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Abstract

In order to reduce the Gibbs phenomenon exhibited by the partial Fourier
sums of a periodic function f , defined on [−π, π], discontinuous at 0, Driscoll and
Fornberg considered so-called singular Fourier-Padé approximants constructed from
the Hermite-Padé approximants of the system of functions (1, g1(z), g2(z)), where
g1(z) = log(1 − z) and g2(z) is analytic, such that Re (g2(e

it)) = f(t). Convincing
numerical experiments have been obtained by these authors, but no error estimates
have been proven so far. In the present paper we study the special case of Nikishin
systems and their Hermite-Padé approximants, both theoretically and numerically.
We obtain rates of convergence by using orthogonality properties of the functions
involved along with results from logarithmic potential theory. In particular, we ad-
dress the question of how to choose the degrees of the approximants, by considering
diagonal and row sequences, as well as linear Hermite-Padé approximants. Our
theoretical findings and numerical experiments confirm that these Hermite-Padé
approximants are more efficient than the more elementary Padé approximants, par-
ticularly around the discontinuity of the goal function f .
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1 Introduction

To reduce the Gibbs phenomenon exhibited by the truncated Fourier series of a periodic
discontinuous function f , many different techniques have been proposed, see [16] and the
more recent [4, 5] for a review of some of the recent methods, and [18] for localizing
such discontinuities. For a real function f having a logarithmic singularity, the location
of which is known, Driscoll and Fornberg [8] suggested the construction of a class of
approximants which incorporate the knowledge of that singularity. More precisely, their
approach is the following one: let g2 denote the series on the unit circle such that

f(t) = Re (g2(e
it)).
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Then, the goal is to approach g2 on the unit circle (and more precisely its real part).
It is typical that the singularity of the function f , located at 0 say, corresponds to a
logarithmic singularity for g2, then located at 1, and that this function g2 is analytic in
the complex plane, with a branch cut that can be taken as the interval [1,∞). Defining
g1(z) = log(1 − z), we obtain an explicit function with a singularity at 1 of the same
type, and we may consider the problem of determining polynomials p0, p1, p2 such that
the residual

p0(z) + p1(z)g1(z) + p2(z)g2(z)

has a zero of highest order at the origin, namely n0 + n1 + n2 + 2 where nj denotes the
degree of pj , j = 0, 1, 2. By assumption, the first coefficients of the Fourier expansion of
f are known, hence the first coefficients of the Taylor expansion of g2 at the origin are
also known, so that the above problem can be solved.

Driscoll and Fornberg propose the approximation

Π~n(z) = −p0(z) + p1(z)g1(z)

p2(z)
, (1.1)

of the function g2. Note that when p1(z) = 0 (or formally n1 = −1) we recover the
usual Padé approximant of g2 of type (n0, n2) and if moreover p2 is constant, then Π~n(z)
reduces to the usual Taylor sums. The computation of the Padé approximants, by means
of the ǫ-algorithm applied to the sequence of partial Taylor sums of g2, was already
suggested by Wynn [28] as an interesting way to smooth the Gibbs phenomenon for
functions with jumps. Brezinski displayed very convincing numerical experiments [6],
and, subsequently, an analysis of the convergence of the Padé approximants along the
columns of the Padé table for a function g2 which is the sum of some hypergeometric
function and a smooth function was performed by three of the authors in [3]. It is shown
there that the consideration of a denominator of degree n2 in the approximants improves
the rate of convergence by a factor n−2n2

0 . Note that if g2 is a Stieltjes function, then the
rate of convergence is even geometric for ray sequences where n0, n2 both go to infinity
with n0/n2 tending to some constant. For an application of Padé approximants to filtering
in the context of nonlinear partial differential equations such as the incompressible inviscid
Boussinesq convection flow see [7].

In their paper, Driscoll and Fornberg gave numerical evidence that considering an
additional function g1 as described above allows one for still better approximations of g2.
Indeed, if the jump location is known it makes sense to incorporate this information into
the approximant itself. The approach via Hermite–Padé approximants is motivated by
the fact that, provided p2(0) 6= 0, the error of the approximant Π~n has the highest order of
vanishing at the origin, among all approximants of the form (1.1). This property entails
for instance consistency, namely if g2 is of the form as on the right-hand side of (1.1),
then Π~n(z) = g2(z).

If both functions g1 and g2 are analytic in the unit disk, then one should expect that
the above approximants give a small error around the origin, and hopefully on the unit
circle |z| = 1 (except maybe in a neighborhood of the singularity 1), which is the set of
arguments where we are interested in. Of course, the convergence of the approximants
Π~n to the goal function g2 essentially depends on the location of their poles.

The aim of this paper is to study the convergence of sequences of Hermite–Padé
approximants for a class of functions known in approximation theory as Nikishin systems.
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Our analysis is based mainly on orthogonality properties exhibited by the polynomials
and functions involved, along with results from the logarithmic potential theory.

In Section 2, we define the model problem we are interested in and recall the definition
of the Hermite–Padé approximants we want to study. In Section 3, we derive the rate of
convergence achieved by the Hermite–Padé approximants. These estimates include the
solution of a vector equilibrium problem with external field. In Section 4, we discuss error
estimates for some significant particular cases, namely diagonal and row sequences of ap-
proximants and linear Hermite-Padé approximants (approximants without denominator)
and compare these estimates with those achieved by the simpler Padé approximants. In
the last section, we present numerical experiments. In particular, we describe a numeri-
cal procedure to compute the solution of the involved vector equilibrium problem. This
illustrate our theoretic results and allows one to verify the agreement of the estimated
rates of convergence with the effective errors.

2 Hermite–Padé approximants

Throughout, Pn will denote the space of complex polynomials of degree at most n. We
assume that the function f to be reconstructed has a discontinuity, the location of which is
known (say, at 0), but not its amplitude. Let f ∈ Cn1([−π, π]\{0}) be a periodic function
with left and right derivatives of order 0, 1, . . . , n1 at t = 0. A typical such function is the
saw-tooth function

s(t) = π + t for t ∈ (−π, 0], s(t) = −π + t for t ∈ (0, π], (2.1)

with a jump of magnitude 2π at t = 0 in [−π, π), where we notice that Im (g1(z)) =
arg(1− z) = s(t)/2 for z = eit. A basic observation in the work of Eckhoff [9, 10, 11] was
that there exist real numbers d0, . . . , dn1

such that the function

e(t) := f(t) −
(

n1∑

j=0

dj sinj(t)

)
s(t) ∈ Cn1([−π, π])

is ”smooth” and can be well approximated by a Fourier series of order n0. In terms of
z = eit, by writing

f(t) = Re (g2(z)),

n1∑

j=0

dj sinj(t) = −2 Im (p1(z)),

a reasonable approximation is

f(t) ≈ Re
(
−p0(z) − p1(z) log(1 − z)

)

with unknown polynomials p0 ∈ Pn0
, p1 ∈ Pn1

, such that p0(z)+p1(z) log(1−z)+g2(z) =
O(zn0+n1+2) as z → 0. This is a particular case of the Hermite–Padé approximants defined
as follows (for more details and properties see for instance [2, Chapter 8, Section 5]).
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Definition 2.1. Let g1(z), g2(z) be two functions analytic at 0 and define, up to a
normalization factor, the polynomials pj ∈ Pnj

for j = 0, 1, 2 such that

p0(z) + p1(z)g1(z) + p2(z)g2(z) = O(zn0+n1+n2+2) as z → 0. (2.2)

The Hermite–Padé approximant of g2(z) (or in short HP approximant) of order ~n =
(n0, n1, n2) is defined as

Π~n(z) = −p0(z) + p1(z)g1(z)

p2(z)
. (2.3)

Choosing g1(z) = log(1 − z), the singular Fourier-Padé approximants of f(t) =
Re (g2(e

it)) introduced by Driscoll and Fornberg [8] are then given by the real part
Re (Π~n(eit)), and hence we wish to discuss the error of HP approximants on the unit
circle. We should notice that (2.3) is an unusual expression for the approximation of
functions via Hermite-Padé forms defined by (2.2), for more classical approaches includ-
ing integral approximants we refer the reader to [2].

For n2 = 0, we recover from (2.3) the approach proposed by Eckhoff, based on approx-
imants with built-in singularity, see [9, 10, 11]. If instead p1(z) = 0 (or formally n1 = −1)
then we simply get the Fourier-Padé approximants. A study of these last approximants
as a tool to reduce the Gibbs phenomenon has been done in [3]. In particular, their rates
of convergence have been estimated for various functions with jumps.

We will restrict ourselves to the above approximants (2.3) for the class of Markov
functions

g1(z) = log(1 − z) = z

∫ 1

0

dx

1 − xz
, g2(z) = z

∫ 1

0

u(x) dx

1 − xz
, (2.4)

with

u(x) =

∫ d

c

dτ(y)

x − y
, [c, d] ∩ [0, 1] = ∅. (2.5)

In the special case dτ(y) = (−y)αdy with α ∈ (−1, 0), and (c, d) = (−∞, 0), we obtain
for g2 a scalar multiple of the function G(α,0) whose Padé approximants were considered
in [3].

