Analyse Fonctionnelle - Master 1

Feuille 2: espaces complets

Exercice 1 Montrer que \mathbb{Z} muni de la valeur absolue est un espace complet.

Exercice 2 Soit (E,d) un espace métrique complet et $F \subset E$ un sous-ensemble non vide. Montrer que $(F,d_{|F})$ est complet ssi F est fermé.

Exercice 3 Montrer que tout espace non vide muni de la distance triviale est complet.

Exercice 4 Soit (E, N) un espace vectoriel normé. Montrer que (E, N) est complet ssi toute série absolument convergente est convergente.

Exercice 5 Soit $E = C^0([0,1], \mathbb{R})$ muni de la norme sup. Montrer que l'ensemble

$$\mathcal{B} := \{ x^n \in E \, / n \in \mathbb{N} \}$$

est un fermé borné de (E, N_{∞}) qui n'est pas compact.

Exercice 6 Soit $E = \mathcal{C}^0([0,1], \mathbb{R})$ muni de la norme N_1 . En considérant la suite de fonctions f_n telle que $f_n(x) = 0$ sur [0,1/2], $f_n(x) = n(x-1/2)$ sur [1/2,1/2+1/n] et $f_n(x) = 1$ sur [1/2+1/n,1], montrer que (E,N_1) n'est pas complet.

Exercice 7 Soit $F \subset E$ un sous-espace non vide d'un espace de Banach (E, N). On note \overline{x} un élément du quotient E/F et

$$\overline{N}(\overline{x}) := \inf_{y \in \overline{x}} N(y).$$

- 1) Montrer que \overline{N} est une semi-norme et que c'est une norme ssi F est fermé.
- 2) Montrer, lorsque F est fermé, que $(E/F, \overline{N})$ est un Banach.

Exercice 8 On considère l'espace $E = L^1([0,1],\mathbb{R})$ des fonctions Lebesgue-intégrables, muni de la norme $N_1(f) = \int_0^1 |f|$ et $F = L^2([0,1],\mathbb{R})$, muni de la norme $N_2(f) = (\int_0^1 |f|^2)^{1/2}$. On rappelle que (E, N_1) et (F, N_2) sont des espaces complets.

- 1) Montrer que $F \subset E$.
- 2) Montrer que (F, N_1) n'est pas complet.

Exercice 9 Soit X une partie dense d'un espace métrique E, et f une application uniformément continue de X dans un espace métrique complet F.

- 1) Montrer qu'il existe une unique application continue g de E dans F qui prolonge f.
- 2) Montrer que g est uniformément continue.
- 3) Si on suppose seulement f continue, peut-on toujours assurer l'existence d'un prolongement g continue ?

Exercice 10 Soit (E, d) un espace métrique. On note $\delta := d/(1+d)$.

- 1) Montrer que δ est une distance sur E. Est-elle équivalente à d ?
- 2) Montrer que (E, d) est complet ssi (E, δ) l'est.

Exercice 11 Soit $E = C^0([0,1], \mathbb{R})$ muni de la norme $N_{\infty}(f) = \sup_{x \in [0,1]} |f(x)|$. Montrer que $f_n(x) = x^n$ définit une suite d'éléments de (E, N_{∞}) qui n'est pas de Cauchy. Est-elle de Cauchy dans (E, N_1) ? (E, N_2) ?

Exercice 12 Soit X un ensemble quelconque et soit F un sous-espace de dimension finie de $\mathcal{B}(X,\mathbb{R})$ muni de la norme du sup. Montrer qu'une suite d'éléments de F qui converge simplement converge uniformément.