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A b s t r a c t .  This paper presents a criterion for uniqueness of  a critical point 
in H2, R rational approximation of  type (m,n),  with m _> n - I. This criterion 
is differential-topological in nature, and turns out to be connected with corona 
equations and classical interpolation theory. We illustrate its use with three exam- 
ples, namely best approximation of  fixed type on small circles, a de Montessus de 
Ballore type theorem, and diagonal approximation to the exponential function of  
large degree. 

II.lr , II.PI2 

L2,R(T) 

Notat ions  

T, U, V unit circle, open unit disk, complement in C of the closed unit disk 

Tr, Ur, Vr circle of radius r, open disk of radius r, complement in C of the 

closed disk of radius r (with centers at the origin) 

T'n space of real polynomials of degree at most n ; regarding the 

coefficients as coordinates, we endow 79,, with the Euclidean 
topology of R "+ J 

Mn monic real polynomials of degree n 

A4n real polynomials of degree at most n with constant coefficient equal 

to 1 

M r monic real polynomials of degree n having all their roots in U r 

M r real polynomials of degree at most n with constant coefficient equal 

to 1 having all their roots in Vr 
An real monic polynomials of degree n having all their roots in U; 

alternatively, closure of.M~ with respect to the Euclidean topology 

ofT'. 

An real polynomials of degree at most n with constant coefficient equal 

to 1 having all their roots in V; alternatively, closure of .A4~ with 

respect to the Euclidean topology of P,, 

norms in L~(T), and in L2(T), respectively 

scalar product in L2(T) 
real subspace of L2(T) consisting of functions with real Fourier 

coefficients 

* The research of  this author was supported, in part, by NSF-INRIA cooperative research grant 
INT-9417234 as well as NSF grant D/Vl~-950I 130. 
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H2,R(U)  

 ,R(Vl 

P+, P_ 

H~,R(U) 

v) 

T-~m,n( U) 

L. BARATCHART, E. B. SAFF AND F. WlELONSKY 

real Hardy space of exponent 2 of the unit disk consisting of 
functions in L2,R(T) whose Fourier coefficients with negative 
index vanish 
real Hardy space of exponent 2 of the complement of the closed 
unit disk restricted to those functions vanishing at infinity; 
alternatively, orthogonal complement of H2,R(U) in L2,R(T) 
orthogonal projections L2,R(T) ~ H2,R(U) and L2,R(T) ~ H~e,R(V), 
respectively 
real subspace of H2,R(U) consisting of essentially bounded 
functions 
subset of/-/~2,R (V) consisting of rational functions p / z  m-n+ 1 q with 
p E 79m and q E M 1 

subset of H2,R(U) consisting of rational functions ~ /~  with ~ E Pm 
and ~ E . ~  

1. Introduction 

We consider the following two rational approximation problems: 

Pb(V, m, n): Given f E H~a,R(V ) and positive integers m, n with m > n -  1, minimize 

f _  P 
zm-n+lq 2 

as p/zm-n+lq ranges over T~~ 

Pb(U,  m, n): Given g C Ha,R(U) and positive integers m, n with m >_ n -  1, minimize 

g 

as ~/'~ ranges over ~'~m,n (U). 

It will be convenient to say that a rational function is of type (m, n) if it can 
be written as the quotient of a member of Pm by a member of T'n. Now, in the 
statement of Pb(U,  m, n), the requirement that fi/~ be analytic in U is, in fact, re- 
dundant because any rational function of type (m, n) with m > n - 1 that minimizes 
the distance to g in L2(T) has to belong to H2,R(U) when g does; this follows by 
partial fraction expansion from the orthogonality of H2,R(U) and H~a,R(V ). 
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The two approximation problems above are, in fact, equivalent: if we let 

Z 

the map h ~ h a is an involutive isometry of L2,R(T) interchanging H2,R(U) (resp. 

7~,~,n(U)) and H~ (resp. R~ so that Pb(U,m,n) is the transform of 

Pb(V,m,n) under this map. 
Problem Pb(U, m, n) is classical in approximation theory (see e.g. [3, 6, 9, 11, 

12, 14, 26]) and of importance in applied sciences, notably in control [10], and in 

signal processing [8, 15, 20]. Two noteworthy features of the present formulation 

are the restrictions to real coefficients and to the super-diagonal case m >_ n - 1. 

The first restriction reflects the authors's interest in the applications and is not 

essential; the technique developed in the paper can be carried over to the case 

of complex coefficients.* The second restriction is more serious: whereas the 

super-diagonal case is an easy extension of the diagonal one, the sub-diagonal case 

involves additional difficulties that leave it uncovered. 
The basic question of existence of a minimizer in Pb(U, re, n) or Pb(V,m, n) 

reduces to the case m = n - 1 by Lemma 2.2 and is settled in the above references. 

The aim of the present paper is the analysis of the more delicate issue of local 
minima that arises here as in many nonlinear approximation questions in the 

complex domain, where uniqueness results are rare. In spite of its intriguing 

character and its practical relevance, since the occurrence of local minima is the 

major obstacle to numerical approaches, the only positive answers seem to be in 

[23], for the elementary case wheref  is rational of type (m, n), and in [6], f o r f  a 

Stieltjes function whose supporting measure lies within some interval. W h e n f  is 

analytic in V, we derive in Section 2 a general criterion for uniqueness that rests 

on the differential approach of [6], and consists in computing the index and then 

checking the signature of the second derivatives at the critical points. It will turn 

out that this signature depends on a corona-type equation with norm constraints 

expressing the degree of coprimeness of the numerator and the denominator of 

such points, and that one way to construct solutions to this equation is related to 

classical interpolation theory, and more specifically to the decay of the error in 

multipoint Pad6 approximation. Subsequently, in the remaining three sections, we 

apply the technique to three specific problems. The first of them deals with best 

H2,R rational approximation of fixed type on small circles. It was selected, firstly 

because our method applies easily, secondly because it may prove practically useful 

by allowing to initialize continuation methods, and thirdly because it may, by a 
heuristic duality principle, support the conjecture that an entire function of finite 

* The complex version, however, does not subsume the real one because the best H 2 rational 
approximation of given degree to a l~nction with real Fourier coefficients need not itself be real. 
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order that is normal with respect to rational interpolation of type (m, n) in the disk 

has a unique critical point for n large. The second result is an/-/2,8 analog of the 

de Montessus de Ballore theorem, and is included because the subject is classical, 

and also because it is a nice instance of a problem whose linear part eventually 

dominates the nonlinear one. The third problem is the asymptotic uniqueness in 

H2,R of best rational approximation to the exponential function in the diagonal 

case, when the degree becomes large. The exponential is the primary example 

for which the above-mentioned conjecture should be checked, and also turns out 

to be the prototype of the functions to which our criterion should apply, since the 

error is nearly circular and decreases rapidly. To establish these last properties, 

however, requires a somewhat detailed analysis that will provide us with precise 

asymptotics, both on the error and on the location of the poles of the approximants. 

2. Critical points  and a criterion for uniqueness  

We develop in this section the differential theory of Pb(V, m, n). We assume that 

m _> n - 1 throughout, and we shall reduce to the case where m = n - 1 for which 

the properties given below already appear in the literature except for Proposition 

2.5, and for Proposition 2.8 when q has roots of unit modulus (cf. [4, 6] and the 

bibliographies therein). 

Differentiating under the integral sign, we see that the map 7~m • .Mn 1 --. R given 

by 

(2.1) (p,q) ~ zm_n+l q 

is smooth. Any pair (Pc, qc) where the derivative vanishes will be termed critical. 

A minimizer of Pb(V, m, n), and more generally any local minimizer, is a critical 

pair; but there may also be others like saddles or local maximizers. Now a critical 

pair interpolatesf maximally in V, as we shall shortly see, and the main result of 

this section may be summarized as follows (compare Theorems 2.9 and 2,10): 

I f  each critical pair (Pc, qc) is such that pc/zm-n+lqc interpolates f in no more 

than m + n + 1 points in V, and if in addition the corona equation 

bpc+Cqc= 1, b, cEH~,R(U)  

is solvable with 
I[(fzm-n+lqc-pc)b[[~ < 1/2, 

then the critical pair is unique. 

Subsequently, we give a criterion based on the interpolation error to construct 

solutions to the above equation, and we translate it to Pb(U, m, n) (cf. Theorems 

2.12 and 2.13). 
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We begin our study of  the critical pairs by equating to zero the partial derivative 

of  (2.1) with respect to the numerator. We obtain 

f Pc Pm 
zm_n+lqc , zm_n+lqc) = 0; 

if for q E .M 1 we denote by Lf(q) E 79m the numerator of  the orthogonal projection 

o f f  onto the subspace Pm/zm-"-Jq C /4~2,R(V), the above equation means that a 

critical pair is necessarily of  the form (Lf(qc),qc). Hence, determining critical 

pairs reduces to finding their denominators, and these in turn arise as the critical 

points of  the map A4~ ~ R given by 

(2.2) /~m,n(q) := I l f  - gf(q)/z~-"+'ql]~ = I l f l l~  -IILfm(q)/zm-n+lql[~. 

Here, the smoothness of  r as a function of  q depends on the following formula 

(cf. [6]): 

(2.3) 
1 f r  f~163 d~' 

Lf (q)(z) = ~ (m-,,~-lq(~) ~ Z 

where 

p(z) := zkp( 1/Z) 

defines the reciprocal polynomial of  p E T'k. We offer a word of  warning about 
this notation: if k' > k and p E 79k is considered as a member  of  Pk' whose leading 

coefficients do vanish, the two definitions offi  may be inconsistent. For this reason, 

we shall always specify the value of k under consideration; in (2.3) for instance, it 
is understood that Lf(q) E Pm and q E T',. Formula (2.3) merely rephrases, using 
Hermite integral representation, a nice characterization of  Lf(q) essentially due to 

Walsh ([26], cf. also [31): 

L e m m a  2.1 Lf (q) is the reciprocal of the remainder of the division of f ~  
by zm-n+ l q. 

We just  saw that critical pairs are those pairs (Lf(qc), qc) where qc is critical for 

~pr~,n. We shall say that (Lf(qc), qc) is an irreducible critical pair, or also that qc is 
an irreducible critical point of  ~;fm,n, if Lf(qc) and qc are coprime; otherwise, we 

call them reducible. The critical points of  ~ - i , n  were studied in [2, 3, 4, 6], and 
we shall carry the corresponding results over to the case where m _> n - 1 using 

the following lemma: 
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L e m m a  2.2 Let f E /-/~2,R(V) and q E A41n. Let further 

(2 .4)  fo-~ = vqqzm-n+l + ~ f  (q), L f  (q) E 79m, Vq E H2 ,R(U) ,  

be the division of f ~  by qz m-n*l. Set fl = P+(zm-n+lf)  and f2 = P-(zm-n+lf). 
Then L~_ ~ (q) and fj are the remainder and the quotient respectively of the division 
of L f  (q) by q: 

(2.5) 

and 

Lf(q) : qfl + L~_,(q), 

f ~  q + f~'q = vqq + - -  

is the division o f f ~  by q, namely the quotient is again Vq. Moreover, we have that 

(2.7) gdn  = ~2_1,n. 

