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1 Introduction and Main Results

Let K be a closed subset of the complex plane C and ν a measure on K . For k =
1, 2, . . . , we will be concerned with the following ensemble of probability measures
on K k+1:

1
Zk

|V DM(z0, . . . , zk)|2β exp (−2k[Q(z0) + · · · + Q(zk)]) dν(z0) . . . dν(zk).

Here,

• Zk is a normalization constant;
• V DM(z0, . . . , zk) =∏0≤i< j≤k(z j − zi ) is the usual Vandermonde determinant;
• Q : K → (−∞,+∞] is a lower semicontinuous function; and
• β > 0.

These probability measures occur in random matrix theory as the joint probability
of eigenvalues and also in the theory of Coulomb gases, where z0, . . . , zk are the
positions of particles. They have been extensively studied but generally only when ν

is Lebesgue measure (cf., [1,18]).
We will deal with the global behavior as k → ∞. In particular, we study the

almost sure convergence of the empirical measure of a random point 1
k+1

∑k
i=0 δzi to

the equilibrium measure given by the unique minimizer µK ,Q of the weighted energy
functional; i.e.,

inf{I Q(µ) : µ ∈ M(K )}

where M(K ) are the probability measures on K and

I Q(µ) =
∫

K

∫

K
log

1
|z − t |w(z)w(t)

dµ(z)dµ(t),

with w(z) = exp(−Q(z)). We will also establish a large deviation principle (LDP).
Ben Arous and Guionnet [2], building on work of Voiculescu, first proved a

large deviation principle for the Gaussian Unitary Ensemble. This was subsequently
extended to general unitary invariant ensembles. Hiai and Petz [18] extended these
methods to the complex plane and strongly admissible (see Definition 3.1) continuous
weights Q. In these settings, ν was taken to be the Lebesgue measure.

More recently, the case of weakly admissible weights (see Definition 3.1) on
unbounded subsets of the plane was studied in [15] and the existence of a unique
minimizer of the weighted energy functional (which in this case may not have com-
pact support) was established. In [14] a large deviation principle was established for Q
weakly admissible, continuous on R or C and ν the Lebesgue measure. Such weights
occur in certain ensembles (see [14], the Cauchy ensemble) and in certain vector
energy problems (see [15]).

In this paper we will systematically develop the case when Q is lower semicontinu-
ous, weakly admissible and ν is more general than the Lebesgue measure. We will use
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Logarithmic Potential Theory and Large Deviation

the methods of [9] which first of all give the almost sure convergence of the empirical
measure of a random point, and, subsequently, we obtain a large deviation principle.

The paper is organized as follows: in the next section, we give some basic results
on logarithmic potential theory in Rn valid for n ≥ 2. Using the results in R3 together
with inverse stereographic projection from a two-dimensional sphere S to the complex
plane, in Sect. 3 we readily extend some classical potential-theoretic results valid for
compact subsets of C to closed, unbounded sets with weakly admissible weights.

In Sects. 4–7, we return to the setting of compact sets K in Rn and admissible
weights (see Definition 2.2; such weights need only be lower semicontinuous). Corol-
lary 4.12 establishes the almost sure convergence of the empirical measure of a random
point to the equilibrium measure in this setting, for appropriate measures ν.

Our next goal is to show that two functionals J and J on the space M(K ) of
probability measures coincide. These functionals are defined as asymptotic L2(ν)-
averages of Vandermonde determinants with respect to a Bernstein–Markov measure
ν on K . As in previous work (cf., [8,9]), weighted versions of these functionals are
of essential use (Theorem 6.6). This equality immediately yields a large deviation
principle in this Rn setting, Theorem 7.1, in which the rate function is given in terms
of the weighted energy functional independent of the Bernstein–Markov measure ν.

In Sect. 8, we deal with compact subsets of the sphere in R3 and measures of infinite
mass, again establishing a LDP (Theorem 8.6). Measures of infinite mass arise as the
push-forward of measures on unbounded subsets of the plane under stereographic
projection.

Our ultimate goal, achieved in Sects. 9 and 10, is to utilize the Rn result to prove
the analogous equality of the appropriate J -functionals for probability measures on
closed, unbounded sets in C allowing weakly admissible weights and very general
measures of infinite mass (Theorem 9.4). Then, via a contraction principle, we obtain
an LDP (Theorem 10.2).

Theorem 1.1 Let K ⊂ C be closed, and let Q be a weakly admissible weight on K .
Assume (K , ν, Q) satisfies the weighted Bernstein–Markov property (9.1). If ν has
finite mass, assume that (K , ν) satisfies a strong Bernstein–Markov property while
if ν has infinite mass in a neighborhood of infinity, assume that (9.4) and (9.5) are
satisfied for some function ε(z). Define a sequence {σk} of probability measures on
M(K ) by

σk(G) = 1
Zk

∫

G̃k

|V DM(z0, . . . , zk)|2
k∏

i=0

e−2k Q(zi )
k∏

i=0

dν(zi )

where G̃k = {(z0, . . . , zk) ∈ K k+1 : 1
k+1

∑
δzi ∈ G}. Then {σk} satisfies a large

deviation principle with speed k2 and good rate function I := IK ,Q where, for
µ ∈ M(K ),

I(µ) = I Q(µ) − I Q(µK ,Q).

In Sect. 11 we extend this result to the case of general β (Theorem 11.2). Our
results include the LDP for a number of ensembles occurring in the literature (see
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Remark 10.3) and also the results of Hardy [15] for the Lebesgue measure in R or
C (see the discussion after Theorem 11.2). The idea of using inverse stereographic
projection and working in R3 to obtain an LDP for unbounded sets in C comes from
this work.

2 Logarithmic Potential Theory in Rn

Let K ⊂ Rn be compact and let M(K ) be the set of probability measures on K
endowed with the topology of weak convergence from duality with continuous func-
tions. We consider the logarithmic energy minimization problem:

inf
µ∈M(K )

I (µ)

where

I (µ) :=
∫

K

∫

K
log

1
|x − y|dµ(x)dµ(y)

is the logarithmic energy of µ. We will say that K is log-polar if I (µ) = ∞ for all
µ ∈ M(K ). It is known that any compact set of positive Hausdorff dimension is non-
log-polar [11]. For a Borel set E ⊂ Rn we will say E is log-polar if every compact
subset of E is log-polar. We write

Uµ(x) :=
∫

K
log

1
|x − y|dµ(y)

for the logarithmic potential of µ. It is locally integrable and superharmonic in all of
Rn .

We gather known results about logarithmic potentials in Rn in the next theorem.

Theorem 2.1 The following results, whose precise statements can be found in [21] for
logarithmic potentials in C = R2, hold true for logarithmic potentials in Rn, n ≥ 2:

(i) for µ = µ1 − µ2 a signed measure with compact support and total mass zero,
with µ1 and µ2 of finite energies, I (µ) is non-negative and is zero if and only if
µ1 = µ2.

(ii) principle of descent and lower envelope theorem (with “q.e.” in the latter
replaced by “off of a log-polar set”);

(iii) maximum principle;
(iv) continuity principle.

Proof The version of (i) in C is [21, Lem. 1.8]. In Rn , it follows from [12, Thm. 2.5].
An extension of (i) in case of unbounded support and whenever I (µ) is well-defined is
given in [19], see Example 3.3. One checks that the proofs of the principle of descent
and lower envelope theorem in C, Theorems I.6.8. and I.6.9. of [21], are valid in Rn .
Results (iii) and (iv) are Theorems 5.2 and 5.1 of [17]. A maximum principle restricted
to the two dimensional sphere also follows as a particular case of [10, Thm. 5]. ()
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We will need to work in a weighted setting. We caution the reader that, unlike the
setting of compact sets in Rn where we have a single notion of admissibility for a
weight function, when we work on unbounded sets in C in the next section, we will
have several different notions.

Definition 2.2 Given a compact set K ⊂ Rn which is not log-polar, let Q be a lower
semicontinuous function on K with {x ∈ K : Q(x) < ∞} not log-polar. We call such
Q admissible and write Q ∈ A(K ). We define w(x) := e−Q(x).

We refer to either Q or w as the weight; in [21] this terminology is reserved for w.
We consider now the weighted logarithmic energy minimization problem:

inf I Q(µ), µ ∈ M(K ),

where

I Q(µ) :=
∫

K

∫

K
log

1
|x − y|w(x)w(y)

dµ(x)dµ(y) = I (µ) + 2
∫

K
Q(x)dµ(x).

Following the arguments on [21, pp. 27–33], we have the following.

Theorem 2.3 For K ⊂ Rn compact and not log-polar, and Q ∈ A(K ),

(i) Vw := infµ∈M(K ) I Q(µ) is finite;
(ii) there exists a unique weighted equilibrium measure µK ,Q ∈ M(K ) with

I Q(µK ,Q) = Vw and the logarithmic energy I (µK ,Q) is finite;
(iii) the support Sw :=supp(µK ,Q) is contained in {x ∈ K : Q(x) < ∞} and Sw is

not log-polar;
(iv) Let Fw := Vw −

∫
K Q(x)dµK ,Q(x) denote the (finite) Robin constant. Then

UµK ,Q (x) + Q(x) ≥ Fw on K\P where P is log-polar (possibly empty);

UµK ,Q (x) + Q(x) ≤ Fw for all x ∈ Sw.

Remark 2.4 In the proof of the Frostman-type property (iv) in [21], one simply replaces
“q.e.”—off of a set of positive logarithmic capacity in C—by “off of a log-polar set”
as the essential property used is the existence of a measure of finite logarithmic energy
on a compact subset of a set of positive logarithmic capacity in C. We should mention
that, in the unweighted case, the existence portion of (ii) and property (iv) can be found
in [17, Theorems 5.4 and 5.8].

Next we discretize: for k ≥ 2, let the k-th weighted diameter δ
Q
k (K ) be defined by

δ
Q
k (K ) := sup

x1,...,xk∈K

∣∣∣V DM Q
k (x1, . . . , xk)

∣∣∣
2/k(k−1)

,

where |V DM Q
k (x1, . . . , xk)| denotes the weighted Vandermonde:
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∣∣∣V DM Q
k (x1, . . . , xk)

∣∣∣ :=
∏

i< j

|xi − x j |w(xi )w(x j ) =
∏

i< j

|xi − x j |
k∏

j=1

w(x j )
k−1

=: |V DMk(x1, . . . , xk)| ·
k∏

j=1

w(x j )
k−1. (2.1)

By the upper semicontinuity of (x1, . . . , xk) → ∏
i< j |xi − x j |w(xi )w(x j ) on K k

the supremum is attained; we call any collection of k points of K at which the maxi-
mum is attained weighted Fekete points of order k for K , Q. Following the proofs of
Propositions 3.1–3.3 of [9, Sect. 3] we may derive similar results in Rn .

