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Abstract

We give an explicit estimate on the growth of functions in the Hardy-Sobolev

space Hk,2(Gs) of an annulus. We apply this result, first, to find an upper bound on

the rate of convergence of a recovery interpolation scheme in H1,2(Gs) with points

located on the outer boundary of Gs. We also apply this result for the study of a

geometric inverse problem, namely we derive an explicit upper bound on the area of an

unknown cavity in a bounded planar domain from the difference of two electrostatic

potentials measured on the boundary, when the cavity is present and when it is not.

1 Introduction

Let H2(D) denote the Hardy space of functions analytic in the unit disk D having L2

boundary values on the unit circle T, and let H2
0 (C\ sD), 0 < s < 1, be the Hardy space of

functions analytic in the complement of sD, with L2 boundary values on sT and vanishing
at infinity. Moreover, let us denote by Gs the annulus Gs = D \ sD. We define the Hardy
space H2(Gs) of the annulus Gs to be the orthogonal direct sum

H2(Gs) = H2(D) ⊕H2
0 (C \ sD).

For equivalent definitions and more properties of the Hardy space of the annulus, we refer
the reader to [9, 21].

Form ≥ 1, we also define the Hardy–Sobolev spaceHm,2(Gs) of orderm as the subspace
of functions f in H2(Gs) such that the derivatives f (j), 1 ≤ j ≤ m, belong to H2(Gs). The
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space Hm,2(Gs) is a Hilbert space endowed with the scalar product

< f, g >Hm,2(Gs)=

m∑

l=0

< f (l), g(l) >L2(∂Gs),

where
< f, g >L2(∂G)=< f, g >L2(T) + < f, g >L2(sT) .

Consequently, the norm in Hm,2(Gs) can be written as

‖g‖2
Hm,2(Gs) = ‖g‖2

W m,2(T) + ‖g‖2
W m,2(sT),

where we use the norms of the Sobolev spaces Wm,2(T) on T and Wm,2(sT) on sT, given
by

‖g‖2
W m,2(T) =

m∑

l=0

‖g(l)‖2
L2(T) =

1

2π

m∑

l=0

∫
|g(l)(eiθ)|2dθ =

∑

n∈Z

wm,n|gn|2, (1.1)

‖g‖2
W m,2(sT) =

m∑

l=0

‖g(l)‖2
L2(sT) =

1

2π

m∑

l=0

∫
|g(l)(seiθ)|2dθ =

∑

n∈Z

µm,ns
2n|gn|2, (1.2)

with g(z) =
∑

n∈Z
gnz

n, z ∈ Gs, and

wm,n = 1 + n2 + n2(n− 1)2 + · · ·+ n2(n− 1)2 · · · (n−m+ 1)2, (1.3)

µm,n = 1 + n2s−2 + · · ·+ n2(n− 1)2 · · · (n−m+ 1)2s−2m. (1.4)

Note that Hm,2(Gs) admits the set

(en)n∈Z =

(
zn

√
lm,n

)

n∈Z

, lm,n = wm,n + µm,ns
2n,

as a complete orthonormal set, and consequently, has the following reproducing kernel

Km(x, y) =

∞∑

k=−∞

xkyk

lm,n
. (1.5)

Let 0 ≤ k < m be two integers, and consider a function g with a fixed norm in the Hardy–
Sobolev space Hm,2(Gs). Then, it has been proved in [15] that the Sobolev norm of degree
k of g on the inner boundary sT of the annulus is controlled by the corresponding norm
taken on the outer boundary T. Such norm estimates, in the disk or in the annulus, have
been applied in [8, 15], to obtain stability results for the inverse problem of recovering a
Robin coefficient on the non-accessible boundary of a planar domain.

This result complements, in some sense, the Hadamard’s three–circle theorem that
describes the growth of an analytic function in an annulus from its values on the boundaries.

We give here a version of this property, where we make explicit the dependence with
respect to the radius s of the inner boundary of the annulus. This will be important for
one of the applications we have in mind.
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Theorem 1.1. Let 0 ≤ k < m be two integers. Assume g is a function in Hm,2(Gs) with
‖g‖W k,2(T) ≤ 1. Then, we have

‖g‖W k,2(sT) ≤
(

2

e log(1/‖g‖W k,2(T))

)m−k [
(es| log s|)m−k‖g‖W m,2(sT) + (m− k)m−k

]
. (1.6)

Note that the authors of [15] derive their results in general weighted Hardy spaces, see
[15, Proposition 7]. Note also that this kind of results extend to the doubly connected case
the estimates established in [7] for subsets of the boundary of the disk D.

In Section 2, we display the proof of Theorem 1.1, and in each of the two subsequent
sections, we describe a different application. Namely, in the spirit of [7], we consider, in
Section 3, a given function in H1,2(Gs) and a sequence (fn)n≥0 of functions in H1,2(Gs) of
minimal norm, interpolating f on points of the outer boundary T of Gs. We show that the
scheme is convergent with a rate which is inversely proportional to the logarithm of the
maximal distance between the points of T and the points of the interpolation scheme, see
Theorem 3.1.