In particular, q is an irreducible (resp. reducible) critical point of  ~m,n iff it is an 
irreducible (resp. reducible) critical point of  ~ 2_ l,n" 

P r o o f  It is easily checked thatf~ = P_ (z-(m-n+ 1 )for ) andf2~ = p+ (z-(m-n+ I )fo ') .  
Thus, upon dividing (2.4) by z ~-n+l and observing that P+ + P_ is the identity 
L2,R(T) ~ L2,R(T), we obtain 

Lf  (q) 
zm-n+l " 

Sincefl  E P,,_,,  we havefl  ~ =. f l /z  ~-"+l  so that 

(2.8) 
[ L ~ ( q ) -  qjTl ] 

f ~ ] =  Vqq + [ zm_n+l j . 

Now, f 2 ~  and Vqq belong to Hz,R(U) whence also the bracketed term does. This 
term is therefore a polynomial of  degree at most n - 1 and consequently (2.8) is 
the division o f f 2 ~  by q. It follows now from Lemma 2.1 that 

(2.9) LT~_ , ( q) =_ "~rnt q ' ' 
Z m-n+ I 

(2.6) f ~ l  = vqq + L~2_l(q), L~_l(q) E "Pn-1, 
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and changing z into 1/z yields (2.5); furthermore, (2.9) and (2.8) together imply 
(2.6). Substituting (2.5) in (2.2) and using that multiplication by z is an isometry 
gives 

2 
I ~  Z I~  - rl t __ f2 ~fm,.(q) f - f J / z  ~-"+l . - I ( q ) /  Iq 2 2 f2 = - = l-:'~-l(q)/q 2 = Jn-*,n(q)" 

Now, the characterization of the critical points of #fm,, runs as follows: 

Proposition 2.3 Let q belong to .A4~, and let again 

fo~  ~ n - n + l  + ~f(q), Lf(q)  E "Pro, E H2,R(U), = V q q Z  Vq 

be the division o f  f ~  by qz m-n• Let  d E Mk  be the monic g.c.d, o f  L f  (q) and q, 
whose degree k may be positive or zero. Then." 

(i) Lf  (q)/d = L~_k(q/d). 
(ii) q is a critical point o f  zJm,, iff q divides vqLf  (q). In particular, i f  q is an 

irreducible critical point, then q divides Vq. 
(iii) q is a critical point o f  ~,,,~ iff ql = q /d  is an irreducible critical point 

o f  @~-k,n-k and the polynomial d divides Vq~/ql, where Vq, is the quotient o f  the 
division o f  f ~  by qlz m-n+l (note that "Uql/ql actually lies in H2,I~(U) by (ii) as 

applied to ql ). 

P r o o f  This is an immediate consequence of Lemma 2.2 and [6, Thm. 1, 

Prop. 2]. [] 

From now on. we assume that f not only belongs to /4~2,R(V ) but is in fact 
holomorphic on V: 

(H) 
there exists 7? > 0 such thatf(z) is analytic for Izl  > 1 - 77, 

f(~) = f (z )  andf(oo) = 0. 

Hypothesis (H) is a technical one, allowing us to extend the domain of definition of 
~,,,~ from 3,41 to An (Proposition 2.4). This is important because our criterion for 
uniqueness (Theorems 2.12 and 2.13), based on the Index Theorem (Theorem 2.9), 
is differential-topological in nature, whereas in differential topology functions have 
to be defined over compact sets to exhibit homotopy invariants (e.g. the degree). 

Proposition 2.4 When (H) is satisfied, the maps L f : A4~ ---, 79,~ and 
~fm,n : A41n --* R extend smoothly to a neighborhood o f  A~ in A4n. 
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P r o o f  Clearly, f2 satisfies (H) if f does. Now 
[3, Prop. 2]. 

Denote again by ~f,,,,n and L f the extended functions. 
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apply Lemma 2.2 and 

When (H)  is satisfied, 
Proposition 2.4 will allow us to speak of a critical point q,. or a critical pair 

(Lf(qc),q,.) when q,. lies on the boundary 0A,, of An; this boundary consists of 

monic polynomials of degree n whose roots are bounded by 1 in modulus, and 
such that at least one of them has modulus 1. Now, we need to handle the critical 

points that ~ , n  may have on 0An. Such critical points are reducible since L~(q)/q 
cannot have a pole on T as V/~,,, is bounded by JIf][~; for such points, Proposition 
2.3 must be supplemented as follows. 

Proposition 2.5 Assume (H) holds and let q E An. Let further 

f~6 : v~qe.-.+~ + s 

be the division of  f~ by qz m-n~-I . Write 

q qlv'~' '~' = . . . V  I , 

I where ql E A4n_ k and the uj s are distinct irreducible factors over R[z] having 
roots of  modulus 1. Designate by dj the degree of  u) (either 1 or 2) and by 

(2.10) f'~ql = vq, qlz m-n+l + Lf-k(ql ) 

the division o f f se t  by qiS 'n-n+~. Then 

(2.11) Vq +Vq, and L f  (q) V ~ '  ~ '  f . . . . .  v / L , n - k ( q i ) .  

Moreover, the following are equivalent: 
(i) q is a critical point o f  ~fm.n. 

(ii) ql is a critical point Of ~m_k,n_ k and v) ('~+j>/z] divides Vq, f o r j  E { I , . . . ,  l}, 
where the bracket denotes the integer part. 

For the proof, we need two lemmas. 

Lemma 2.6 For q E An, we have 

~m,n(q) = Ilvq[l~. 
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P r o o f  By continuity, we can assume q E M~. Then 

~fm,,,(q) IIf tfm(q)/zm-"-|qll~ l ift  Z'f,(q)/qll~ , _m- , , , , - ,~  . . . . .  II ,'qq, /qll5 ---Ilvqll~, 

where the last equality is due to the fact that Iqzm-~-~/~ll : 1 on T. 121 

L e m m a  2.7 For q = q|q2 C An with ql E A,,-k, q2 E Ak, and  ~.,q, as in 

(2.10), we have 

CJm,n(qlq2) = ~k-l,k(q2)' 

P r o o f  First observe that v ~ satisfies hypothesis (H)  when f does, so that the ql 

statement makes sense, i.e. we may evaluate ~;k~_'~.k on OAk. By continuity, we can 
1 assume that q| E .Adn_ k and q2 E A4~. Perform the division of Vq, ~12 by q2: 

~V a 
Vqtq2 = aq2 + Lj_' I(q2), a E H2,R(U); 

multiplying (2.10) by q2 and substituting for "Oql q2 yields 

[ - ~  ] f~  -n*l+ Lk_l(q2)ql~ -n+l + q 2 ~ - k ( q l )  , 

which is nothing but the division o f faq lq2  by qlq2z m-n+l . Thus, we deduce from 

Lemma 2.1 that a 
L f ( q l q 2 )  - u q l  qlLk_l (q2)  Lf_k(ql)  

(2.12) - + . zm-n+lqlq2 zm-n+lqlq2 zm-n+lql 

It is to be observed that the two terms in the right-hand side of  (2.12) are mutually 

orthogonal in HZ,R(V) because multiplying by qlz " - " + l / ~ |  is an isometry of L2(T) 

sending the first of these terms into H2,R(V) and the second into H2,R(U). By (2.2) 

and Pythagoras'  rule, we get successively 

Lf (ql q2) i ~m,n(qlq2) = I l f l l ~ -  zm_n+lqlq 2 

i va 2 
L f _ k ( q , )  q,L-k~|(q2) 

=llfll 2-  ~ - zm_n+lqlq22 

: J m - k , n - k ( q | ) -  "~2 " 

By Lemma 2.6 and since h ---, h ~ is an isometry of L2,R(T), this may be rewritten 

as 
q2) 2 

llVq, ll - =,5,,kIq21 [] 
q2 112 
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Proof of Proposition 2.5 Set # = u~' . . .  u~' E 7~k. Since ~ = •  according 

to whether the multiplicity of  the root 1 is even or odd, (2.1 1) follows immediately 

upon multiplying (2.10) by ~. 

We turn to the equivalence of (i) and (ii). Let Q1 c A4,_k and Afj c A4~:d~ be 

neighborhoods of ql and u~ j respectively. Due to the pairwise coprimeness of ql, 

Ul ..... ut, the components of (XI, 01, . . . ,  0t) E Ql • All • . . .  • Aft are coordinates 
around q E .M,, so that q is critical iff the 1 + 1 partial maps 

z,: . . ? ) ,  

Oj : Oj--~ ~fm,,(q,v~' ' ' .v j%_l'  O j exj., . eq - ~ + 1  . . v  t ), j =  1 . . . . .  l, 

have vanishing derivatives at ql and u~ ~ respectively. Since by a previous remark the 

roots of modulus 1 of  any X E A~ cancel in Lf (x) /X,  we have for a l l j  E { 1 . . . .  , n} 

that 

(2.13) E I ( X I )  : ~)fm-k,n-k(Xl) ,  

(2.1 4) Oj(Oj) = dm_k+ajdj,n_k+c~)d ) (ql Oj). 

Applying Lemma 2.7 to (2.14) with n - k + ajdj, m - k + ajdj and ajdj in place of 

n, m and k respectively, we see that 

(2.15) Oj = ~b v;' a: 4-l ,aj4,  j = 1 , . . . ,  1. 

In view of (2.13) and (2.15), we see that q is a critical point of  J,,,n iff ql is 
"O o O~J 

critical for ~fm-*,,-* and vj ~ is critical for ~b,~t- 1,~Jd,. It remains to prove that v: is 
o 

critical for ~b~'a_l,~:d, iff vj [(~'+1)/21 divides Vq,. Considering this assertion for each 

j separately, we may as well drop the indexj  and rename v ~ a s f .  In other words, q~ 

we are back to the case where k = n, m = n - 1, and l = 1, namely we have to 

prove, f o r  v an irreducible fac tor  over R[z] o f  degree d (either 1 or 2) having roots 

o f  modulus 1, that q = v '~ is a critical point  o f  ~ d_ l,~d iff  vi(~+ ~)/2] divides fO. 