Theorem 2.5 Given K ⊂ Rn compact and not log-polar, and Q ∈ A(K ),

(i) if {µk = 1
k
∑k

j=1 δx (k)
j

} ⊂ M(K ) converge weakly to µ ∈ M(K ), then

lim sup
k→∞

∣∣∣V DM Q
k

(
x (k)

1 , . . . , x (k)
k

)∣∣∣
2/k(k−1)

≤ exp (−I Q(µ)); (2.2)

(ii) we have

δQ(K ) := lim
k→∞

δ
Q
k (K ) = exp (−Vw);

(iii) if {x (k)
j } j=1,...,k; k=2,3,... ⊂ K and

lim
k→∞

∣∣∣V DM Q
k

(
x (k)

1 , . . . , x (k)
k

)∣∣∣
2/k(k−1)

= exp (−Vw)

then

µk = 1
k

k∑

j=1

δx (k)
j

→ µK ,Q weakly.

3 Weighted Potential Theory on Unbounded Sets in C

We use the previous results in R3 and the inverse stereographic projection from the
two-dimensional sphere to C to extend classical results concerning potential theory
on compact subsets of C to unbounded closed sets with weakly admissible weights.
Some of these results already appeared in the literature, see, e.g., [16,23].

Thus let K ⊂ C be closed and unbounded. We consider three types of admissibility
for weight functions on K .

Definition 3.1 Let Q be a lower semicontinuous function on K with {z ∈ K : Q(z) <

∞} a non-polar subset of C (equivalently a non-log-polar subset of R2). We say Q is
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(i) weakly admissible if there exists M ∈ (−∞,∞) such that

lim inf
z∈K , |z|→∞

(Q(z) − log |z|) = M; (3.1)

(ii) admissible if lim inf z∈K , |z|→+∞(Q(z) − log |z|) = +∞;
(iii) strongly admissible if for some ε > 0, there exists R > 0 with Q(z) > (1 +

ε) log |z| for z ∈ K and |z| > R.

Examples of weakly admissible weights arise from logarithmic potentials: if µ is a
probability measure on C such that Uµ is continuous, then Q = −Uµ is weakly
admissible on K = C.

We assume now that Q is weakly admissible. We consider the inverse stereographic
projection T : C ∪ {∞} → S where S is the sphere in R3 centered in (0, 0, 1/2) of
radius 1/2. It is defined by

T (z) =
(

Re (z)
1 + |z|2 ,

Im (z)
1 + |z|2 ,

|z|2
1 + |z|2

)
, z ∈ C (3.2)

and T (∞) = P0, where P0 = (0, 0, 1) denotes the “north pole” of S. The map T is a
homeomorphism with

|T (z) − T (u)| = |z − u|
√

1 + |z|2
√

1 + |u|2
, z, u ∈ C, (3.3)

where | · | denotes the Euclidean distance.
For ν a positive Borel measure supported on K , not necessarily finite, we denote

by T∗ν its push-forward by T , that is, the measure on T (K ) such that
∫

T (K )
f (x)dT∗ν(x) =

∫

K
f (T (z))dν(z),

for any Borel function f on T (K ). Lemma 2.1 in [15] shows that the map

T∗ : M(K ) → M(T (K )),

is a homeomorphism from M(K ) to the subset of M(T (K )) of measures which put
no mass at the north pole P0 of S. Here, M(K ) and M(T (K )) are endowed with the
topology of weak convergence. This is the topology coming from duality with bounded,
continuous functions. On K , it suffices to consider bounded, continuous functions
f : K → C such that lim|z|→∞ f (z) exists. This follows from the correspondence of
M(K ) with the measures in M(T (K )) putting no mass at P0.

When the support of a measure µ ∈ M(K ) is unbounded, its potential

Uµ(z) =
∫

log
1

|z − t |dµ(t), z ∈ C

is not always well-defined. However, the following lemma holds true.
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Lemma 3.2 If there exists a z0 ∈ C with Uµ(z0) > −∞ then

∫
log(1 + |t |)dµ(t) < ∞, (3.4)

which implies that Uµ(z) is well-defined as a function on C with values in (−∞,∞].
Moreover, Uµ(z) is then superharmonic and

−Uµ(z) ≤ log(1 + |z|) +
∫

log(1 + |t |)dµ(t).

Also, ∫
log(1 + |t |)dµ(t) < ∞ ⇐⇒ −∞ < I (µ). (3.5)

Proof If 1 + 2|z0| ≤ |t | then 1 + |t | ≤ 2(|t | − |z0|) ≤ 2|t − z0|, hence

∫

1+2|z0|≤|t |
log(1 + |t |)dµ(t) ≤ log 2 +

∫

1+2|z0|≤|t |
log |z0 − t |dµ(t) < ∞. (3.6)

Conversely, if (3.4) holds then −∞ < Uµ(z) and −∞ < I (µ) since |z − t | ≤
(1+|z|)(1+|t |). Under assumption (3.4), the potential Uµ(z) is superharmonic. This
follows, for example, from the fact that

Uµ(z) =
∫

log
1 + |t |
|z − t |dµ(t) −

∫
log(1 + |t |)dµ(t),

and the first integral on the right-hand side is superharmonic with respect to z, see
[20, Thm. 2.4.8]. The direct implication in (3.5) was noted above. Conversely, if
−∞ < I (µ) then Uµ(z) cannot be constant, equal to −∞, for all z, so the inequality
on the left of (3.5), which is (3.4), follows from (3.6). ()

Logarithmic potentials on C and the sphere S correspond by the relation

Uµ(z) = U T∗µ(T z) − 1
2

log(1 + |z|2) − 1
2

∫
log(1 + |t |2)dµ(t), z ∈ C. (3.7)

The weighted logarithmic energy of a measure µ ∈ M(K ) is defined as

I Q(µ) =
∫

K

∫

K
log

1
|z − t |w(z)w(t)

dµ(z)dµ(t) = I (µ) + 2
∫

K
Qdµ, (3.8)

where w = e−Q . The double integral is always well defined. Indeed, it follows from
the upper semicontinuity of w and (3.1) that the integrand is bounded below. On the
contrary, the second expression has a meaning only if I (µ) > −∞ which is not
necessarily true. Another equivalent way to define I Q(µ), which is always valid, is
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by using the map T as was done in [16]. Here, one identifies I Q(µ) with the weighted
logarithmic energy of the measure T∗µ ∈ M(T (K )),

I Q̃(T∗µ) =
∫

T (K )

∫

T (K )
log

1
|x − y|dT∗µ(x)dT∗µ(y) + 2

∫

T (K )
Q̃(x)dT∗µ(x),

(3.9)
where

Q̃(T (z)) = Q(z) − 1
2

log(1 + |z|2). (3.10)

To define Q̃ on the whole of T (K ) we set Q̃(P0) = M in (3.1), so that Q̃ becomes lower
semicontinuous, and we get a correspondence between weakly admissible weights on
the closed set K in C and admissible weights on the compact set T (K ) ⊂ S in R3.

Lemma 3.3 A closed subset K ⊂ C is polar if and only if T (K ) ⊂ S is log-polar.

Proof We have
∫

T (K )

∫

T (K )
log

1
|x − y|dT∗µ(x)dT∗µ(y) =

∫

K

∫

K
log

1
|z − t |dµ(z)dµ(t)

+
∫

K
log(1 + |t |2)dµ(t).

Recall that a closed subset K ⊂ C is polar if Kr = K ∩ B(0, r) is polar for all
r > 0. Thus, if K is non-polar, there exists r > 0 with Kr non-polar, that is, there
is a measure µr supported on Kr of finite energy. By the above equality, T∗µr is a
measure on T (Kr ) ⊂ T (K ) of finite energy, so T (K ) is not log-polar. Conversely, if
K ⊂ C is polar, for any finite measure µ of compact support in K we have I (µ) = ∞
in C (cf. [20]) and thus I (T∗µ) = ∞ in S. Since any measure on T (K ) charging the
north pole P0 has infinite energy, it follows that T (K ) is log-polar. ()
Theorem 2.3 asserts the existence and uniqueness of a weighted energy minimizing
measure on a non-log-polar compact subset of Rn with an admissible weight. Obvi-
ously, this minimizing measure does not charge any point of the set, in particular the
north pole P0 if it belongs to the set. Hence the above correspondence implies the
following result.

Theorem 3.4 Let K be a non-polar closed subset of C and Q a weakly admissible
weight on K . Then,

(i) Vw := infµ∈M(K ) I Q(µ) is finite;
(ii) There exists a unique weighted equilibrium measure µK ,Q ∈ M(K ) with

I Q(µK ,Q) = Vw and the logarithmic energy I (µK ,Q) is finite (hence
−&UµK ,Q = 2πµK ,Q);

(iii) The support Sw := supp(µK ,Q) is contained in {z ∈ K : Q(z) < ∞} and Sw is
not polar;

(iv) Let Fw := Vw −
∫

K Q(z)dµK ,Q(z) denote the (finite) Robin constant. Then

UµK ,Q (z) + Q(z) ≥ Fw on K\P where P is polar (possibly empty);
UµK ,Q (z) + Q(z) ≤ Fw for all z ∈ Sw.
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Proof The above assertions correspond by the map T to the similar assertions from
Theorem 2.3 applied with a non-log-polar compact subset of the sphere S. Note that

T∗µK ,Q = µT (K ),Q̃, Vw = Vw̃, Fw = Fw̃ − 1
2

∫

K
log(1 + |t |2)dµK ,Q(t),

where we have set w̃ := e−Q̃ . The fact that I (µK ,Q) < ∞ follows from

I (µK ,Q) = I Q(µK ,Q) − 2
∫

K
QdµK ,Q = I Q̃(T∗µK ,Q) − 2

∫

K
QdµK ,Q,

where we know that I Q̃(T∗µK ,Q) = Vw̃ is finite and Q is bounded below. If Sw is
compact, it is clear that the other inequality −∞ < I (µK ,Q) is satisfied. If Sw is not
compact, we may use

∫∫
log |z − t |dµK ,Q(z)dµK ,Q(t) ≤ 2

∫
log(1 + |t |)dµK ,Q(t),

so to verify −∞ < I (µK ,Q) it suffices to show that

∫

K
log(1 + |t |)dµK ,Q(t) < ∞,

which holds true by Lemma 3.2 since the equilibrium potential satisfies UµK ,Q >

−∞. ()

In particular, if µ is a probability measure on C such that Uµ is continuous, taking
Q = −Uµ on K = C we have µ = µK ,Q so that, in general, µK ,Q need not have
compact support. As specific examples, if K = C and Q(z) = 1

2 log(1 + |z|2), then
dµK ,Q = π−1(1 + |z|2)−2dm(z) where dm is Lebesgue measure, cf., Example 1.4
of [15]. If K = R and Q(x) = 1

2 log(1 + x2), then dµK ,Q = π−1(1 + x2)−1dx ,
cf., Example 1.3 of [15]. We mention that in [16], existence and uniqueness of a
minimizing measure were proven in the more general context of weakly admissible
vector equilibrium problems.

Let L(C) be the set of all subharmonic functions u on C with the property that

u(z) − log |z| is bounded above as |z| → ∞.

We will need the following version of the domination principle, see [7, Cor. A.2].

Proposition 3.5 Let u, v ∈ L(C) with u(z) − v(z) bounded above as |z| → ∞ and
suppose I (&v) < ∞. If u ≤ v a.e.−&v, then u ≤ v on C.