As a second application, we study in Section 4 the geometric inverse problem of recover-
ing a cavity in a bounded planar domain from the measurements of electrostatic potentials
corresponding to a given flux on the outer boundary of the domain. More precisely, we get
an upper estimate on the area of the unknown cavity, granted some a-priori hypotheses on
the regularity of the conformal map which sends the domain onto an annulus, see Theorem
4.1. The proof relies on the use of conformal maps and the previously established growth
estimates in Hardy–Sobolev spaces of the annulus.

2 Growth estimates in the Hardy–Sobolev space of the

annulus

In this section, we give the proof of Theorem 1.1.
Proof. We follow the scheme of proof of [15, Proposition 7]. We want to estimate

‖g‖2
W k,2(sT) =

∑

n≤−N

µk,ns
2n|gn|2 +

∞∑

n=−N+1

µk,ns
2n|gn|2 = σ1 + σ2, say.

On one hand, we have

σ1 ≤ sup
n≤−N

(
µk,n

µm,n

)
‖g‖2

W m,2(sT),

and, in view of the definition (1.4) of µm,n,

µk,n

µm,n

≤ s2(m−k)

(n− k)2 · · · (n−m+ 1)2
≤ s2(m−k)

(N + k)2(m−k)
,
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where the last inequality holds true as soon as 0 < N + k. Hence,

σ1 ≤
s2(m−k)

(N + k)2(m−k)
‖g‖2

W m,2(sT). (2.1)

On the other hand, from the definitions (1.3)–(1.4), we see immediately that µk,n ≤
s−2kwk,n. Hence,

σ2 ≤
∞∑

n=−N+1

s−2(N+k−1)wk,n|gn|2 ≤ s−2(N+k−1)ǫ2. (2.2)

Let us choose N + k = 1 + ⌊log ǫ/2 log s⌋ > 0. From (2.1), (2.2), and the inequalities

log ǫ

2 log s
≤ N + k ≤ 1 +

log ǫ

2 log s
,

follows that

‖g‖2
W k,2(sT) ≤

1

(log ‖g‖W k,2(T))2(m−k)

[
(2s log s)2(m−k) ‖g‖2

W m,2(sT) + ‖g‖W k,2(T)

(
log ‖g‖W k,2(T)

)2(m−k)
]
. (2.3)

Using the fact that x| log x|n ≤ (n/e)n for x ∈ [0, 1], we deduce that

‖g‖2
W k,2(sT) ≤

1

(log ‖g‖W k,2(T))2(m−k)

[
(2s log s)2(m−k) ‖g‖2

W m,2(sT) +

(
2(m− k)

e

)2(m−k)
]
,

and (1.6) follows from taking square roots. �

3 First application: a convergent interpolation scheme

in H1,2(Gs)

In this section, we study an interpolation scheme to recover a function in H1,2(Gs) from
its values at some points on the outer boundary of the annulus Gs. A similar scheme
has been studied previously in the case of a disk, see [7]. It consists in the following.
Let Sn = {x1, . . . , xn} be a set of n distinct points on T. As usual, we will say that
fn ∈ H1,2(Gs) interpolates f ∈ H1,2(Gs) on Sn if

∀i ∈ {1, . . . , n}, fn(xi) = f(xi). (3.1)

Now, we consider a nested sequence of sets

S1 ⊂ S2 ⊂ · · ·
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and we set S = ∪nSn. Here, we assume that S = T. Of course, then, S will be a uniqueness
set, meaning that two distinct functions in H1,2(Gs) cannot agree on S. Indeed, it is known
that a function in the Hardy space H2(Gs) which vanishes on a subset of the boundary of
Gs of positive Lebesgue measure is identically zero, see [11].

Condition (3.1) does not determine fn uniquely. Among all the functions in H1,2(Gs)
satisfying (3.1), we shall pick the only one with minimal norm. To perform this, we may
decompose the space H1,2(Gs) as H1,2(Gs) = Zn ⊕ Un where Zn is the closed subspace of
functions vanishing on Sn and Un is its orthogonal complement. Then, we define fSn

=
Πn(f) where Πn denotes the orthogonal projection on Un, and get in this way the so-called
minimum interpolation sequence (fSn

) to f with respect to the scheme of points (Sn)n≥1.
From general results on Hilbert spaces, it is known that fSn

converges to f in H1,2(Gs)
hence converges uniformly in Gs, see [7, Section 2] for details. From a practical point
of view, it is also important to note that fSn

can be computed from the values f(xi),
i = 1, . . . , k, by simply solving a linear system of equations. Actually, fSn

admits the
following expressions

fSn
(x) =

n∑

i=1

λi,nK1(x, xi),

where the vector λn = (λ1,n, . . . , λn,n)
T is any solution of the linear system Anλn = Bn with

Bn the vector of values (f(xi))i=1,...,n and An the Gram matrix of the functions K1(x, xi)
where K1(x, y) denotes the reproducing kernel of H1,2(Gs), see (1.5).