By the Hermite integral formula (cf. e.g. [26]), the function vq can be represented 

as  

1 f r  f " (7 )q (7 )  d7 (2.16) Vq(~) = ~ ,+, q(7) "/-- ~' ~ E Ol+e, 

where e > 0 is chosen so that (1 +~)-  1 > 1-77. This formula shows in particular that 

q ---, Vq is smooth .M~ +" ---, Hz,R(U) and, since ~f~d-I ,,~d(q) = livq][22 by Lemma 2.6, 
differentiating with respect to the coefficients of  q(z) = z '~a + a~d- I Z ~a- l + . . .  + ao 

yields fork  E { 0 , . . . , a d -  1}: 

OOfad-l,ad(q) OVq 
Oak -- 2 < Oa----~ ' Vq > 
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where we have used the identity v~(~) = Vq(~)/~ on T (remembering that the 

Fourier coefficients are real). Plugging (2.16) into (2.17) and differentiating under 

the integral sign, we obtain 

og:f~d_i,,~d(q) I 
Oak iTr 

[' ] L Vq(~)2--~ fT,+, "~ iT)' 5"~d-kq(7)- 3'kq(7)-q--~@-~ "/---- (d7 d( 

(2.18) . . . .  7 q(7) - 7kq(7) 1 Vq(~C) d% 
171" I+qr 

where the second equality uses Fubini's theorem. On the other hand, by the residue 

formula as applied to the function v~ (which is analytic in VI-,j and vanishes at 

infinity), 

if 277r Vq(() _ = Vq(3'), 3' E TI+,, 

whence (2.18) becomes 

10J~d_l,,~d(q) 1 f r  .~,~d-kq(.~) _.~k~(.r) d.7. 
2 Oak = ~ Vq (3')f~ (3') qZ(q,) 

I+e  

As q = u ~ is a real polynomial with roots of modulus 1 only, either ~ = q or ~ = - q  

depending upon whether the multiplicity of  the root 1 is even or odd; accordingly, 

either Vq = f "  or Vq = -f'~. 
Assume first that ~ = q. We get 

10~d_l,,~d(q) 1 L _,~d-k 
_ f(~/)fa(.y)'Y _ ~ )  .yk 2 Oak 2ire ,+, d% 

whence q is a critical point of ~ d -  1,~d iff 

1 L :, =,,, .~'P("/)-.o(3'). (2.19) 2i~ ,+SC'YI: ::: q(~-)- a'~ = O, Vp ~ ~'o._~. 

The image of  the map ~b : Pad- 1 --+ 79~d sending P(7) to 7P(7) - P(7) is the set of 
anti-reciprocal polynomials of degree at most ad, namely 

Imr (x ~ ~Ld; ~ = -X}. 
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Indeed, one checks easily that the image of  r is included in this set. Conversely, 
let 

)(.(7) = )(.odT~ + X Q d - 1 7  c~d-I + . . . .  X a d - 1 7  - -  Xad 

be anti-reciprocal; then 

P(7) = Xad"y~  + "'" + X[(~d/2j+I7 !c~d/2] �9 P o d - I  

satisfies r = X. Therefore, q is a critical point of/~,~d- J.,~d iff 

1 f . p(7) - -  f ( 7 ) f  (q ' )q -~d7  = O, Vp �9 P,~d, P = -P. (2.20) 2i7r -+, 

(2.21) 

In another connection, changing ~. into 1/~ in the integral below yields the identity 

1 / ,7 p(~,) 1 / ,7 ~(-~) 
~t~ f( '~)f (7)~(~d'7 = ~t~ f ( 7 ) f  (7) q--(~ d7, P �9 P,~d, 

I + t  I / ( 1 + * )  

whence 

I / ~ P('7) 1 / p _ ~  
f ( 7 ) f  (q ' )q- -~d3 '=  ~ f("/.~'~(7) (7)d% pEP,~d. 

2irr ,+,-r,/(,t,) ,+, 

In view of (2.20), we see now that q = u ~ is a critical point of~,,~d_l,,~d iff 

2i7r t + ,  -T,/(l+,) 

Thanks to the residue formula, and since all the roots of  u ~ have modulus 1 hence 
lie within the contour, this is equivalent to asserting that u~ d iv idesf f  ~ or also that 

ui(~+l)/2] d iv ides f  b e c a u s e f  a n d f  ~ share the same roots of  modulus 1. Finally, if 
= - q ,  (2.19) has to be replaced by 

1 [ 7P(7) + p ( 7 ) d 7  = 0, Vp �9 T'ad-l, 
2br j ,  f(7)f '~(7) q(7) 

I't-~ 

and one can check in the same manner that v [('~+1)/21 again d i v i d e s f  in this case. 
[] 

Having characterized the critical points of  J~ , ,  in terms of  the zeros of  Vq and Vq, 
in Propositions 2.3 and 2.5, we now recognize by applying a to (2.4) that (Lf(q), q) 
is an irreducible critical pair iff Lf(q) /q  is a multipoint Pad6 approximant t o f  of  
a particular type (the interpolation takes place at infinity with order m - n + 1 and 
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at the reciprocals of  the roots of q with order 2), and that a reducible critical pair is 
generated by a lack of normality in V. Since there are no spurious poles for such 
approximants, and since we assume that (H) holds, it is natural to conjecture that 
any sequence of critical points such that m goes to infinity actually converges to 
f uniformly on V. This is the content of the next proposition, which will be used 
in the proof of asymptotic uniqueness for the exponential function and may be of 
interest in its own right. 

P ropos i t i on  2.8 Assume f is analytic in a simply-connected domain f~ 
containing V. Assume also that f vanishes at infinity and satisfies f(-~) = f(z).  
Define~ = {1/z;z E f~}. For q E An, let 

f~'q = IJqq zm-n+l + Lfm(q) 

be the division of  f~'q by qz m-n+l. Then the collection 

{vq; q E A n ,  n E N ,  m E N ,  m > n - 1 }  

is a normal family of  functions in (L I f  (mk,nk) is a sequence of  pairs of  non- 
negative integers such that mk >_ nk - 1 and limk~o~ mk = oo, and if, for  each k, we 
let qnk E Ank be a critical point of  ~bfmk,nk, then 

(2.22) lim Lfk ( qnk__..~) _ f 
k--*c~ q n k  

B 

uniformly on V. 

P r o o f  Let K C ~ be a compact set containing ~ and F C ~ a contour 
surrounding K. By the Hermite formula, the function Vq can be represented 
as  

(2.23) Vq(~) = ~ j r  J ~ J.ym-n+lq(.~) ~, ~ E K. 

On the unit circle, the function ~/.ym-n+lq has modulus 1, so by the maximum 
principle 

1 ~(@ [ < 1  VTEV. , , / m - n + l q ( , , / )  - -  

This inequality is in particular true on the circle I", so that (2.23) implies 

, 
(2.24) [23q(~)l < ~ [ , ~ 1  V~ E K. 
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Because the distance from K to r is positive, we see from (2.24) that the family 

(Vq) is uniformly bounded over K, thereby establishing that it is normal. 

To prove (2.22), observe as in the proof of  Lemma 2.6 that 

I f - L f ( q ) / z m - n + l q l  = Ivql on T, 

so we must prove that ]lVq,~ II~ ~ 0 when k ~ ec. 

Assume first that nt remains bounded. Then mt - nt + 1 goes to infinity and 

f~,e = P -  (zm~--n~+lf) 

converges to zero uniformly on V because the Taylor expansion o f f  at infinity is 

normally convergent there. According to Lemma 2.2, let 

cr ~ 7fk,2 
f~,2qnk = Vq, k qnk + Ln k- 1 (qnk) 

be the d i v i s i o n  off/~~ by q~. From (2.24) applied with f t ,2  instead o f f ,  we 
deduce that 

1 ( s u p l f ~ , 2 l ) f r  d7 Iv%(~)l-< ~ I~--~l v~c u, 

which goes to zero uniformly as k goes to infinity. We thus get the desired 

conclusion when nt is bounded. Assume now that nk goes to infinity. In accordance 

with Propositions 2.3 and 2.5, we decompose qn~ as utdtxt  where ut is a polynomial 

of  degree a t  having only roots of modulus 1, dk E Ad~ is a common divisor of  

Lf~(q,,~) and q~k, and Xk C A4~ is an irreducible critical point of  Jmk-~+6~,6k- Let 

vxk be the quotient of the division o f f s e t  by zmk-nk+tXk. Cancelling the common 

roots between Lfk (qnk) and qnk gives 

and since (vx,) is a normal family on (Z D U by the first part of  the proof, it is 

enough to show that the number of zeros of v• in U goes to infinity with k. By 

Proposition 2.3, we know that dtX.k divides vxk. In addition, it is easily checked 
that 

VXk = :tr_Vq.kdk / dk, 

where the sign depends upon whether ut = ~t or ut = -'fit, so that vxk has at least 

[at/2] zeros of modulus 1 since Vq,, does by Proposition 2.5. Hence vx~ has at least 

/3k + 6k + [at/2] _> nk/2 
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m 

zeros in U, and this completes the proof. [] 

We turn to a result which is central to our approach since it will allow us to 

pass from the local to the global when analysing uniqueness of  a critical point. 

Recall that a critical point is said to be nondegenerate if  the second derivative is 

a nondegenerate quadratic form. In this case, the number of  negative eigenvalues 

is called the Morse index of  the critical point and is invariant under change of 

coordinates. The theorem below links the Morse indices o f  the critical points of  

Jm,n together when they are nondegenerate and may be viewed as an analogue of  

the P o inc a r r -Hopf  theorem granted that A n is a topological n-ball [3]. 

T h e o r e m  2.9 (The Index Theorem) Assume (H )  holds and Jm,n has only 
nondegenerate critical points in An, none of  which lies on OA~. Let C be the 
collection of  these critical points and e(q) designate the Morse index of  q E C. 
Then 

Z ( - - I )  e(q) = I .  

qEC 

P r o o f  The case m = n - 1 is established in [3], so we appeal to Lemma 2.2. [] 

R e m a r k s  The nondegeneracy of  the critical points is generic in H2,R(Ur) for 

r > 1 [2]. One can in fact prove that critical points o n  om n are degenerate, so that 

the hypotheses we gave are somewhat redundant, but this will not be a concern for 

US. 

The criterion for uniqueness of  a critical point that we seek rests on ensuring that 

each critical point is a nondegenerate local minimum, hence has index 0, and then 

applying the index theorem. Therefore,  what we really need now is a sufficient 

condition for a critical point to be a local minimum. While it is not difficult to 

see that a reducible point is never a local minimum, unless f is rational of  type 

(m - 1, n - 1), because the problem is normal [3], the forthcoming theorem asserts 

that a critical q is a local minimum provided Lf(q) and q are "sufficiently coprime". 

T h e o r e m  2 .10  Let f E I-I~2,R(V) and q E 3/1~ be an irreducible critical point 

Of ~m,~. Assume there exists a corona relation 

(2.25) bLf  (q) §  = 1, b,c E H~,R(U), 

such that 

(2.26) I I ( /q-  Lf(q)/~-"+X)bll~ < 1/2. 

Then, q is a nondegenerate local minimum Of Jm,n. 
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P r o o f  Self1 = P+(zm-n+lf) and f2 = P-(zm-n+lf). T h e n  Jm,n : 42--1,n by 

Lemma 2.2, so that q will be a nondegenerate local minimum of  ~//m,n iff  it is a 

nondegenerate local minimum of  42_ l,n" Now, (2.5) and (2.25) give us a corona 

relation between q and Lf~_l (q), where the coefficient of the latter is again b: 

bLf2n_l (q) + (c + bfl )q = 1. 

Moreover, it is straightforward to check that 

II(f2q - t ~ _ l  (q))b[l~ = II(fq - tf(q)/zm-~+l)b[[oo, 

whence it is enough to prove the theorem when m = n - 1. In this case, it is 

shown in [6, eqn. (22)] that the second derivative of  4 -  l,n at q can be expressed 

in suitable coordinates as a quadratic form on the space Pn_ ~ by the formula 

2 
H(p,p)= p - ( f  Lfq(q),2qZbp2 

which depends on b modulo q only, by the critical point property (cf. [6]). From 

the inequality 

Lf- , ( q ) ~ "Oa bp 2 P 2 
( f  q ,z-----~] <2 ( f q - L f _ l ( q ) ) b  q 2' 

which is obvious if one writes the scalar product in integral form, we see that (2.26) 

implies the positivity of  H. [] 

In order to complete our construction, it remains for us to find a way of  

manufacturing b and c satisfying (2.25) and (2.26). The next lemma provides 

us with a means of  doing this when precise estimates of  the error in the multipoint 

Pad6 approximation are available. It will be convenient to use the notation O rd ~  (h) 

to designate the order at ~ of  a meromorphic  function h, i.e., the finite integer u 

such that 

h(z) = O(z ~) as Izl --* o~. 

