Agrégation Mathématiques Devoir Surveillé Octobre 2019 – 4 heures Documents et calculatrices non autorisés

On rappelle les deux résultats suivants :

Théorème de Rouché : Soient f et g holomorphes dans un ouvert U de \mathbb{C} et soit D un disque ouvert tel que $\overline{D} \subset U$. Si

$$\forall z \in \partial D, \quad |f(z) - g(z)| < |f(z)|$$

alors f et g ont le même nombre de zéros dans D.

Formule pour le résidu d'une fonction holomorphe f ayant un pôle a d'ordre m:

Res
$$(f,a) = \frac{1}{(m-1)!} \frac{\partial^{m-1}}{\partial z^{m-1}} \Big|_{z=a} (z-a)^m f(z).$$

Exercice 1

On considère l'équation $ze^{a-z} = 1$ où a est un réel fixé > 1.

- 1) Montrer qu'elle a une seule solution dans |z| < 1.
- 2) Montrer que cette solution est un réel > 0.

Exercice 2

Calculer l'intégrale (convergente)

$$I = \int_0^\infty \frac{\sqrt{x} \ln(x)}{(x^2 + 1)^2} dx$$

par la méthode des résidus. On considèrera le contour constitué de deux demi-cercles dans le demiplan supérieur, respectivement de rayon R et ε , et des deux segments réels $[-R, -\varepsilon]$ et $[\varepsilon, R]$ les joignant. Les fonctions \sqrt{z} et $\ln(z)$ sont définies en dehors de la coupure constituée du demi-axe imaginaire négatif. Il faudra tenir compte du fait que sur l'axe réel négatif, on a

$$\ln(z) = \ln|z| + i\pi$$
 et $\sqrt{z} = i\sqrt{|z|}$.

Problème: Théorème de Jentzsch

1) Soit la fonction

$$\frac{1}{1-z} = \sum_{k=0}^{\infty} z^k,$$

de la variable complexe z et $S_n(z) = \sum_{k=0}^n z^k$, $n \in \mathbb{N}$, les sommes partielles de son développement en série en 0 (de rayon de convergence 1).

- Quels sont les zéros de $S_n(z)$?
- Justifier que l'adhérence de l'ensemble réunion des zéros des $S_n(z)$, pour $n \in \mathbb{N}$, est le cercle unité.

Le but du problème est de prouver le résultat suivant, qui généralise ce qui précède à toute série de rayon de convergence fini. On suppose dans la suite que ce rayon vaut 1.

Théorème (Jentzsch, 1918) Soit $f(z) = \sum_{k=0}^{\infty} a_k z^k$, $a_0 \neq 0$, une série entière de rayon 1. Soit E_n l'ensemble des zéros de sa somme partielle

$$S_n = \sum_{k=0}^n a_k z^k, \qquad n \ge 0. \tag{1}$$

Alors le cercle unité est dans l'adhérence de $\bigcup_{n>0} E_n$. ¹

- 2) Dans toute la suite, on ne considérera que des indices n pour lesquels $a_n \neq 0$. Toutes les limites seront donc prises sur de telles suites d'indices (même si cela n'est pas précisé). Justifier qu'il existe un nombre infini de tels indices.
- 3) Soit π_n le produit des zéros de S_n . Montrer que

$$\liminf_{n\to\infty}|\pi_n|^{1/n}=1.$$

4) Soit r < 1 < R, et p_n le nombre de zéros de S_n de modules inférieurs à R. Montrer que, pour n assez grand,

$$|\pi_n| \ge a^k r^{p_n - k} R^{n - p_n},\tag{2}$$

où a et k sont des constantes positives. On pourra utiliser le théorème de Rouché, une fois sur le cercle C_r de rayon r (éventuellement r' > r si f s'annule sur C_r), et une fois sur un cercle de rayon a > 0 suffisament petit.

5) En déduire que

$$\limsup_{n\to\infty}\frac{p_n}{n}=1.$$

On pourra choisir $r = R^{-\varepsilon}$ avec $\varepsilon > 0$ petit dans l'inégalité (2).