The set of Markov functions (1, g1(1/z), g2(1/z)) is an example of a Nikishin system.
Such systems were originally studied in [20, 21]. It is remarkable that the polynomials
and residuals involved in their Hermite–Padé approximants satisfy orthogonality relations
with respect to varying weights. As a consequence, their n-th root asymptotics can be
given in terms of the solution of a vector equilibrium problem in potential theory. This
theory is described in [22, Chapter 5].

3 Potential theory and estimates on the rate of con-

vergence

In this section, we study the rate of convergence of the Hermite–Padé approximants,
introduced above, as the total degree n = n0 + n1 + n2 → ∞. Throughout, we assume
that n0 ≥ n1 ≥ n2 and consider ray sequences n0, n1, n2 such that

n0

n
→ ρ0,

n1

n
→ ρ1,

n2

n
→ ρ2, (3.1)
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as n tends to infinity. Note that from the assumption n0 ≥ n1 ≥ n2 follows that

ρ0 ≥ ρ1 ≥ ρ2.

The rate of convergence in a nth-root sense can be obtained via a vector equilibrium
problem in potential theory with external fields. To state the result, we need the notion
of a logarithmic potential in the complex plane,

Uµ(z) =

∫
log

1

|z − t|dµ(t),

associated to a probability measure µ. By probability measure, we mean, as usual, a
positive measure of mass 1. An example of such a measure is the Dirac measure δ0 with
a mass 1 at the origin. Note that the potential Uµ has a physical interpretation, namely
it corresponds to the electric potential of a positive unit charge whose distribution in
the plane is described by the measure µ. The usefulness of logarithmic potentials in
approximation theory is easily understood from the elementary remark that a polynomial
is basically the exponential of a discrete potential, more precisely, for a polynomial p of
degree n, we have

1

n
log(1/|p(z)|) = Uµn(z),

where µn denotes the discrete measure with masses 1/n at the zeros of p. For general
facts about logarithmic potential theory, we refer the reader to [19, 23, 24]. The vector
equilibrium problem and its numerical resolution is discussed in more details in Section
5.2.

We will also restrict ourselves to the case where the measure τ in the definition (2.5)
of u(x) has some kind of regularity. More precisely, we will assume that τ is regular in
the sense of [25] (we will write τ ∈ Reg in the sequel), meaning that the corresponding
orthonormal polynomials have regular n-th root asymptotic behavior, see [25, Chapter 3]
for details. Different criteria for this notion of regularity, as well as their sharpness, are
discussed in [25, Chapter 4]. For instance, one of the simplest criteria is the Erdős-Turan
condition, which says that the measure τ supported on the interval [c, d] is regular if
its Radon–Nikodym derivative with respect to the Lebesgue measure is positive almost
everywhere on this interval.

Now, the n-th root asymptotic behavior for the error function is described by the
following theorem.

Theorem 3.1. Assume that [c, d] is a compact interval and that the measure τ ∈ Reg.
Then, the error function (g2 − Π~n)(s) satisfies, locally uniformly for s = 1/z, z ∈ C \
([0, 1] ∪ [c, d]),

lim
n→∞

1

n
log |(g2 − Π~n)(s)| = (ρ1 + ρ2)U

µ(z) + ρ2U
ν(z) + (ρ0 − ρ2)U

δ0(z) − W − w, (3.2)

In (3.2), the probability measures µ and ν, and the constants W and w, solve a specific
vector equilibrium problem in potential theory which is precisely stated in Lemma 3.5.

The proof of Theorem 3.1 is based upon orthogonality relations satisfied by quantities
related to the Hermite-Padé approximants, that we introduce now. We set

An(z) = zn1p1(1/z), Bn(z) = zn2p2(1/z), Cn(z) = An(z) + zn1−n2Bn(z)u(z),
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where p1 and p2 satisfy (2.2). Hence we have that, as z → ∞,

Rn(z) := zn0p0(1/z)+An(z)zn0−n1g1(1/z)+Bn(z)zn0−n2g2(1/z) = O
(

1

zn1+n2+2

)
, (3.3)

with deg An ≤ n1, deg Bn ≤ n2. In the next lemma, we show that deg Bn = n2. Hence,
we may (and do) assume throughout that the normalization of (3.3) is chosen so that Bn

is a monic polynomial. Let us also mention that Cn(z) cannot have more than n1 +n2 +1
zeros in (0, 1). We let the reader check that this fact follows by using an argument similar
to the one given in the proof of [22, Theorem 4.4 p.141].

Lemma 3.2. The expression Cn(z) satisfies the following orthogonality relations,

∫ 1

0

xn0−n1Cn(x)xkdx = 0, k = 0, . . . , n1 + n2, (3.4)

and it has exactly n1+n2+1 simple zeros in (0, 1). Let Hn denote the monic polynomial of
degree n1 +n2 + 1 whose roots are these zeros. Then, the relations (3.4) may be rewritten
as

∫ d

c

xkxn1−n2
Bn(x)

Hn(x)
dτ(x) = 0, k = 0, 1, . . . , n2 − 1. (3.5)

Hence, Bn is of exact degree n2 with all its zeros, which are simple, in (c, d).
The ratio Cn/Hn admits the following integral representation in C \ (c, d),

Cn(x)

Hn(x)
=

1

Bn(x)

∫ d

c

tn1−n2
B2

n(t)

x − t

dτ(t)

Hn(t)
. (3.6)

Proof. By applying Cauchy’s formula in a neighbourhood of infinity, we obtain in view of
(3.3) that ∫

Tρ

zkRn(z)dz = 0, k = 0, . . . , n1 + n2,

where Tρ is any circle of radius ρ large enough. Plugging the integral representations for
g1 and g2 and using Fubini’s formula, we get

∫ 1

x=0

(∫

z∈Tρ

zk

(
zn0−n1

An(z)

z − x
+ zn0−n2u(x)

Bn(z)

z − x

)
dz

)
dx = 0,

which leads to (3.4) by applying Cauchy’s formula to the inner integral. These relations
imply that Cn(z) has at least n1 + n2 + 1 simple zeros in (0, 1) and so it has exactly
n1 + n2 + 1 such zeros by the remark before the statement of the lemma.

Next, Cn(z)/Hn(z) is analytic in C \ (c, d) and is of order z−n2−1 at infinity. Let Γ be
a contour around (c, d). The Cauchy formula applied in the exterior of Γ shows that

∫

Γ

zk Cn(z)

Hn(z)
dz = 0, k = 0, . . . , n2 − 1.
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If, moreover, Γ does not enclose (0, 1), which is always possible, we deduce by using the
expression for Cn that

∫

Γ

zkzn1−n2
Bn(z)

Hn(z)
u(z)dz = 0, k = 0, . . . , n2 − 1.

Making use of the integral formula (2.5) for u along with Fubini’s formula, we obtain
(3.5). Finally, to prove (3.6), we make the additional assumption that the above contour
Γ does not enclose the given point x in C \ (c, d). By Cauchy’s formula applied outside of
Γ, we get

Cn(x)

Hn(x)
= − 1

2iπ

∫

Γ

Cn(ζ)

Hn(ζ)

dζ

ζ − x
= − 1

2iπ

∫

Γ

ζn1−n2Bn(ζ)
u(ζ)

Hn(ζ)

dζ

ζ − x

=

∫ d

c

tn1−n2
Bn(t)

x − t

dτ(t)

Hn(t)
=

1

Bn(x)

∫ d

c

tn1−n2
B2

n(t)

x − t

dτ(t)

Hn(t)
,

where we have used the orthogonality relations (3.5) in the last equality.

In order to establish the rate of convergence of the Hermite–Padé approximants, we
need additional results. We next give an integral representation of the error function
Rn(z) defined in (3.3).

Lemma 3.3. For z a complex number not in (0, 1), it holds that

Rn(z) =
1

Hn(z)

∫ 1

0

xn0−n1Hn(x)
Cn(x)

z − x
dx. (3.7)

Proof. From the definitions of g1, g2, and Rn, the product HnRn may be written as

Hn(z)Rn(z) = Hn(z)zn0p0(1/z) +

∫ 1

0

(zn0−n1An(z)Hn(z) − xn0−n1An(x)Hn(x))
dx

z − x

+

∫ 1

0

(zn0−n2Bn(z)Hn(z) − xn0−n2Bn(x)Hn(x))
u(x)dx

z − x

+

∫ 1

0

(xn0−n1An(x) + xn0−n2Bn(x)u(x))
Hn(x)dx

z − x
.

The first three terms in the right-hand side of the previous equation are polynomials,
the sum of which vanishes because Hn(z)Rn(z) and the last integral behave like O(1/z)
at infinity. Hence Hn(z)Rn(z) equals that last integral which gives (3.7) in view of the
definition of Cn.

We also need the following classical result about orthonormal polynomials with respect
to varying weights.

Lemma 3.4. Let σ be a probability measure with support in a given interval [α, β], and

let wn, n ≥ 0, be a sequence of continuous positive weights on [α, β] such that w
1/n
n (x)

tends to w(x) = e−2Q(x) uniformly in [α, β]. Define {pk,n}, k, n ≥ 0, to be the sequence of
orthonormal polynomials with respect to the varying weights wn, satisfying

∫
pj,n(x)pk,n(x)wn(x)dσ(x) = δjk, n ≥ 0.
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Moreover, assume that the measure σ ∈ Reg. Then, as n → ∞, the normalized zero
counting measure χn of the polynomial pn,n converges in the weak-star sense to the measure
σw supported on [α, β], characterized by the variational equations

Uσw (x) + Q(x) ≥ W, x ∈ [α, β],

Uσw (x) + Q(x) = W, x ∈ supp (σw),

where Uσw (x) denotes the logarithmic potential of the measure σw and W is some real
constant.