We also denote by Zv(h) (resp. Zu(h)) the number of  finite zeros of  h in V 

(resp. U) counting multiplicities. 

L e m m a  2.11 Assume that (H) holds and let fl = P+(zm-n+lf) and f2 = 
P _  (zm-n+lf). Let also q E At I be prime to Lfm(q). If  B/A is a rational function in 
irreducible form with real coefficients such that 

(2.27) [Zv - Ord~](zm-"+lAf - B) > n, 
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and if  in addition 

(2.28) If - L f  (q)/zr"-n+lql < I f -  B/Z~-n-:AI on T, 

then the polynomial ALY (q) - Bq has no zeros in -U and we may set in (2.25) 

A - B  
b -  c -  

ALf (q )  - Bq' ALl (q)  - Bq 

If(2.28) is replaced by the stronger inequality 

- n + l  (2.29) 3 I f  - L f  (q)/z ~ ql < If - B/z~-"+tAI on T, 

then in addition (2.26) holds. 

R e m a r k  The proof will actually show that equality necessarily holds in (2.27) 

under the stated hypothesis. If B/A has poles on T, the right-hand sides of (2.28) 
and (2.29) have to be interpreted as +oo at those points. 

P r o o f  The difference B/A - L f ( q ) / q  has no zeros on T since by (2.28) 

I B / z m - " + l a - L f  (q)/z~-"+lql >_ I f - B / z ~ - " - l a l - l f - L f  (q)/zm-"-:ql > 0 onT. 

Then B q -  ALf (q )  has no zero on T either; hence the winding number 

W(Bq - A L f ( q ) )  of the curve (Bq - A L f ( q ) ) ( T )  around the origin is well defined. 

Assume first that A has no zero on T. By the argument principle, 

W (Bq - ZL f (q ) )  = W (B/zm-"+lA - Lfm(q)/zm-'~+lq) + m + 1 + Zu(a),  

so that (2.28) and Rouch6's theorem together imply 

W ( B q - A L f ( q ) )  = W ( I -  B/zm-n- 'A)  + m  + 1 +Zu(A)  

= W ( z " - n + l A f -  B) + n = - Z v ( z ~ - n + l A f -  B) + Ordo~(zm-n+ J A f -  B) + n _< 0, 

where the last inequality uses (2.27). As Bq - A L f ( q )  is analytic, this winding 

number equals the number of zeros it has in U, so this number is zero and the first 

assertion of the lemma is proved. Assuming (2.29), one obtains on T 

f - L f (q ) / z " - "+lq  
I(fq - L f  (q)/zm-"+L)b[ = L f  (q)/zm_,+lq _ B/zm_,+1A 
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< I f  - Lf(q)/zm-n+lq[ 
< 1/2, 

- I f  - B/Zm-n+lAI - I f  - Lf(q)/zm-n+lql 

which proves (2.26). 

IfA happens to have zeros on T, it cannot have a zero on TI ~-, for 0 < E < e0, say. 

Since (2.27) and (2.28) will remain true on Vl+, and T1+, respectively when e is 

small enough, we obtain by the same reasoning as before that Bq - ALf (q )  has no 

zero in Ul+,. If (2.29) happens to hold, we first replace 3 by 3 + 6 for some 6 > 0 

which is small enough, and then argue that this stronger inequality also remains 

true on Tl +~. We conclude as in the first part of  the proof that 

1 
I(fq - Lf(q)/zm-n+l)b[ < 2 +--6 on TI+,. 

Letting E go to zero yields the desired conclusion. [] 

We are in a position now to state our criterion for uniqueness of a critical point. 

T h e o r e m  2.12 (Criterion for uniqueness in P b ( V , m , n ) )  Assume that (H)  

holds, and that any critical point q Of Jm,n satisfies 

(i) q is irreducible, 

(ii) there exists a rational function B/A in irreducible form with real coefficients 

such that 

(2.30) 3 I f -  L f  (q)/z~-~'-lq[ < I f -  B/zm-"+lA[ on T, 

and such that B / z  m-~+ 1A interpolates f in V to yield 

(2.31) [Zv - Ordo~](z~-n+lAf - B) > n. 

Then, ~fm,n has a unique critical point q* E Al  I and L f  (q*)/q * is the unique 

minimizer of  Pb(V, m, n). 

P r o o f  The proof is immediate from Theorem 2.10, Lemma 2.11, and 

Theorem 2.9. [] 

Theorem 2.12 can also be translated to Pb(U,  m, n) using the equivalence of the 

two problems under a. To emphasize symmetry, we shall denote by ~ /~  a typical 

element of 7~m,n(U), observing that indeed any member of Pm is the reciprocal of 

some unique p E 7Vm and that any member of  An is the reciprocal of  some unique 

q C An. We further define ~g,n : An -* R by 

B g ~  ~g,n(q) : = m i n  IIg-~/~ll~ IIg Z.:(q)/~ll 2 =~b,n,,,(q), 
PE"Pm 
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and we extend in a natural way to P h ( U , m , n )  and ~ ,~  the notions of reducible 
or irreducible critical pair and critical point respectively: ~ is a critical point of 
v)"g~,n iff q is a critical point of ~b~(~; and (/3, ~) is a critical pair for Pb(U, m, n) iff it 
is of the form (L,g" (q), ~) where ~ is a critical point. Note that the status of being 
critical for a pair (fi, ~) depends on the interpolation properties of ~/~ to g in the 
disk, namely, it depends on whether the quotient Vq of the division 

g~ = VqqZ m- n ~ 1 + 

meets the requirements of Propositions 2.3 and 2.5. 

T h e o r e m  2.13 (Criterion for uniqueness in P b ( U , m , n ) )  Let  g be analyt ic  

in the c losed  disk -U and  g(~) -- g(z). A s s u m e  that any critical point  q o f  •g,n 

satisfies 

(i) ~ is irreducible, 

(ii) there exists a rational func t ion  B / A  in irreducible form,  with B E 79k ,, A E 79k, 

such that 

(2.32) 3 l g -  Z.gm~ < I g -  B/AI on T, 

and  such that B / A  interpolates g in U to y ie ld  

(2.33) Z v ( A g  - B) >_ max(m + k, n + k'). 

Then ~bgm,n has a unique  critical po in t  q* E M]n, and  ~ g a ( q . ) / ~ .  is the unique 

min imizer  of Ph(U, m, n). 

R e m a r k  A typical B / A  will be a multipoint Pad6 approximant to g of type 
( m -  1, n - 1 ). More generally, (2.33) holds for any such approximant of type (k', k) 

withk t _ > m -  l a n d k > n -  1. 

P r o o f  S e t f  = g~ upon applying or, inequality (2.32) is equivalent to 

3 I f -  L f  /z~-n+lq] < I f -  (B/A)~I on T. 

Assume first that m - n >_ k' - k. Then 

= [Zv - Ord~] (z m-n+k ( A ( 1 / z ) g ( 1 / z )  - B ( I / z ) ) )  

= [Zv - Ord~] ( A ( 1 / z ) g ( l / z )  - B (1 / z ) )  - m + n - k 

= Z u ( A g  - B) ---m + n - k >_ n, 
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where the last inequality uses (2.33). Since 

zm-n+k-k~ n 
(B/A) ~ -  Z,._n+l~' 

we may apply Theorem 2.12 with B replaced by Z~-"§  and A replaced by ,4 
to conclude that ~/,.,,, has a unique critical point in q* E .M~, whence ~ , n  has a 
unique critical point in ~* E .M~. 

If m -  n < k' - k, then 

[Zv - Ord~] (z~'- '+',~f - B) : [Zv - Ord~] (z) '(A(l/z)g(l/z) - B(I/z))) 

= Z u ( A g -  B) - k' > n. 

A s  

(B /A)  ~ = 
zrn-n-t - I [zk'-k-m+n~] ' 

we apply Theorem 2.12, this time with B replaced by B and A replaced by 
Z k' - k - "*n~ .  [] 

3. Approximation o f  fixed type on shrinking disks 

In this section we consider the following rational approximation problem: 

Pb(Ur, m,+n): f o r  g analy t ic  in Uro such that g(2) = g(z), and  g iven  0 < r < ro and  

pos i t i ve  integers m, n, m > n - 1, m in imize  

2----s - ( rei~ )dO 

as  ~ ranges over  7',. a n d  7 l ranges  over  .M~. 

If we set fr(Z) := f l r z ) ,  for any funct ionf  and any positive real number r, the 
relation 

fO0 2re g - i 2 (rei~ = fo 2~r gr - P-zr 2 ] 

shows Pb(Ur, m,n) for g to be equivalent to P b ( U , m , n )  for gr. This allows us 
to carry over to the first problem the terminology introduced for the second, and 
in particular to define the notion of a critical pair: (/5, ~) 6 7",. • S,, is critical for 
Pb(Ur, m, n) with g iff ~r ,  qr) is critical for Pb(U, m, n) with g~, and we have that 

(3.1) ~ r :  Lg~" ( ~ }  = L~~ (r~q,/r) .  

Using the theory developed in the previous section, we shall establish the 
following result: 
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T h e o r e m  3.1 Let g(z) ~ l = ~-]l=0 glz,  with gt E R, and define 

~l,k : :  

gl gl- i  ""  gl-k+l 

gt+k-l gt+k-2 "'" gt 

245 

with the convention that gs = O fo r  s < O. Let us assume that 

(3.2) ~k+m-n,k :fi 0, 1 < k < n. 

Then Ph(Ur,  m, n) has a unique critical pair, whence a unique solution, when r 

is small enough. Moreover, i f  (fi* (z, r), ~1" (z, r)) denotes this pair  and if  P~176 

Q~ = 1 denotes the Pad~ approximant o f  type (m, n) to g, we have 

(3.3) ~*(z,r)  --~ P~ in'Pro, ~*(z,r) ---, Q~ in M ~  as r---~ O. 

R e m a r k  This theorem applies in particular to totally positive functions, as 

condition (3.2) is satisfied for all m > n - 1 in this case. 

P r o o f  First we shall prove (3.3) with (~*(z,r), '~*(z,r)) replaced by any 

irreducible critical pair (fi,~) = (p(z,r),~l(z,r))  of P b ( U r , m , n ) .  Thus qr is 
Y.gr an irreducible critical point of  ~m,n. By the equivalence of  P b ( U , m , n )  and 

P b ( V , m , n ) ,  Proposition 2.3 and (3.1) tell us that 

grqr -- Pr = O(zm-n+l q2/r), 

or equivalently 

(3.4) gq - p = O(zm-n+lq~/r 2). 

Note that all the roots of q l / r  2 have modulus less than r. 
Equation (3.4) means that ~ is the Lagrange interpolant to g~ at the m + n + 1 

zeros of  zm-n+lql2/r2. We denote this by 

~(s) = f.(s, g~, zm-n+lq2/r2). 