We now state our result which estimates the rate of convergence of the interpolating
sequence fSn

to the limit function f .

Theorem 3.1. Consider a function f ∈ H1,2(Gs) with ‖f‖H1,2(Gs) ≤ 1 . Assume (Sn)n≥1

is a sequence of interpolation sets with S = T and set hn = supx∈T
d(x, Sn). Then, for any

ǫ > 0, there exists a N > 0 large enough such that for any n ≥ N , we have that

‖f − fsn
‖H2(Gs) ≤

4 + ǫ

e log(1/hn)
.

Proof of Theorem 3.1. Set gn = f − fSn
. We write the points xk of Sn as xk = eiθk and we

consider the covering of T with n intervals IK = [θ−k , θ
+
k ] having at most one endpoint in

common, each Ik containing θk. We may assume that d(θ−k , θk) and d(θ+
k , θk) are less than

or equal to hn. We have ∫

T

|gn|2dθ =
n∑

k=1

∫

Ik

|gn|2dθ.

Moreover, for eiγ in Ik,

|gn(e
iγ)|2 ≤

(∫ γ

θk

|g′n(eit)|dt
)2

≤ hn

∫ γ

θk

|g′n(eit)|2dt,

hence ∫ θ+

k

θk

|gn|2dθ ≤ hn

∫ θ+

k

θk

|g′n|2dθ
∫ θ+

k

θk

dθ ≤ h2
n

∫ θ+

k

θk

|g′n|2dθ.
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Since a similar inequality holds for the integral from θ−k to θk, we get that

∫

Ik

|gn|2dθ ≤ h2
n

∫

Ik

|g′n|2dθ,

and consequently,
‖gn‖2

L2(T) ≤ h2
n‖gn‖2

H1,2(Gs) ≤ h2
n, (3.2)

where the last inequality follows from the fact that gn is a projection of f which is assumed
to be of norm less than 1 in H1,2(Gs). Using inequality (1.6) with k = 0 and m = 1, the
previous inequality, and the fact that ‖gn‖H1,2(sT) ≤ 1, we get that

‖gn‖L2(sT) ≤
2

e log 1/‖gn‖L2(T)

(
‖gn‖H1,2(sT) + 1

)
≤ 4

e log 1/hn
,

which implies together with (3.2) that

‖gn‖2
H2(Gs) ≤

(
4

e log 1/hn

)2

+ h2
n,

from which the assertion in the theorem follows. �

Note that the rate of convergence of some approximation scheme in the Hardy-Sobolev
space of the unit disk with a constraint on a subarc of T has been obtained in [5], see
in particular [5, Theorem 6.2]. Recovering of functions in the Hardy-Sobolev space of a
horizontal strip was analysed in [16]. In this respect, results about recovery of functions in
a more general setting can be found in [17], see also the comprehensive monograph [18].

4 Second application: Estimating the area of a cavity

from boundary measurements

We consider a planar bounded simply-connected domain Ω with boundary Γ, containing
a cavity, that is a connected, simply-connected open set D with boundary γ ⊂ Ω. From
a physical point of view, we assume that Ω is an electrically conducting body, of constant
conductivity 1, while the cavity is perfectly insulating, that is of conductivity 0. Our aim
is to give an estimate of the size of the cavity from comparing measurements performed on
the boundary Γ of Ω, first when the domain is safe, that is there is no cavity, and second
when a cavity is present. The procedure consists in prescribing the same flux of current ϕ
on the boundary Γ, and measuring the corresponding electrostatic potentials ũ and u, in
both cases. When there is no cavity, the potential ũ satisfies the Neumann problem

∆ũ = 0, in Ω,
∂ũ

∂n
= ϕ, on Γ, (4.1)
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and when the cavity is present, the situation is modeled by the following equations,




∆u = 0, in Ω \D,
∂u

∂n
= ϕ, on Γ,

∂u

∂n
= 0, on γ,

(4.2)

where ∂/∂n denotes the partial derivative with respect to the outer normal unit vector.
We assume that the boundaries Γ and γ of the domain are of class Cm,α, with m ≥ 1,
0 < α < 1, and that the flux ϕ is Cm−1,α on Γ. In order that a solution to (4.1) or (4.2)
exists, the compatibility condition

∫

Γ

ϕ(z)ds(z) = 0, (4.3)

must hold. In this case, a solution to (4.1) or (4.2) indeed exist and is determined up to
an additive constant. In the sequel, we impose the additional normalization conditions,

∫

Γ

ũ(z)ds(z) = 0,

∫

Γ

u(z)ds(z) = 0,

to ensure uniqueness of a solution ũ or u. With the smoothness assumptions made above,
it is known from classical regularity results that the solutions ũ and u are Cm,α on Ω \D,
see [2].