Here, &v need not have compact support.
We can now state a weighted version of the Bernstein–Walsh lemma with a weakly

admissible weight (see [21, Thm. III.2.1] for the case of an admissible weight). This
will be used in Sect. 8 to get a version for appropriate polynomials on the sphere
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(Theorem 8.1). We let Pk(C) denote the complex-valued polynomials of a complex
variable of degree at most k.

Theorem 3.6 Let K be a closed non-polar subset of C and Q a weakly admissible
weight on K . If pk ∈ Pk(C) and

|pk(z)e−k Q(z)| ≤ M for q.e. z ∈ Sw,

then

|pk(z)| ≤ M exp(k(−UµK ,Q (z) + Fw)), z ∈ C,

and

|pk(z)e−k Q(z)| ≤ M, for q.e. z ∈ K .

Proof The function g := log(|pk |/M)/k belongs to L(C) and

g(z) ≤ Q(z) ≤ −UµK ,Q (z) + Fw for q.e. z ∈ Sw.

By Lemma 3.2, −UµK ,Q + Fw also belongs to L(C) and −&UµK ,Q = 2πµK ,Q is of
finite energy. Hence, by the above domination principle,

g(z) ≤ −UµK ,Q (z) + Fw, z ∈ C,

which, together with the first inequality in (iv) of Theorem 3.4, proves our contention.
()

We proceed with properties of the weighted Vandermonde. We have the relation

∣∣∣V DM Q
k (z1, . . . , zk)

∣∣∣ =
∣∣∣V DM Q̃

k (T (z1), . . . , T (zk))
∣∣∣ ,

from which it follows that the assertions of Theorem 2.5 about the Vandermonde can
be carried over to C. Since the result may be of interest on its own, we state it as a
theorem.

Theorem 3.7 Let K be a closed non-polar subset of C and Q a weakly admissible
weight on K . The k-th weighted diameters δ

Q
k (K ), k ≥ 2, are finite and

(i) if {µk = 1
k
∑k

j=1 δx (k)
j

} ⊂ M(K ) converge weakly to µ ∈ M(K ), then

lim sup
k→∞

∣∣∣V DM Q
k

(
x (k)

1 , . . . , x (k)
k

)∣∣∣
2/k(k−1)

≤ exp (−I Q(µ)); (3.11)

(ii) we have δQ(K ) := limk→∞ δ
Q
k (K ) = exp (−Vw);
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(iii) if {x (k)
j } j=1,...,k; k=2,3,... ⊂ K and

lim
k→∞

∣∣∣V DM Q
k

(
x (k)

1 , . . . , x (k)
k

)∣∣∣
2/k(k−1)

= exp (−Vw)

then

µk = 1
k

k∑

j=1

δx (k)
j

→ µK ,Q weakly.

Remark 3.8 The Frostman-type result in (iv) of Theorem 3.4 and (ii) of Theorem 3.7
(as well as (iii) in the special case of arrays of weighted Fekete points) has also been
proved in [3].

4 Bernstein–Markov Properties in Rn

In Sects. 4–8, we return to the setting of compact sets in Rn . In particular, admissible
weights will be in the sense of Definition 2.2. For k = 1, 2, . . . , let Pk = P(n)

k
denote the real polynomials in n real variables x = (x1, . . . , xn) of degree at most
k and Pk(C) denote the complex holomorphic polynomials in n complex variables
z = (z1, . . . , zn) of degree at most k. Given a compact set K ⊂ Cn and a positive
measure ν on K , we say that (K , ν) satisfies the Bernstein–Markov property (or ν is
a Bernstein–Markov measure for K ) if for all pk ∈ Pk(C),

||pk ||K := sup
z∈K

|pk(z)| ≤ Mk ||pk ||L2(ν) with lim sup
k→∞

M1/k
k = 1.

It was shown in [8] that any compact set in Cn admits a Bernstein–Markov measure
for complex holomorphic polynomials; indeed, the following stronger statement is
true.

Proposition 4.1 [8] Let K ⊂ Rn. There exists a measure ν ∈ M(K ) such that
for all complex-valued polynomials p of degree at most k in the (real) coordinates
x = (x1, . . . , xn) we have

||p||K ≤ Mk ||p||L2(ν)

where lim supk→∞ M1/k
k = 1.

For a compact set K ⊂ Rn and a positive measure ν on K , we will say that (K , ν)

satisfies the Bernstein–Markov property if for all pk ∈ Pk ,

||pk ||K := sup
x∈K

|pk(x)| ≤ Mk ||pk ||L2(ν) with lim sup
k→∞

M1/k
k = 1.
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More generally, for K ⊂ Rn compact, Q ∈ A(K ), and ν a measure on K , we say
that the triple (K , ν, Q) satisfies the weighted Bernstein–Markov property if for all
pk ∈ Pk ,

||e−k Q pk ||K ≤ Mk ||e−k Q pk ||L2(ν) with lim sup
k→∞

M1/k
k = 1.

We have the analogous notion of weighted Bernstein–Markov property for pk ∈ Pk(C)

if K ⊂ Cn and Q ∈ A(K ).

Remark 4.2 These properties can be stated with L p norms for any 0 < p < ∞.
The proof of Theorem 3.4.3 in [22] in C that if (K , ν) satisfies an (weighted) L p-
Bernstein–Markov property for Pk(C) for some 0 < p < ∞ then (K , ν) satisfies
an (weighted) L p-Bernstein–Markov property for all 0 < p < ∞ just uses Hölder’s
inequality and remains valid in our setting.

Now another very important observation: Theorem 3.2 of [4] works—indeed, is
even stated—in Rn for any n ≥ 2:

Theorem 4.3 Given K ⊂ Rn compact, and Q a continuous weight, if ν is a finite
measure on K such that (K , ν) satisfies a Bernstein–Markov property, then the triple
(K , ν, Q) satisfies a weighted Bernstein–Markov property.

Definition 4.4 Given K ⊂ Rn compact, a finite measure ν on K is called a strong
Bernstein–Markov measure for K if for any continuous weight Q on K , the triple
(K , ν, Q) satisfies a weighted Bernstein–Markov property. We have the analogous
notion if K ⊂ Cn using pk ∈ Pk(C).

Remark 4.5 Combining Proposition 4.1 and Theorem 4.3 we see that any compact
set K in Rn admits a strong Bernstein–Markov measure; and any Bernstein–Markov
measure on K is automatically a strong Bernstein–Markov measure for K . This latter
equivalence is not necessarily true in the complex setting. For K ⊂ C, there are well-
known sufficient mass-density conditions on a measure ν on K so that (K , ν) satisfies
a Bernstein–Markov property for Pk(C) [22]. In particular, Lebesgue measure on
an interval or Lebesgue planar measure on a compact set in C having C1 boundary
satisfies the Bernstein–Markov property. We remark that if C\K is regular for the
Dirichlet problem, the condition that (K , ν) satisfies a Bernstein–Markov property for
Pk(C) is equivalent to the condition that ν be a regular measure; i.e., ν ∈ Reg in the
terminology of [22]. We refer to this book for more details.

Furthermore, for every compact set K in Rn there exist discrete measures which
satisfy the (strong) Bernstein–Markov property [8]. If one considers K ⊂ Rn ⊂ Cn ,
there are sufficient mass-density conditions on a measure ν on K so that (K , ν) satisfies
a Bernstein–Markov property for polynomials on Cn and hence on Rn . For more on
this, cf. [6,8].

Remark 4.6 Let K ⊂ Rn be compact and not log-polar and let v ∈ A(K ). If α

is a finite measure on K such that (K , α, v) satisfies a weighted Bernstein–Markov
property, then
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(i) (K , cα, v) satisfies a weighted Bernstein–Markov property for any 0 < c < ∞
and

(ii) (K , α + β, v) satisfies a weighted Bernstein–Markov property for any finite
measure β on K .

The importance of a (weighted) Bernstein–Markov property is the following con-
sequence on the asymptotic behavior of the (weighted) L2 normalization constants
defined by

Z Q
k = Z Q

k (K , ν) :=
∫

K k

∣∣∣V DM Q
k (Xk)

∣∣∣
2

dν(Xk), (4.1)

where Xk := (x1, . . . , xk) ∈ K k and ν is a finite positive measure on K .

Remark 4.7 The quantity Z Q
k appears as the normalization constant in the law of

eigenvalues of random matrix models. It is also referred to as the partition function
in the theory of Coulomb gases. See Sect. 11 for more details about the link between
these notions.

Proposition 4.8 Given K ⊂ Rn compact and not log-polar, Q ∈ A(K ), and ν a finite
measure on K such that (K , ν, Q) satisfies a weighted Bernstein–Markov property,
we have

lim
k→∞

(Z Q
k )1/k(k−1) = exp (−Vw) = δQ(K ).

Proof We clearly have lim supk→∞(Z Q
k )1/k(k−1) ≤ exp (−Vw) from (ii) of Theo-

rem 2.5. For the reverse inequality with lim inf, note that

|V DMk(x1, . . . , xk)|2 =
∏

i< j

|xi − x j |2 =
∏

i< j

(
n∑

l=1

(xi,l − x j,l)
2

)

where we write xi = (xi,1, . . . , xi,n) is a polynomial of degree k(k − 1) in the nk
real coordinates {xi,l}l=1,...,n; i=1,...,k . Now if Fk = ( f1, . . . , fk) is a set of weighted
Fekete points of order k for K , Q, then

p(x1) := |V DMk(x1, f2, . . . , fk)|2
k∏

j=2

e−2(k−1)Q( f j )

is a (non-negative) polynomial of degree 2(k − 1) in (the coordinates of) x1. By
definition of weighted Fekete points, for any x1 ∈ K ,

p(x1)e−2(k−1)Q(x1) ≤ max
x∈K

p(x)e−2(k−1)Q(x) = p( f1)e−2(k−1)Q( f1)
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since this right-hand side is precisely |V DM Q
k (Fk)|2. By the weighted Bernstein–

Markov property using L1 norm instead of L2 (see Remark 4.2),

|V DM Q
k (Fk)|2 ≤ M2(k−1)

∫

K
|V DMk(x1, f2, . . . , fk)|2

·e−2(k−1)Q(x1) ·
k∏

j=2

e−2(k−1)Q( f j )dν(x1).

Now for each fixed x1 ∈ K , we consider

p2(x2) := |V DMk(x1, x2, f3 . . . , fk)|2 · e−2(k−1)Q(x1) ·
k∏

j=3

e−2(k−1)Q( f j )

which is a (non-negative) polynomial of degree 2(k − 1) in (the coordinates of) x2.
Then

p2( f2)e−2(k−1)Q( f2) ≤ max
x∈K

p2(x)e−2(k−1)Q(x).

The left-hand side is

|V DMk(x1, f2, f3 . . . , fk)|2 · e−2(k−1)Q(x1) ·
k∏

j=2

e−2(k−1)Q( f j ).

The right-hand-side, by the weighted Bernstein–Markov property, is bounded above
by

M2(k−1)

∫

K
|V DMk(x1, x2, f3, . . . , fk)|2 · e−2(k−1)Q(x1) ·

k∏

j=3

e−2(k−1)Q( f j )e−2(k−1)Q(x2)dν(x2).