Proof. This well-known result follows for instance from the fact that it holds true for any
sequence of monic polynomials, asymptotically minimal for the weighted sup norm on
[α, β] and the fact that the weighted sup norm and the weighted L2 norm associated to a
regular measure are asymptotically equivalent in the n-th root sense, see respectively [24,
Theorem 4.2 p.170] and [25, Theorem 3.2.3 p.84] for details.

In the next lemma, we describe the vector equilibrium problem in potential theory
with external fields that we mentioned in Theorem 3.1.

Lemma 3.5. The problem of finding two probability measures µ and ν, respectively sup-
ported in [0, 1] and [c, d], satisfying the the variational conditions

2(ρ1 + ρ2)U
µ(x) − ρ2U

ν(x) + (ρ0 − ρ1)U
δ0(x) ≥ W, x ∈ [0, 1], (3.8)

2(ρ1 + ρ2)U
µ(x) − ρ2U

ν(x) + (ρ0 − ρ1)U
δ0(x) = W, x ∈ supp (µ), (3.9)

and

2ρ2U
ν(x) − (ρ1 + ρ2)U

µ(x) + (ρ1 − ρ2)U
δ0(x) ≥ w, x ∈ [c, d], (3.10)

2ρ2U
ν(x) − (ρ1 + ρ2)U

µ(x) + (ρ1 − ρ2)U
δ0(x) = w, x ∈ supp (ν), (3.11)

where W and w are some real constants, admits a solution, which is unique.

Remarks. The proof of Lemma 3.5 follows from classical arguments in potential theory.
We omit the details, but refer the reader also to the discussion in §5.2. Note that the
external field given by the potential U δ0 corresponds to the occurrence of the weights
xn0−n1 and xn1−n2 in the orthogonality relations (3.4)–(3.5). Such an additional weight
also appears e.g. in [12], where generalized Hermite–Padé approximants of type II of
Nikishin systems are investigated.

Finally, we can give the proof of Theorem 3.1.

Proof of Theorem 3.1. Let µn and νn respectively denote the normalized zero counting
measures of the polynomials Hn and Bn, and let (µ, ν) be any limit point in the weak
topology of the sequence (µn, νn). By (3.5), we know that Bn(x) is orthogonal with respect
to the varying weight xn1−n2/Hn(x)dτ . Since we are assuming that dτ is regular and since

lim
n→∞

1

n
log |xn1−n2/Hn(x)| = −(ρ1 − ρ2)U

δ0(x) + (ρ1 + ρ2)U
µ(x),

we deduce from Lemma 3.4 that ν and µ satisfy (3.10)–(3.11).
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Next we determine the n-th root asymptotics of the ratio |Cn(x)/Hn(x)|. For that we
use the integral representation (3.6). We have

∣∣∣∣
∫ d

c

tn1−n2
B2

n(t)

x − t

dτ(t)

Hn(t)

∣∣∣∣ ≤
1

mint∈[c,d] |x − t|

∫ d

c

|t|n1−n2B2
n(t)

dτ(t)

|Hn(t)|
,

and

∣∣∣∣
∫ d

c

tn1−n2
B2

n(t)

x − t

dτ(t)

Hn(t)

∣∣∣∣ ≥





1

maxt∈[c,d] |x − t|
∫ d

c
|t|n1−n2B2

n(t)
dτ(t)

|Hn(t)|
, if x is real,

|Im x|
maxt∈[c,d] |x − t|2

∫ d

c
|t|n1−n2B2

n(t)
dτ(t)

|Hn(t)| , if Im x 6= 0.

Consequently, since we assume that the interval (c, d) is compact, the previous lower
bound does not vanish and the problem of estimating the integral in (3.6) is equivalent
to that of estimating ∫ d

c

|t|n1−n2B2
n(t)

dτ(t)

|Hn(t)|
,

in the n-th root sense. Applying [25, Theorem 3.2.3], the above weighted L2 norm of Bn

behaves in the n-th root sense just as its weighted sup norm

sup
t∈(c,d)

|t|n1−n2
B2

n(t)

|Hn(t)|
.

In terms of the limit measures µ and ν, the logarithm of its n-th root tends, as n → ∞,
to −w where we set

w = inf
t∈(c,d)

(2ρ2U
ν + (ρ1 − ρ2)U

δ0 − (ρ1 + ρ2)U
µ).

Note that this uses the fact that the polynomials Bn have been normalized to be monic.
Now, with (3.6), we get

lim
n→∞

1

n
log

∣∣∣∣
Cn(z)

Hn(z)

∣∣∣∣ = ρ2U
ν(z) − w. (3.12)

Next, the relations (3.4) may be interpreted as the orthogonality of Hn(x) with respect
to the varying weights xn0−n1Cn(x)/Hn(x). Lemma 3.4 and (3.12) thus show that ν and
µ satisfy (3.8)–(3.9). Therefore, by uniqueness of the solution to the problem displayed
in Lemma 3.5, we must have ν = ν and µ = µ. This also shows the weak convergence of
the entire sequences of measures

νn → ν, µn → µ, as n → ∞.

Finally, we use the integral representation (3.7) to prove that the function Rn(z), defined
by (3.3), satisfies

lim
n→∞

1

n
log |Rn(z)| = (ρ1 + ρ2)U

µ(z) − W − w, z ∈ C \ [0, 1], (3.13)
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locally uniformly. By an argument as above, the integral in (3.7) behaves in a n-th root
sense as the L2-norm of Hn with respect to the varying weights xn0−n1Cn(x)/Hn(x), which
itself behaves like its weighted sup norm

sup
x∈(0,1)

|x|n0−n1

∣∣∣∣
Cn(x)

Hn(x)

∣∣∣∣H
2
n(x).

The logarithm of the n-th root of the above sup tends, as n → ∞, to

sup
x∈(0,1)

(−(ρ0 − ρ1)U
δ0(x) + ρ2U

ν(x) − 2(ρ1 + ρ2)U
µ(x)) − w = −W − w,

where we have used (3.12), the fact that w = w, and the variational conditions (3.8)–(3.9)
in the last equality. Along with the fact that µn → µ as n → ∞, we get (3.13). From
that, the definition (3.3) of Rn(z), and the fact that νn → ν as n → ∞, (3.2) follows.

4 Comparison of particular sequences of Hermite–

Padé approximants with Padé approximants

In this section we compare the rate achieved by the Hermite–Padé approximants, obtained
in Theorem 3.1, with that of the simpler Padé approximants. In particular, the latter
do not incorporate a singularity corresponding to the one found in the goal function
g2. We perform this comparison for sequences of approximants of some specific degrees
(n0, n1, n2), as n → ∞, which we think are of some significance with respect to numerical
experiments. Namely, we will consider the case of approximants corresponding to ray
sequences with limits ρ0 ≥ ρ1 = ρ2 > 0 (which we will call here the diagonal case), the
case of linear approximants, that is, without denominator (n2 = 0), which was studied
by Eckhoff, and finally the “row case” such that the degree of denominator n2 remains
constant as n = n0 + n1 + n2 goes to infinity. Here the denomination “row case” refers
to the usual Padé table where Padé approximants with denominators of the same degree
are put in rows, see [2, Chapter 1]. Of course, in each case, the comparison will be made
with Padé approximants of a type ~m = (m0,−1, m2), m0 ≥ m2, such that the total
degree m = m0 +m2 equals n+1, so that the calculations of the Hermite–Padé and Padé
approximants assume the knowledge of the same number of Taylor coefficients of the goal
function g2. Moreover, since the computations of the Hermite–Padé approximants of type
(n0, n1, n2) and of the Padé approximants of type (m0,−1, m2) require the resolutions
of linear systems of dimensions n1 + n2 + 1 and m2 respectively, we shall choose m2 =
n1 + n2 + 1. In this way, the computations of the two kinds of approximants will be of
the same order of complexity, in the sense that they are based on the resolution of linear
systems of equal dimensions. Note that the previous conditions completely determine the
type of the Padé approximant, namely it has to be chosen so that

m0 = n0, m2 = n1 + n2 + 1.

To perform our comparison, we first recall the rate of approximation achieved by the
Padé approximants. Assume that the rational fraction Θ~m = −P̃0/P̃2 is the (unique)
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Padé approximant of type (m0,−1, m2), m = m0 + m2, of the function g2 at the origin,
that is, the following property holds true,

P̃0(z) + P̃2(z)g2(z) = O(zm0+m2+1) as z → 0,

or equivalently,

R̃m(z) = zm0 P̃0(1/z) + B̃m(z)zm0−m2g2(1/z) = O
(

1

zm2+1

)
as z → ∞, (4.1)

where B̃m(z) = zm2 P̃2(1/z). Throughout, the normalization is chosen so that B̃m is a
monic polynomial. As in the proof of Lemma 3.2, by using the Cauchy formula and the
assumption that m0 ≥ m2, we can show the orthogonality relations,

∫ 1

0

xm0−m2B̃m(x)xku(x)dx = 0, k = 0, . . . , m2 − 1, (4.2)

from which follows in particular that all the zeros of B̃m lie in (0, 1) and are simple.