Let us now turn to the geometric inverse problem of recovering the cavity. Concern-
ing identifiability, one boundary measurement u|Γ determines the cavity D, granted some
smoothness assumptions on γ, see [3]. Note that this is in contrast with the problem of
recovering a 1-dimensional crack, since two boundary measurements are necessary in this
case. As is the rule for this type of inverse problems, only weak (i.e. logarithmic) stability
results hold true. This can be seen as a motivation for obtaining less precise, though still
interesting, information on the unknown cavity.

Our result aims at giving such information, namely on the size of the cavity. For more
information on this type of questions, one may consult [4, 10, 14]

Our study is based on using conformal maps and norm estimates in Hardy-Sobolev
spaces of the annulus.

In order to use the norm estimates as established in Theorem 1.1, we will need to
consider a conformal mapping ψ from an annulus Gs = D \ sD, 0 < s < 1, where D

denotes the unit disk, onto the domain Ω \D. We recall that s is uniquely determined by
Ω \D. It is the inverse of a conformal invariant, the so–called conformal radius of Ω \D.
A well–known result of Warschawski [19, Theorems 3.5 and 3.6] asserts that a conformal
mapping from D onto the inner domain of a Jordan curve of class Cm,α, m ≥ 1, 0 < α < 1,
has derivatives, up to order m, which admits continuous extensions to D. Moreover, the
first derivative is non-vanishing on the unit circle T. Reasoning as in the proof of [6,
Proposition 4.2], one may extend the Warschawski result to the doubly connected annulus
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Gs. This implies in particular that the moduli of the derivatives of ψ, up to order m, are
bounded above on the closure of Gs, and that |ψ′| is also bounded below. For our analysis
to go through, we actually need to restrict ourselves to domains such that these bounds
are absolute constants. Consequently, given m ≥ 1 and two real numbers 0 < λ < Λ, we
introduce the class of “admissible” domains Ω \D such that the following property holds
true:

H(m, λ, Λ): any conformal map ψ from the annulus Gs onto Ω \D, where 1/s ≥ 1 is the
conformal radius of Ω \D, mapping the outer boundary T of Gs to the outer boundary Γ
of Ω \D, satisfies

λ ≤ |ψ′(z)| ≤ Λ, z ∈ Gs. (4.4)

Furthermore, if m ≥ 2, the higher-order derivatives of the map ψ also satisfies

|ψ(l)(z)| ≤ Λ, z ∈ Gs, 2 ≤ l ≤ m. (4.5)

Note that if (4.4)–(4.5) holds true for some conformal map, then it holds true for any
conformal map from Gs to Ω \ D sending the outer boundary T of Gs onto the outer
boundary Γ of Ω. This is a simple consequence of the fact that the only automorphisms
of Gs, sending the outer boundary T onto itself, are the rotations.

Generally speaking, property H(m, λ, Λ) means that the distortion of the conformal
map ψ is controlled by the two constants λ and Λ. As far as we know, there is no simple
geometric characterisation of this property. The only reference, related to this problem,
we know of, is [22], which shows, among other results, that the derivative of conformal
maps from the unit disk to nearly circular regions cannot be too far from 1. Note that this
assertion pertains to the simply connected case. It would be interesting to have an analog
for the doubly connected case.

Throughout we assume that the flux is generated by two electrodes applied on parts of
the boundary Γ. Hence, we consider two non-negative functions η1, η2 ∈ Cm−1,α(Γ) whose
supports are disjoint subarcs Γ1 and Γ2 of Γ, with

∫

Γj

ηj = 1, j = 1, 2. (4.6)

Then, the current density on Γ is taken as

ϕ = η1 − η2. (4.7)

Note that the total flux
∫
Γ
ϕ(s)ds of ϕ on the boundary Γ vanishes, in accordance with the

assumption (4.3).
Next, consider the harmonic function ũ in Ω, which represents the potential correspond-

ing to the flux ϕ on Γ when there is no cavity in Ω. Because of (4.3), it has a harmonic
conjugate ṽ in Ω, defined up to an additive constant, which is obtained by integrating the
flux ϕ(s) with respect to arc-length on the boundary Γ. Let

f̃(z) = ũ(z) + iṽ(z), z ∈ Ω. (4.8)
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It will be shown that f̃ is actually a conformal map from Ω to its image, see Lemma 4.2.
Moreover, from the smoothness assumptions on the contour Γ and the flux ϕ, we know that
ũ ∈ C1,α(Γ), and ∂ṽ/∂s = ∂ũ/∂n = ϕ ∈ C0,α(Γ). Hence, ṽ ∈ C1,α(Γ) as well, which shows

in particular that f̃(Γ) is of class C1,α. Applying the Warschawski theorem in the simply

connected domain Ω, we obtain that f̃ ′ admits a non-vanishing continuous extension to Ω.
Consequently, setting

m ef ′ = inf
z∈Ω

|f̃ ′(z)|, M ef ′ = sup
z∈Ω

|f̃ ′(z)|, (4.9)

we have that 0 < m ef ′ < M ef ′ <∞. Note that the two parameters m ef ′ and M ef ′ only depend
on the safe domain Ω and are determined from the data on the boundary since the function
f̃ can be reconstructed from these data, and moreover, the above–mentioned Warschawski
theorem ensures that

f̃ ′(z) = lim
ζ→z

f̃(z) − f̃(ζ)

z − ζ
as ζ → z, z, ζ ∈ Γ. (4.10)

