A Uniqueness Theorem 

L. Bara tchar t  and  F. Wie lonsky  

Abstract. The paper deals with rational approximation over the real Hardy 
space Hz,R(V), where V is the complement of the closed unit disk. The results 
concern Stieltjes functions 

:(~)= i_d~ ~)_ 
d z - - t '  

where # is a positive measure. It is shown that there is a unique critical point 
and hence both a unique local and a unique global best rational approximation 
in each degree, provided the support of # lies within some absolute bounds which 
are explicitly estimated. 

I. Introduction 

The goal  of this pape r  is to prove  tha t  Stieltjes funct ions of the form 

(1) f ( z )  = ,1 z - t 

with /~ a finite nonnega t ive  Boret measure  on R whose suppor t  lies within 
[ - 2 o ,  2o], where 2o is the unique  posi t ive real  number  smaller  than  1 such that  

(1 - 22) 2 - 22o 2 = 0, 

have, for any  posi t ive integer n, a unique local (hence global)  best  a pp rox ima t ion  
a m o n g  ra t iona l  functions of degree at  most  n in the real H a r d y  space HZ,R(V), 
where V:= { z ~ C ;  ]z[ > 1}. No te  tha t  2 o < 1 so that  f indeed belongs to H2,~(V ). 
No te  also tha t  2 o is independent of n, which is pe rhaps  unexpected.  Numer ica l  
es t imat ion  yields 2 o -- 0.5176 . . . .  W h e n / ~  is one-sided,  tha t  is when the suppor t  
of # lies ent irely within R + or  R - ,  the value for 2 o can be improved  to 
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1/xfl2 --~ 0.7071 . . . . .  It is not difficult to design an even measure p (hence defining 
some odd f )  such that no best approximation of degree 1 has a pole at zero. A 
simple computation further shows that the support of such a/z may be arbitrary 

in ( - 1 ,  1), provided it is not included in [-1/x/2, l/x/-2 ]. By symmetry, there 
must then be two distinct best approximations of degree 1 to f ,  so that the sharp 

value for 2 o cannot exceed 1/,,/2 as was pointed out to the authors by D. Braess. 
When # is a positive measure on (0, 1), it has also been shown by E. B. Saff [24] 
that the best upper bound on the support for uniqueness of best approximation 

in degree 1 is 2x/2/3 = 0.9428 . . . .  This number is afortiori an upper bound on 
the sharp value of 2 o in the one-sided case. 

What precedes has been stated in terms of H2,R(V), instead of the more familiar 
real Hardy space of the disk, because this is the context in which Stieltjes functions 
appear. It can be translated at once into a uniqueness property for rational 
approximation to functions of the form 

f d~(t) 
(2) 9(z)= 1-z t"  

The above results are obtained by combining the index theorem appearing in 
[4] and [6] with a direct computation that enables us to estimate second 
derivatives in the special case of Stieltjes functions. The next two sections contain 
differential preliminaries and, in particular, the above-mentioned theorem (stated 
here as Theorem 2) essentially asserting that 

~ ( -  1)" = 1, 
Cl 

where the sum ranges over all the critical points c~ of the H2-norm and where a~ 
is the Morse index of the critical point c~, provided f i s  smooth in a neighborhood 
of the unit circle T In Section 4 we derive the main result of the paper, namely 
that all critical points are local minima if f is a Stieltjes function satisfying the 
conditions above. More precisely, the critical points have Morse index zero. From 
the index theorem, uniqueness of the best approximation is thus established. 
Moreover, since there is a unique local minimum, a gradient algorithm as described 
in [5] is globally convergent so that the best approximation can be numerically 
estimated. Stieltjes functions are already well-known for their nice behavior in 
important areas of approximation theory, for instance Pad6 approximation [1], 
and our result only adds to this picture. 

After they proved the above property, the authors became aware that a 
completely similar approach was taken by D. Braess and N. Dyn to tackle the 
problem of uniqueness of generalized monosplines of least Lp norm [11], [13], 
thereby extending to every p such that 1 < p < oe some of their previous results 
obtained by a fix-point method for p = 1 and p = 2 [12], [16]. We comment on 
this in the last section. This use of degree theory was also in the spirit of some 
earlier work by B. D. Bojanov on algebraic monosplines [10]. This interplay 
between topology and function theory is, in our opinion, an attractive feature of 
the subject. 
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2. A Rational Hz Approximation Problem 

Let T be the unit circle, and consider the real Hilbert space L2.R(T ) consisting of 
square summable functions with real Fourier coefficients. The scalar product can 
be expressed as a line integral: 

(3) ( f ,  9 )  = 2i~ f (z )g  - -  Z " 

We consider two closed subspaces in LZ,R(T ). The first is the real Hardy space 
H2,a(U) of the open unit disk U, consisting of analytic functions of the form 

h(z)= ~ hk zk, 
k - O  

where h k e R and the squared norm IIhlP 2 = ~k hl is finite. The second is the real 
Hardy space Ha,R(V ) of the complement of the disk, consisting of functions f 
analytic in V and at infinity 

f(z) ~ z -k = fk , 
k = 0  

with fk e R and I[ f/I 2 = ~k f~  < ~-  Changing z into 1/z clearly defines an isometry 
between our two Hardy spaces. In the following we assume that a real analytic 
function is one taking real values for real arguments. Hence, the above requirement 
that h k and fk be real means that h(z) and f(z) are real. 