Moreover, the function R̃m(z) has the following integral representation,

R̃m(z) =
1

B̃m(z)

∫ 1

0

xm0−m2B̃2
m(x)

u(x)

z − x
dx. (4.3)

Next, consider a ray sequence m0, m2 → ∞ such that

m0

m
→ σ0,

m2

m
→ σ2,

as m = m0 + m2 tends to infinity. Note that the assumption m0 ≥ m2 implies that
σ0 ≥ σ2. Then, as in the previous section, the rate of convergence in a m-th root sense of
the corresponding Padé approximants can be given in terms of an extremal probability
measure µ̃, supported on [0, 1], solution of an equilibrium problem in potential theory.
Here, the measure is characterized by the following variational conditions:

2σ2U
eµ(x) + (σ0 − σ2)U

δ0(x) ≥ W̃ , x ∈ [0, 1], (4.4)

2σ2U
eµ(x) + (σ0 − σ2)U

δ0(x) = W̃ , x ∈ supp (µ̃). (4.5)

Then, it can be proved, in the same way as in the previous section, that

lim
m→∞

1

m
log |R̃m(z)| = σ2U

eµ(z) − W̃ , z ∈ C \ [0, 1], (4.6)

and that the error function (g2 − Θ~m)(s), s = 1/z, satisfies for z ∈ C \ [0, 1],

lim
m→∞

1

m
log |(g2 − Θ~m)(s)| = 2σ2U

eµ(z) + (σ0 − σ2)U
δ0(z) − W̃ . (4.7)
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4.1 Diagonal Hermite–Padé approximants

Here, as explained at the beginning of the section, we study a sequence of approximants
of type ~n = (n0, n1, n2) such that the ratios in (3.1) satisfy ρ0 ≥ 2ρ1 = 2ρ2 > 0. We
compare these approximants to Padé approximants of type ~m = (n0,−1, n1 +n2 +1) and
show that the two kinds of approximants behave differently near the point 1, which is the
point of special interest regarding the Gibbs phenomenon. For our conclusion to hold,
the type of the Padé approximants is not important, and we could have chosen different
types, as long as the limits σ0 ≥ σ2 remain positive. Note that, with our choice of degrees,
we have σ0 = ρ0 > 0 and σ2 = ρ1 + ρ2 = 2ρ1 > 0.

Proposition 4.1. Assume that the hypotheses of Theorem 3.1 are satisfied and that the
degrees of the Hermite–Padé and Padé approximants Π~n and Θ~m are chosen as above.
Then,

lim
z→1

|z|=1,z 6=1

lim
n→∞

|(g2 − Π~n)(z)|1/n < 1, lim
z→1

|z|=1,z 6=1

lim
m→∞

|(g2 − Θ~m)(z)|1/m = 1. (4.8)

Consequently, there exists a neighborhood of 1 in C \ (0, 1) in which the Hermite–Padé
approximants achieve a rate of convergence which is better than the rate of the Padé
approximants.

Proof. According to Theorem 3.1, the rate of convergence of the Hermite–Padé approxi-
mants is given by (3.2) where the right-hand side can be decomposed as

(2ρ1U
ν(x) − 2ρ1U

µ(x) − w) − (W − 4ρ1U
µ(x) + ρ1U

ν(x) − (ρ0 − ρ1)U
δ0(x)). (4.9)

The variational conditions on [c, d] imply that the measure ν is the balayage of µ on [c, d],
and also that

w = 2ρ1

∫
g

C\[c,d](ζ,∞)dµ(ζ)

and

2ρ1U
ν(z) − 2ρ1U

µ(z) − w = −2ρ1

∫
g

C\[c,d](ζ, z)dµ(ζ), z ∈ C \ [c, d], (4.10)

where g
C\[c,d](ζ, x) denotes the Green function of the unbounded domain C \ [c, d], see

[24, Chapter II, Sections 4 and 5] for details. Since the Green function is positive in the
complement of [c, d], we deduce from (4.10) that the first term in (4.9) is negative outside
[c, d], and in particular in a neighborhood of 1. Next, the measure µ must also satisfy
variational conditions on [0, 1], namely

4ρ1U
µ(x) − ρ1U

ν(x) + (ρ0 − ρ1)U
δ0(x) ≥ W, x ∈ [0, 1], (4.11)

4ρ1U
µ(x) − ρ1U

ν(x) + (ρ0 − ρ1)U
δ0(x) = W, x ∈ supp (µ). (4.12)

Let us prove that the point 1 belongs to supp (µ). Assume this is not the case and that
a = max(supp (µ)) < 1. Then, denoting by F (x) the expression in the left-hand sides of
(4.11)–(4.12), we get, for x ∈ (a, 1],

F ′(x) = −4ρ1

∫ 1

0

dµ(t)

x − t
+ ρ1

∫ d

c

dν(t)

x − t
− (ρ0 − ρ1)

1

x
.
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If [c, d] lies on the right of [0, 1], then all terms are negative, while, if [c, d] lies on the
left of [0, 1], then the second term becomes positive but the sum of the first two terms
remains negative. In both cases, we conclude that the derivative is negative on (a, 1],
which contradicts the facts that F (a) = W and F (1) ≥ W . Hence, 1 ∈ supp (µ) and
F (1) = W which implies that the second term in (4.9) vanishes at 1. Consequently, we
obtain that the rate of convergence of the Hermite–Padé approximants remains geometric
in a neighborhood of 1.

For the Padé approximants, according to (4.4)–(4.5), the rate of convergence depends
on the measure µ̃ satisfying the variational conditions

4ρ1U
eµ(x) + (ρ0 − 2ρ1)U

δ0(x) ≥ W̃ , x ∈ [0, 1], (4.13)

4ρ1U
eµ(x) + (ρ0 − 2ρ1)U

δ0(x) = W̃ , x ∈ supp (µ̃), (4.14)

where W̃ is some real constant. This extremal problem also appears in the study of the
incomplete polynomials of Lorentz, see [24, Chapter IV, Example 1.16] for details. In
particular, it is known that

supp µ̃ = [θ2, 1] with θ =
ρ0 − 2ρ1

ρ0 + 2ρ1

.

Then, according to (4.7), the rate of convergence is given by

lim
m→∞

1

m
log |(g2 − Θ~m)(s)| = 4ρ1U

eµ(z) + (ρ0 − 2ρ1)U
δ0(z) − W̃ . (4.15)

From (4.14) evaluated at x = 1 and from the continuity principle for potentials, we
obtain in (4.15) a rate which tends to zero as z tends to 1. This finishes the proof of the
proposition.

4.2 Linear Hermite–Padé approximants (n2 = 0)

Let us now consider linear Hermite–Padé approximants, that is without denominators,
of type ~n = (n0, n1, 0), with ρ0 ≥ ρ1 > 0, corresponding to the approximants studied by
Eckhoff, see [9, 10, 11]. We compare these approximants with Padé approximants of type
~m = (n0,−1, n1 + 1).

Proposition 4.2. Assume that the hypotheses of Theorem 3.1 are satisfied and that the
degrees of the linear Hermite–Padé approximants Π~n and of the Padé approximants Θ~m

are chosen as above. Then, the same conclusions as in Proposition 4.1, in particular
(4.8), hold true.

Proof. By adapting the proofs of Lemmas 3.2, 3.3 and Theorem 3.1, one may check that,
in the present case, there is only one measure µ that governs the convergence of the
Hermite–Padé approximants, which must satisfies the variational conditions

2ρ1U
µ(x) + (ρ0 − ρ1)U

δ0(x) ≥ W, x ∈ [0, 1], (4.16)

2ρ1U
µ(x) + (ρ0 − ρ1)U

δ0(x) = W, x ∈ supp (µ), (4.17)
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for some real constant W . This extremal problem is of the same type as the one in
(4.13)–(4.14). Here, we have

supp µ = [θ2, 1] with θ =
ρ0 − ρ1

ρ0 + ρ1

. (4.18)

Then, Theorem 3.1 tells us that the rate of convergence of the Hermite–Padé approximants
is given by

lim
n→∞

1

n
log |(g2 − Π~n)(s)| = ρ1U

µ(z) + ρ0U
δ0(z) − W − w,

= (2ρ1U
µ(z) + (ρ0 − ρ1)U

δ0(z) − W ) − ρ1(U
µ(z) − U δ0(z) + w),

where n = n0 + n1, s = 1/z and

w = inf
x∈[c,d]

(−Uµ(x) + U δ0(x)). (4.19)

In view of (4.17) and (4.18), to derive the inequality in (4.8), it is sufficient to show that

Uµ(1) − U δ0(1) + w > 0. (4.20)

From the value of the constant w in (4.19), we rewrite inequality (4.20) as

inf
x∈[c,d]

(−Uµ(x) + U δ0(x)) > −Uµ(1) + U δ0(1).