Plugging these into our first estimate, we have

|V DM Q
k (Fk)|2 ≤ M2(k−1)

∫

K
|V DMk(x1, f2, . . . , fk)|2 · e−2(k−1)Q(x1)

·
k∏

j=2

e−2(k−1)Q( f j )dν(x1)

≤ M2(k−1)

∫

K

[
M2(k−1)

∫

K
|V DMk(x1, x2, f3,. . . , fk)|2 · e−2(k−1)Q(x1)·
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·
k∏

j=3

e−2(k−1)Q( f j )e−2(k−1)Q(x2)dν(x2)



 dν(x1)

= (M2(k−1))
2
∫

K 2
|V DMk(x1, x2, f3, . . . , fk)|2

k∏

j=3

e−2(k−1)Q( f j )

·
2∏

j=1

e−2(k−1)Q(x j )dν(x2)dν(x1).

Continuing the process and using M1/2k
2(k−1) → 1 gives the result. ()

Given any Q ∈ A(K ), we can always find a finite measure satisfying the important
conclusion of Proposition 4.8.

Proposition 4.9 Let K ⊂ Rn be compact and not log-polar and let Q ∈ A(K ). Then
there exists a finite measure µ on K such that

lim
k→∞

(Z Q
k (K , µ))1/k(k−1) = exp (−Vw) = δQ(K ). (4.2)

We can even construct µ so that, in addition, µ is a (strong) Bernstein–Markov measure
for K .

Proof Consider the weighted equilibrium measure µK ,Q . We have Vw = I (µK ,Q) <

∞. By Lusin’s continuity theorem, for every integer m > 1, there exists a compact
subset Km of K such that µK ,Q(K\Km) ≤ 1/m and Q (considered as a function on
Km only) is continuous on Km . We may assume that each Km is not log-polar and
that the sets Km are increasing as m tends to infinity. Let µm ∈ M(Km) be a (strong)
Bernstein–Markov measure for Km . We claim that µ =∑∞

m=1
1

2m µm satisfies (4.2).
Since µm ∈ M(Km) is a (strong) Bernstein–Markov measure for Km and Qm :=

Q|Km is continuous, it also follows from Remark 4.6 (i) that (Km, Qm, 1
2m µm) satisfies

a weighted Bernstein–Markov property.
Since Z Q

k (K , µ) ≤ maxx∈K k |V DM Q(x)|2µ(K )k , we have

lim sup
k→∞

(
Z Q

k (K , µ)
)1/k(k−1)

≤ δQ(K ).

To show

lim inf
k→∞

(
Z Q

k (K , µ)
)1/k(k−1)

≥ δQ(K ),

let λm := µK ,Q(Km) so that λm ↑ 1. Letting θm := 1
λm

µK ,Q |Km ∈ M(Km), we have

I Qm (θm) ≥ I Qm (µKm ,Qm ).
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Since (Km, Qm, 1
2m µm) satisfies a weighted Bernstein–Markov property,

exp
(
−I Qm (µKm ,Qm )

)
= lim

k→∞

(
Z Qm

k

(
Km,

1
2m µm

))1/k(k−1)

.

Clearly

Z Q
k (K , µ) ≥ Z Qm

k (Km, µ|Km ) ≥ Z Qm
k

(
Km,

1
2m µm

)
.

Thus

lim inf
k→∞

(
Z Q

k (K , µ)
)1/k(k−1)

≥ lim inf
k→∞

(
Z Qm

k

(
Km,

1
2m µm

))1/k(k−1)

= exp
(
−I Qm

(
µKm ,Qm

))
≥ exp

(
−I Qm (θm)

)
.

By monotone convergence, we have

lim
m→∞ I Qm (θm) = I Q(µK ,Q)

so that

lim inf
k→∞

(
Z Q

k (K , µ)
)1/k(k−1)

≥ exp−I Q(µK ,Q) = δQ(K ),

as desired.
For the second part, let ν be a (strong) Bernstein–Markov measure for K and define

µ :=
∞∑

m=1

2−mµm + ν.

The fact that µ is a (strong) Bernstein–Markov measure for K follows from the fact
that ν is a (strong) Bernstein–Markov measure for K and (ii) of Remark 4.6. Finally,
µ satisfies (4.2) from the previous part applied to

∑∞
m=1 2−mµm and the obvious

inequality Z Q
k (K , µ) ≥ Z Q

k (K ,
∑∞

m=1 2−mµm). ()

Example 4.10 If µ is a (strong) Bernstein–Markov measure for K and the set of points
of discontinuity of Q ∈ A(K ) is of µ measure zero, then (4.2) holds for µ. As a simple
but illustrative example, let K = [−1, 1] ⊂ R and take

Q(x) = 0 at all x ∈ [−1, 1]\{0}; Q(0) = −1.

It is easy to see that Lebesgue measure dµ on [−1, 1] satisfies (4.2) but (K , Q, µ) does
not satisfy the weighted Bernstein–Markov property. On the other hand, (K , Q, µ+δ0)

does satisfy the weighted Bernstein–Markov property.
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For Q ∈ A(K ) and ν a finite measure on K , we define a probability measure Probk
on K k : for a Borel set A ⊂ K k ,

Probk(A) := 1

Z Q
k

·
∫

A

∣∣∣V DM Q
k (Xk)

∣∣∣
2

dν(Xk). (4.3)

Directly from Proposition 4.9 and (4.3) we obtain the following estimate.

Corollary 4.11 Let Q ∈ A(K ) and ν a finite measure on K satisfying

lim
k→∞

(
Z Q

k (K , ν)
)1/k(k−1)

= exp (−Vw) = δQ(K ).

Given η > 0, define

Ak,η :=
{

Xk ∈ K k :
∣∣∣V DM Q

k (Xk)
∣∣∣
2
≥ (δQ(K ) − η)k(k−1)

}
. (4.4)

Then there exists k∗ = k∗(η) such that for all k > k∗,

Probk(K k\Ak,η) ≤
(

1 − η

2 exp (−Vw)

)k(k−1)

ν(K k).

We get the induced product probability measure P on the space of arrays on K ,

χ :=
{

X =
{

Xk ∈ K k
}

k≥1

}
,

namely,

(χ, P) :=
∞∏

k=1

(
K k, Probk

)
.

As an immediate consequence of the Borel–Cantelli lemma and (iii) of Theorem 2.5,
we obtain the following corollary.

Corollary 4.12 Let Q ∈ A(K ) and ν a finite measure on K satisfying

lim
k→∞

(Z Q
k (K , ν))1/k(k−1) = exp (−Vw) = δQ(K ).

For P-a.e. array X = {x (k)
j } j=1,...,k; k=2,3,... ∈ χ ,

1
k

k∑

j=1

δx (k)
j

→ µK ,Q weakly as k → ∞.
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5 Approximation of Probability Measures

For the proof of a large deviation principle (LDP) in Rn , as in [9], we will need to
approach general measures in M(K ) by weighted equilibrium measures. For that, we
consider equilibrium problems with weights that are the negatives of potentials. We
first verify that the natural candidate solution to such a problem is, indeed, the correct
solution.

Lemma 5.1 Let µ ∈ M(K ), K ⊂ Rn compact, I (µ) < ∞. Consider the possibly
non-admissible weight u := −Uµ on K . The weighted minimal energy on K is
obtained with the measure µ, that is

∀ν ∈ M(K ), I (µ) + 2
∫

udµ ≤ I (ν) + 2
∫

udν,

with equality if and only if ν = µ.

Proof We may assume that I (ν) < ∞. The inequality may be rewritten as

0 ≤ I (ν) − 2I (µ, ν) + I (µ) = I (ν − µ),

which is true, and, moreover, the energy I (ν − µ) can vanish only when ν = µ, see
(i) of Theorem 2.1. ()

The following two approximation results are analogous to [21, Lem. I.6.10].

Lemma 5.2 Let K ⊂ Rn be compact and non-log-polar and let µ ∈ M(K ). Let
Q ∈ A(K ) be finite µ-almost everywhere. There exist an increasing sequence of
compact sets Km in K and a sequence of measures µm ∈ M(Km) satisfying

(i) The measures µm tend weakly to µ, as m → ∞;
(ii) The functions Q|Km ∈ C(Km) and

∫
Qdµm tend to

∫
Qdµ as m → ∞;

(iii) The energies I (µm) tend to I (µ) as m → ∞.

Proof By Lusin’s continuity theorem, for every integer m ≥ 1, there exists a compact
subset Km of K such that µ(K\Km) ≤ 1/m and Q (considered as a function on
Km only) is continuous on Km . We may assume that Km is increasing as m tends to
infinity. Then, the measures µ̃m := µ|Km are increasing and tend weakly to µ. Since
Q is bounded below on K , the monotone convergence theorem tells us that

∫
Qdµ̃m =

∫
Q|Km dµ →

∫
Qdµ, as m → ∞.

Denoting as usual by log+ and log− the positive and negative parts of the log function,
we have, as m → ∞,

χm(z, t) log+ |z − t | ↑ log+ |z − t | and χm(z, t) log− |z − t | ↑ log− |z − t |,
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(µ × µ)-almost everywhere on K × K where χm(z, t) is the characteristic function
of Km × Km and we agree that the left-hand sides vanish when z = t /∈ Km . By
monotone convergence, we obtain

I (µ̃m) → I (µ), as m → ∞.

Finally, defining µm := µ̃m/µ(Km) gives the result. ()

Corollary 5.3 Let K ⊂ Rn be compact and non-log-polar and let µ ∈ M(K ) with
I (µ) < ∞. Let Km be the sequence of increasing compact sets in K and µm the
sequence of measures in M(Km) given by Lemma 5.2 with Q = Uµ. There exist a
sequence of continuous functions Qm on K such that

(i) the measures µm tend weakly to µ and the energies I (µm) tend to I (µ), as m →
∞;

(ii) the measures µm are equal to the weighted equilibrium measures µK ,Qm .

Proof First, note that Uµ ∈ A(K ) and is finite µ-almost everywhere since I (µ) < ∞,
so that Lemma 5.2 applies with Q = Uµ. Now we define

Qm := −Uµm
∣∣
K = −µ(Km)−1U µ̃m

∣∣
K .

Since Q = Uµ is continuous on Km , it follows that Qm is continuous on Km . By the
continuity principle for logarithmic potentials [Theorem 2.1 (iv)],−Uµm is continuous
on Rn and hence Qm is continuous on K . Properties (i) and (ii) follow from Lemmas 5.2
and 5.1 respectively. ()

6 The J Q Functionals on Rn

In this section, we introduce and establish the main properties of the weighted L2

functionals J
Q
, J Q as well as the relation with the weighted energy I Q . Our goal is

to establish an LDP in the next section.
Fix a compact set K in Rn , a measure ν in M(K ) and Q ∈ A(K ). We recall that

M(K ) endowed with the weak topology is a Polish space, i.e., a separable complete
metrizable space. Given G ⊂ M(K ), for each k = 1, 2, . . . we let

G̃k :=




a = (a1, . . . , ak) ∈ K k,
1
k

k∑

j=1

δa j ∈ G




 , (6.1)

and set

J Q
k (G) :=

[∫

G̃k

|V DM Q
k (a)|2dν(a)

]1/k(k−1)

. (6.2)
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Definition 6.1 For µ ∈ M(K ) we define

J
Q
(µ) := inf

G2µ
J

Q
(G) where J

Q
(G) := lim sup

k→∞
J Q

k (G);

J Q(µ) := inf
G2µ

J Q(G) where J Q(G) := lim inf
k→∞

J Q
k (G);

Here the infima are taken over all neighborhoods G of the measure µ in M(K ). Note
that , a priori, J

Q
, J Q depend on ν. For the unweighted case Q = 0, we simply write

J and J .