In particular, (4.10) could be used to estimate m ef ′ and M ef ′ numerically.
Finally, we denote by |A| the planar Lebesgue measure of a measurable subset A of

the plane. Since, from a practical point of view, it seems reasonable that the area of the
unknown cavity D is not too large, relatively to that of the domain Ω, we will assume
throughout that there exists an absolute constant ρ < 1 such that |D|/|Ω| ≤ ρ.

We are now in a position to state our main result.

Theorem 4.1. Consider an admissible domain Ω\D satisfying the property H(m, λ, Λ).
Assume that the difference of potentials u and ũ is not too large, more precisely that,

σ := ‖u− ũ‖L2(Γ)/
√
λ < 1.

Then, the area of the cavity D is bounded above as follows,

|D| ≤ C1

| log σ| , if m = 1, (4.11)

while,

|D| ≤ sup
0<δ<1

min

(
Cm

δm−1| log σ|m , δ
2|Ω|

)
, if m > 1. (4.12)

In (4.11)–(4.12), the constant Cm, m ≥ 1, is explicitly given by

Cm =

√
2πΛ

λ

M ef ′

m2
ef ′

(
2

e

)m
(

2mπλ2(1 + Λ)m− 1

2

|Ω|(1 − ρ)

(
Λ

λ

)2m

C ′
m‖ϕ‖W m−1,2(Γ) +mm

)
,

where C ′
m is a computable constant that depends only on m (e.g. C ′

1 = 1, C ′
2 =

√
5/2).
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4.1 Proof of Theorem 4.1

Step 1. Building a conformal map from the data and using the Green formula.

We start with a lemma.

Lemma 4.2. Assume the flux is given by (4.6)–(4.7). Then, the analytic function f̃ defined

by (4.8) maps conformally the domain Ω onto its image Ω0 := f̃(Ω).

The assertion in the lemma has already appeared in the framework of inverse problems,
and has also been extended to more general situations. For completeness, let us give a proof.
Proof. The Rado theorem [20] states that a harmonic function h in a disk, continuous on
the boundary, with a critical point z0 inside the disk, assumes the value h(z0) at least in
four distinct points of the boundary. Since ṽ is not constant, we have

inf
z∈Ω

ṽ(z) < ṽ(z) < sup
z∈Ω

ṽ(z), z ∈ Ω,

by the maximum principle. Since such values are taken exactly twice on Γ, we deduce from
the Rado theorem applied with ṽ on Ω (which is possible by considering a Riemann map
from the disk to the simply-connected domain Ω) that ṽ has no critical point inside Ω.
Then, for a given point z0 ∈ Ω, there is only one level curve passing through z0, and it is
an analytic arc joining two distinct points of the boundary. First, from what precedes, we
know that on this arc, the derivative ∂ũ/∂s = ∂ṽ/∂n never vanishes, hence is of constant
sign. Consequently, each value of ũ is taken only once on this arc. Second, two level curves
of ṽ can only correspond to different values since otherwise, ṽ would be constant inside the
domain delimited by these two curves, hence also in Ω. The injectivity of f̃ , and the fact
that it is a conformal map, follows from these two assertions. �

Now, we consider a cavity D and its image D0 by the map f̃ . The area of D satisfies

|D| =

∫

D

dxdy =

∫

D0

|(f̃−1)′(z)|2dxdy ≤ m−2
ef ′

∫

D0

dxdy,

where m ef ′ has been defined in (4.9). Consider the harmonic function ṽ0 in D0 such that

ṽ0 = ṽ ◦ f̃−1. From the definition of f̃ , we have that ṽ0(z) = y, where z = x + iy. Hence,
applying the Green formula on D0, we get

∫

D0

dxdy =

∫

D0

|∇ṽ0(z)|2dxdy =

∫

∂D0

ṽ0(z)
∂ṽ0

∂n
(z)ds.