The function −Uµ(z) + U δ0(z) is superharmonic in C \ supp µ (note that it vanishes at
infinity). Hence by the minimum principle for superharmonic functions,

inf
x∈[c,d]

(−Uµ(x) + U δ0(x)) > inf
x∈supp µ

(−Uµ(x) + U δ0(x)).

On supp (µ), we have by (4.17) that

−Uµ(x) + U δ0(x) = − W

2ρ1
+

ρ0 + ρ1

2ρ1
U δ0(x),

so that the minimum of −Uµ(x) + U δ0(x) on supp µ = [θ2, 1] is attained at 1, whence

inf
x∈[c,d]

(−Uµ(x) + U δ0(x)) > −Uµ(1) + U δ0(1),

which proves our contention.
Next, observe that the convergence of the Padé approximants is governed by the same

extremal problem as (4.16)–(4.17). Indeed, if we set σ0 = ρ0 and σ2 = ρ1 in (4.4)–(4.5),
we get the variational conditions (4.16)–(4.17). Hence the measure µ also appears in the
rate of convergence of the Padé approximants which, according to (4.7), is given by

lim
m→∞

1

m
log |(g2 − Θ~m)(s)| = 2ρ1U

µ(z) + (ρ0 − ρ1)U
δ0(z) − W. (4.21)

Then, the equality in (4.8) follows from (4.17) and the fact that 1 ∈ supp (µ), see (4.18)
(note that (4.17) implies that the potential Uµ is continuous when restricted to its support
so that, by the principle of continuity for potentials, it is also continuous there considered
as a function on C).
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4.3 Hermite–Padé approximants with fixed denominator degree

We now consider sequences of approximants Π~n of type ~n = (n0, n1, n1) such that the
degree n0 tends to infinity while n1 remains constant. Hence, here we have ρ0 = 1,
ρ1 = ρ2 = 0. We estimate the error function corresponding to Π~n and compare these
Hermite–Padé approximants with Padé approximants of type ~m = (n0,−1, 2n1 + 1) in
the vicinity of 1.

In the sequel we shall use the following notations. We denote by P
(β)
n (x), n ≥ 0, the

orthonormal polynomial of degree n on [0, 1], satisfying the orthogonality relations

∫ 1

0

P (β)
n (x)P (β)

m (x)xβdx = δn,m,

with respect to the Jacobi type weight xβ. We also set α
(β)
n > 0 for its leading coeffi-

cient, γ
(β)
n for its smallest zero, and p

(β)
n (x) = P

(β)
n (x)/α

(β)
n for the corresponding monic

polynomial.
Then, the following proposition holds true.

Proposition 4.3. Assume that the degrees of the Hermite-Padé and Padé approximants
are chosen as above, that the measure dτ(y) in the definition (2.5) of the function u(x)
is regular and that its support lies on the negative real axis, that is [c, d] ⊂ (−∞, 0). Let
s = 1/z on the unit circle, with |z − 1| ≤ 1/2. Then, for n0 sufficiently large so that

C ≤ (n0 − 2n1 − 2)(1 − Re (z)), (4.22)

we have

|(g2 − Π~n)(s)| ≤ C̃|z − 1|2n1

∣∣∣P (n0−2n1−1)
2n1+1 (z)

∣∣∣
2 , (4.23)

and
|(g2 − Π~n)(s)|
|(g2 − Θ~m)(s)| ≤ Ĉ|z − 1|2n1−1, (4.24)

where C, C̃ and Ĉ are some constants that depend only on n1.

Remarks. It can be checked that P
(n0−2n1−1)
2n1+1 (1) =

√
n0 + 2n1 + 2. Hence, for z fixed near

1, the upper bound in (4.23) is of order O(n−1
0 ) as n0 tends to infinity. Inequality (4.24)

shows that, for z sufficiently close to 1, the Hermite–Padé approximants do somewhat
better than the Padé ones.

For the proof, we need two lemmas. The first one is a classical result from Markov,
see [27, Theorem 6.12.2 p.116].

Lemma 4.4. Denote by xk and x̃k the zeros in increasing order of the orthogonal poly-
nomials of degree n with respect to the measures dµ and w(x)dµ where w(x) is a positive
continuous weight, increasing on the support of dµ. Then,

xk < x̃k, k = 1, . . . , n.

The second lemma gives a lower bound for the smallest zero of the Jacobi type poly-
nomial P

(β)
n (x).
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Lemma 4.5. There exists a constant Cn depending only on n such that for any β larger
than 1, say, it holds that

γ(β)
n ≥ 1 − Cn

β
. (4.25)

Proof. For the smallest zero γ̂
(0,β)
n of the usual Jacobi polynomial P̂

(0,β)
n (x) on [−1, 1], it

is known that
lim

β→∞
β(1 − γ̂(0,β)

n ) = 2ξn,

where ξn denotes the largest zero of the Laguerre polynomial L
(0)
n (x), see [27, Formula

6.71.11 p.144]. Hence, (4.25) follows from the fact that β(1− γ̂
(β)
n ) is a positive continuous

function of β on [1,∞) and the fact that γ
(0,β)
n = (γ̂

(0,β)
n + 1)/2.

We are now in a position to prove Proposition 4.3.

Proof of Proposition 4.3. First we establish a lower bound for the difference between the
function g2 and its Padé approximants Θ~m. From (4.1)–(4.3), we know that, for s = 1/z,

(g2 − Θ~m)(s) =
1

zn0−2n1−1B̃2
m(z)

∫ 1

0

xn0−2n1−1B̃2
m(x)

u(x)

z − x
dx,

where the monic polynomial B̃m of degree 2n1 +1 is orthogonal with respect to the weight
xn0−2n1−1u(x) on [0, 1]. By assumption |z − 1| ≤ 1/2 implies that maxt∈[0,1] |z − t| = 1,
and thus,

|(g2 − Θ~m)(s)| ≥ |Im z|
|B̃2

m(z)|

∫ 1

0

xn0−2n1−1B̃2
m(x)u(x)dx. (4.26)

Next, it is easily checked from Lemma 4.5, that if n0 satisfies (4.22) with C = C2n1+1,

then all zeros of P
(n0−2n1−2)
2n1+1 (x) are larger than Re (z). In the sequel, we assume that

n0 is chosen so that the previous inequality is satisfied. On the other hand, in view of
the definition (2.5), the function u(x) (resp. xu(x)) is decreasing (resp. increasing) on

[0, 1], hence we know from Lemma 4.4 that the zeros of B̃m(x) lie to the right of those of

P
(n0−2n1−2)
2n1+1 (x) and to the left of those of P

(n0−2n1−1)
2n1+1 (x). Consequently

|B̃m(z)| ≤ |p(n0−2n1−1)
2n1+1 (z)|. (4.27)

Since B̃m(x) is of degree 2n1 + 1, orthogonal with respect to xn0−2n1−1u(x), the integral
in (4.26) can be written as

min
p(x)=x2n1+1+···

∫ 1

0

xn0−2n1−1p2(x)u(x)dx ≥ u(1) min
p(x)=x2n1+1+···

∫ 1

0

xn0−2n1−1p2(x)dx (4.28)

= u(1)/
(
α

(n0−2n1−1)
2n1+1

)2

. (4.29)

Hence, together with (4.26) and (4.27), we get

|(g2 − Θ~m)(s)| ≥ |Im z|u(1)∣∣∣P (n0−2n1−1)
2n1+1 (z)

∣∣∣
2 . (4.30)
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Let us now turn to an upper bound for the difference (g2 −Π~n)(s). From (3.3) and (3.7),
we have

(g2 − Π~n)(s) =
1

zn0−n1Bn(z)Hn(z)

∫ 1

0

xn0−n1Hn(x)
Cn(x)

z − x
dx, (4.31)

whence

|(g2 − Π~n)(s)| ≤ 1

|Im (z)Bn(z)Hn(z)|

∫ 1

0

xn0−n1H2
n(x)

∣∣∣∣
Cn(x)

Hn(x)

∣∣∣∣ dx.

Since Hn(x) is a monic orthogonal polynomial of degree 2n1+1 with respect to the weight
xn0−n1|Cn(x)/Hn(x)|, we get by an argument similar to (4.28)–(4.29) that

∫ 1

0

xn0−n1H2
n(x)

∣∣∣∣
Cn(x)

Hn(x)

∣∣∣∣ dx ≤
maxx∈[0,1]

∣∣∣xn1+1 Cn(x)
Hn(x)

∣∣∣
(
α

(n0−2n1−1)
2n1+1

)2 . (4.32)

Furthermore, in view of (3.6), we have, for x ∈ [0, 1],

∣∣∣∣x
n1+1 Cn(x)

Hn(x)

∣∣∣∣ =
xn1

Bn(x)

∫ d

c

B2
n(t)

|Hn(t)|
xdτ(t)

x − t
. (4.33)

Since Bn(x) is a polynomial of degree n1 with all its zeros in (c, d), the ratio xn1/Bn(x)
is positive increasing, and the same holds true for the integral as a function of x. Hence,
the above expression is increasing on [0, 1], from which we deduce together with (4.31)
and (4.32) that

|(g2 − Π~n)(s)| ≤ |Cn(1)/Hn(1)|
α

(n0−2n1−1)
2n1+1 |Im (z)Bn(z)P

(n0−2n1−1)
2n1+1 (z)|

. (4.34)

In the last inequality, we have also used Lemma 4.4 to ensure that |Hn(z)| ≥ |p(n0−2n1−1)
2n1+1 (z)|.