= n b Setting q(z) ~k=0 k zk, b0 = 1, we get by linearity of  the Lagrange operator 

~(s) = Z bkf.(s, gz k, Z~-"+lq2/,.2). 
k"=O 
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As,~ E 7~,n, expressing that the coefficients of  sin+l,. . . ,  s ~+~ in the right-hand side 

vanish yields the linear system of equations satisfied by bk, k = 1 , . . . ,  n. Let K c C 

be a compact set. We have by the Hermite formula that for s ~ K, 

L(s'gzk'zm-n+lq21/r2) = ~ fC [I--sm-n+lq2/r2(S)/tm-n+lq2/r2(t)] tkg(t)t--S dt, 

where C denotes a contour surrounding K and the m + n + 1 roots of  
z~-~+lq~/r2. Since s remains in a compact set and t belongs to C, the quotient 
sm-n+ln2 2(sh/tm--n+l,~2 rt~ Ul/r ~ -- ~1/~2~ J tends uniformly to s~+n+i/tm+~+l as r tends to zero. 

Thus, 

r---~01im s gz k, Z m-n+ 1,~2~1/r2j~=s in 79,~+~ 

whence the coefficients of the linear system of equations defining the bk's converge 

as r tends to zero to those of  the linear system defining the Pad6 denominator Q0, 

which is 
gm+l +x lgm + "'" +Xngm-n+! = 0 

gm+n + Xlgm+n-1 + "'" + Xngm = O. 

Because the determinant of this system is Gm,n # 0, it follows that the limit of the 

solution is the solution of  the limiting system, namely, q(z, r) converges to Q~ 
in .h/l n as r ~ 0. As to the numeratorfi,  the Hermite formula gives 

1 fc  [ s~-n+l-2 rsWt m-n+1"2 ]g( t )q( t )d t  fi(S) = ~t~ 1 -- ~ll/r2~ ) /  ~ll/r2(t) i " S " 

Since ~(t, r) tends to Q~ uniformly on C, we get in turn the convergence of~(s,  r) 

to the Pad6 numerator p0  (s) in T'm as r ~ 0. 

Secondly, we establish that all critical pairs are irreducible when r is small 

enough. Indeed, assume to the contrary that there exists a sequence of  reducible 

pairs as r --, 0. In view of  Propositions 2.3 and 2.5, one obtains a sequence 

of irreducible critical pairs of type (l + m - n, l), for some fixed l < n, whose 

associated rational functions interpolate g in more than 2l + m - n + 1 points on 

Ur. By the first part of  the proof, which can be applied with n replaced by I and 

m replaced by l + rn - n because of (3.2), these rational functions converge to the 

Pad6 approximant P~t+m-,~/Q~ to g of  type (1 + m - n, l). This gives a contradiction 

because P~t+,n_JQt ~ vanishes at the origin with multiplicity exactly 2l + m - n + 1, 

as can be seen from (3.2) and the equality (cf. [17]) 

(3.5) (gQO -- eOl+m_n)(Z ) -~. (_  1)I ~l+rn-n+l,/+l z2l+m-n+l + O(z21+m-n+2). 
~l+rn-n,l 
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Thirdly, we estimate the error at a critical pair when r becomes small. By what 

precedes, we may assume that all critical pairs are irreducible; we may also require 

that r < rl < 1, where rj is chosen so small that Ur, does not contain any zero 

of  Q0. Since fi~ 6 79,,+n interpolates g~2 at the roots of ffn-n+|ql/r2 by (3.4), the 

Hermite formula gives 

l frsm-n+lq21/~2(s)-gq-~2_~)dt, s E U. 
(3.6) (g~2 _ fiT)(s) = ~ t 'n-n+lq~/r2 (t) - 

As the roots of  ql/r2 lie in Ur, we obtain for t E T 

I ~ - - n +  I : , 2  .l,/:(s) 
tm-n+lq2/r2(t ) 

2 ,~ 2, 
_ rm+n+ I, < \ l  - - - : ~ l :  Isl = r. 

Moreover, q(z, r) tends uniformly to Q~ on the closed unit disk so that, by our 

choice of  rl ,  we get upon dividing (3.6) by ~2(s) and taking absolute values 

(3.7) Ig - p / q l  (s) < Cr  ~+"+ ' ,  Isl = r, 

where C is some constant independent of  r. 

Finally, we prove the uniqueness part of  the theorem by applying Theorem 2.13 
7.gr ( p 0 _ ) r  and A 0 k' . = = (Qn-l)r ,  whence = m - 1 and k = n - 1 to ~m,. with B j 

Indeed, it follows from (3.2) and (3.5) that there exists a constant Cl > 0 such that 

for r small enough 

(3.8) C, : + " - I  < Ig - P~176  for Isl = r. 

It follows from the definition of  the 

condition (2.33) is met while (3.7) 

satisfied as soon as r < x/c-~l/3C. 

Pad6 approximant that the interpolation 

and (3.8) together imply that (2.32) is 
[3 

4. Approximat ion  of  fixed denominator  degree to meromorphic  
funct ions  

The goal of  this section is to establish the following H2,g-version of  the 

de Montessus de Ballore theorem. 

Theorem 4.1 Fix a nonnegat ive  integer n and  a real number  R > 1. Let 

n 

Q,(z)  = l - I ( z  - x j ) ,  1 < ixjl < p < R 
j=l 
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be a real polynomial, and g = G/Qn where G is analytic in UR, and satisfies 

G(-~) = G(z). Moreover, assume G(x)) # O for  allj. Then the map ~gm,n has a unique 

critical point ~ E 7Xn for  m large enough," in particular, problem Pb(U,  m, n) has 

a unique solution PTn/qn. In addition, still f or  m large, ~* ~* Pm/qn has exactly n poles 
in C and 

(4.1) -* q, --~ Q,/Qn(O) in ~n as m --+ 0o. 

Furthermore, 

(4.2) -* -* Pm/qn --* g as m --~ c~, 

locally uniformly in U~ := UR \ U~-i {xj). more precisely, i f  K C U' R is a compact 

set, 

~ . 1 ~ ,  l / m  
(4.3) l imsup []g -Pm/qnllK _< max{[zl,z E K}/R ,  

gn----~ O o  

where I1 " IlK denotes the supremum norm on K. 

First, we prove a lemma which gives a lower bound on the rate of  convergence 

o f  certain Pad6 approximants to meromorphic functions. 

L e m m a  4.2 For g as in Theorem 4.1, consider the Padd approximant 
ao / m,n-~ to g o f  type (m,n - 1) and let e > 0 be such that p + e  < R. 

Then for  m large, 

(4.4) [g - P~ >- (P + e)-m on T. 

P r o o f  Assume there exists a sequence of  points Zm E T such that 

(4.5) ](g - e~176 < (P + e) -m, 

for infinitely many m. Combining the two relations 

0 (am,n-lg - POm,n-I )(Z) O(zm+n), 0 = (Qm,ng - POm,n)(Z) = O(zm+n+l), 

where P~ n denotes the Pad6 approximant to g of  type (m, n), yields 

0 P2_ (4.6) (am,n m,n-1 -- am,n-1 m,n)(Z) = O(zm+n) ' 

From de Montessus de Ballore's theorem (cf. [1]), the rational function e~m,n/a~ 

has precisely n finite poles for m large. Hence, the left-hand side of  (4.6) is a 
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nonze ro  p o l y n o m i a l  o f  deg ree  at mos t  rn + n, and  there  exis ts  a nonze ro  cons tan t  

Cm, n such that  

(4.7) o o pO . ) ( z )  = Cm..Z "-~" (Qm ,nPOm ,n- I  - Q m , n - 1  , 

In another connection, the convergence of QO,~ to Q, asserted by the cited theorem 

implies that Ilg - P~176 is majorized, up to a constant, by the linearized 

error IlgQ~ - p O  I1~ for m large. Since the latter decreases like the truncation of 

the Taylor series, we get 

0 lira l imsupllg - P~ <_ l/R, 
gt l  ~ Or 

implying by (4.5) for m large, 

(4.8) 0 
I(P~ - P~176 < 2(p+  ~)-".  

We normalize pO.  I and Q0 , - m,~-l SO that the coefficient of  largest modulus of 

Q ~  l is 1 (in case there is more than one largest coefficient we choose the 
one with smallest subscript), and we normalize QO,. so that Q ~  = 1. Now, de 

Montessus de Ballore's theorem asserts that Q O  converges to Q,,/Q.(O) as m ~ vo 

and hence is uniformly bounded in a neighborhood of the unit circle. Therefore, 
multiplying (4.8) by 0 0 Q,.n,,,_l(zm)Qm,,~(zm), we get for m large 

(4.9) 0 ~ 0 ~p0 )(z.,) I< I(Qm,. ,,,:,-1 - Qm,,,- C(p+s  -m, 

where C is a positive constant independent of  m. In view of  (4.7), we obtain 

Ic,.,~ _< c(p  + ~)-",  from which we deduce that (4.9) is actually satisfied for all 
points of T. Applying the Bernstein-Walsh lemma [26], we get for m large 

(4.10) I(Qm,nP~176 o POmn)(Z) l ,  < C(p+e/2)m+n(p+e)-m, zeTo+./2" 

Using the fact that P~ . (resp. QO,.) converges locally uniformly to G/Q,,(O) (resp. 

to Q,,/Q,,(O)) on Tp+,/2 and evaluating the left-hand side of (4.10) at a zero of QO,., 

we see, by the maximum principle and the fact that G(xj) r 0 for all j ,  that any 

limit function of 0 Q, . , . - t  as m ~ oo vanishes at each xj. We obtain a contradiction 

since this limit function can only be a polynomial of degree at most n - 1, which 

is nonzero since the largest coefficient has modulus 1. [] 

Proof  o f  T h e o r e m  4.1 Let @m'qn), for m > 1, be an arbitrary sequence of 

irreducible critical pairs (where ~n depends on m). We know from Proposition 2.3 
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- n + l  2 that f i , , /~ ,  interpolates g in U at the zeros of  z m qn" Since the coefficients of  

q ,  are bounded, we have 

mlim lz~-"+l q](z)l 1/(~+") = Izl 

uniformly on closed subsets of  V. By the extension of  de Montessus de Ballore's 

theorem to interpolating rational functions (cf. [21, Thm. 2]), we now obtain (4.1), 

(4.2), and (4.3), not only for the optimal sequence (/5~,, ~,)  but more generally for 

any sequence (tim, q~) of  irreducible critical pairs. 

Let  us next prove by contradiction that any critical pair is irreducible for m large 

enough. Indeed, an infinite sequence of  reducible critical pairs (/Sin, 5,,) would 

provide us, after reduction, with an infinite sequence of  irreducible critical pairs 

(tim-k, q~-k) for some 0 < k < n, such that Pm-k/qn-k interpolates g in U at the 
,-,r , , m - n +  1 ,.,2 . 

z e r o s  v x  ~ ,  ttn_k. 

(g'qn-k - Pm-k )(Z) = O(zm-n+ l q2n-k (Z) ). 

Upon multiplying by Qn, we get 

( Gqn-k -- QnPm-k )(Z) = O ( z  m - n + l  Qn(z)q2_k(z) ). 