Lemma 6.2 The functionals J (µ), J (µ), J Q(µ), J
Q
(µ), are upper semicontinuous

on M(K ) in the weak topology.

Proof The proof is similar to the one of [7, Lem. 3.1]. ()
Lemma 6.3 The following properties hold (and with the J , J Q functionals as well):

(i) J
Q
(µ) ≤ e−I Q(µ) for Q ∈ A(K );

(ii) J
Q
(µ) ≤ J (µ) · e−2

∫
K Qdµ for Q ∈ A(K );

(iii) J
Q
(µ) = J (µ) · e−2

∫
K Qdµ for Q continuous.

Proof Property (i) follows from

J Q
k (G) ≤ sup

a∈G̃k

∣∣∣V DM Q
k (a)

∣∣∣
2/k(k−1)

,

and the upper bound (2.2) on the limit of the Vandermonde. We prove (ii) and (iii)
simultaneously. We first observe that if µ ∈ M(K ) and Q is continuous on K , given
ε > 0, there exists a neighborhood G ⊂ M(K ) of µ with

∣∣∣∣∣∣

∫

K
Q



dµ − 1
k

k∑

j=1

δa j





∣∣∣∣∣∣
≤ ε for a ∈ G̃k

for k sufficiently large. Thus we have

− ε −
∫

K
Qdµ ≤ −1

k

k∑

j=1

Q(a j ) ≤ ε −
∫

K
Qdµ. (6.3)

Note that for Q ∈ A(K ), hence lower semicontinuous, we only have the second
inequality. Since

∣∣∣V DM Q
k (a)

∣∣∣ = |V DMk(a)| ·
k∏

j=1

e−(k−1)Q(a j ),

we deduce from (6.3) that
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|V DMk(a)|e−k(k−1)(ε+
∫

K Qdµ) ≤
∣∣∣V DM Q

k (a)
∣∣∣ ≤ |V DMk(a)|ek(k−1)(ε−

∫
K Qdµ).

Now we take the square, integrate over a ∈ G̃k and take a k(k − 1)-th root of each
side to get

Jk(G)e−2(ε+
∫

K Qdµ) ≤ J Q
k (G) ≤ Jk(G)e2(ε−

∫
K Qdµ).

Precisely, given ε > 0, these inequalities are valid for G a sufficiently small neigh-
borhood of µ. Hence we get, upon taking lim supk→∞, the infimum over G 2 µ, and
noting that ε > 0 is arbitrary,

J (µ) = J
Q
(µ) · e2

∫
K Qdµ

as desired. If Q is only lower semicontinuous, we still have the upper bounds in the
above, which gives (ii). ()
From Lemma 6.3 (i), we know that for Q ∈ A(K )

log J Q(µ) ≤ log J
Q
(µ) ≤ −I Q(µ). (6.4)

In the remainder of this section, we show that when the measure ν satisfies a Bernstein–
Markov property, equality holds in (6.4).

We first consider the unweighted functionals J and J and the case of an equilibrium
measure µ = µK ,v where v ∈ A(K ).

Lemma 6.4 Let K be non-log-polar, v ∈ A(K ), and let ν ∈ M(K ) such that
(K , ν, v) satisfy a weighted Bernstein–Markov property. Then,

log J (µK ,v) = log J (µK ,v) = −I (µK ,v). (6.5)

Proof To prove (6.5), we first verify the following.

Claim Fix a neighborhood G of µK ,v . For η > 0, define

Ak,η :=
{

Zk ∈ K k : |V DMv
k (Zk)|2 ≥ (δv(K ) − η)k(k−1)

}
.

Given a sequence {η j } with η j ↓ 0, there exists a j0 and a k0 such that

∀ j ≥ j0, ∀k ≥ k0, Ak,η j ⊂ G̃k . (6.6)

We prove (6.6) by contradiction: if false, there are sequences {kl} and { jl} tending
to infinity such that for all l sufficiently large we can find a point Zkl = (z1, . . . , zkl )

with Zkl ∈ Akl ,η jl
\G̃kl . But

µl := 1
kl

kl∑

i=1

δzi 4∈ G
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for l sufficiently large is a contradiction with (iii) of Theorem 2.5 since Zkl ∈ Akl ,η jl

and η jl → 0 imply µl → µK ,v weakly. This proves the claim.
Fix a neighborhood G of µK ,v and a sequence {η j } with η j ↓ 0. For j ≥ j0, choose

k = k j large enough so that the inclusion in (6.6) holds true as well as

Probk j (K k j \Ak j ,η j ) ≤
(

1 − η j

2δv(K )

)k j (k j−1)

, (6.7)

and (
1 − η j

2δv(K )

)k j (k j−1)

→ 0 as j → ∞, (6.8)

which is possible (for (6.7) we make use of Corollary 4.11). In view of (6.6), the
definition of Probk j , and (6.7), we have

1
Zv

k j

∫

G̃k j

∣∣∣V DMv
k j

(Zkj)
∣∣∣
2

dν(Zkj) ≥
1

Zv
k j

∫

Ak j ,η j

∣∣∣V DMv
k j

(Zkj)
∣∣∣
2

dν(Zkj)

≥ 1 −
(

1 − η j

2δv(K )

)k j (k j−1)

. (6.9)

Note that, because of (6.8), the lower bound in (6.9) tends to 1 as j → ∞. Then,
since (K , ν, v) satisfy a weighted Bernstein–Markov property, we derive, with the
asymptotics of Zv

k j
given in Proposition 4.8, that

lim inf
j→∞

1
k j (k j − 1)

log
∫

G̃k j

∣∣∣V DMv
k j

(Zkj)
∣∣∣
2

dν(Zkj) ≥ log δv(K ).

Given any sequence of positive integers {k} we can find a subsequence {k j } as above
corresponding to some η j ↓ 0; hence

lim inf
k→∞

1
k(k − 1)

log
∫

G̃k

∣∣V DMv
k (Zk)

∣∣2 dν(Zk) ≥ log δv(K ).

It follows that

log J v(G) ≥ log δv(K ).

Taking the infimum over all neighborhoods G of µK ,v we obtain

log J v(µK ,v) ≥ log δv(K ).

Using (ii) of Lemma 6.3 with µ = µK ,v , we get

log J (µK ,v) ≥ −I (µk,v),

and with the unweighted version of (i), we obtain (6.5). ()
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Remark 6.5 We observe that the proof only used the property

lim
k→∞

(Zv
k (K , ν))1/k(k−1) = δv(K ).

Theorem 6.6 Let K be a non-log-polar compact subset of Rn and let ν ∈ M(K )

satisfy the (strong) Bernstein–Markov property.

(i) For any µ ∈ M(K ),

log J (µ) = log J (µ) = −I (µ). (6.10)

(ii) Let Q ∈ A(K ). Then
J

Q
(µ) = J (µ) · e−2

∫
K Qdµ, (6.11)

(and with the J , J Q functionals as well) so that,

log J
Q
(µ) = log J Q(µ) = −I Q(µ). (6.12)

Proof We first prove (i). The upper bound

log J (µ) ≤ −I (µ) (6.13)

is the unweighted version of (6.4). For the lower bound −I (µ) ≤ log J (µ) we first
assume that I (µ) < ∞. Using Corollary 5.3, there exists a sequence of (continuous)
functions Qm defined on K and measures µm = µK ,Qm tending weakly to µ such
that,

lim
m→∞ I (µm) = I (µ). (6.14)

Thus we can apply Lemma 6.4 to conclude

log J (µm) = log J (µm) = −I (µm),

and from (6.14) along with the upper semicontinuity of the functional µ → J (µ), we
derive

lim
m→∞ log J (µm) = −I (µ) ≤ log J (µ).

Together with (6.13) we get

log J (µ) = log J (µ) = −I (µ).

If µ ∈ M(K ) satisfies I (µ) = ∞, (i) of Lemma 6.3 shows that J (µ) = 0.
We next proceed with assertion (ii). For (6.11), it is sufficient to prove the inequality

J
Q
(µ) ≥ J (µ) · e−2

∫
K Qdµ. (6.15)
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We first assume that Q is finite µ-almost everywhere and I (µ) < ∞ so that Lemma 5.2
can be applied on K . Let Km be the sequence of compact subsets of K and µm be the
sequence of measures in M(Km) given by that lemma. By the upper semicontinuity
of the functional J

Q
,

J
Q
(µ) ≥ lim sup

m→∞
J

Q
(µm).

Also, by (iii) of Lemma 6.3 and (6.10), since Q|Km is continuous,

J
Q
(µm) = J (µm)e−2

∫
Qdµm = e−I (µm )−2

∫
Qdµm .

Hence, (6.15) follows from (ii) and (iii) of Lemma 5.2. When I (µ) = ∞, both
sides of (6.15) equal 0, since J (µ) = e−I (µ) and, by definition, 0 ≤ J

Q
(µ). If

µ({Q = ∞}) > 0, this is true as well because J (µ) > −∞ while the exponential in
the right-hand side vanishes.

Finally, (6.12) follows from (6.10) and (6.11). ()

Remark 6.7 We note that the Bernstein–Markov property of the measure ν has only
been applied with the sequence of continuous weights Qm that appear when approach-
ing µ with Corollary 5.3.

From now on, we simply use the notation J, J Q , without the overline or underline. It
follows from (6.10) and (6.12) that these functionals are independent of the measure
ν; i.e., we have shown: if ν ∈ M(K ) is any (strong) Bernstein–Markov measure, for
any Q ∈ A(K ), and for any µ ∈ M(K ) we have

log J Q(µ) = −I Q(µ). (6.16)

7 Large Deviation Principle in Rn

Fix a non-log-polar compact set K in Rn , a measure ν on K and Q ∈ A(K ). Define
jk : K k → M(K ) via

jk(x1, . . . , xk) = 1
k

k∑

j=1

δx j . (7.1)

The push-forward σk := ( jk)∗(Probk) (see (4.3) for the definition of Probk) is a
probability measure on M(K ): for a Borel set G ⊂ M(K ),

σk(G) = 1

Z Q
k

∫

G̃k

∣∣∣V DM Q
k (x1, . . . , xk)

∣∣∣
2

dν(x1) · · · dν(xk), (7.2)

recall (4.1), (4.3) and (6.1); here, Z Q
k depends on K , Q and ν.
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Theorem 7.1 Assume ν is a (strong) Bernstein–Markov measure on K , Q ∈ A(K ),
and ν satisfies

lim
k→∞

(
Z Q

k (K , ν)
)1/k(k−1)

= exp (−Vw) = δQ(K ). (7.3)

The sequence {σk = ( jk)∗(Probk)} of probability measures on M(K ) satisfies a
large deviation principle with speed k2 and good rate function I := IK ,Q where,
for µ ∈ M(K ),

I(µ) := log J Q(µK ,Q) − log J Q(µ) = I Q(µ) − I Q(µK ,Q).