Indeed, since (4.33) is increasing on [0, 1], the zeros of Hn(z) lie to the right of the zeros

of p
(n0−2n1−1)
2n1+1 (z). Moreover, by the assumption (4.22) on n0, we know that Re (z) is less

than all these zeros.
For the numerator in (4.34), we know from (3.6) that

∣∣∣∣
Cn(1)

Hn(1)

∣∣∣∣ ≤
1

(1 − d)Bn(1)

∫ d

c

B2
n(t)

dτ(t)

|Hn(t)| . (4.35)

Let us consider the following measure on [c, d],

dτ(t)

(−t)2n1+1
=

|Hn(t)|
(−t)2n1+1

dτ(t)

|Hn(t)| ,

and denote by Q
(2n1+1)
n1 (x) (resp. q

(2n1+1)
n1 (x)) the associated orthonormal (resp. monic

orthogonal) polynomial of degree n1. Since the monic polynomial Bn(x) is orthogonal
with respect to dτ(t)/|Hn(t)| and the ratio |Hn(t)|/(−t)2n1+1 is increasing on [c, d], it

follows that the zeros of q
(2n1+1)
n1 (x) lie to the right of the zeros of Bn(x), and consequently

|q(2n1+1)
n1

(z)| ≤ |Bn(z)|, |q(2n1+1)
n1

(1)| ≤ |Bn(1)|.
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Therefore, from (4.34) and (4.35), we derive that

|(g2 − Π~n)(s)|

≤
(
(1 − d)α

(n0−2n1−1)
2n1+1 |Im (z)Q(2n1+1)

n1
(z)Q(2n1+1)

n1
(1)P

(n0−2n1−1)
2n1+1 (z)|

)−1

max
t∈[c,d]

(−t)2n1+1

|Hn(t)|
.

We know that the above maximum is attained at t = c and that |Hn(c)| ≥ |p(n0−2n1−1)
2n1+1 (c)|.

Moreover, since the zeros of Q
(2n1+1)
n1 (x) lie in [c, d], we have

|Q(2n1+1)
n1

(z)Q(2n1+1)
n1

(1)| ≥
(
Q(2n1+1)

n1
(0)
)2

,

so that, finally, we obtain the upper bound

|(g2 − Π~n)(s)| ≤ |c|2n1+1

(1 − d)|Im z|
(
Q

(2n1+1)
n1 (0)

)2 ∣∣∣P (n0−2n1−1)
2n1+1 (z)

∣∣∣
2

|p(n0−2n1−1)
2n1+1 (z)|

|p(n0−2n1−1)
2n1+1 (c)|

≤ |z − 1|2n1+1

(1 − d)|Im z|
(
Q

(2n1+1)
n1 (0)

)2 ∣∣∣P (n0−2n1−1)
2n1+1 (z)

∣∣∣
2 , (4.36)

where, in the last inequality, we have used the facts that |c|2n1+1 ≤ |p(n0−2n1−1)
2n1+1 (c)| and

that |p(n0−2n1−1)
2n1+1 (z)| ≤ |z − 1|2n1+1 since all zeros of p

(n0−2n1−1)
2n1+1 (x) are larger than Re (z).

Then, (4.23) follows from (4.36) and the fact that

|z − 1| ≤
√

2|Im z|. (4.37)

Combining (4.30) together with (4.36), and using again (4.37), we get (4.24).

5 Numerical experiments

In this section we first compare, in §5.1, the error curves for various Hermite-Padé ap-
proximants. Subsequently, in §5.2 we describe the numerical procedure to solve the ex-
tremal problem in logarithmic potential theory displayed in Lemma 3.5. Finally, in §5.3
we compare the computed rate of convergence with the nth root behavior predicted by
Theorem 3.1.

5.1 Some examples

We start with practical issues for computing our non-linear Hermite-Padé approximant
(called singular Fourier-Padé approximant in [8]). Given the first coefficients of a real
Fourier series

f(t) =

∞∑

j=0

aj cos(jt) +

∞∑

j=1

bj sin(jt).

supposed to be 2π-periodic, and continuous in (0, 2π) except for a jump at t = 0, we first
construct the associated function

g2(z) =
∞∑

j=0

g2,jz
j , g2,j = aj − ibj , b0 = 0,
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Figure 1: Error of different approximants for the Lebesgue measure dτ(y) = dy on [c, d] =
[−2,−.3] using 16 Fourier coefficients. One has around the singularity t = 0, from top to
bottom, the partial sum of order 15, the Cesaro and de la Vallée–Poussin means, and two
nonlinear approximants obtained from Padé approximation of type ~m = (11,−1, 4) and
~m = (7,−1, 8).

such that f(t) = Re (g2(e
it)). The function g1(z) = i log(1 − z) is such that Re (g1(e

it))
has a singularity at t = 0 as f(t). Then f(t) = Re (g2(e

it)) is approached by Re (Π~n(eit))
of order ~n = (n0, n1, n2) defined in (2.3). Equating coefficients in (2.2) it only remains
to find polynomials p1 and p2 with deg pj ≤ nj such that the expansion of p1g1 + p2g2 at
z = 0 does not contains the terms zj for j = n0 + 1, ..., n0 + n1 + n2 + 1. This leads to a
homogeneous linear system of equations with a matrix of the form (T1, T2), where Tj is a
Toeplitz matrix of size (n1 + n2 + 1)× (nj + 1), whose elements are the coefficients of gj .

Though these HP approximants are extremely simple to construct, it is a well-known
fact that the underlying matrix of coefficients is quite often very ill conditioned, even for
small values of ~n. Therefore it is necessary to have accurate data, and to perform the com-
putation of HP approximants in high precision arithmetic, see for instance the discussion
in [8, Section 8]. In our case, all Taylor coefficients as well as the HP approximants have
been computed with the variable precision artithmetic package vpa of Matlab, handling a
precision of 100 digits. However, due to an underlying approximation of the integrals by
numerical quadrature, we were only able to evaluate the function f in the interval [0, 2π]
with double precision. This explains why the error curves below are effected by finite
precision arithmetic around the value 10−16.

We now report about our numerical experiments. The error curves |f(t)−Re (Π~n(eit))|
drawn in Figure 1 correspond to the theoretical findings and numerical experiments of
[3], namely we observe that the partial sum of order 15 has an error of size ≥ 10−2 (a
classical phenomenon for partial Fourier sums of functions with jumps), though there
is some phase effect which makes the curve oscillating. The corresponding Cesaro and
de la Vallée Poussin means (i.e., linear acceleration schemes) smooth the error curves,
but do not lead to an important gain, especially around the singularity. In contrast, the
errors given by the Padé approximants (~m = (11,−1, 4) and ~m = (7,−1, 8)), which are
nonlinear, are much smaller far from the singularity t = 0, but still large close to t = 0.
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Figure 2: Error of different approximants for the Lebesgue measure dτ(y) = dy on [c, d] =
[−2,−.3] using 16 Fourier coefficients. In the left-hand plot, one has (beside the same
partial sum) four ~n-HP approximants obtained by solving homogeneous systems with
n1 + n2 + 2 = 6 unknowns, namely (around t = 0 from top to bottom): the Padé
approximant ~n = (10,−1, 5), the linear HP approximant ~n = (10, 4, 0), ~n = (10, 3, 1), and
finally the ”diagonal” approximant ~n = (10, 2, 2). On the right, we obtain (beside the
partial sum) homogeneous systems with n1 +n2 +2 = 9 unknowns, namely (around t = 0
from top to bottom) ~n = (7,−1, 8) (Padé), ~n = (7, 7, 0) (linear HP), ~n = (7, 5, 2), and
~n = (7, 4, 3).

In Figure 2 we have drawn the corresponding errors for those Hermite-Padé approx-
imants using the same number of Fourier coefficients as in Figure 1. One observes that,
for fixed n0 + n1 + n2 + 2 (the number of required Fourier coefficients), it is interesting
to choose n1 + n2 + 2 as large as possible (the size of the underlying system) since, while
stepping from the left-hand to the right-hand plot of Figure 2, one gains each time one
or two digits. For approximants in the same plot (where each time we solve systems of
equal size), one obtains more or less the same precision far from the singularity. More
precisely, the linear HP approximants (n2 = 0) are about as good as the Padé approxi-
mants (n1 = −1), but the error is the smallest in the diagonal case n1 ≈ n2. Note that
the error for ~n = (7, 4, 3) is affected by finite precision arithmetic.

However, close to the singularity, the picture is totally different from Figure 1. By
stepping from Padé to linear HP approximants, which are adapted to the singularity, we
gain about four digits, in accordance with Proposition 4.2. By going to nearly diagonal
approximants we gain another 3 or 4 digits, as predicted by Proposition 4.1. Now, the
error is quite small on the whole interval. The numerical results presented in Figure 2 are
in accordance with those in [8, Figure 8.1 and Figure 8.3], though, there, the question of
how to choose the degrees was not addressed.