Let v0 = v ◦ f̃−1 with v the harmonic conjugate of u in Ω \D. Since D is insulating, v is
constant on γ, and since we are free to choose this constant, we may assume that v = 0 on
γ, or equivalently v0 = 0 on ∂D0. Hence, the last integral can be rewritten as

∫

∂D0

(ṽ0 − v0)(z)
∂ṽ0

∂n
(z)ds ≤

∫

∂D0

|(ṽ0 − v0)(z)|ds ≤ M ef ′

∫

γ

|(ṽ − v)(z)|ds,
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recall (4.9) for the definition of M ef ′ . Applying the Schwarz inequality to the last integral,
we get

∫

γ

|(ṽ − v)(z)|ds ≤ length(γ)1/2‖ṽ − v‖L2(γ) ≤ length(γ)1/2‖f̃ − f‖L2(γ),

where f = u + iv on Ω \ D. Summing up, we obtain the following upper bound for the
area of the cavity,

|D| ≤ length(γ)1/2
M ef ′

m2
ef ′

‖f̃ − f‖L2(γ) ≤
(

2π

λ

)1/2 M ef ′

m2
ef ′

‖f̃ − f‖L2(γ), (4.13)

where the last inequality comes from

length(γ) =

∫

γ

ds =

∫

sT

|(ψ−1)′(s)|ds ≤ 2πs

λ
≤ 2π

λ
.

Step 2. Applying a norm inequality in the Hardy-Sobolev space Hm,2(Gs) of

the annulus. As explained in the introduction, to use the result in Section 2, we need to
transport our original problem onto the annulus Gs, where s−1 is the conformal radius of
the domain Ω \D. We thus define the following functions on Gs,

ũ1 = ũ ◦ ψ, f̃1 = f̃ ◦ ψ, u1 = u ◦ ψ, f1 = f ◦ ψ,
which are obtained from the corresponding functions ũ, f̃ , u, f on Ω \D through the map
ψ. Since ũ is a solution to (4.1), the function ũ1 satisfies

∆ũ1(ζ) = 0, ζ ∈ D,
∂ũ1

∂n
(ζ) = ϕ1(ζ) := (ϕ ◦ ψ)(ζ)|ψ′(ζ)|, ζ ∈ T, (4.14)

Similarly, since u is a solution to (4.2), the function u1 is a solution to the Neumann
problem in Gs, 





∆u1(ζ) = 0, ζ ∈ Gs,

∂u1

∂n
(ζ) = ϕ1(ζ), ζ ∈ T,

∂u1

∂n
(ζ) = 0, ζ ∈ sT.

(4.15)

Note that, since ϕ is Cm−1,α on Γ and ψ admits a Cm,α extension to Gs, the flux ϕ1 is
Cm−1,α on T, and in particular belongs to Wm−1,2(T). Let

ϕ1(e
iθ) =

∑

k 6=0

αke
ikθ,

be its Fourier expansion. The coefficient α0 is zero because the total flux of ϕ1 on T

vanishes, recall the compatibility condition (4.3). Then, it is not difficult to check that the
potentials ũ1 and u1 admit the following expressions in polar coordinates,

ũ1(r, θ) =
∑

k 6=0

sgn(k)
αk

k
r|k|eikθ,
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u1(r, θ) =
∑

k 6=0

αk

k(1 − s2k)

(
rk +

s2k

rk

)
eikθ.

From the previous expressions for ũ1 and u1, one deduces the following expansion for f1−f̃1,

(f1 − f̃1)(z) = 2
∑

k>0

s2k

k(1 − s2k)

(
αkz

k +
αk

zk

)
.

Hence, the norm of f1 − f̃1 in the space L2(sT) satisfies

‖f1 − f̃1‖2
L2(sT) ≤

4s2

(1 − s2)2
‖ϕ1‖2

L2(T), (4.16)

and for the derivatives, one checks, after some calculations, that

‖(f1 − f̃1)
(l+1)‖2

L2(sT) ≤
4

s2l(1 − s2)2
(l + 1)2‖ϕ(l)

1 ‖2
L2(T), l ≥ 0.

Summing up (4.16) and the previous inequalities for l = 0, . . . , m−1, we get for the Sobolev
norm of order m on sT,

‖f1 − f̃1‖2
W m,2(sT) ≤

4m2

s2m−2(1 − s2)2
‖ϕ1‖2

W m−1,2(T). (4.17)

Note that this explicit inequality is an instance in the annulus of classical boundary regu-
larity results for the solutions of linear elliptic equations in general domains, see e.g. [12,
Chapter 8] or [23, Chapter 5].

Now, we estimate ‖f1 − f̃1‖L2(sT) with respect to ‖f1 − f̃1‖L2(T) by applying Proposition
1.1 in the Hardy-Sobolev space Hm,2(Gs). Choosing k = 0, and assuming that

ǫ1 := ‖f1 − f̃1‖L2(T) ≤ 1, (4.18)

we get from (1.6), (4.17), and the fact that es| log s| ≤ 1, s ∈ [0, 1] that

‖f1 − f̃1‖L2(sT) ≤
(

2

e| log ǫ1|

)m(
2m

sm−1(1 − s2)
‖ϕ1‖W m−1,2(T) +mm

)
. (4.19)

Since Ω \D is an admissible domain satisfying the hypothesis H(m, λ, Λ), we have that

ǫ21 = ‖f1 − f̃1‖2
L2(T) ≤

(
sup
s∈Γ

|(ψ−1)′(s)|
)
‖f − f̃‖2

L2(Γ) ≤ λ−1‖u− ũ‖2
L2(Γ). (4.20)

In the last inequality, we have assumed that v− ṽ = 0 on Γ. Indeed, since the same flux ϕ
is applied on the outer boundary of Ω and Ω \D, v − ṽ is constant there and the freedom
we have on ṽ, which is determined up to a constant, allows one to make this difference
equal to zero. From (4.20), we see that the assumption (4.18) on ǫ1 is granted as soon as

‖u− ũ‖2
L2(Γ) ≤ λ. (4.21)
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Step 3. Estimate of the area of the cavity in the original domain. In this final
step, we get our sought upper bound on the area of the unknown cavity by putting together
(4.13) and (4.19). Before doing that, we need two preliminary results.