This means that I : M(K ) → [0,∞] is a lower semicontinuous mapping such
that the sublevel sets {µ ∈ M(K ) : I(µ) ≤ α} are compact in the weak topology on
M(K ) for all α ≥ 0 (I is “good”) satisfying (7.4) and (7.5).

Definition 7.2 The sequence {µk} of probability measures on M(K ) satisfies a large
deviation principle (LDP) with good rate function I and speed k2 if for all measurable
sets - ⊂ M(K ),

− inf
µ∈-0

I(µ) ≤ lim inf
k→∞

1
k2 log µk(-) and (7.4)

lim sup
k→∞

1
k2 log µk(-) ≤ − inf

µ∈-̄
I(µ). (7.5)

In the setting of M(K ), to prove a LDP it suffices to work with a base for the weak
topology. The following is a special case of a basic general existence result for a LDP
given in Theorem 4.1.11 in [13].

Proposition 7.3 Let {σε} be a family of probability measures on M(K ). Let B be a
base for the topology of M(K ). For µ ∈ M(K ) let

I(µ) := − inf
{G∈B:µ∈G}

(
lim inf

ε→0
ε log σε(G)

)
.

Suppose for all µ ∈ M(K ),

I(µ) = − inf
{G∈B:µ∈G}

(
lim sup

ε→0
ε log σε(G)

)
.

Then {σε} satisfies a LDP with rate function I(µ) and speed 1/ε.

We give our proof of Theorem 7.1 using Theorem 6.6.

Proof As a base B for the topology of M(K ), we simply take all open sets. For {σε},
we take the sequence of probability measures {σk} on M(K ) and we take ε = k−2.
For G ∈ B,

1
k2 log σk(G) = k − 1

k
log J Q

k (G) − 1
k2 log Z Q

k
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using (6.2) and (7.2). From (6.16), and the fact that (7.3) holds,

lim
k→∞

1
k2 log Z Q

k = log δQ(K ) = log J Q(µK ,Q);

and by Theorem 6.6,

inf
G2µ

lim sup
k→∞

log J Q
k (G) = inf

G2µ
lim inf
k→∞

log J Q
k (G) = log J Q(µ).

Thus by Proposition 7.3 and Theorem 6.6, {σk} satisfies an LDP with rate function

I(µ) := log J Q(µK ,Q) − log J Q(µ) = I Q(µ) − I Q(µK ,Q)

and speed k2. This rate function is good since M(K ) is compact. ()

Remark 7.4 Note that the rate function is independent of the (strong) Bernstein–
Markov measure ν satisfying (7.3).

8 Measures ν of Infinite Mass on K ⊂ S ⊂ R3

In this section, we restrict to the setting of compact subsets of the two-dimensional
sphere S in R3, of center (0, 0, 1/2) and radius 1/2. Then in the following sections, we
use stereographic projection from S to the complex plane to derive a large deviation
principle on unbounded subsets of C. Now typically, on the complex plane, one would
like to consider locally finite measures with infinite mass like, e.g., the Lebesgue
measure. We use the stereographic projection T defined in (3.2) which sends the north
pole P0 = (0, 0, 1) of S to the point at infinity in C. On the sphere S we are thus led
to consider positive measures ν, locally finite in S\P0, such that

ν(VP0) = ∞, for all neighborhoods VP0 of P0. (8.1)

The goal of this section is to extend the results from the previous sections to such
measures.

Fix a compact subset K of S containing P0. To ensure the finiteness of the different
quantities defined previously, some condition should be satisfied linking the measure
ν and the increase of the weights Q near P0. We assume that

∃a > 0,

∫

K
ε(x)adν(x) < ∞, (8.2)

where ε(x) is some non-negative continuous function that tends to 0 as x tends to P0,
and that

Q(x) ≥ − log ε(x), as x → P0. (8.3)

This implies in particular that Q(P0) = ∞. We next state a weighted Bernstein–Walsh
lemma on the sphere.
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Theorem 8.1 Let K be a closed non-log-polar subset of S and Q ∈ A(K ). Let

pk(x) =
k∏

j=1

|x − x j |, x ∈ S, (8.4)

where x1, . . . , xk ∈ S and assume

|pk(x)e−k Q(x)| ≤ M for x ∈ Sw\P where P is log-polar (possibly empty).

Then

|pk(x)| ≤ M exp
(
k
(
−UµK ,Q (x) + Fw

))
, x ∈ S,

and
∣∣∣pk(z)e−k Q(z)

∣∣∣ ≤ M for x ∈ K\P̃ where P̃ is log-polar (possibly empty).

Proof Using the stereographic map T defined in (3.2), this theorem is a translation of
Theorem 3.6 on C. ()

We will also need a lemma related to where the L p norm of a weighted “polynomial”
lives, see [21, III,Thm. 6.1], [5, Thm. 6.1] for polynomials on C. For w = e−Q , we
set

S∗
w =

{
x ∈ K , UµK ,Q (x) + Q(x) ≤ Fw

}
.

Note that, as UµK ,Q (x) + Q(x) is lower semicontinuous, S∗
w is a closed subset of

S which, moreover, does not contain P0. Indeed, UµK ,Q (x) is bounded below while
Q(x) tends to infinity as x tends to P0. Moreover, from Theorem 3.4, Sw ⊂ S∗

w.

Lemma 8.2 Let p > 0, K a non-log-polar compact subset of S containing P0,
Q ∈ A(K ) and ν a positive measure on K satisfying (8.1)–(8.3). We assume that
(K , ν, Q) satisfies the weighted Bernstein–Markov property. Let N ⊂ K be a closed
neighborhood of S∗

w. Then, there exists a constant c > 0 independent of k and p such
that, for all expressions pk of the form (8.4),

∫

K

∣∣∣pke−k Q
∣∣∣

p
dν ≤

(
1 + O(e−ck)

) ∫

N

∣∣∣pke−k Q
∣∣∣

p
dν.

Proof We normalize pk so that ‖pke−k Q‖S∗w = 1. It is sufficient to show that there
exists a constant c > 0 such that for k large,

∫

K\N

∣∣∣pke−k Q
∣∣∣

p
dν ≤ e−ck, (8.5)

and that, for every ε > 0 and k large,
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∫

K

∣∣∣pke−k Q
∣∣∣

p
dν ≥ e−εk .

For the second inequality, we use the L p/2-Bernstein–Markov property (recall
Remark 4.2) which gives

∫

K

∣∣∣pke−k Q
∣∣∣

p
dν ≥ M−p/2

2k

∥∥∥pke−k Q
∥∥∥

p

K
≥ M−p/2

2k

∥∥∥pke−k Q
∥∥∥

p

S∗w
= M−p/2

2k ≥ e−εk,

for k large, where we notice that p2
k is a real polynomial of degree 2k.

For the first inequality, we use Theorem 8.1 and the fact that Sw ⊂ S∗
w. This implies

that, for x ∈ K ,
∣∣∣e−k Q(z) pk(x)

∣∣∣ ≤
∥∥∥e−k Q pk

∥∥∥
Sw

e−k(UµK ,Q +Q−Fw) ≤ e−k(UµK ,Q +Q−Fw).

Since UµK ,Q is bounded below on K , there exists a constant b0 such that

−UµK ,Q (x) − Q(x) + Fw ≤ log ε(x) + b0, x ∈ K ,

and, as ε(x) tends to 0 as x tends to P0, there exists a neighborhood VP0 of P0 such
that eb0ε(x)1/2 < 1 for x ∈ VP0 . On the other hand, since N is a closed neighborhood
of S∗

w and −UµK ,Q − Q is upper semicontinuous, there exists a constant b1 > 0 such
that

−UµK ,Q (x) − Q(x) + Fw ≤ −b1 < 0, x ∈ K\N .

From this we deduce that
∫

K\N

∣∣∣pke−k Q
∣∣∣

p
dν =

∫

VP0

∣∣∣pke−k Q
∣∣∣

p
dν +

∫

K\(N∪VP0 )

∣∣∣pke−k Q
∣∣∣

p
dν

≤
∫

VP0

ekpb0ε(x)kpdν + e−kpb1ν(K\VP0)

≤
∥∥∥eb0ε(x)1/2

∥∥∥
kp

VP0

∫

K
ε(x)adν + e−kpb1ν(K\VP0),

for k large, which implies (8.5). ()
We are now in a position to prove an extended version of Proposition 4.8.

Proposition 8.3 Let K be a non-log-polar compact subset of S containing P0, Q ∈
A(K ) and ν a positive measure on K satisfying (8.1)–(8.3). We assume that (K , ν, Q)

satisfies a weighted Bernstein–Markov property. Then the L2 normalization constants
Z Q

k defined in (4.1) are finite and

lim
k→∞

(
Z Q

k

)1/k(k−1)
= δQ(K ).
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Proof In view of (8.2) and (8.3), it is clear that, for k large, the integral defining Z Q
k

is finite. The lower bound,

δQ(K ) ≤ lim inf
k→∞

(
Z Q

k

)1/k(k−1)
,

is proved as in the proof of Proposition 4.8 by making use of the weighted Bernstein–
Markov property. For the upper bound,

lim sup
k→∞

(
Z Q

k

)1/k(k−1)
≤ δQ(K ), (8.6)

we first note that the expression |V DM Q
k (Xk)|2 is, in each variable, of the form

e−2(k−1)Q |q|2 with |q| as in (8.4) for k − 1. Hence, by using Lemma 8.2 with p = 2
for each of the k variables, and with N ⊂ K a closed neighborhood of S∗

w as in
Lemma 8.2 with ν(N ) < ∞ and P0 4∈ N , we get

Z Q
k =

∫

K k

∣∣∣V DM Q
k (Xk)

∣∣∣
2

dν(Xk) ≤
(

1+O(e−c(k−1))
)k
∫

N k

∣∣∣V DM Q
k (Xk)

∣∣∣
2

dν(Xk)

≤
(

1 + O(e−c(k−1))
)k (

δ
Q
k (K )

)k(k−1)
ν(N )k,

which implies (8.6) by taking the k(k − 1)-th root and letting k go to infinity. ()

The next goal is to generalize Corollary 4.11.

Corollary 8.4 We assume that the conditions (8.1)–(8.3) are satisfied and that
(K , ν, Q) satisfies the weighted Bernstein–Markov property. Then, with the nota-
tion of Corollary 4.11, there exist a constant c > 0 and k∗ = k∗(η) such that for all
k > k∗,

Probk(K k\Ak,η) ≤
(

1 − η

2δQ(K )

)k(k−1)

ν(N )k + O(e−ck), (8.7)

where N ⊂ K is a closed neighborhood of S∗
w as in Lemma 8.2 with ν(N ) < ∞ and

P0 4∈ N.