We further single out the closed subspace H~ of H2,R(V ) consisting of those 
functions vanishing at infinity, or equivalently such that the coefficient fo in the 
above expansion is zero. 

The degree of a rational function p/q, where p and q are coprime polynomials, 
is defined to be max{deg(p), deg(q)}. The set of rational functions of degree at 
most n in H~ is denoted by N~ Note that a rational function p/q belongs 
to N~ if and only if p and q are real polynomials, q has all its roots in U, and 
deg(p) < deg(q). Thus, deg(p/q) = deg(q) in our case. The approximation problem 
that we consider in the following can be stated as follows: 

Given f ~ H~ r~(V) and some integer n > O, find some rational function p/q e N~ 
that minimizes F] f - P/q II. 

This problem is easily seen to be equivalent to the corresponding problems in 
H2,R(U ) and H2,R(V ) (see, e.g., I-7]). 

We only consider real analytic functions though this approximation problem 
can be stated in the full Hardy space and everything in the next two sections could 
be extended with minor modifications. Note, however, that the best complex 
approximation to a real function may fail to be real. In fact, the authors' interest 
in this question originally stemmed from identification problems for linear dynami- 
cal control systems, where it is essential to find real rational approximations to 
functions that are themselves real [21]. It is perhaps worth noting that Stieltjes 



4 L. Baratchart and F. Wielonsky 

functions admit a system-theoretic interpretation as transfer functions of so-called 
relaxation systems [26], for instance RC circuits. 

Let us briefly describe a few known results concerning this problem, which are 
more or less standard for any L z rational approximation problem. First, a best 
approximation does, indeed, exist. While the proof in the complex case seems te 
go back to [25], the first reference in our situation that we know of is [15]. Second, 
a best approximation is not always unique. Examples can be given where at least 
two best approximations exist, by letting f enjoy a symmetry property [23]. In 
the complex case, using rotation invariance, we could even exhibit some f having 
infinitely many best approximations [14], but such examples are not known in 
the real case. Examples without symmetry can also be obtained by transposing 
to our situation Theorem 1.6 in Chapter 5 of [11]. More precisely, we get that 
any (n + 1)-subspace of H~ comprising no member of ~t~ except for 0, 
contains some function with at least two best approximants. An instance of such 
a subspace is the span of rl, r2 . . . . .  r ,+l where the ri's are rational functions of 
degree greater than n whose denominators are pairwise coprime. The proof is 
another illustration of the use of topology in this context, since it appeals to the 
Borsuk-Ulam theorem. It can be carried out as in [11], using Propositions 1 and 
5 of [2]. Third, the problem is normal [23], meaning that any best approximation 
of degree at most n to a function which is not itself rational of degree less than n 
is in fact of degree precisely n. This property, which we call the order lemma, is in 
fact true for local minima and maxima [7]. As for the rate of approximation, we 
refer the reader to [19] and the bibliography therein. 

Our main concern, in this section, is to compute the optimal numerator p from 
f and q, so as to end up with a criterion depending on q only. We first define 
some notation. 

Let Pk[z] denote the space of real polynomials of degree at most k, and let ~/k 
be the subset of monic polynomials of degree k. Let d//~ c J /k consist of those 
polynomials whose roots lie in U. For q s Jg,~, we set 

P . -  1 [z] 
Vq.- 

q 

For fixed q, it is clear that the smallest value for ]If - p/qll is obtained when p/q 
is the orthogonal projection of f onto the n-dimensional linear subspace Vq of 
H~ R(V). We denote this projection by Lo/q, where Lq~P,_l [z] ,  and seek the 
minimum with respect to q of the following function: 

tp,(q):= f - -  ~ 2. 

To compute Lq m o r e  precisely, we need two more pieces of notation. For 
p s Pk[z], we define its reciprocal polynomial in Pk[Z] by 

We offer a word of warning about this notation. If k' > k and some member p of 
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Pk[Z] is considered as a member of Pk,[Z] whose leading coeffcients do vanish, 
the two definitions of/3 may be inconsistent. For  this reason, we always specify 
which Pk[Z] is involved in the process. 

For  any function f ,  we set 

z \ z /  

Clearly, f ~ f~  maps H~ isometrically onto Hz,R(U ) and conversely. 
If 9 is holomorphic in U and q e ~ 1 ,  we have the well-known division formula 

(4) 9 = vq + r, 

where the quotient v is again holomorphic in U and the remainder r is the unique 
polynomial in P,_l [Z]  interpolating g at the zeros of q. The quotient and the 
remainder can also be represented by the Hermite integral formulae [25]: 

(5) v(z)= 1 ~ 9(4) d~ 
2i~ JT, q(~) ~ -- z 

(6) r(z) d~, 

where T o is a circle centered at 0 of radius p < 1 encompassing z and all the roots 
of q. From these formulae, it is obvious that v and r are real if 9 and q are real. 
Moreover, since 1/q(z) is bounded for I zl > p, it is evident from (4) that v belongs 
to H2,R(U ) if 9 does. Our first proposition is just a reformulation of a classical 
result due to Walsh [25, Chapter 9, Theorem 2] in terms that do not involve the 
roots of q. A proof is given in [6]. 