First, we show that the norm ‖ϕ1‖W m−1,2(T) can be bounded by ‖ϕ‖W m−1,2(Γ) times a
constant that depends on the conformal map ψ and its derivatives up to order m. When
m = 1, we have

‖ϕ1‖L2(T) ≤ Λ1/2‖ϕ‖L2(Γ). (4.22)

When m ≥ 2, the Sobolev norm of order m − 1 of ϕ1 involves the derivatives ∂nϕ1/∂s
n,

0 ≤ n ≤ m− 1. Since

ϕ1(ζ) =
∂u1

∂n
(ζ) =

(
∂u

∂n
◦ ψ
)

(ζ)|ψ′(ζ)|,

the Faa’ Di Bruno formula for the n-th derivative of a composite function tells us that

∂nϕ1

∂sn
(ζ) =

∑ (n+ 1)!

k1! . . . kn+1!

∂kϕ

∂sk
(ψ(ζ))(|ψ′(ζ)|)k1 · · ·

(
1

n!

∂n|ψ′|
∂sn

(ζ)

)kn+1

,

where k+1 = k1+· · ·+kn+1, and the sum ranges over the non-negative integers k1, . . . , kn+1

such that
k1 + 2k2 + · · ·+ (n + 1)kn+1 = n + 1.

To estimate the l-th derivative of |ψ′|, 0 ≤ l ≤ n, we may write

∂l|ψ′|
∂sl

=
∂l

∂sl

(
(ψ′ψ′)1/2

)
,

which can be also expanded by the Faa’ Di Bruno formula. This will lead to an expression
involving the derivatives of ψ′ψ′ up to order l in the numerator and the (2l − 1)-th power
of |ψ′| in the denominator. Now, using the Leibniz formula, we get that

∂l

∂sl
(ψ′ψ′) =

l∑

j=0

(
l

j

)
∂jψ′

∂sj

∂l−jψ′

∂sl−j
,

whose modulus can be bounded by the modulus of the derivatives ∂jψ′/∂sj , 0 ≤ j ≤ l ≤
m − 1. Since ψ′ is analytic in Gs and its derivative admits a continuous extension to T

(when m ≥ 2), we have that

∂ψ′

∂s
(eiθ) = izψ′′(z), z = eiθ,

see e.g. [11, Theorem 3.11] for a version in the Hardy space H1(D). Similarly for the
derivatives of order n, 1 ≤ n ≤ m− 1, we obtain

∂nψ′

∂sn
(eiθ) = P n(ψ′)(z), z = eiθ,
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where P denotes the differential operator P (f)(z) = izf ′(z). This shows that the modulus
of the derivatives ∂nψ′/∂sn, 0 ≤ n ≤ m − 1, can, in turn, be bounded by the modulus of
the derivatives ψ(n), 1 ≤ n ≤ m, and consequently by an expression that depends only on
the constant Λ in (4.4)–(4.5). From the above discussion, it can be proved that

∣∣∣∣
∂nϕ1

∂sn
(ζ)

∣∣∣∣ . (1 + Λ)n

(
Λ

λ

)2n

max
0≤j≤n

(∣∣∣∣
∂jϕ

∂sj

∣∣∣∣
)
|ψ′(ζ)|,

where the symbol . means an inequality up to a constant in the right-hand side that
depends only on the order of derivation. This implies for the Sobolev norms that

‖ϕ1‖W m−1,2(T) . (1 + Λ)m− 1

2

(
Λ

λ

)2m−2

‖ϕ‖W m−1,2(Γ). (4.23)

We leave the details to the reader.
Second, we need to check that the radius s of the inner boundary of Gs does not come

too close to 1. This is a simple consequence of the assumption made before the statement
of Theorem 4.1 that the ratio |D|/|Ω| is less than a constant ρ < 1. Indeed,

|Ω| − |D| =

∫

Gs

|ψ′(ζ)|2dxdy ≤ Λ2π(1 − s2), (4.24)

so that
|Ω|(1 − ρ)/(πΛ2) ≤ (1 − s2). (4.25)

From (4.13) and (4.19), together with (4.20), (4.22), (4.24) and the inequality

‖f − f̃‖2
L2(γ) ≤ Λ‖f1 − f̃1‖2

L2(sT),

it is straightforward to check that the inequalities (4.11) and (4.12) stated in Theorem 4.1
hold true. For the second inequality, note that, when m > 1, the upper bound on |D|
obtained from the previous analysis happens to tend to infinity if s tends to 0. Indeed, this
comes from the occurrence of the factor sm−1 in the denominator of the right-hand side of
(4.19). Anyway, if s is small, so is |D|, because of the classical inequality of Carleman, see
[13, p.503], which states that |D|/|Ω| ≤ s2. This allows us to upper estimate the area of D
by the minimum of these two bounds, which both depend on s, an unknown parameter in
(0, 1). Hence, we have to consider all possible value of s in (0, 1), and this leads to (4.12).