Proof We set Bk,η := K k\Ak,η and decompose the integral in

Probk(K k\Ak,η) = 1

Z Q
k

∫

Bk,η

∣∣∣V DM Q
k (Xk)

∣∣∣
2

dν(Xk)

as a sum of two integrals over Bk,η∩N k and Bk,η∩ (K k\N k). Recalling the definition
of the set Ak,η, the first term is less than

(
1 − η

2δQ(K )

)k(k−1)

ν(N )k,

for k large. The second term is less than
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1

Z Q
k

∫

K k\N k

∣∣∣V DM Q
k (Xk)

∣∣∣
2

dν(Xk) ≤
k∑

j=1

1

Z Q
k

∫

U j

∣∣∣V DM Q
k (Xk)

∣∣∣
2

dν(Xk),

where U j = K × · · · × (K\N ) × · · · K and the subset K\N is in j-th position.
As already observed in the previous proof, the expression |V DM Q

k (Xk)|2 is, in each
variable, of the form e−2(k−1)Q |q|2 with |q| as in (8.4) for k − 1. Hence, applying
Lemma 8.2 with the j-th variable to the integral over U j , we get the upper bound

O(e−c(k−1))

k∑

j=1

1

Z Q
k

∫

Vj

∣∣∣V DM Q
k (Xk)

∣∣∣
2

dν(Xk),

where Vj = K ×· · ·×N ×· · · K . Replacing N with K we finally get the upper bound
O(ke−c(k−1)), which implies (8.7) with a different c. ()

The last result that needs to be extended is the first item of Lemma 6.3, namely, that
for Q ∈ A(K ), and ν satisfying (8.1)–(8.3),

J
Q
(µ) ≤ e−I Q(µ). (8.8)

With the notation of Sect. 6, we remark that fixing a > 0 as in (8.2), we can write

∫

G̃k

∣∣∣V DM Q
k (a)

∣∣∣
2

dν(a) =
∫

G̃k

∣∣∣V DM Qk
k (a)

∣∣∣
2

d̃ν(a),

where

Qk(x) = Q(x) − a
2(k − 1)

Q+(x), ν̃(x) = e−aQ+(x)ν(x),

and Q+ = max(Q, 0). Observe that {Qk}k is an increasing sequence of admissible
weights that converges pointwise to Q as k tends to infinity. Also, in view of (8.2) and
(8.3), ν̃ is a finite measure. Since

∫

G̃k

∣∣∣V DM Qk
k (a)

∣∣∣
2

d̃ν(a) ≤
∫

G̃k

∣∣∣V DM
Qk0
k (a)

∣∣∣
2

d̃ν(a), k ≥ k0,

we have
∫

G̃k

∣∣∣V DM Q
k (a)

∣∣∣
2

dν(a) ≤
∫

G̃k

∣∣∣V DM
Qk0
k (a)

∣∣∣
2

d̃ν(a), k ≥ k0.

By letting k go to infinity in this inequality and taking the infima over all neighborhoods
G of a measure µ in M(K ), we obtain

J Q
ν (µ) ≤ J

Qk0
ν̃ (µ),
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where, here, the subscript denotes the measure with respect to which the Vandermonde
is integrated. Since ν̃ is of finite mass, we derive from (i) of Lemma 6.3 that

J Q
ν (µ) ≤ e−I

Qk0 (µ).

Letting k0 go to infinity, and making use of

∫
Qk0 dµ →

∫
Qdµ, as k0 → ∞,

which follows from the monotone convergence theorem, we obtain (8.8).
From the results above and the proofs of the previous sections, one may check that

Theorem 6.6 extends to the measures ν considered in this section. For future reference,
we state this as a theorem.

Theorem 8.5 Let K be a non-log-polar compact subset of the sphere S in R3, con-
taining P0, Q ∈ A(K ) and ν a positive measure on K satisfying (8.1)–(8.3). Assume
ν satisfies a (strong) Bernstein–Markov property. Then,

log J
Q
(µ) = log J Q(µ) = −I Q(µ).

Also, the large deviation principle asserted in Theorem 7.1 extends.

Theorem 8.6 Let K be a compact subset of the sphere S in R3, containing P0, Q ∈
A(K ) and ν a positive measure on K satisfying (8.1)–(8.3) and (7.3). Then, the large
deviation principle from Theorem 7.1 holds.

Remark 8.7 In Theorems 8.5 and 8.6, the conclusion is valid for any ν satisfying a
(strong) Bernstein–Markov property and (8.1)–(8.3) (with any appropriate function
ε(x)). Moreover, the rate function in Theorem 8.6 is independent of ν.

9 The J Q Functionals on Unbounded Sets in C

We return to the case of unbounded sets in C; our goal is to use Theorems 8.5 and 8.6
to derive their versions in our current setting. In the rest of this paper we will need the
Bernstein–Markov property on C. For K a closed subset of C, ν a positive measure
on K , locally finite but possibly of infinite mass in a neighborhood of infinity, and Q
a weakly admissible weight as in (3.1), we say that (K , ν, Q) satisfies the Bernstein–
Markov property if

∀pk ∈ Pk(C), ‖e−k Q pk‖K ≤ Mk‖e−k Q pk‖L2(ν), with lim sup
k→∞

M1/k
k = 1.

(9.1)
As in Sect. 4, if (9.1) holds true for any continuous weakly admissible weight Q, we
will say that ν satisfies a strong Bernstein–Markov property. Note that the polynomials
pk in (9.1) are polynomials with respect to the complex variable z.
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Example 9.1 For Q a continuous admissible weight on R, the linear Lebesgue measure
dλ provides an example of a measure with unbounded support satisfying (9.1). Indeed,
from Theorem 3.6, the sup norm of e−k Q pk is attained on Sw which is compact. Hence,
it suffices to prove (9.1) on Sw or any compact set containing Sw, for instance a finite
interval I (see Remark 4.5). For Q a continuous admissible weight on C, similar
reasoning shows that planar Lebesgue measure dm on C satisfies (9.1) as well (in this
case one considers the restriction of dm to a closed disk).

Next, let Q be an admissible weight on K = {x ∈ R : x ≥ 0} which is continuous
except Q(0) = +∞. In this case, property (c) of Theorem I.1.3 [21] shows that Sw,
the support of µK ,Q , will be compact and disjoint from the origin. Thus the linear
Lebesgue measure similarly satisfies (9.1). Specific examples are Laguerre weights
Q(x) = λx − s log x with λ, s > 0 which occur in the Wishart ensemble (see [18,
section 5.5]); and Q(x) = c(log x)2 with c ≥ 0, occurring in the Stieltjes–Wigert
ensemble (see [14,24]).

Remark 9.2 For future use we observe that, if ν has infinite mass in a neighborhood
of infinity, then the Bernstein–Markov property (9.1) is automatically satisfied if we
restrict, for each k, to polynomials pk of exact degree k and the weight Q satisfies a
condition slightly stronger than weak admissibility (3.1), namely

lim
z∈K , |z|→∞

(Q(z) − log |z|) = M < ∞. (9.2)

Indeed, for pk a monic polynomial of degree k, |e−k Q(z) pk(z)|behaves like the constant
e−k M > 0 as z → ∞, so that its sup norm on K is finite while its L2(ν)-norm is
infinite. Hence we can take Mk = 1 for each k ≥ 0.

Next, we define the (weighted) L2 normalization constants for a closed subset K
of C, Q weakly admissible and ν a positive measure on K ,

Z Q
k (K , ν) :=

∫

K k

∣∣∣V DM Q
k (Zk)

∣∣∣
2

dν(Zk), (9.3)

where Zk := (z1, . . . , zk) ∈ K k . Then we have the correspondence

Z Q
k (K , ν) = Z Q̃

k (T (K ), T∗ν)

where Q̃ is defined in (3.10). To ensure the finiteness of Z Q
k (K , ν) in case ν has infinite

mass in a neighborhood of infinity, like, e.g., Lebesgue measure, we assume that the
weight Q and the measure ν satisfy conditions that correspond via the inverse of T to
the conditions (8.2) and (8.3) on the sphere, namely,

∃a > 0,

∫

K
ε(z)adν(z) < ∞, (9.4)

and
Q(z) − log |z| ≥ − log ε(z), as z → ∞, (9.5)
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where ε(z) is some non-negative continuous function that tends to 0 as z tends to ∞.
Note that the weight Q is then admissible in the sense of [21] or (ii) of Definition 3.1,
that is

Q(z) − log |z| → ∞, as z → ∞. (9.6)

Using the inequality

|zi − z j | ≤ (1 + |zi |)(1 + |z j |),

one may also check directly that the Z Q
k (K , ν), k large, are, indeed, finite.

In the typical example where K = R or K = C and ν is Lebesgue measure, ε(z)
can be chosen as |z|−ε , ε > 0, and (9.5) becomes the following strong admissibility
condition (recall (iii) of Definition 3.1):

Q(z) − log |z| ≥ ε log |z|, as z → ∞.

Our next result is a version of Propositions 4.8 and 8.3 on the k(k − 1)-th root
asymptotic behavior of the L2 normalization constants for K a closed subset of C.

Proposition 9.3 Let K be a non-polar closed subset of C and ν a positive measure
on K . Let Q be a weight on K which is weakly admissible if ν has finite mass and
such that (9.4) and (9.5) are satisfied for some function ε(z) if ν has infinite mass in a
neighborhood of infinity. We assume that (K , ν, Q) satisfies the weighted Bernstein–
Markov property (9.1). Then,

lim
k→∞

(
Z Q

k

)1/k(k−1)
= δQ(K ).

Proof Via the inverse map of T , the statement is essentially a simple translation of
Propositions 4.8 and 8.3. The only observation to be made is that, for the proof of
Proposition 4.8 on the sphere, it suffices that a weighted Bernstein–Markov property
is satisfied with respect to polynomials p of the particular form

p(x) =
k∏

j=1

|x − T (z j )|2, x ∈ S, (9.7)

and that this Bernstein–Markov property corresponds to (9.1) via T−1. Also, in the
proof of Proposition 8.3, it is sufficient to use a version of Lemma 8.2 which only
assumes the Bernstein–Markov property for polynomials of the form (9.7) (and thus
only holds for such polynomials). ()

Weighted J -functionals J Q(µ) and J
Q
(µ) can be defined on the closed subset K of

C, with respect to a positive measure ν in K , as was done on compact subsets of Rn ,
see Definition 6.1. Then,

J Q(µ) = J Q̃(T∗µ), J
Q
(µ) = J

Q̃
(T∗µ),
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where the J -functionals on the right-hand sides involve integrals with respect to the
measure T∗ν. From this correspondence, and Theorems 6.6 and 8.5, we derive the
following.

Theorem 9.4 With the hypotheses of Proposition 9.3 and assuming that ν satisfies a
strong Bernstein–Markov property on K , we have

log J Q(µ) = log J
Q
(µ) = −I Q(µ).