Proposition 1. For f ~ H~ and q ~ dg~, let us denote the division of f~?l by q: 

f~?l = vqq + r, 

where r s P,_ t[z] and Vq ~ HZ,R(U ). Then Lq = ~. 

Proposition 1 is often nicely rephrased in terms of interpolation by saying that, 
for fixed denominator q, the best approximation to f interpolates f at the reciprocal 
of the roots of q. 

For  later use, we derive from the previous proposition the following corollary. 

Corollary 1. Usin9 the notation of Proposition 1, assume f is orthogonal to Vq. 
Then the function z"f(z)/gl(Z) belonos to H ~ R(V). 

Proof. The fact that f is orthogonal to Vq simply means that Lq = 0. Therefore, 
it follows from Proposition 1 that f~/q = vq/gl belongs to H~,R(U). Upon changing 
z into 1/z and dividing by z, we get the desired conclusion. �9 

We now turn to differentiation. We consider ,/r as being R" by identifying the 
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polynomial 

q(z)= z" + a n_az n-1 +. . .  + ao 

with the vector (a,_ 1, a,_ z , . . . ,  ao)- In this way, ~,~ becomes an open subset of 
R n. Similarly, we identify Pk[z~ and R k+l and formula (6) shows at once, by 
differentiating under the integral sign, that the map 

L: ~//{~ ~ P n = l [ z ]  given by q--,Lq 

is a smooth map. Consequently, 

~n: J/g~ ~ R  

is also smooth. By definition, a critical point of ~/, will be any q 6 J//~ such that 
the derivative D~/n(q) vanishes. Critical points fall into two classes: they are called 
irreducible if L~ is prime to q, and reducible otherwise. As usual, a critical point 
is said to be nondegenerate if the second derivative at this point is a nondegenerate 
quadratic form on R n. In this case the signature of this quadratic form, that is the 
number of negative eigenvalues of the Hessian matrix, is caUed the Morse index 
of the critical point. 

We sometimes have to deal with critical points of ~k for several values of k. 
Therefore, we often say that q is critical, meaning that it is a critical point of ~Pdeg~. 
It is clear that the (monic) denominator of any best approximation to f lies among 
the critical points. The order lemma tells us, furthermore, that this is an irreducible 
critical point unless f ~ ~ o  I(V). If it is nondegenerate, its Morse index is obviously 
0. However, there may be many other critical points: any local minimum, for 
instance, is critical, and again its Morse index is 0 if it is nondegenerate. Critical 
points are, of course, easier to analyze than best approximations, because they are 
defined locally. The next section is devoted to the set of critical points. 

A final remark in this section is that our definition of critical points looks 
different from the natural one, namely that (Po, q0) is critical if the map 
P,-~[z] x ~/tf~ ~ R given by 

2 

(p ,q)~ f--P-q 

has vanishing derivative at (Po, qo)- It is, however, easy to see that any critical 
point (Po, qo) of the above map is of the form (Lq0, qo) where q0 is critical in our 
sense, and conversely. Hence, the two definitions are equivalent. It is only slightly 
more demanding to check that our definition also agrees with the general 
definition, using tangent cones if Po and qo are not coprime [11], of a critical point 
with respect to ~~ = H~ 

3. Critical Points 

Our next goal is to give a characterization of critical points in terms of the division 
introduced before. To this end we recall some results (see Proposition 2 of [7]): 
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Theorem 1. Let q belong to J/~,, and let 

(7) f ~  = Vqq + Lq 

be the division of f ~ l  by q. The following two assertions are equivalent: 

(i) q is a critical point of ~n. 
(ii) q divides vqLq. 

In particular, if q is an irreducible critical point, then q divides Vq. 

Like Proposition 1, part (ii) of the theorem can be rephrased in terms of 
interpolation. When applied to the minimum of qJn, it says that a best approxima- 
tion to f with free denominator q interpolates f at the reciprocal of the roots of 
q with order at least two. 

Concerning reducible critical points, we complement Proposition 1 as follows 
(see Proposition 3 of [7]): 

Proposi t ion 2. Let q ~ ~#1 be such that 

Lq = ds, q =dp, 

with sip irreducible and d ~ dg 1. Then s = Lp and the following two assertions are 
equivalent: 

(i) q is a critical point of t~.. 
(ii) p is a critical point of O. k and the polynomial d divides vp/p. 

To obtain the results of Section 4, we need to know that the set of critical points 
satisfies some arithmetic constraint, namely the index theorem. This requires an 
extra assumption concerning the smoothness of f ,  which is to the effect that we 
shall be able to replace .//{.1 by a compact subset of Jln as follows. Let A n denote 
the closure, in Jg. ,  of dr It is clear that A n is the compact set consisting of those 
monic polynomials whose roots are of modulus at most 1. Proposition 2 of [-6] 
allows us to extend the domain of 0n under a certain condition: 

Proposi t ion 3. Assume there exists tl > 0 such that f(z) is analytic for I zl > 1 - q. 
Then the map ~. extends smoothly to a neighborhood of A n in Jg.. 