In [3], approximants in a row of the Padé table, n1 = −1 and n2 fixed, n0 → ∞, were
discussed. Rates of convergence of magnitude O(n−2n2

0 ) as n0 → ∞ were established for
some particular model problems, and it was shown that the rate does not change if one
modifies f by adding a sufficiently differentiable function, a fact which was shown to be
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Figure 3: Error of different approximants for the Lebesgue measure dτ(y) = dy on [c, d] =
[−2,−.3] using 14 Fourier coefficients on the left (n0 = 6), and 22 on the right (n0 = 14).
Around the singularity t = 0, from top to bottom, one has the partial sum of order n0 +7,
the Padé approximants ~n = (n0,−1, 7), the linear HP approximants ~n = (n0, 6, 0) and
the diagonal HP approximants ~n = (n0, 3, 3).

wrong for diagonal Padé approximants. In relation with Proposition 4.3, we check the
decay of the error for increasing n0 and fixed n1, n2. As seen in Figure 3, we gain about
two digits for each of the three HP approximants by stepping from n0 = 6 to n0 = 14 for
constant n1, n2, requiring 8 more Fourier coefficients. This confirms that an increase in n0

leads to a modest, probably not geometric, improvement, as claimed in Proposition 4.3.
However, it is remarkable (and can be read from the proof of Proposition 4.3) that the
rate of convergence is strongly influenced by the (not specified) constants occurring in
Proposition 4.3. The corresponding constant for diagonal HP approximants is much
smaller.

Finally we show in Figure 4 that the rate of convergence for our model problem strongly
depends on the choice of the interval [c, d]. The error curves drawn in Figure 4 have to
be compared with those on the right-hand plot of Figure 3 for [c, d] = [−2,−0.3] with the
same degrees. As can be seen on Figure 4, for two intervals close to each other and t far
from the singularity, the Padé approximants outperform the other two approximants, but
only these latter have an acceptable behavior around the singularity.

5.2 Numerical solution of a vector equilibrium problem in log-

arithmic potential theory

In this section, we discuss in some more details general vector equilibrium problems, of
which the problem appearing in Lemma 3.5 is a particular case. We also explain how we
solve it numerically.

To get a feeling of the vector equilibrium problem, we will try in the sequel to display
an electrostatic interpretation of the associated variational conditions, such as (3.8)–(3.11)
and (4.4)–(4.5) that correspond respectively to the Hermite-Padé and Padé approximants.

21



−3 −2 −1 0 1 2 3
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

c=−10,d=−0.05

21,−1,0
13,−1,7
14,3,3
14,6,0

−3 −2 −1 0 1 2 3
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

c=1.05,d=10.05

21,−1,0
13,−1,7
14,3,3
14,6,0

Figure 4: Error of different approximants for the Lebesgue measure dτ(y) = dy on [c, d] =
[−10, 0.05] (left), and [c, d] = [1.05, 10.05] (right) using 22 Fourier coefficients. Around
the singularity t = 0, from top to bottom, one has the partial sum of order 21, the Padé
approximants ~n = (13,−1, 7), the linear HP approximants ~n = (14, 6, 0) and the diagonal
HP approximants ~n = (14, 3, 3).

Let M(Σ) be the set of probability measures with support in a given compact set Σ.
Let Σ1, ..., ΣN ⊂ R be disjoint compact sets (in our case they are real intervals), then we
write simply M for the set of vector measures ~µ = (µ1, ..., µN) with µj ∈ M(Σj). Let
γ1, ..., γN ≥ 0, and let A = (aj,k) ∈ RN×N be a given symmetric positive semidefinite
matrix, the so-called matrix of interactions. Furthermore, let Q = (Q1, ..., QN) be the
vector of external fields, where the Qj are continuous functions on Σj . The mutual energy
is defined as

I(µj, µk) :=

∫
log

1

|x − y| dµj(x)dµk(y),

and the total energy of the vector measure ~µ is

IQ(~µ) =

N∑

j,k=1

aj,kγjγkI(µj, µk) + 2

N∑

j=1

γj

∫
Qj dµj. (5.1)

In the special case N = 1, A = 1, this corresponds to the physical energy of the positive
charge γ1µ1 on Σ1 in the external field Q1. In our case, the external field Q1 corresponds
to the potential U δ0 supported at the origin. For N = 2, the special cases

A =

[
1 1
1 1

]
, and A =

[
1 −1
−1 1

]

describe a condenser (Σ1, Σ2), with Σ1 a plate carrying a positive charge, and Σ2 a plate
carrying either a positive or negative charge. The minimum of IQ(~µ) for ~µ ∈ M cor-
responds to the steady state of the condenser formed by the different plates Σj in the
external fields Qj . In other words, we are left with a problem of electrostatics, and con-
sequently, one can gain a feeling of the solution by remembering that charges of the same
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sign are repealing, while charges of different signs are attracting. However, in the case of
a Nikishin system of two functions, the interaction matrix is

A =

[
2 −1
−1 2

]
(5.2)

which has a more complicated physical meaning since, here, the interaction between
charges on a same plate is twice the interaction between charges on different plates.

From a more mathematical point of view, the extremal problem of minimizing the total
energy IQ(~µ) over the set of measures M was first investigated in [13, 14] for matrices A
of a special form and without an external field, for the general case see also [12, 15, 22]
or the historical remarks in [24, Chapter VIII.8]. It is shown, e.g., in [12, Theorem 4
(1)] that the extremal measure exists and is unique. Note that the components µj of
this minimizer may not fill the whole plate Σj , i.e. supp (µj) ( Σj . For instance, this
may happen if the charges are pushed away by a strong external field. Furthermore, as
shown in [12, Theorem 4 (2)], the minimizer is uniquely characterized by the variational
conditions, or Euler-Lagrange equations,

Uj(~µ)(z) :=
N∑

k=1

aj,kγkU
µk(z) + Qj(z)

{
= Wj if z ∈ supp (µj),
≥ Wj if z ∈ Σj ,

(5.3)

for j = 1, 2, ..., N , and for suitable real constants W1, ..., WN . Physically, this means that
the electric potential Uj(~µ) is constant on the support of the charge γjµj, and larger than
this constant elsewhere (otherwise we could decay the energy by distributing differently
the charge µj).

We now come to the numerical resolution of the vector equilibrium problem. In order
to compute our extremal measure, we have to discretize our set M of measures according
to a finite number of free variables. A natural idea would be to restrict ourselves to vec-
tors of discrete measures ~µ. However, in this case, the exponential of the vector potential
Uj(~µ) boils down to a ratio of polynomials taken at some power, and the related max-min
problem of [22, Chapter 5.4, Problem C] becomes a coupled extremal problem for polyno-
mials, similar to the one corresponding to Nikishin systems. Hence, this approach would
bring us back to the original problem. Thus, here, we have rather considered the subset
M0 of vector measures with piecewise linear weights: we first choose a discretization

tj,0 < tj,1 < .... < tj,K , Σj = [tj,0, tj,K ],

and ask µj to be a linear function on each subinterval [tj,k, tj,k+1]. This gives us N(K +1)
parameters xj,k ≥ 0 in the B-spline representation

dµj

dx
(x) =

K∑

j=0

xj,kBj,k(x), Bj,k(x) =





tj,k+1−x

tj,k+1−tj,k
if k < K and x ∈ [tj,k, tj,k+1],

x−tj,k−1

tj,k−tj,k−1
if k > 0 and x ∈ [tj,k−1, tj,k],

0 otherwise,

with total mass ∫
dµj = 1 =

K−1∑

k=0

(xj,k + xj,k+1)
tj,k+1 − tj,k

2
. (5.4)
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The set of tj,k with xj,k > 0 for j = 0, 1, ..., K, could then be considered as the discrete
support of µj, though tj,k ∈ supp (µj) if xj,k−1 + xj,k + xj,k+1 > 0.

A collocation approach, as used for instance in [17], consists of imposing the equilib-
rium conditions only pointwise for all tj,k ∈ Σj , and solving the coupled system of the N
linear equations (5.4) together with the equations

xj,k[Uj(~µ)(tj,k) − Wj] = 0, xj,k ≥ 0, Uj(~µ)(tj,k) − Wj ≥ 0, (5.5)

for the unknowns Wj and xj,k where j = 1, ..., N and k = 0, 1, ..., K. Note that the first
equations in (5.5) are quadratic in the variables xj,k. It is not clear a priori that this
system has a simple solution.

In the present paper we prefer to minimize directly the total energy IQ(~µ) over M0,
the set of vector measures with piecewise linear densities. It is not difficult to check1

that IQ is strictly convex over M0. Writing the set of xj,k as a (suitably arranged) vector
x ∈ RN(K+1) and the N equality constrains of (5.4) as Bx = b, we are left with the strictly
convex quadratic minimization problem with linear constrains

min{xT Hx + hT x : x ≥ 0, Bx = b} (5.6)

having a unique minimizer. The matrix H , and the vector h, respectively, contain the
entries

aj,j′γjγj′

∫
log

1

|x − y|Bj,k(x)Bj′,k′(y) dx dy, and 2γj

∫
Qj(x)Bj,k(x)dx,

respectively, for which explicit formulas are available, which have been implemented in
our code. Notice that, with the size of each subinterval tending to zero, the sets of
piecewise linear densities become dense in the set of all probability measures. Hence,
with a sufficiently large K, the minimum of our discrete problem should approach that of
our continuous problem. Writing down the Karush-Kuhn-Tucker characterization of our
discrete problem, a short calculation shows that there exists constants W1, ..., WN such
that, for all j, k,

xj,kXj,k = 0, xj,k ≥ 0, Xj,k ≥ 0, Xj,k =

∫
[Uj(~µ)(x) − Wj]Bj,k(x)dx.