Since the degree of  anPm-k is less than m + 2n - 2k + 1, it is the interpolating 

polynomial  of  Gq, -k  at the zeros of  zm-n+lan(z)q2_k(Z ). From the Hermite 

formula, one has for  z in Up 

1 fT zm-"+lQn(z)q2n-k(Z) 
- -  anPm-k)(Z) = ~t~ tm-n+lan(t~,,2 ft ~ Gqn-k(t) dt, (4.11) 

k )"ln--kk I t -  z 

where p < ~r < R. For z in Up and t in T~, It  - z l  is larger than cr - p so that 

zm--nq-lan(z',~2 (Z "t ~ (p)m--n+l ( 2p ~3n-2k k ]":ln--kk I 
I tm-n+lQn(t)q2n-k(t) - \-~, \or-- p /  

Furthermore,  Gqn-k is bounded on T,, as G and qn-k are (recall " q n _ k ( O )  • 1 and the 
roots are in V). Hence taking absolute values in (4.11) shows the locally uniform 

convergence of  Gqn-k -- Q~Pm-k to zero in Up as m --+ oo. Thus, any limit function 

of  the sequence q~-k, which is a nonzero polynomial  of  degree at most n -  k, should 

vanish at the zeros of  Qn, a contradiction. 

To conclude the uniqueness part of  the theorem, it remains only to apply Theorem 

2.13 with A = Q~ 1 and B = P~ 1, whence k = n - 1 and k' = m. It follows 

f rom the definition of  the Pad6 approximant that (2.33) is met, while (2.32) follows 

from (4.3) applied with K = U, which is valid for  any sequence of  irreducible 

critical pairs as we have seen, and from (4.4), which is valid for m large. [] 
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5. Diagonal H2,R-approximation of the exponential function 

This section is devoted to the proof of the following theorem. 

Theorem 5.1 When g = e z, there exists, for  n large, a unique critical pair  

(P'n-l, q*~) (hence a unique local and global minimum) for  Pb(U,  n - 1, n). 

I f  we set R~ = P~-l/q~, we have 

lim R~(z) = e z 
? 1 ~ O O  

locally uniformly in C. More precisely, f o r  K C C a compact set, there exist two 

constants C1 = C1 (K) and C2 = C2(K) such that for  n large and z E K, 

* 2 ~'l IqT,(z)l 2 ~ 6; 1 le z - gT,(z)l _< C21q.(z)l , 

where 

Moreover, as n ---, co, 

n!(n- 1)! 
(2n)!(2n-  1)!' 

F~-I (z) ~ e z/2 and ?t~,(z) ~ e -z/2 

locally uniformly in C; and for  any constant ~ > 3 the zeros o f ' ~  and the zeros 

off*n_ l eventually lie within n /n  o f  the zeros o f  Q ~ and P~.-1 respectively, where 

P~-1/Q~. denotes the Padd approximant o f  type (n - 1, n) to e z. 

R e m a r k  An analogous theorem holds for the approximation problem 

Pb(V,n - 1,n) to the function (1/z)e l/z. 

The proof of Theorem 5.1 would be quite easy if we knew that the estimates 
of the interpolation error that are available for real nodes (Theorem 5.4) extend 

to complex nodes as well. This question, however, is still open, and the proof of 
Theorem 5.1 will mainly consist of deriving such estimates in the case of H2,R 

critical pairs. 
We first recall independent results from the literature that we shall need in the 

sequel. The first is a result by Trefethen obtained by applying a method of Braess. 
It concerns the asymptotic rate of the error in best uniform rational approximation 

to e z on a disk. 

Theorem 5.2 (cf. [24]) Let m, n >_ 0 be integers, and let Era,, denote the 

error in best uniform rational approximation o f  type (m, n) to e z on the disk ]zl <_ P. 

Then m!n!pm+n+ l 

(5.1) Em,n = ( m + n ) ! ( m + n +  1)! (1 +o(1) )  

a s  m - l -  n ----~ o o .  
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The next two results concern rational interpolation of  the exponential function. 

The first one connects rational interpolants on a disk and on a segment. 

T h e o r e m  5,3 (Technique of  Newman) Let  R > 0 be a fixed real number, 

P /Q a rational function of  type (m, n), and define 

p(x,R) = [P(R()I 2, q(x,R) = [Q(R()[ 2, I([ = 1, x = Re(() .  

Then p(x, R) and q(x, R) are polynomials in x and p(x, R)/q(x, R) is again of  type 
(m, n). Assume that the following three assertions hold: 

(i) The polynomial Q(z) has no zeros on {[z[ < R}. 

(ii) For any complex number z of  modulus R, we have 

e z - Q(Z) < 2[eZl. 

(iii) P/Q interpolates e z in k points (counting multiplicities) in {[zl <_ R}. 
Then the rational function p(x, R)/q(x, R) interpolates e 2m in at least k points of  

[ -  1, 1], counting multiplicities. 

As this result is a key ingredient in establishing Theorem 5.1, we provide a proof  

along the lines of  [7] or [18] (see also Newman [16]). 

P r o o f  We may assume deg P = m, deg Q = n. Let  P(z) = a Himl  (z - ~i), a E R. 
As P is a real polynomial and I(] = 1, we have 

m m 

(5.2) Ie(g012 = a 2 I-[(R( - ~i)(R( - ~i) = a 2 H ( R  2 - 2xR~i + ~2). 
i=1 i=1 

This shows that p(x, R) is a real polynomial in x of  degree at most m, and similarly 

q(x, R) is a real polynomial  of  degree at most n. 

Let  us now prove under the stated assumptions that p(x, R)/q(x, R) interpolates 

e 2~ in k points of  [ -  1, 1]. If  a and fl are complex numbers, note that 

a ~  - f ly  = 2Re{~(a  - fl)} - la -/312; 

applying this equality with a = e z,/3 = P(z)/Q(z), and z = R(  yields 

(5.3) e2~ P(x'R~)=2Re{e~(ez-~q(x,R) 
P(z) e(z) 2. } } -  eZ- Q(z) 

Let  us define 
e-Z  

h(z) = ~ (Q(z)e z - P(z)). 
!d~z) 
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By assumptions (i) and (iii), h is analytic and has k zeros in [zJ _< R. 
Assume first that P / Q  does not interpolate e z on the circle of  radius R. Then h has 

winding number k on this circle. Hence, when an entire circuit has been completed 

on TR, the argument of  the complex number h(z) has increased by 2kTr; and since 

h is a real function, the argument is increased by kTr as z traverses the upper half of  

the circle. Thus, h assumes real values in at least k + 1 points zt = R(xi + iyt), 

I = Xo > " " " > Xk = -- I , yt > O, l = 0 , . . . , k ,  

such that h(xi) and h(xt_ i ) have opposite signs for 1 < l < k. The same is true of  

e~(e z - ~(z)), because it has the same argument as h. Then, by (5.3), there exists 

E E { -  1, 1 } such that 

= O(z/) I e2Rx,_p(Xl ,  R ) 2e(--1) / e ~ ( e z , _ Q ( Z i ) ) l _ { e Z , _  P 2, 
q(xt, R) 

l = 0  . . . .  ,k. 

Assumption (ii) shows that the sign of  the fight-hand side alternates with l, so that 

p(x,  R ) /q (x ,  R) interpolates e 2m in at least k points of [-1,  1]. 
Assume now that P / Q  does interpolate e z at some point on the circle of  radius R. 

We consider a sequence of  radii R~ > R such that lim,__.~ Rn = R. Assumptions 

(i), (ii), and (iii) are satisfied on these circles as soon as R, is sufficiently close to 

R. Now, P / Q  does not interpolate e z on TR, for n large, and we can apply the first 

part of the proof. This gives a sequence of  analytic functions 

f~(z) = q(z, Rn)e 2R"z - p(z ,  Rn) 

having at least k zeros on [-  1,1]. Moreover, this sequence converges uniformly on 

compact sets to the limit function q(z, R)e  2Rz - p(z,  R). By a classical theorem of  

Hurwitz, this function has at least k zeros on [-  1, 1]. [] 

T h e o r e m  5.4 (cf. [5]) Let B (n) := {x~ n) }~=1, n = n , ,  be a t r iangular  sequence 

o f  (not necessari ly  distinct)  real interpolat ion points  con ta ined  in the interval 

[ -  p, p] such that l i m ~  n ,  = ~ ,  a n d  denote  by Rn = f in - l /qn  the rat ional  func t ion  

o f  type (n - I, n) that interpolates e z in B (~). Then 

(5.4) lim Rnv(z) = e z 
V ~ O O  

locally uni formly in C. Furthermore,  the numera tor  and  denomina tor  converge 

separately, that  is, as v --~ cx~ 

(5.5) f n~ - l (Z )  ~ e z/2 and  qn~(z) ~ e -z /z  
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locally uniformly in C, where "On. is normalized so that ~ .  (0) = 1. For K C C a 

compact  set, there exist two constants C1 = C1 (K, p) and C2 = C2(K, p) such that 

f o r  u large and z C K, 

(5.6) 
2n 2n 

El 1-I I z -  x~")l <- ~2'[ ez - Un(z)[ _< C2 1-I Iz-x~ ">1' 
k : l  k=l  

where 64 is as in Theorem 5.1. Moreover, all zeros of'on, say z~ n), satisfy 

(5.7) n - p < _ l z ~ ) l < 2 n + p + l / 3 ,  k =  1 , . . . , n ,  

and remain within distance p from the zeros o f  the Padi  denominator QO. 

Symmetrically, all zeros o f  fin- l, say yl "), satisfy 

(5.8) n + l - p < _ l y l " ) l < _ 2 n + p + l / 3  , n > 2 ,  l =  l , . . . , n -  1, 

and remain within distance p f rom the zeros o f  the Pad~ numerator P~n-I. 

P r o o f  The limits in (5.4), (5.5) and the estimates (5.6) are particular cases of  

[5, Thms. 2.1, 2.2]. That the z~ n)'s and the y}~)'s remain within distance p of  the 
roots of  Q0 and P~,_ 1 respectively follows from the proof  of  [5, Lemma 2.4 (i)] and 

from the remark that 'on/Pn-l again interpolates e z, this time at the points -xJ  ~ for 

1 < j <_ 2n. Keeping this in mind, we see that the lower bounds in (5.7) and (5.8) 
are consequences of  the first assertion of  [5, Prop. 2.8]. As to the upper bounds, 
we rely on the following result (cf. the upper bound in [22, Thm. 2.2 p.198]): 

For any m >_ 1 and n >_ O, all the zeros o f  the Padi  approximant P~176 ) 

o f  type (m,n) to the exponential function lie in {Izl <_ m + n + 4/3}. 

Because of  the (unnormalized) identity Q ~  = P~,m(--Z), the previous 
inequality also holds for the zeros of  Q~ ) when m _> 0 and n _> 1. n 

After this reminder of  known results, we proceed to a series of  lemmas on critical 
pairs that will eventually lead us to the proof  of  Theorem 5.1. We fix g(z) = e z in 

P b ( U ,  n - 1, n), and any critical pair (/3n-1, 'on) relates to this problem. 

L e m m a  5.5 Any critical pair  (Pn- l , 'on) is irreducible. 