The argument in [6] is based on the homotopy invariance of the Cauchy integral 
(6) which allows us to choose p slightly greater that 1, thereby defining a smooth 
extension of r. Note, for later use, that the same argument applied to the integral 
representation (5) for vq shows that, for fixed z, v~(z) is also smoothly extended as 
a function of q in a neighborhood of A.. 

We continue to denote the extended function by ~.. Let us call OA. the 
boundary, in J / . ,  of A.. This boundary consists of polynomials in A. having at 
least one root of modulus 1. Such a polynomial can be factored for some posi- 
tive k as q = qlq2 where q2 ~ An-k and ql, whose degree is k, has only roots of 
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modulus 1. In this case, since ql = ~ + q l ,  it follows from Proposi t ion 1 that  

(8) /~,q2 = qlLa2 so that  O,(qlq2) = 0n-k(q2). 

It is shown in [6] that A n is topologically an n-ball embedded in ~ n ,  so that 
~A, is actually an (n - 1)-sphere which is, however, not  smooth.  It may  of course 
happen now that  0n has critical points on c3An and those are automatical ly 
reducible by (g). To  treat such critical points, we need the following result (see the 
Corol lary to Lemrna 3 of [6]): 

Proposition 4. Let q e A,. Then 

0 ,  + l(( z -- a)q)la =l = 2vqz(1), aa 

8~0n+,((z + a)q)la= 1 = 2v2( - 1), 

and if z z - 2az + fl = (z - ~)(z - ~), where ~i is any member of T, 

Pc~ ~ ~p.+2((z 2 - 2~z +/~)q)1r162 = 21va(G) l  2' 

To  conclude this section we state our  global result concerning critical points. 

Theorem 2 (The Index Theorem). Assume f is such that ~n has only nondegenerate 
critical points ~, none of which lies on the boundary ~A n. Let cgf be the set of critical 
points in A n. Then cg y is finite, and, if we denote by M(x) the Morse index of x e c~ $, 
we have 

(9) ~ (--1)M(x) = 1. 
xE~f 

We refer the reader to [6] for a proof. It can be shown that  critical points on 8A, 
are automatical ly degenerate, so that  the hypotheses in the above theorem are 
somewhat  redundant.  It is proved in [4] that they are generically satisfied. 

4. H2-Rational Approximation of Stieltjes Integrals 

In the following we always assume that the function f that we approximate is a 
Stieltjes function of type (i). The symbol Z will always denote a positive real number 
less than 1, such that the support of I~ is included in [ - Z ,  2]. 

We first need to compute  the function vq, for q e J/{,~, in the Stieltjes case. In 
fact, it is easier to derive the value of vq at ~, with z e U: substituting f~gl for g in 
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(5) yields 

v.(2) = v.(z) 

1 ~ f~l d~ 
2in r q ~ - z 

= __ l fT fq (o  _ _ d ~  
2in 1 - ~ 

l dr(t ) d~ 

= 2 i n  r z ~  (~) ~ - t  1 - - ~ '  

the integration with respect to ~ being taken over the unit circle T as f~  is analytic 
in some open set containing U. Using successively Fubini and the residue formula, 

Vq(~) = ~ ~ dlt(t) ~ (~) (~ - t)(1 - ~ )  

i x q dl~(t) 

. - ~  ~ (t) 1 - t~ 

Thus 

( 1 0 )  vq(z)=f2 q dr(t) 
~ (t) 1 - t--~" 

So far, this expression of vq has been established only when q s d//, ~, but it follows 
from the continuity of Vq(Z) with respect to q pointed out after Proposition 3 that 
(10) is still valid when q e A,. A consequence of this formula is the following lemma. 

Lemma 1. Assume f r ~~ and let q E A,. Then v~ has at most n roots in U, 
counting multiplicities. 

Proof. Let ql,...,/~k be distincts roots of vq, where ~h has multiplicity mi. Let 
mi = m, and define d ~ Pm[z] by 

k 

d(z) = [ I ( z  - '7i)"'. 
i = l  

For each index i, 

(11) 

Differentiating under the integral yields 

v~(u~) = v~(~i)  = ' "  = v ~ -~) (u i )  = o.  

f ~  q l!fl ~'~(z )  = ~ ~ (t l  (1 - t z )  ' §  d r ( t ) .  