Proof The statement is a translation of Theorems 6.6 and 8.5 on the sphere. Again,
we observe that the strong Bernstein–Markov property for polynomials of the form
(9.7) is sufficient for their proofs. We also use the equality of the weighted logarithmic
energies (3.8) and (3.9). ()

The conclusion is valid for all ν satisfying the hypotheses; in particular, the functional
J Q (= J Q = J

Q
) = e−I Q

for any such ν.

10 Large Deviation Principle for Unbounded Sets in C

A large deviation principle in the spirit of Theorem 7.1 for compact subsets of Cm, m ≥
1 has been obtained in [8] using the methods of this paper (see also [9]). Yattselev [25]
has proved an LDP associated to a specific type of weight on C; he uses Lebesgue
measure on C. The large deviation principle for strongly admissible weights Q on all
of C with Lebesgue measure can be found in the book of Hiai and Petz [18]. There
they extend the method of Ben Arous and Guionnet [2]. Here, we will utilize the
results from the previous sections to establish a LDP in the setting of a closed set K
in C, not necessarily bounded, with a weakly admissible weight Q and an appropriate
Bernstein–Markov measure. The proof is based on a standard contraction principle in
LDP theory:

Theorem 10.1 [13, Thm. 4.2.1] If {Pn} is a sequence of probability measures on a
Polish space X satisfying an LDP with speed {an} and rate function I, Y is another
Polish space and f : X → Y is a continuous map, then {Qn := f∗Pn} satisfies an
LDP on Y with the same speed and with rate function

J (y) := inf{I(x) : x ∈ X, f (x) = y}. (10.1)

For K a closed, possibly unbounded, subset of C, ν a locally finite measure on K , and
Q a weakly admissible weight on K , we define the measure Probk on K k as in (4.3)
for K in Rn and jk : K k → M(K ) as in (7.1).

The statement of the large deviation principle is as follows.

Theorem 10.2 Assume (K , ν, Q) satisfies the weighted Bernstein–Markov property
(9.1). If ν has finite mass, we also assume that (K , ν) satisfies a strong Bernstein–
Markov property while if ν has infinite mass in a neighborhood of infinity, we assume
that (9.4) and (9.5) are satisfied for some function ε(z). Then the sequence {σk =
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( jk)∗(Probk)} of probability measures on M(K ) satisfies a large deviation principle
with speed k2 and good rate function I := IK ,Q where, for µ ∈ M(K ),

I(µ) := log J Q(µK ,Q) − log J Q(µ) = I Q(µ) − I Q(µK ,Q). (10.2)

We emphasize again that, as in Theorem 8.6, the rate function is independent of the
measure ν.

Proof We apply Theorem 10.1 to the homeomorphism f = (T−1)∗: thus to prove
an LDP in the setting of a closed set K in C, not necessarily bounded, with a weakly
admissible weight Q, it suffices, via this contraction principle, to use an LDP in the
setting of a compact set T (K ) in S ⊂ R3 with the admissible weight Q̃. This we
have from Theorems 7.1 and 8.6. In case ν is of infinite mass in a neighborhood of
infinity, we observe that the strong Bernstein–Markov property of (K , ν) is not needed.
Indeed, the corresponding Bernstein–Markov property on T (K ) is only needed for
polynomials that are Vandermonde expressions, hence of maximal degree, and for
the weights Qm appearing in Corollary 5.3. These weights are of the form −Uµm

with µm ∈ M(T (K )) and the corresponding weights on K satisfy (9.2) with M =
−Uµm (P0) < ∞, so that Remark 9.2 applies. Finally, the rate function I(µ) is good
because I Q(µ) = I Q̃(T∗µ), the energy I Q̃ is lower semicontinuous on the compact
set M(S), and T∗ is a homeomorphism. ()
Remark 10.3 In particular (see Example 9.1), we have a large deviation principle on
K = {x ∈ R : x ≥ 0} with Lebesgue measure for the Laguerre weights as well as for
the weights occurring in the Stieltjes–Wigert ensembles.

11 Applications: β Ensembles

Let K be a closed subset of C, ν a positive measure on K , and Q a weakly admissible
weight on K . Classical models in random matrix theory involve probability distribu-
tions on K k of the form

1

Ẑ Q
β,k

∏

1≤i< j≤k

|zi − z j |2β
k∏

i=1

e−2k Q(zi )dν(zi ), (11.1)

where β > 0 and the normalization constant Ẑ Q
β,k is

Ẑ Q
β,k =

∫

K k

∏

1≤i< j≤k

|zi − z j |2β
k∏

i=1

e−2k Q(zi )dν(zi ). (11.2)

(We caution the reader that in [15] and [1] the 2β is replaced by β). The probability
distribution (11.1) and normalization constant Ẑ Q

β,k differ from the distribution in

(4.3) and the L2 normalization constant Z Q
k , defined in (9.3), by the exponent β and

an additional factor
∏

i e−2Q(xi ) in its integrand. One may check that all results from
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the previous sections remain true, with appropriate modifications, when we consider
(11.1) and (11.2). Actually, writing the products in (11.1) and (11.2) as the square of
a weighted Vandermonde to the power β, the main modification consists in replacing
the weight Q with the weight Q/β and to use the Bernstein–Markov property in Lβ

instead of L1 as was done in Sect. 4. To be precise, because of the factor k, instead of
k − 1, in the exponential factors of (11.1) and (11.2), the Bernstein–Markov property
to be satisfied for a given weight Q here is

∀pk ∈ Pk(C), ‖e−(k+1)Q pk‖K ≤ Mk‖e−(k+1)Q pk‖L2(ν), with lim sup
k→∞

M1/k
k = 1.

(11.3)
This property is slightly weaker than (9.1) as it concerns only polynomials in Pk(C)

instead of Pk+1(C), but it will make a minor difference in the assumptions of the large
deviation principle because Remark 9.2 no longer applies.

When ν has infinite mass in a neighborhood of infinity, the conditions (9.4) and
(9.5) become

∃a > 0,

∫

K
ε(z)adν(z) < ∞, (11.4)

and
Q(z) − β log |z| ≥ − log ε(z), as z → ∞, (11.5)

where ε(z) is some non-negative continuous function that tends to 0 as z tends to ∞.
Based on the above remarks, one may check that we have the following analog of

Proposition 9.3 concerning the asymptotics of Ẑ Q
β,k .

Proposition 11.1 Let K be a non-polar closed subset of C and ν a positive measure
on K . Let Q be a weight on K such that Q/β is weakly admissible if ν has finite mass
and such that (11.4) and (11.5) are satisfied for some function ε(z) if ν has infinite
mass in a neighborhood of infinity. We assume that (K , ν, Q/β) satisfies the weighted
Bernstein–Markov property (11.3). Then

lim
k→∞

(
Ẑ Q

β,k

)1/k(k−1)
=
(
δQ/β(K )

)β
.

The following large deviation principle, an analog of Theorem 10.2, also holds true.

Theorem 11.2 Let Q/β, β > 0, be a weakly admissible weight on K such that
(K , ν, Q/β) satisfies the weighted Bernstein–Markov property (11.3). We assume that
(K , ν) satisfies a strong Bernstein–Markov property and, in addition, if ν has infinite
mass in a neighborhood of infinity, we assume that (11.4) and (11.5) are satisfied for
some function ε(z). Then the sequence of probability measures σ̃k on M(K ), defined
so that for a Borel set G ⊂ M(K ),

σ̃k(G) := 1

Ẑ Q
β,k

∫

G̃k

∏

1≤i< j≤k

|zi − z j |2β
k∏

i=1

e−2k Q(zi )dν(zi ),
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satisfies a large deviation principle with speed k2 and good rate function Iβ
K ,Q defined

by

Iβ
K ,Q(µ) := I Q

β (µ) − I Q
β (µK ,Q/β),

where

I Q
β (µ)=

∫

K

∫

K
log

1
|z − t |β dµ(z)dµ(t)+2

∫

K
Q(z)dµ(z)=β I Q/β(µ), µ∈M(K ).

Proof One checks that all arguments in the proof of Theorem 10.2 go through when
considering the probability distribution (11.1) instead of the one in (4.3). In particular,
this entails verifying the analog of Theorems 6.6 and 9.4, namely that, for appropriate
assumptions on ν and Q, one has

log J
Q
β (µ) = log J Q

β (µ) = −I Q
β (µ),

where the functionals J
Q
β and J Q

β are derived from

J Q
β,k(G) :=

[∫

G̃k

|V DM Q/β
k (a)|2βdν(a)

]1/k(k−1)

, G ⊂ M(K ),

in the same way as in Definition 6.1. Since Remark 9.2 does not apply for the Bernstein–
Markov property (11.3), the strong Bernstein–Markov property is needed even if ν

has infinite mass. ()
As an example, we take K = R, dν = dλ = Lebesgue measure on R, and Q a
continuous weight such that there exists β ′ > β with Q/β ′ weakly admissible:

∃M > −∞, lim inf
|z|→∞, z∈K

(Q(z) − β ′ log |z|) = M. (11.6)

Note that this implies that Q/β is admissible. Also, (11.4) and (11.5) hold true with
ε(z) = |z|β−β ′

. The triple (R, dλ, Q/β) satisfies the weighted Bernstein–Markov
property since Q/β is admissible, cf., Example 9.1. The measure dλ likely also sat-
isfies a strong Bernstein–Markov property, but, as already mentioned in the proof of
Theorem 10.2, for an LDP it is sufficient that this property is satisfied for weights
which correspond via T to continuous weights on the sphere S of the form −Uµm

where µm ∈ M(T (R)) are the measures from Corollary 5.3. Moreover, the proof
of Lemma 5.2 shows that the supports of the measures µm can be chosen to avoid a
neighborhood (depending on m) of the north pole P0 so that the push-backward mea-
sures νm = T−1

∗ µm have compact supports in C. Using the relations (3.7) and (3.10),
what is then needed is that dλ satisfies the Bernstein–Markov property for continuous
weights of the form

Qm(z) = −U νm (z) − 1
2

∫
log(1 + |t |2)dνm(t),
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where νm ∈ M(R) has compact support. These weights are weakly admissible. Hence,
by Theorem 3.6 and the continuity of Qm , the corresponding weighted polynomials
attain their sup norm on Swm (where wm = e−Qm ), which is equal to the support of
νm , see Lemma 5.1 (or more precisely its analog in C). Consequently, we need that
dλ satisfies the Bernstein–Markov property for continuous weights on a compact set,
which we know holds true (cf., the discussion in Example 9.1). Thus we conclude
that the large deviation principle asserted in Theorem 11.2 applies on the real line for
dν = dλ and any continuous weight Q satisfying (11.6). We note that this includes
the large deviation principle for the law of the spectral measure of Gaussian Wigner
matrices ([2], [1, Thm. 2.6.1]) as well as the refined version for weakly confining
potentials given in [15].

When K = C, dν = dm = planar Lebesgue measure, and Q is a continuous
weight on C satisfying the growth condition (11.6), assumptions (11.4) and (11.5)
still hold true with ε(z) = |z|β−β ′

. Moreover, the measure dm satisfies the required
Bernstein–Markov properties. Hence, Theorem 11.2 applies when K = C, dν = dm,
and Q is a continuous weight satisfying (11.6).
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