Since ∫
[Uj(~µ)(x) − Wj ]Bj,k(x)dx = [Uj(~µ)(ξj,k) − Wj]

∫
Bj,k(x)dx,

for some ξj,k ∈ [tj,k−1, tj,k+1], we may therefore conclude that the equilibrium conditions
(5.3) are true in ”local mean”, and pointwise at certain ξj,k, as for the collocation methods.
However, this does not exclude that the computed vector potential Uj(~µ) does oscillate,
what typically happens at the end points of the supports. There are different methods to

1We first notice that all measures in M0 have finite energy, which allows us to extend the definition
of IQ by linearity to the difference of measures from M0. By convexity of M0, we obtain for distinct
~µ1, ~µ2 ∈ M0 and t ∈ (0, 1) that tIQ(~µ1) + (1 − t)IQ(~µ2) − IQ(t~µ1 + (1 − t)~µ2) = t(1 − t)I0(~µ1 −
~µ2). The strict positivity of the last term follows by considering the Cholesky decomposition CT C =
diag (γ1, ..., γN )Adiag (γ1, ..., γN ) and ~ν = C(~µ1−~µ2) = (ν1, ..., νN ), since then I0(~µ1−~µ2) =

∑
j I(νj , νj),

where at least one term in the sum is positive by [24, Lemma I.1.8].

24



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

density on [0,1], mass 14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

19.25

19.3

19.35

19.4

19.45

19.5

19.55

19.6

U
1
, W

1
=19.4139

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

density on [0,1], mass 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

19.7

19.75

19.8

19.85

19.9

19.95

20

20.05

U
1
, W

1
=19.8811

Figure 5: Extremal measure and vector potential for N = 1, Σ1 = [0, 1], and A = 1:
γ1 = 2n2 = 14, no external field (left), γ1 = 2n2 = 10, and the external field Q1 =
(n0 − n2 + 1)U δ0 = 6U δ0 pushes the extremal measure to the right of the interval (right).

overcome such oscillations: first, one could consider a grid refinement at the endpoints of
the sets Σj since it is known in the continuous case that at an endpoint a of Σj belonging
to supp (µj), the weight typically behaves like |x− a|−1/2. Second, it could be interesting
to implement an adaptative grid refinement around an endpoint a of supp (µj) different
from an endpoint of Σj , so as to match, as well as possible, a with one of the tj,k. Since,
here, the weight typically behaves like |x − a|1/2, we did not implement so far such an
adaptative grid refinement. Actually, it is not clear how to measure the deviation of the
optimal piecewise linear measure from the optimal one in M, and we will not make any
further theoretical analysis in this respect.

Let us now present several numerical experiments, where we draw the weight of the
discrete extremal measure γjµj (top) and the corresponding vector potential Uj(~µ) (bot-
tom). In each case, one observes, as required by (5.3), that the potential is approximately
constant on supp (µj) and larger than this constant elsewhere in Σj (beside some minor
oscillations at the endpoints). In our experiments we have chosen K = 120, with a grid
refinement at the endpoints, obtained by shifting Chebyshev points, see the small vertical
ticks in the bottom plot, but with no further adaptative grid refinement. The discrete
convex quadratic program (5.6) was solved using the level set algorithm quadprog of
Matlab with no particular choice of a first iterate, requiring in general no more than a
hundred iterations.

Example 5.1. In our first set of experiments, we have chosen N = 1 with the interaction
matrix A = 1 and Σ = [0, 1], together with the mass γ1 = 2n2 and the external field
Q1 = (n0 − n2 + 1)U δ0 corresponding (up to normalization with n = n0 + n1 + n2) to the
case ~n = (n0,−1, n2) of (n0, n2) Padé approximants for Markov functions with support in
[0, 1], compare with (4.4)–(4.5). On the left of Figure 5, the external field Q1 = 0 allows
us to recover numerically the equilibrium measure on [0, 1] with weight γ1/(π

√
x(1 − x)).

The external field in the right-hand plot of Figure 5 represents a positive charge of mass 6
at the origin, which pushes the free positive charge of mass 10 to the right. As mentioned
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Figure 6: Extremal measure and vector potential for N = 2 and the data of Example 5.2,
[c, d] = [−2,−0.3] and ~n = (10, 5, 5), with a trivial external field Q2 = 0.

before, notice the small oscillation of the vector potential around the left endpoint of
supp (µ1), as well as the behavior of the weight around the endpoint.

Example 5.2. We now look at a vector equilibrium problem with N = 2 and the Nikishin
interaction matrix (5.2), together with Σ1 = [0, 1], γ1 = n1 + n2 + 1, Q1 = (n0 − n1 +
1)U δ0 , and Σ2 = [c, d] on the left of Σ1, γ2 = n2, Q2 = (n1 − n2)U

δ0 as required (up to
normalization with n = n0 + n1 + n2) for the Hermite-Padé approximants of a Nikishin
system, compare with (3.8)–(3.11).

In Figure 6, for ~n = (10, 5, 5), we observe that the positive charge 11µ1 on [0, 1] is
pushed to the right by the external field Q1 given by a positive point charge of mass 6 at
the origin though it is also attracted weakly by the negative charge 5µ2 on the left. In
contrast, the negative charge 5µ2 lives on the whole interval Σ2 since, here, there is no
external field, though it is weakly attracted by the positive mass 11µ1.

In Figure 7, we display a more difficult problem with two plates Σ1 = [0, 1] and
Σ2 = [−2,−0.05] closer to each other, and ~n = (15, 9, 2), that is, there is also a nontrivial
external field Q2 = 7U δ0 corresponding to a negative charge at the origin. Hence 2µ2 is
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Figure 7: Extremal measure and vector potential for N = 2 and the data of Example 5.2,
[c, d] = [−2,−0.05], ~n = (15, 9, 2), non-trivial external fields Q1 and Q2.

pushed by Q2 and attracted weakly by 12µ1. Finally we find that supp (µ2) ( Σ2. Notice
that the vector potential is essentially constant on both supports as required, except for
some oscillation at the endpoints.

5.3 Theoretical versus computed rate of convergence

In this last section, we compare the computed error curves

|f(t) − Re (Π~n(eit)| = |Re ((g2 − Π~n)(eit))|, (5.7)

with the theoretical rates obtained in Theorem 3.1. Several remarks are in order.
First, the actual error curve is oscillating. This is due to the power of z which factors

the error g2 −Π~n. Now, Theorem 3.1 describes the absolute value of (g2 −Π~n)(eit), where
this factor does not play a role. Hence, it is an upper smooth envelop of our actual error
curve which should be compared with the rate predicted by logarithmic potential theory.

Second, it turns out that, at least for sufficiently smooth measures τ on [c, d], the
computed and predicted errors not only agree in the weak nth root sense where n =
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Figure 8: Error of different approximants for the Lebesgue measure dτ(y) = dy on [c, d] =
[−2,−.3] using 16 Fourier coefficients. In the left-hand plot, one has beside the partial
sum, four HP approximants, namely, from top to bottom: the Padé approximant ~n =
(10,−1, 5), the linear HP approximant ~n = (10, 4, 0), ~n = (10, 3, 1), and finally the
”diagonal” approximant ~n = (10, 2, 2). On the right, the corresponding theoretical rate
exp(U1(~µ)(eit)+U2(~µ)(eit)−W1−W2), predicted by logarithmic potential theory, is drawn.

n0 + n1 + n2, but also in the strong sense, meaning that both terms in (3.2) agree even
after a multiplication by the total degree n. Hence, we actually depict in the next figure
the quantity

exp
((

(n1 + n2 + 1)Uµ + n2U
ν + (n0 − n2 + 1)U δ0

)
(eit) − w − W

)
.

The argument of the previous exponential corresponds to the quantity U1(~µ) + U2(~µ) −
W1 − W2 of subsection 5.2 where we set as in Example 5.2,

Σ1 = [0, 1], γ1 = n1 + n2 + 1, Q1 = (n0 − n1 + 1)U δ0 ,

Σ2 = [c, d], γ2 = n2, Q2 = (n1 − n2)U
δ0 .

We present a series of numerical experiments in Figure 8. For other data, the findings
are similar, as long as the error (5.7) does not suffer from finite precision arithmetic.
We can observe from the curves in Figure 8 that the theoretical convergence rates are
very close to the computed errors. The fact that the theoretical asymptotic estimate
describes accurately the actual rate, even for small degrees, is less surprising for the
Padé approximant of type ~n = (10,−1, 5) because g2 is a Markov function associated
to a smooth density. In this respect, we may refer, for instance, to the findings on
strong asymptotics with varying weights obtained in [26]. To our knowledge, there is no
similar theory for strong asymptotics of (off-diagonal) Hermite-Padé approximants, for
the corresponding second type approximants, though [1] gives results in that direction.
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spectral simulations of incompressible Boussinesq convection problem, Math. Comp.
76 (2007) 1275-1290.
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