Since the polynomials t t ( 1 -  trh) m`-~-~ are linearly independent over C for 
0 < l < mi - 1, they form a basis of P .... _ ~[t], the set of all complex polynomials 
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of degree at most m~ - 1. Therefore, combining equations (11) together, we get 

f z q Pm,-l(O 
(12) -~ ~ (t) (i - ~ - t ~ '  dlz(t) = 0, gi ~ {1, . . . ,  k}, 

where Pm,-, is any polynomial of P .... _l i t ] .  Next, observe that the family of 
polynomials 

a(t) 
, Pm,_~(t)(1 - tt/;) ~'' 

where P~,_ 1 ranges over P .... _ l[t] coincides with PC,,,_ l[t],  since the polynomials 
d(t)/(1 - tth) m' are coprime. Combining equations (12) together, this implies 

-~ (t)P~_ 1(0 d#(t) = 0, VP~_, E P~,m-1[@ 

If m > n, then q(t)s P~_ l i t ]  and we can substitute q for Pro-1 in (13). Since 0 and 
are of constant positive sign on ( - 1 ,  1), the integrand is nonnegative, and 

therefore should vanish a.e. with respect to #. However, the integrand can vanish 
in at most n points of [ - ; t ,  )J whereas the support of ~t contains more than n 
points since f ~ ~~ �9 

Now, we deduce from the above some information about the roots of critical 
points. It is shown in [17], using methods given in [9], [20], and [22], that a best 
approximation to a Stieltjes function is itself Stieltjes with poles in the convex hull 
of the support of #. More generally, this turns out be true of Lq/q at any critical 
point, but establishing this entails an assertion on Lq that we do not need nor 
prove and we content ourselves with the following result: 

Proposition 5. Let q in A, and f be a Stieltjes function with f 4~ ~~ Assume that 
q is a critical point of ~b~. Then q is in JZ~ and 

(i) the critical point q is irreducible, 
(ii) the roots of q are real, 

(iii) the roots of q are distinct, and 
(iv) the roots of q lie in the minimal segment containing the support of the measure 

d#. 

Proof. First suppose that q E ~//t~ and that q = dp with d = g.c.d.(q, Lq). Then p 
is critical and irreducible by Proposition 2. Following Theorem 1, p divides vp. 
Then vp/p has no other zero in t7 by Lemma 1. Using Proposition 2 again, we 
get d = 1 which means that q is irreducible. Assume now that q = qlq2 E A, is any 
critical point where qt ~ Ak has only roots of modulus 1, while q2 has none, i.e., 
q2 ~ Jg~-k. Then q2 is critical, because we see from (8) that the derivative of ~n-k 
at q2 factors through the derivative of ~bn at q~q2, which is zero since q is critical. 
From the first part of the proof, we know that q2 is irreducible, hence divides vq2 
by Theorem 1, so that v~2 has no other zero in tJ by Lemma 1. In particular, vq2 
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has no zero on T. Now, let d be some irreducible factor over R of ql, so that we 
have either d = (z _ 1) or d = (z - {0(z - ~x) with ~1 e T. Replacing qz by dq2, 
we get from (8) by the same reasoning as before that dq2 is critical. However, then, 
Proposition 4 implies that vq2 has a root on T, a contradiction showing that q 
cannot lie on OA, and hence belongs to Je'~. Now, we know that q divides v s. 
Suppose that 

k 

q(z) = l~ (z - r "~, 
i = 1  

each root ~i being distinct. From the previous lemma, we see that (13) holds with 
m replaced by n and d replaced by q: 

~ (t)/'._ ~(t) d~(t) = 0, v P . _ l  ~ P~,. ~ [t]. 

If the roots of q were not all real, we would write q(t) as It - # [2 d(t), ~ a complex 
root of q, and take d as value o fP ,_  a in (14). As in the lemma, this would contradict 
the fact that/~ is positive with a support comprising more than n points. This 
establishes (ii). If the roots of q were not all distinct, we would write q(t) as (t - ~)2 
d(t), ~ now designating a multiple real root of q, and use the same positivity 
argument as before. This proves (iii). Finally, if they were not lying in the minimal 
segment containing the support of the measure d#, there would be a nonconstant 
factor of q of constant sign on the integration path in (14), again yielding a 
contradiction. This shows that (iv) holds, and the proof is complete. �9 

We now focus on the quadratic form given by the Hessian matrix describing the 
second-order variation of the criterion in a neighborhood of an irreducible critical 
point q eMa', 1 following a direction given by the real vector (21 . . . . .  2,). Induced 
by the index theorem, the condition we want to ensure is that this quadratic form 
is positive at any irreducible critical point. Indeed, each critical point would then 
have Morse index zero, which is even. In the course of the computation, we make 
linear changes of variables in the quadratic form. It is understood that this cannot 
affect the signature of the form. 

Before starting the computation of the Hessian matrix, we claim that for each 
irreducible critical point q e ~/1, P[z] denoting the space of all real polynomials, 
we have 

(15) ( f  Lq, ~ )  = 0, q VP E P[z]. 

This is proved in Section 3.2 of [6], when P e P2,_l[z] .  However, if deg(P) _> 2n, 
we may use Euclidean division to write 

P P2 
q~ = P1 + - -  q2  ' 

where P1 e P[z] and P2 e P2 , - l [ z ] .  Since f - L q / q e  H~ is orthogonal to 
P[z]  c H2,R(U), we get (15). Also, for any q e .//g~, Lq/q is the orthogonal projection 
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o f f  onto the linear space Vq: 

(16) ( f  Lq,qk/=0,q Vk~{0 . . . . .  n - - l } .  