4.2 An example: the class of eccentric annuli

In this section, we illustrate our previous results by considering an example of a specific
class of admissible domains denoted by Dd. The domains of the class Dd are the eccentric
annuli, that is the annular domains Ga,r whose inner boundary is a circle |z − a| = r and
outer boundary the unit circle T. Without loss of generality, we assume that the center a
of the inner circle is a positive number. Moreover, we assume that 0 < a+ r < 1 − d < 1,
with d some positive real number less than 1, e.g. 0 < d < 1/2. Hence, there is a minimal
separation between the circles |z − a| = r and |z| = 1, in other words, the cavity D is not
too close to the boundary of the domain Ω.
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Proposition 4.3. The class Dd is an admissible set of domains, whose elements satisfy,
for any m ≥ 1, the property H(m, λ, Λm) with

λ =
d

2 − d
, Λm = m!(2 − d)(1 − d)m−1/dm.

Proof. Let Ga,r be an element of Dd. We describe the conformal map ψ, or rather its
inverse ψ−1 from Ga,r to an annulus Gs, for some appropriate value of s. The map ψ−1 is a
bilinear transform that can be determined from the following property: bilinear transforms
map inverse points with respect to circles to inverse points. Following [1, Example 5.7.8],
we then consider two positive real numbers α and β that are inverse with respect to both
circles |z| = 1 and |z − a| = r. Consequently, they satisfy the relations,

αβ = 1, (α− a)(β − a) = r2,

We choose α and β so that α lies inside, and β outside both circles. Then, we choose ψ−1

as the bilinear transform that maps α and β onto 0 and ∞ respectively, namely

ψ−1(z) = κ
z − α

αz − 1
.

With this choice, the circles |z| = 1 and |z − a| = r are mapped onto circles centered at 0.
The constant κ = −1 is chosen so that circle |z| = 1 is mapped onto itself. Hence,

ψ−1(z) =
z − α

1 − αz
and ψ(z) =

z + α

1 + αz
. (4.26)

The inner circle of Gs maps to |z − a| = r by ψ. Let us determine its radius s. It is easily
checked that the set |z − α|/|z − β| = k is a circle with respect to which α and β are
inverse. Moreover, the center of this circle is (α − k2β)/(1 − k2). Hence, choosing k such
that (α− k2β)/(1− k2) = a, or equivalently k2 = (a− α)/(a− β), the above set coincides
with |z − a| = r, and it is clear from (4.26) that its image by ψ−1 is the circle of radius

s =
k

α
=

1

α

√
α− a

β − a
=
β(α− a)

r
=
r2 + a(α− a)

r
.

Note that from the last expression for s, we deduce that

r ≤ s ≤ a+ r ≤ 1 − d < 1, (4.27)

where 0 < d < 1 has been defined at the beginning of this section.
The derivatives of ψ are given by

ψ(n)(z) = (−1)n+1n!(1 − α2)αn−1

(1 + αz)n+1
, n ≥ 1.

Hence,

inf
z∈Gs

|ψ′(z)| = |ψ′(1)| =
1 − α

1 + α
≥ d

2 − d
, (4.28)
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and, for n ≥ 1,

sup
z∈Gs

|ψ(n)(z)| = |ψ(n)(−1)| = n!αn−1 1 + α

(1 − α)n
≤ n!

(2 − d)(1 − d)n−1

dn
.

Since, by assumption, 0 < d < 1/2, we deduce that

sup
z∈Gs

|ψ(n)(z)| ≤ m!
(2 − d)(1 − d)m−1

dm
, 1 ≤ n ≤ m, (4.29)

which shows the assertion in the proposition. �

As a final result, we give a version of Theorem 4.1 for domains in the class Dd when m = 1.

Theorem 4.4. Consider a domain G in the class Dd, and assume that

σ :=

√
2 − d

d
‖u− ũ‖2,T < 1.

Then, the area of the inner disk D of G, that is the area of the unknown cavity, is bounded
above as follows,

|D| ≤ C

| log σ| ,

where the constant C is explicitly given by

C = 2M ef ′

√
2π(1 − d)(2‖ϕ‖L2(Γ) + 1)/(ed2m2

ef ′
).

Proof. The assertion is easily obtained from the general case and some minor modifi-
cations. �
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