P r o o f  If @n- 1, 'on) is reducible, we obtain after reduction an irreducible critical 
pair (un'-I,Xn') with n' < n. If  we write the division 

eZ~n ' = vx,, Xn' + u~,_ 1, 
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we see from Propositions 2.3 and 2.5 that Vx,, has at least n' + [(n - n' + 1 )/2] zeros 
in U, contradicting the normality of  the exponential function in the horizontal strip 

{z : 7r < Im(z) < 7r} (cf. [19, Pb. 206.2]). [] 

L e m m a  5.6 Let (/5~-l,q~)~cN be a sequence o f  critical pairs. Then." 

(i) The zeros o f ~ ,  say a l~) , . . . ,  c~(~ n) counting multiplicities, satisfy f o r  any cr > 1 

and n large enough, 

( 5 . 9 )  n/c~ < I,~"/I _< 2an, k = 1 , . . .  , n ,  

and the same inequality also holds f o r  the zeros ~I ") , ~(") " " , ~ n - I  o f  p . - l .  

(ii) As n ~ oc, 

(5.10) p , - t (Z)  ~ e z/z and q,(z)  --* e -z/2 

locally uniformly in C. 

(iii) There exists a constant C such that f o r  n large, 

1) max I ez - p,-1/q~(z)[  < nC6~42~. 
zET 

(iv) There exists a constant Co such that f o r  n large, 

(5.12) min]e z - P , - l / q , ( z ) l  ~ Co6,. 
zET 

P r o o f  We know by Lemma 5.5 that qn is irreducible and by Proposition 2.8 

that 

] e Z - ~ n _ l / ~ , l < 2 l e Z  l, z E T ,  

is eventually satisfied for n large. To prove (i), we set 

(5.13) pn- l (x)  = I~,,-1(~)1 z, ~.(x) = ]~n(()l 2, {~1= 1, x = Re(i ) ,  

and apply Theorem 5.3 with R = 1 : the rational function R~(z) = ,on-l/q~(z), which 
is of  type (n - 1,n), interpolates e 2z at 2n points of  [ -1 ,  1]. Thus ~ _ l / ~ n ( z / 2 )  

interpolates e z at 2n points of  [ -2 ,  2], and we deduce from Theorem 5.4 that 

(5.14) pn-l(z) /qn(O) --* e z and ~ln(z)/'q~(O) --~ e -z 

locally uniformly in C. Moreover, denoting by a~ ~) the zeros of  ~ (z ) ,  k = 1 , . . . ,  n, 
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n - 2 _ <  2a~ ") _ < 2 n + 7 / 3 .  

From (5.2), we have the relation between zeros of ~, and zeros of  ~,: 

1 
(5.16) 2a~ ~) = c~ n) + - -  k = 1 , . . . , n ,  

o~n) ' 

(") = O(n)  since I~"/I > I and 2a~ ~) = O(n)  by (5.15). But then, (5.9) whence a k 

follows from (5.16) and (5.15). The reasoning leading to the same inequalities with 

a~n) replaced by/3} ") is similar using (5.8), except that we do not know beforehand 

that I~")1 _> 1. This, however, follows for n large from the uniform convergence 

of~_ l /qn tO e z on U asserted in Proposition 2.8. 

To prove (ii), we first observe that (~ )  is a normal family; indeed, when n is 

large enough, we have by (5.9) 

lq.(z)l = k__~l(l - z /c~  ")) <_ (1 +c~lz l /n)"  <_ e ~:zl. 

In addition, recalling the definition of ~. from (5.13), we find that 

k=l 

is bounded from below by some positive constant, thanks to (5.9). Hence 

h. = ~o/V/~.(0) 

again defines a normal family of functions. Let h = l imk_~ h.~ be a limit function 

of this family, and notice that, on T, 

Ih(ff)l 2 = lim ~.~(Re(~))/~.k(0 ) = le-r 
k ~ o c  

by virtue of (5.14). Thus h does not vanish identically, and as h.  is zero-free 

in Un/,~ for n large by (5.9), Hurwitz's theorem implies that h is zero-free in C. 

Therefore h(z) = e -z/2,  because these two functions share the same modulus on 

T and have no zeros in U. Thus, h.  actually converges to e -z/2 since this is the 

only possible limit function. As ~.(0) = 1 for all n, we now deduce that ~.(0) ~ 1 

so that q.(z) ~ e -z/2 as n ---, c~, locally uniformly in C. This gives the right half 

of  (5.10). To get the other half, observe that p . - i  (0) ---, 1 when n --, ~ because 
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e z - ,on- I/qn ~ 0 on U by Proposition 2.8. Reasoning analogous to the first part 

of  the proof  now shows that ft,_ ] is a normal family of  functions on C. As eZ~n 
converges locally uniformly to e z/2 in C and since 

~lne z - Pn-1 = ~ln(e z - ~ . - l /Tn)  

tends to zero on U, we again conclude that e z/2 is the only possible limit function 

of  the family ~n - ]  ). 
We now prove (iii). By (ii), the function e-Z~,_l/Yln(Z) is analytic and has no 

zeros in U2 for n large. Set 

(e-Z/3n-1 (Z)) 
F(Z) = log t ~ ' 

where log designates the principal branch of  the logarithm. For z in U2, we have 

2 

Re(F(z))  -- log II 1 

I eZ I = ~ l o g  I eZ-- 

= - --  O leZl 2 - I ~ n - , / ~ n ( Z ) I  z 
ez 

where we have used the fact that pn- /eZqn(z) is uniformly close to 1 on U2 when 

n is large enough. 
Let 1 < R < 2 and notice that leZ-~n_l/~n(z)J < 21e:l certainly holds on T8 when 

n is larger than some integer independent o f  R. We apply Newman's  technique on 

the circle of  radius R by putting 

~.-I ,R(X) = ]~n-i(gq')l 2, ~n,R(X) = I~n(g~)l 2, I~1 = 1, x = Re(~), 

and see from Theorem 5.3 that pn-l,R/qn,R(X) interpolates e 2e~ at 2n points of  

[ -1 ,  1]. Thus fin-l,R/~n,g(t/2R) interpolates e t at 2n points ~n), k = 1 , . . . ,  2n, of  

[-2R, 2R]. By the upper estimate (5.6) of  Theorem 5.4 applied with K -- [-2R, 2R], 

we have for n large 

2n 

6;11 e' -- ~ , -1 ,g /~ , ,R ( t /2e ) l  <_ C2 I-I  It -~")1,  
k=l 

t C [-2R,  2R], 

where C2 is independent of  1 < R < 2. Upon substituting back x = t /2R,  we get 

2n 

le 2m --Pn-l ,g/qn,g(-~l  <-- C26n I ' I  12Rx _~n/[  < C26n(4R)2n 
k=l 
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or, equivalently, 
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IleZl 2 - I~.-~/~.(z)121 ~ C26n(4R) z' ,  Izl = g .  

Plugging this into (5.17) shows that there exists a constant C3 independent of 

R E ( 1,2] such that for n large and z in UR, 

IRe(F(z)) l  <_ C36n(4R) 2n. 

We now use the Borel-Carath6odory inequality (cf. e.g. [13, Thm. 5.1 p. 238]): 

max IF(z)l < 2 R + 1 R + 3 max IRe(F(z))l + R--S-i-IF(0)I < C36n(4R) 2n, 
Izi=l - R -  1 izl=R -- R -  1 

where we have used that F(0)  is real. By choosing a circle of  radius R = 1 + 1/n, 
we get for n large and some absolute constant Ca 

m a x  IF(z)l < nCn6n42n. 
Izl=l 

Writing now 

e z P"-  ' (z) fin- 1/q,~ (z) 
- ~ , ,  = [eZl  1 e---z I'  

we see that 

e z - pn- l /qn(z )  :- O(F(z)) ,  z E U2. 

Thus, there exists a constant C such that for n large 

le z - ,~n- i /~ , (z ) [  <_ nC6n4 z',  z E T, 

which proves (iii). 

To establish (iv), we appeal again to Theorem 5.3: defining P n - I  and ~, as 

in (5.13), we know from the proof  of  this theorem that there exist 2n + 1 points 

zt = xt + iyt on T, 

1 = xo  > . . .  > X 2 n  ~ -  - -  1, Yt >_ 0, l = 0 , . . . ,  2n, 

such that 

eZ~, P,-lqn (xl) : 2 e ( - l ) t  e~(ez~ P,~-l, qn (Zl)) eZ , pn-I,: , 2 
_ _  - -  - -  - -  t l  - ( Z l )  ' 

(5 .18)  

l - -  0 , . . . , 2 n ,  
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where ~ = +1 and the sign of this expression alternates with 1. In other words, 

r x ~2n is a maximal alternation set for e 2~ -Pn--i /~n(x),  and consequently the set / tIt=o 
2n {2xt}t=0 is a maximal alternation set in [-2,  2] for e ~ - f i n - l / qn (x /2 ) .  From de La 

VallEe-Poussin's theorem for rational functions (cf. [18, Thm. 2.3]), we obtain 

(5.19) mint e 2 ~ -  Pn-lqnA (xt) _< En_l,n(e x, [-2,2}), 

where the right-hand side of (5.19) denotes the error in uniform best rational 

approximation of  type (n - 1,n) to e x on [-2,2]. Letting Cn be the familiar 

Chebyshev polynomial and observing that the monic polynomial of least deviation 

to zero of  degree n on [-2, 2] is 2nCn(x/2), and therefore has norm 2, we can take 

the corresponding nodes as x~ n)'s in (5.6) to obtain a constant C5 such that, for n 

large, 
[-2,  2]) _< C56n. 

Hence, we deduce from (5.18) and (5.19) that for n large, 

m in e z' - t-~-i (zl) 121e 'l - I ez' -- n-l/Utn(zt)ll CsOn. 
1 qn 

But the second modulus in the left-hand side of the previous inequality is uniformly 

bounded away from 0 as n ~ ~ ,  since le z - pn-l/qn(z)l tends uniformly to 0 on 

T. This gives (5.12). [] 

L e m m a  5.7 There exists an integer No and  a real number /3  > 0 such that 

f o r  n >_ No, the func t ion  (e z - pn- l / 'qn(z ) ) /q2(z )  has no zeros in {Izl <_ ~n}, where 

(fin-I, "qn) is an)' critical pa i r  o f  type (n - 1, n). 

P r o o f  We first prove that there exists a real number/3 > 0 such that for n large, 

(5.20) I e~ -ffn-J/~n(z)l  < 2leZl, Izl = 13n. 

To derive (5.20), we use the well-known formula for the Pad6 approximant 

(cf. [17] p. 436) 

Q~ - P~n_,(z) = ( -1 )  n z2n f0 l (2n--- 1)! etZf(1 - t )n - ld t '  

from which we deduce, thanks to the value of the beta integral B(n + 1, n), that 

(5.21) IQ~ z - P~,-l(z)l < e6n, Izl = 1 



26O 

and 

(5.22) 
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IQ~ ez - P~n-l(Z)l _< ee"(/sn)2n6,,, ]Zl =/sn,  

for any/5 > 0. Choose 0 </5  < 1/2. From (5.7), we know that all zeros of  Q0 have 

modulus larger than or equal to n. As Q~ = 1 by our normalization, we get 

and 

( , -  rQolzlr, 

(5.23) (1 -/5)~ < ]Q~ 

Thus, (5.21) and (5.22) imply respectively that 

le z -  P~,_t/Q~ < 4e6n, (5.24) 

and 

(5.25) 

Iz[ = 1, n > 2, 

Iz) =/sn. 