Taking partial derivatives in (16) with respect to the coefficients a i ofq leads us to 

q q2 / = 0 '  Vi~{0, n - l } .  

If, in addition, q is critical, (15) shows that the second term on the left-hand side 
is zero and we get the orthogonality relations: 

(17) , = 0, Vk s {0 . . . . .  n - 1}. 

Now, we start computing. The entries of the Hessian matrix at a critical point 
q e dg I are by definition: 

(18) O a ~ a i ( f  - L q  - 

__c~ ( f  Lq, ~ Lq; 
= - 2 ~ a  i q Oaj q / 

' c~a~ + f q ' c~a i c~ai 

= 2  ~ ~ ~ {OLq/Oa b Lqz!~\]  
q '~a i \ q q2 j / j  

where the last equality uses (15). 
Putting everything over the common denominator q2, the functions (O/Oa~)(Lq/q) 

can be written as RJq 2, with R~ ~P2,-~[z].  Since they are orthogonal to Vq by 
(17), Corollary 1 implies that z"Ri(z)/q20 belongs to H~ Since the roots of 0 
belong to V, it follows that ~(z) divides z'Ri(z), but ~(z) is prime to z, hence divides 
R~(z). So, there exist polynomials v~ of P,_ ~ [z] such that 

~ a l k q J = q 2 V i '  VIE{0 . . . . .  n - l } ,  

or  

~Lq 
(20) q -- ziLq = glVi, Vi ~ {0 . . . . .  n -- 1}. 

63a i 

Let L* ~ P[z] be any polynomial interpolating 1/Lq at the roots of q. Such a 
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polynomial exists because q and Lq are coprime. Since 

LqL* =- 1 (rood q), 

where _ denotes congruence, it follows from (20) that 

(21) zJ+iLq ~- ~12L~lJivj (mod q). 

Consider now the bracketed difference in (18). Using (19) and the fact that gl/q is 
a Blaschke product, the first term of the difference is simply 

and, using (21) and (15), the second term is 

( f Lq, 2 q Lq 
- - 7  7 -  Vi~Jj " 

The second-order variation 6q of the criterion is thus given by 

(�89 1 . . . . .  2 . )=  ~ [ 2 - - ( f - L q , 2 g l Z L * ( y ' ) ~ i v i ) 2 )  (22) 
q 7 -  

Let v = y, 2iv i and 
/7 

q(z) : I-I (z - ~,), 
i = 1  

where the ~i's are distinct real numbers by Proposition 5. We then have 

v_ (z) = ~ v(~,) 1 
q " q'(~i) z ~i 

and the squared norm in (22) becomes, thanks to the residue formula, 

"," q'(~i) q'(~j) 1 - r162 

Also, the second term on the right-hand side of (22) can be computed as 

( L q  FtZL, ) (  ~ ~2 , ) Lq glL* ) 
- f - q , 2  : -  = -  v~ 2 : ~ . 7 -  , - 0  r- = -  2 r:, 

As the polynomial q divides the function vq, we denote by w the function vJq. 
Using (3) and the residue formula again, the previous expression becomes 

zw q (z)L*(z)v2(z) dz = _ 2 y" w(~)gl(~')L*(~)v2(~') 
q z i q'(~i) 

= - 2  ~ w(~i)fl(~i)v2({i) 
, q'(r 



14 L. Baratchart and F. Wielonsky 

Finally, the variation CSq of the criterion can be expressed as 

(�89 2,) = y '  v(r v(~i) 1 w(~)~(r 
i,2 q'(r q'(~j) 1 z-~,~j 2 q'(~)Lq(~) 

Because of (20) where q and L(q) are coprime, it is permissible to define new 
variables 

v(~i) 
X i - q'(~i) 

since the values v(~i) can be assigned arbitrarily over R by a suitable choice of the 
2~'s. Hence we get 

Proposition 6. Let q be an irreducible critical point of the criterion, then the 
second-order variation in the neighborhood of q is given by 

X iX  3 w(~ifiJ(~,)q'(~i) X'~. 
�89 E l ~ j  2 E Lq(r 

i , j  i 

Just as we gave an integral expression for v, it is also possible to express the 
quotient w = vq/q by 

w ( z ) = ~  ~ t ~ q(t) d# (23) J- O(t) 2 1 -- tz' 

and the omitted proof follows the same lines. Since the values of w(~i) appear in 
~q, we need a new expression for them. Assume first that ~i # 0 and perform the 
Euclidean division of t" by 1 - t~i: 

(L.; t n = Qn-1(0(1 - t~i) + , 

Then, from (23), 

( 1 ; ;  q/t  
= ~, ~ 02(0 1 ~ - t ~  

using relation (14). Now dividing q by (1 - t~,): 

q( t )=  Rn-1( t ) (1 -  t~i)+ q ( ~ ) ,  

we get again from (14) 

f 
z q2(t ) dp 

_ ~ ~2(t) 1 - -  t ~  

Q._~ e P , , _ l [ t ] .  