6) Soit l'homographie

$$w = \varphi(z) := \frac{z - \cos \lambda}{1 - z \cos \lambda}, \quad 0 < \lambda < \frac{\pi}{2}.$$

- Quelle est l'image $\varphi(\mathbb{T})$ du cercle unité \mathbb{T} et l'image $\varphi(\mathbb{D})$ du disque unité \mathbb{D} ?
- Quelle est l'image de l'arc $-\lambda \le \theta \le \lambda$ du cercle unité?
- Donner la formule pour l'application réciproque $\varphi^{-1}(z)$.
- 7) Dans la suite, on note $z_{n,k}$, $k=1,\ldots,n$, les zéros de $S_n(z)$. Les $w_{n,k}:=\varphi(z_{n,k})$ sont donc les zéros de la fonction $S_n(\varphi^{-1}(z))$ ou de manière équivalente les zéros du polynôme

$$R_n(z) = (1 + z\cos\lambda)^n S_n(\varphi^{-1}(z)).$$

Quel est le terme constant b_0 de ce polynôme? Montrer que le coefficient b_1 de degré 1 vaut

$$b_1 = n\cos\lambda S_n(\cos\lambda) + \sin^2\lambda S'_n(\cos\lambda).$$

On rappelle que S_n est donnée par (1). Si l'un des $z_{n,k}$ est égal à $1/\cos\lambda$ alors $w_{n,k} = \infty$. On peut vérifier que cela se traduit par le fait que le polynôme R_n devient de degré strictement plus petit que n, mais cela ne change pas les valeurs de b_0 et b_1 .

^{1.} En fait, tout point du cercle unité est un point d'accumulation de $\bigcup_{n>0} E_n$.

8) On suppose dans la suite que $f(\cos \lambda) \neq 0$. Déduire de la question précédente que

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{\operatorname{Re} w_{n,k}}{|w_{n,k}|^2} = -\cos \lambda.$$
(3)

On pourra considérer les parties réelles des inverses des $w_{n,k}$ (si $w_{n,k} = \infty$ pour un indice k, le terme correspondant dans la somme (3) est nul).

9) Soient $\varepsilon > 0$ et $\alpha > 0$ petits. On suppose que la bande

$$1 - \varepsilon < |w| < 1 + \varepsilon$$
, $-\pi + \lambda - \alpha < \arg w < \pi - \lambda + \alpha$,

ne contient aucun $w_{n,k}$, $k=1,\ldots,n$, pour n assez grand. On décompose la somme de la question précédente de la manière suivante :

$$\sum_{k=1}^{n} \frac{\operatorname{Re} w_{n,k}}{|w_{n,k}|^2} = S_1 + S_2 + S_3,$$

où dans S_1 , S_2 et S_3 on fait la somme respectivement sur les $w_{n,k}$ tels que

$$|w_{n,k}| \le 1 - \varepsilon$$
, $1 - \varepsilon < |w_{n,k}| < 1 + \varepsilon$, et $1 + \varepsilon \le |w_{n,k}|$.

- a) Montrer que $|S_1|$ est bornée par une constante indépendante de n. (on pourra noter, en le justifiant, que le nombre de $w_{n,k}$ tels que $|w_{n,k}| \le 1 \varepsilon$ devient constant, disons égal à K, pour n grand).
- **b**) En utilisant la question 5), montrer que

$$\liminf_{n\to\infty}\frac{1}{n}|S_3|=0.$$

On pourra noter q_n le nombre de $w_{n,k}$ tels que $|w_{n,k}| \ge 1 + \varepsilon$.

c) Montrer que

$$\liminf_{n\to\infty}\frac{1}{n}S_2<-\frac{\cos(\lambda-\alpha)}{1+\varepsilon}.$$

- 10) Montrer que les estimations précèdentes contredisent l'équation (3) de la question 8).
- 11) En déduire que le point 1 est dans l'adérence de $\bigcup_{n>0} E_n$.
- **12**) En déduire que le cercle unité est dans l'adérence de $\bigcup_{n\geq 0} E_n$.