Université des Sciences et Technologies de Lille – Licence Sem. 4

Examen Probabilité et analyse numérique

22 Juin 2006

Sujet Analyse Numérique

Exercice 1

1. Donner la formule de majoration (avec les hypothèses) pour l'erreur dans le calcul approché de l'intégrale

$$\int_{a}^{b} f(x)dx,$$

par interpolation en deux points x_0 et x_1 .

2. A partir de la formule précédente, retrouver le majorant

$$\frac{M_2}{12}(b-a)^3$$
,

pour l'erreur correspondante à la méthode des trapèzes appliquée sur l'intervalle [a, b].

3. Soit $f(x) = \exp(\frac{1}{2}\sin x)$. Donner une majoration de l'erreur par la méthode des trapèzes pour le calcul de l'intégrale

$$\int_0^{2\pi} f(x)dx$$

lorsqu'on découpe l'intervalle d'intégration en 4 morceaux puis 8 morceaux (méthodes composites).

Remarque: On se contentera d'un majorant de la dérivée seconde $f^{(2)}(x)$ sur l'intervalle $[0, 2\pi]$ tout entier. Pour majorer le facteur polynomial dans $f^{(2)}(x)$, on pourra faire le changement de variable $u = \sin x$.

Exercice 2

Soit f la fonction telle que

$$f(x) = x \ln(x), \quad x \in [1, +\infty).$$

1. Montrer que f est une bijection de $[1, +\infty)$ sur $[0, +\infty)$.

- 2. Que vaut $f^{-1}(e)$?
- 3. Soit $\varphi(x) = \frac{a}{\ln x}$, $a \in [0, +\infty)$. Montrer que $f^{-1}(a)$ est un point fixe de φ .
- 4. Pour quelles valeurs de $a \in [0, +\infty)$ la suite de Picard $x_{p+1} = \varphi(x_p)$ converge-t-elle lorsque la valeur initiale x_0 est choisie assez voisine de $f^{-1}(a)$?
- 5. Enoncer le théorème du point fixe.
- 6. On considere l'équation $x \ln(x) a = 0$ avec $a \in [0, +\infty)$. D'après ce qui précède, combien de solution possède cette équation sur $[1, +\infty)$? Pour la résoudre, on souhaite utiliser la méthode de Newton. On définit donc une suite $x_{p+1} = \psi(x_p)$. Montrer que

$$\psi(x) = \frac{x+a}{1+\log x}.$$

- 7. Pour $x \in [1, +\infty)$, étudier les variations de ψ et tracer sommairement le graphe de ψ .
- 8. Soit $\overline{x} \in [1, +\infty)$ le point fixe de ψ . Montrer que $|\psi'(x)| \leq \frac{1}{4}$ pour $x \in [\overline{x}, +\infty)$ (On pourra l'admettre si on manque de temps).
- 9. Etudier la convergence de la suite x_p pour $x_0 \in [1, +\infty)$ (on pourra utiliser le théorème du point fixe en considérant l'intervalle $[\overline{x}, +\infty)$).