Rn_ 1 e P n -  l i t ' I ,  
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Therefore, 

l f2q2(t)  d# 
(24) w(~i) = ~ ~ ~2(t) 1 ~ t~ i' 

If ~ = 0, (24) is still valid since it is merely the result of the substitution z = 0 in 
(23), taking into account (14) and the fact that ~(0) = 1. In the same way, we get 
an expression for (Lq/gl)(r In the complement of the closed unit disk U, 

fq = v~O + Lq 
and, except at points 1/~, we have 

o r  

Lq f q - - ~  - - - - 1 ) q  

q 

Moreover, 

and thus 

(25) 

Putting 

(26) 

which yields by (14) 

Except at points { 1/~i}, this integral is well defined over the entire complex plane 
because (z - t) is a factor of (q/O)(z) - (q/gl)(t) which has no poles in [ -  2, 2] as a 
function of t. We deduce that 

qLq(r qi(t) 

where, from now on, qi stands for the polynomial 

q(t) 
qi(t).-  t - -  ~i i ~ {1, n}. 

However, 

gl(t) = Sn-l(t)(t - ~i) + gl(~i), Sn-1 e P , -  l[t],  

qi(t) = T~-2(t)(t -- ~i) + q'(#i), T,-2 ~ P.  2[ t] 

( r  = a ( r  f z O~t)) 

Qi := ~- ;(q2(t)/gl2(t))(dl~/(1 - t~i)) 
2 2 2 I -  z(q, (t)/cl (t)) d# 

we get from (25), (24), and Proposition 6 

Lq f 2  q d# f 2  q dl2 f z ( ~  q ) d #  = o ( z )  - - - i z )  - - z z -- t ~ z - - t  -z  z - - t "  
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Proposition 7. The second-order variation �89 is given in the variables Xi's by 

xix~ Fq'(~i)T 
(27) .~.1,,, 7 ~ / t ,  2 ~ 0 , ~ ,  

Next, we provide a positivity criterion for this quadratic form. 

A sufficient condition for the quadratic form (27) to be positive Proposition 8. 
definite is that 

2Qi 
~/ 1 ~  < 1 .  

Proof. 
such that ~ i  7i = 1 and 

2Qi 
(28) 1 - {~ 

Recall that qi ~ P.-1[  -z] is given by 

and let 

The hypothesis implies that there exist positive real numbers (~'i)l<i_<. 

< ];i. 

qi(z) = ] - [ ( z  - -  ~ j ) ,  
j~i 

y,2qi(z) 
hi(z) -= \~i(1 - r Oi(z)" 

The his are real analytic functions in U and from (28), since qjch is a Blaschke 
product, 

suplhi(z)l  ( - 2 _ Q i ' ~  1/2 
z ~ v  = \ ~ i ( i  - r  < i .  

It now follows from Pick's theorem (e.g., Theorem 2.2 of [18]) that the real 
quadratic form 

Pi(Xl , . . . ,  X,) = ~ 1 - hi(r XkXt 
k,l=l 1 - ~k~t 

is positive definite. Taking into account the fact that qg(~i) = q'(r and qi((j) = 0 
if i r j, it is but a simple computation to check that the quadratic form (27) can 
be written as 

~ ~iPi(X1,...,Xn), 
i=1 

hence is positive definite. �9 

We now proceed with the final portion of the proof, showing how a condition 
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on the support of the measure ~t can ensure that the positivity criterion of 
Proposition 8 is satisfied. Let us consider the real Hilbert space L2(d#) with scalar 
product 

(f,g),2:=f2z f(t)g(t)d#. 

The functions (qjgl) form an orthogonal family in L2(d#) since, for each pair (i,j) 
of distinct integers in {1 . . . . .  n}, we have by relation (14) 

f~  qj(t) q ~ ( t ) d l a = O ' ~ q  q 

Let 

q,/~ 
el'--iiqjgij[L ~ " 

Then (e~) is an orthonormal family in L2(d#). Define further 

f ~_ ~(q2(t)/(t2(t)) d# 
(29) T/:= ~z_ a(q2(t)/gl2(t)) d#" 

From the definition of Qi, we get 

1 T~ 
(30) Qi < ( 1 _-2,~i,) i. 

On the other hand, using relation (14), 

Ti = 5x ~(qjgl)(t)(tq(t)/gl(t) ) d# 
~x a(q~/~12)(t) d# 

which can be rewritten as 

(31) 
(tq/cl, ei)L2 T~- 

IIq]c)l[L2 

The squared L2(d/~)-norm of the function tq/gl is not less than the squared norm 
of its projection on the space spanned by the ei's: 

(32) t 2 ~ (t) d# > t 2: t , ei 
.~ . L 2 " 

Assume now that f r ~~ Then strict inequality holds in (32) because equality 
would mean that tq(t) is equal ~-almost everywhere to a linear combination with 
real coefficients of the qi(t), and checking the degree shows that this is impossible 
when # has at least (n + 1) points in its support. Comparing (32) and (31), 

i qil 
2~ 
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and thus 

(33) 
02 

4 2 (t) 

Inequality (33) shows that 

implying by (30) that 

> 2 T, , (t) 

4 2 > Z  
i 

22 
(34) 2 < 2 

. 1  ~ (1 - 22) 2. 