Izl = 1, 

le z _ p~_l/QO(z)] <_ (/sn)Z,~ee,,6n/(1 _/5)n, Iz] =/5n. 

Making use of Lemma 5.6 (iii), together with (5.24), we get for any C6 > C and n 

large 

- - - ~  (z) i pn-l.q___~(z)j _< ~ n l  (z) - e: + e z _ pn-lq,~ (z) _< nC66n 42n, Izl = 1. 

Consequently, as Q~ and qn(z) both converge to e -z/2 on U, there exists a 

constant C7 such that for n large, 

I~_l(z)qn(z) - a~ < nC7~Sn42n, Izl = 1, 

and from the Bernstein-Walsh lemma we deduce, still for n large, 

(5.26) ]e~n-I(Z)'qn(z) - Q~ < nC742n(/sl ' l)2n-ltsn,  IZl =/5r l .  

Moreover, choosing c~ = 1/2/5 in (5.9), we get, again for n large, 

(1/2)" _< I~,(z)l, Izl =/sn. 
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As Q0 satisfies (5.23), whence afortiori the previous inequality, we deduce upon 

dividing (5.26) by ~nQ ~ that for n large, 

1 /~n-I (Z) < nf742n(fln)2n-16n(2) 2n, Izl =/3n 
--~-~(z)-  qn - 

and we obtain by (5.25), still for Izl =/3n and n large, 

(5.27) e z - P~-lqn (z) <_ [/3(1/2)~e~ + C742n] (2/3n)2n6n/3 <- (c8)n(2/3n)2n6n/3 

where C8 = e /2  + 16(77. Stirling's formula yields 

e2n 
~n-  24nn2n. 

Together with (5.27), this implies for c > 0, Izi =/3n, and n large that 

eZ _ Pn-lqn (z) <_ (1 /3-t- ,) (2/3e)2n(c8) n 2 4 n  

As C8 is independent of/3, we may have chosen ~ so small that 

C8e2/3 2 
- - < 1  

4 

which implies (5.20) for n large. Now, because ~ has no zeros in the closed disk 
of radius/3n for n large by (5.9), Theorem 5.3 applies to a circle of  radius ~n: 
if e z - p~-l/q~(z) had more than 2n zeros in (Izl <_/3n} we would get a rational 
function of  type (n - 1, n) which interpolates e x at more than 2n points of  the real 

axis, contradicting the normality of  the exponential function. [] 

L e m m a  5.8 Let/3 and No be as in Lemma 5.7. Pick, for each n >_ No, a 
critical pair (~_  l, q~) and define two sequences of functions as follows: 

e z -Pn-I/qn(z) 
Wn(Z) = An6nq2(z ) , 

where )~ denotes the sign of ( 1 - ~ _  1/q~ (0))/q2 (0), and 

u~(z) = wn(z) ~/2~, u~(O) >_ O, Izl <-/3n. 

(Notice that by Lemma 5.7, )~n, is unambiguously defined and u,~ is a well-defined 
analytic function on { [zl < ~n}.) The following three assertions hold: 
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(i) The sequence (Un) is bounded, uniformly with respect to n, on {[zl </3n}. 

(ii) As n ~ ~ ,  
u . ( z )  ~ 1 

locally uniformly in C. 
(iii) The sequence (w.) is uniformly bounded from above and below on any 

compact set K of  the complex plane for n large, that is, there exist two constants 

C1 = Cl (K) and C2 = C2(K) such that 

c1 ~ Iw.(z)l ~ c2, z E K, n > n(K). 

P r o o f  Fix ~ > 1 such that ~/3 < 1. As the roots of q. are the reciprocals of 

those of ~., we have from (5.9) 

Iqn(z)l > ( /3n-  ~)n > (/3'n) ~, IZl =/3n, 

for any 0 </3 '  </3 and n large enough. Together with (5.27), this implies that for 

n large, 
( Cs )n( 2/3n ) 2n 

Iw.(z)l <_ /3(/3,n)2. , Izl =/3n,  

and by taking 2n-th roots, 

2C9/3 
(5.28) lu.(z)l <_ - - ,  Izl =/3n, 

/3' 

where C9 is any constant larger than v/-~. This proves (i). 

Let g be the limit function of  a subsequence (un k). Letting nk tend to ~ in 

(5.28), we see that g is a bounded entire function in the complex plane, hence, by 

Liouville's theorem, a constant a. Remark that a is a nonnegative real number as 

u.(0) > 0 for all n. Next, we show that a = 1. To this effect, let a'  > a so that for 

n large, 

lu.~(z)l <_ a', Izl _ 1. 

From the definition of  un, we infer that 

(5.29) I ez - ~ . , - i / ~ . , ( z ) l  ~ (a')Z"kO~,lq.~(z)l z, Izl ~ 1. 

Since the modulus of  the roots of qn is less than or equal to s /n ,  we get as soon as 

n > 2c~, 

(5.30) (1/2) 2~ < (1 - o / n ) "  < [q.(z)l < (1 + s/n)" < e ~, [zl = 1; 



CRITERION FOR UNIQUENESS OF A CRITICAL POINT 263 

plugging the upper estimate into (5.29) shows that 

I et - ~ . , - I / ~ , ( z ) l  <_ (a')2n~6.,e 2~, Izl <_ 1. 

If a < 1, we can choose a'  < 1 as well, but this violates the optimal rate of 

convergence given by Theorem 5.2. Hence a >_ 1, and if we let 0 < a" < a, we 

obtain for k large 

max lunk(z)l/mirn lun~(z)l _< a'/a". 
zET 

Taking 2n-th roots in (5.12) and using (5.30), we get 

.-,1/2n o / n  minlu.(z)l < C~/2"maxlq.(z) l  1/" <_ t~ o e , 
zET  -- zET  

and this implies 

(5.31) max lunk(z)l <_ CO/2nke~/n*a'/a'' 
zET 

as soon as k is large enough. Now, we may require in this relation that the ratio 

a'la" be arbitrarily close to 1, and since a > 1 we see from the definition and from 

(5.31) that a = 1 is the only possibility. Therefore all convergent subsequences 

of (un) have the same limit, namely the constant function 1, so that (u~) itself 

converges locally uniformly in C,  which proves (ii). 
We now turn to the proof of  (iii). It is enough to consider K = Up. In the sequel 

we choose n so large that p </3n. The Cauchy formula implies that 

1 fr~ un(t) dt Izl < ~n. u' . (z )  = ~ , ~  . ( z - t ) 2  ' 

From (ii) and the above integral representation, we deduce for n large enough that 

~ n  < e l  I z l = p ,  
lu'.(z)l <_ ( ;Tn-  p)2 - n '  

where we have used that a~3 < 1, and where al is any real number larger than/7 -2. 

The relation between u~ and w~ yields w~/w~ = 2nu~/u~. As u~ tends uniformly 

to I on {Izl < P}, we obtain 

' Izl < I w . / w . ( z ) l  <_ ~2,  _ p, 

for any a2 > 2ai  and n large. To obtain uniform bounds for wn on {Izl ~ p}, we 

introduce its logarithm 

log(wn(z~) = 1og(wn(zn)) + w---~(t)dt, 
Wn 
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where z, E {Izl ~ p} will be chosen below. We have 

log wn(z) wn(z) I < log ~ _< 2p~2, 

and thus 

L. BARATCHART, E. B. SAFF AND E WIELONSKY 

Izl 5 p, 

(5.32) #log #w~(z)ll ~ [log Iw~(zn)l# + 2p~2, Izl ~ p. 

Besides, the upper estimate (5.12), along with the lower bound in (5.30), imply 

that 

(5.33) min Iwn(z)] < C016 ~. 
zET 

Let ~n be a point on T where the above minimum is attained and assume that the 

maximum modulus of  w~ in {Izl _< p} is larger than 1. If IWn(~n)l _< 1, we choose 
for z~ a point where [w,(z~)f = 1, which leads to 

I log Iwn(z)ll ~ 2pa2 whence exp(-2pa2)  < [w~(z)] < exp(2pc~2), ]zl < p. 

If  IWn(Zn)l > 1, we choose zn = zn and we get, in view of  (5.33), 

l log Iwn(z)[[ _< log(C016 ~) + 2pc~2, Izl _< p, 

and so 

Co 116 -~  exp(-2pa2)  < Iw.(z)l ~ c016 ~ exp(2pa2), Izl < p. 

If  [wn(z)l _< 1 in {Izl ~ p), we may take C2 = 1, and all we have to establish in order 
to get C'I is, in view of  (5.32), that there exists a sequence of points (zn) such that 

I wn (zn)[ is bounded away from zero. However, wn cannot tend to zero uniformly in 

Up without contradicting the optimal rate of  convergence given by Theorem 5.2, 

because of the very definition of wn and of  the upper bound in (5.30). [] 

0 L e m m a S . 9  Let P~n_2/ Qn_ I be the Pad~ approximant of type ( n -  2,n - l ) to 
e z and (fin-1, "qn) be any critical pair. We have, for n large enough, 

31e z --Pn-l/~n(Z)l < le z -  ~_e/Q~ Izl = 1. 
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P r o o f  On the one hand, we know from Lemma 5.8 (iii) that there exists a 

constant C'2 such that for n large, 

I ez - ~ . - l / ~ . ( z ) l  <_ C26.1q.(z)l z <_ Cz6.e 2~, Izl = 1, 

where the last inequality uses the upper bound in (5.30). On the other hand, we 

know from Theorem 5.4 that there exists a constant Cl such that, for n large, 

Cl~n-I <_ le z -  ~_2 /Q~ Izl = I. 

Consequently, in order to prove the lemma, it suffices to show that, for n large, 

3C26~e 2~ < Cl 6~_ I. But, after reduction, this is equivalent to 

3C2e 2'~ < 4CI ( 2 n -  1) 2, 

which is evident for n large. 

P r o o f  o f  T h e o r e m  5.1 For n large, uniqueness of  a critical pair (/3~_ l, qT,) for 

the approximation problem Pb(U,  n - l, n) to e z follows from Lemma 5.5, Lemma 

5.9 and Theorem 2.13 with A = Qn-~ l and B = P~-2- The separated convergence of 
Pn- l and q~-* was proved in Lemma 5.6 (ii). The lower and upper estimates for the 

error e z - P n - 1 / q n (  ) are given by Lemma 5.8 (iii) (see the definition of  w~ in this 

lemma). We finally prove the estimates relating the zeros of  fiT ,_ i and qT, to those 

of P~_ l and Q0 respectively. By (5.9), we know that for any a > 1 and n large 

the 2n interpolation points ofpn-1/~ln to e z in U lie in U~/,.  Thus, Theorem 5.3 

eventually applies on the circle of  radius a /n ,  and Theorem 5.4 shows that twice 

the poles of  the rational interpolant with real nodes thus obtained lie within 2 a / n  
of the zeros of Q0. From (5.16) and the lower estimate in (5.9), we deduce that the 

zeros of qn lie within 3 a / n  from the zeros of Q0, for n large. The corresponding 

assertion about the zeros of~n_ i and P~_ 1 is derived in the same way. [] 
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