Note that if the measure d~t was one-sided, that is if the defining integral for f 
was to be taken between 0 and 4 or between - 4  and 0, then applying (32) to the 
function (t - 4/2)q/~ or (t + 4/2)q/~I rather than to tq/O would improve the term 
22 in (33) to 22/4. Accordingly, the numerator on the right-hand side of (34) would 
change from 42 to 42/4. Finally, we get our result as follows: 

Theorem 3. Let 2 o be the unique real positive root smaller than 1 of 

222 
1 -  (1 - , ~ 2 ) 2  

(40 ~ 0.5176). For each Stieltjes function of type (1) which is not in ~~ and whose 
support lies in [ - 4 0 ,  20], there is a unique critical point (hence local minimum)for 
the H~ rational approximation problem in degree n. I f  the measure dti is 
one-sided, the same result holds true when 20 is replaced by the unique real positive 
root smaller than 1 of 

42 
1 -  

2(1 - 22) 2 

(40 = l /x /2  -~ 0.7071). 

Proof. As f r ~~ Proposition 5 implies that each critical point in degree n is 
irreducible and at such a point, under the foregoing assumptions on the support 
of/~, it follows from (34) that the positivity criterion for the Hessian matrix given 
in Proposition 8 is met. In particular, each critical point is nondegenerate of Morse 
index 0, and the index theorem applies to show uniqueness. The case where # is 
one-sided is treated similarly using the remark after (34). �9 

This theorem leaves out the case wheref  e Y/~ It would remain true, however, 
provided the degree of f is n. When the degree of f is less than n, the problem 
degenerates because any multiple of the denominator of f is a critical point, but 
it is easy to show that there are no others, so that f is the unique local best 
approximation to itself in N~ We leave it to the reader to check this from what 
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precedes. In fact, it is possible to prove that the above two assertions concerning 
the case where f eN~ hold true even if f is not Stieltjes. The first one is 
established in [4]. 

5. Related Work and Open Questions 

There is a strong connection between the works [11]-[13] and the problem under 
study here. Consider the defining formula of a monospline with simple knots 

(35) Ma,x(t) = ~ K(x, t) d#(t) - ~ akK(Xk, t), 
3 k = 0  

where p is a positive measure on some open real interval I and K is some totally 
positive kernel, while a = (al, . . . ,  a,) and x = (x 1 . . . . .  xn) belong to R n and the xk's 
lie in the support of p. Let H']lp denote the norm in LP(I). In [13] it is shown that 
when # is the Lebesgue measure, K(x, t) is of the form g(t - x) and 1 _< p < ~ ,  
there is a unique pair (a*, x*) such that all derivatives of ][Ma.x.[I p with respect 
to the ag'S and Xk'S do vanish, in other words (a*, x*) is the unique critical point 
of the L p norm. This implies that Ma*,x* is the unique monospline in the family 
Ma,x which is of minimum norm, both locally and globally with respect to the 
parameters (a, x). These authors also indicate that the result could be carried over 
to any/~ such that dp is Log-concave, and that the L p norm could also involve a 
Log-concave weight. It is to be noted that the condition on the support of p that 
we require in the present work and the Log-concave condition given in [13] both 
assert, in different ways, that # should not concentrate at the endpoints of the 
interval on which it is defined. 

If we let K(x, t) = 1/(1 - xt), and if we allow, in formula (35), for x to be complex, 
keeping [ t l < 1 and Ix [ < 1, we get the difference between a function g of type (2) 
and a real rational function of degree n with real simple poles. As we have seen, 
the problem of finding a best rational approximation to g in H2,R(U ) amounts to 
minimizing the above difference, but the minimization, in our case, is taken with 
respect to LZ(T) and not L2(1). 

Another formal complexification of the monospline problem, which is perhaps 
closer to general rational approximation in Hardy spaces, is to allow for x and t 
to belong to the closed unit disk U in C, and to let d# be some complex function 
in LP(T). Due to the Cauchy formula, if we set K(x, t) = 1/(1 - xt-) (note that the 
latter is positive in the usual sense of complex analysis), (35) becomes f -  p/q 
where f could be any function in the Hardy space Hp(U) and p/q any rational 
function of degree n in this Hardy space. Therefore, minimizing the norm of this 
expression in LP(T) really means performing rational approximation of degree n 
in Hardy spaces, which is our concern here in the case p = 2, and with the 
additional requirement that both f and p/q should be real. 

In view of the above, it is natural to ask whether the uniqueness property in 
Theorem 3 holds without restriction on the support of # when d/~ is Log-concave. 
We do not know the answer to this. Many other types of integral representations 
for f lead to similar computations, but the problem is always to find an analog 
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to the positivity argument that allows us, in the Stieltjes case, to estimate the roots 
of q. We hope that the technique will find such applications in the future. 

The index theorem here plays a role which is similar to the invariance property 
of the Brouwer degree of the map qb used in [13]. This theorem can be viewed as 
a consequence of the Morse relations that drop out from the fact that the error 
function is naturally defined over certain manifolds [-8]. 
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