Analyse Fonctionnelle - Master 1

Feuille 5 : Théorèmes de Banach et Hahn-Banach

Exercice 1 (Théorème du graphe fermé)

- 1) Soit F un espace topologique. Montrer que F est séparé ssi la diagonale Δ de $F \times F$ est fermé.
- 2) Soit u une application continue de E dans F séparé. Alors le graphe

$$G(u) = \{(x, y) \in E \times F, \ y = u(x)\}\$$

est fermé dans $E \times F$. On pourra considérer l'application $u \times Id : E \times F \to F \times F$ qui à (x,y) associe (u(x),y).

- 3) En considérant le cas d'une application de \mathbb{R} dans \mathbb{R} , montrer que la réciproque n'est pas vraie en général.
- 4) Le théorème du graphe fermé dit que la réciproque est vraie si E et F sont des Banach et u est linéaire : Soit $u: E \to F$ linéaire entre Banach. Alors u est continue ssi son graphe est fermé. On utilisera le théorème de l'image ouverte en considérant la projection suivant la 1ere composante de $E \times F$ dans E.

Exercice 2 Soit E un espace muni de deux normes $\|\cdot\|_1$ et $\|\cdot\|_2$ telles que $(E, \|\cdot\|_1)$ et $(E, \|\cdot\|_2)$ soient des espaces de Banach. On suppose que l'une des normes domine l'autre, par exemple :

$$\exists C > 0, \quad \forall x \in E, \quad \|x\|_1 \le C \|x\|_2.$$

Montrer que les deux normes sont équivalentes.

Exercice 3 Soit C un sous-ensemble convexe ouvert d'un espace de Banach E avec $0 \in C$. Soit $x \in E$. On note $J(x) := \inf\{r > 0; \ x/r \in C\}$ sa jauge.

- 1) Montrer que pour tout $x \in E$, J(x) est fini.
- 2) Montrer que J est une sous-norme sur E, i.e.

$$\forall (x, y, \lambda) \in E^2 \times \mathbb{R}^+, \quad J(\lambda x) = \lambda J(x) \quad et \quad J(x+y) \le J(x) + J(y).$$

- 3) Montrer qu'il existe M > 0 tel que $0 \le J(x) \le M||x||$, $\forall x \in E$ (donc J est continue).
- 4) Montrer que $C = \{x \in E; \ J(x) < 1\}.$

Exercice 4 Soit (E, N) un espace de Banach de dimension infinie et $\mathcal{B} = \{e_n, n \in \mathbb{N}\} \subset E$ une famille (algébriquement) libre.

- 1) Montrer que $F_n := \text{Vect}\{e_j / 0 \le j \le n\}$ est un fermé d'intérieur vide.
- 2) En déduire que E n'admet pas de base (algébrique) dénombrable. Qu'en déduisez vous pour \mathcal{P} , l'ensemble des fonctions polynômiales sur [0,1]?

Exercice 5

- 1) Montrer qu'une application linéaire $f: \mathbb{R} \to \mathbb{R}$ est ouverte ssi $f(1) \neq 0$.
- 2) Montrer que $h: x \in \mathbb{R} \mapsto x^2 \in \mathbb{R}$ n'est pas ouverte.
- 3) Montrer que $f: z \in \mathbb{C} \mapsto z^2 \in \mathbb{C}$ est ouverte. On pourra utiliser le théorème d'inversion locale pour les fonctions de \mathbb{R}^2 dans \mathbb{R}^2 .

Exercice 6 Soit $f: E \to F$ une application linéaire entre deux espaces vectoriels normés.

- 1) Montrer que f est ouverte ssi elle est ouverte à l'origine.
- 2) Montrer que si f est ouverte alors elle est surjective.
- 3) On considère l'identité de $\mathcal{C}^1_{\mathbb{R}}([0,1])$ muni de la norme $||f|| = ||f||_{\infty} + ||f'||_{\infty}$ dans $\mathcal{C}^1_{\mathbb{R}}([0,1])$ muni de la norme $||f||_{\infty}$. Vérifier qu'il s'agit d'une application linéaire surjective continue qui n'est pas ouverte. Est-ce en contradiction avec le théorème de l'application ouverte ?

Exercice 7 On dit qu'un sous-ensemble d'un espace topologique X est rare si son adhérence est sans point intérieur. Un sous-ensemble de X est dit maigre s'il est réunion dénombrable de sous-ensembles rares. Montrer que $L^2 = L^2([0,1],\mathbb{R})$ est maigre dans $L^1 = L^1([0,1],\mathbb{R})$ muni de la norme L^1 habituelle, en considérant les ensembles

$$I_n = \{ f \in L^2, \int_0^1 |f(t)|^2 dt \le n \}, \quad n \ge 1,$$

dont on montrera qu'ils sont :

- a) sans point intérieur
- b) fermés : pour cela, on rappelle que si $(f_n)_n$ est une suite qui tend vers f dans L^1 , alors il existe une sous-suite de $(f_n)_n$ qui tend vers f presque partout. On rappelle aussi l'inégalité de Fatou pour une suite de fonctions f_n mesurables positives,

$$\int \liminf f_n(t)dt \le \liminf \int f_n(t)dt.$$

Exercice 8 Soit E un sous-espace fermé de $L^1([0,1])$. On suppose que, pour tout $f \in E$, il existe p > 1 tel que $f \in L^p([0,1])$. Montrer qu'il existe p > 1 tel que $E \subset L^p([0,1])$. On pourra définir

$$E_{k,n} = \left\{ f \in E; \int_0^1 |f|^{1 + \frac{1}{k}} \le n \right\}$$

et montrer que $E_{k,n}$ est fermé dans L^1 .

Exercice 9 1) Soit $f \in L^p(\mathbb{R}^n)$, $1 \leq p, q \leq +\infty$ vérifiant $p^{-1} + q^{-1} = 1$. Pour toute $g \in L^q(\mathbb{R}^n)$, on définit $T(g) = \int_{\mathbb{R}^n} f(x)g(x)dx$. Montrer que T est continue sur $L^p(\mathbb{R}^n)$ et que $||T|| = ||f||_p$.

2) Soit f une fonction mesurable sur \mathbb{R}^n et $1 \leq p,q$ tels que $p^{-1} + q^{-1} = 1$. On suppose que, pour toute $g \in L^q(\mathbb{R}^n)$, $fg \in L^1(\mathbb{R}^n)$. Montrer que $f \in L^p(\mathbb{R}^n)$ (tronquer f et utiliser la question précédente).

Exercice 10 Montrer que l'ensemble des fonctions Lipschitziennes est maigre dans $C([0,1],\mathbb{R})$ (muni de la norme sup).

Exercice 11 On note C([0,1]) l'espace des fonctions continues sur [0,1] à valeurs réelles, muni de la norme du sup. On rappelle le résultat suivant que l'on pourra utiliser dans cet exercice :

Soit $(f_n)_{n\geq 0}$ une suite de fonctions de C([0,1]), dérivables sur [0,1], telles que $(f'_n)_{n\geq 0}$ converge uniformément sur [0,1] vers une fonction g. Alors, si la suite $(f_n)_{n\geq 0}$ converge simplement vers une fonction f, la convergence est uniforme sur [0,1], f est dérivable et f'=g.

Soit E un sous-espace fermé de C([0,1]). On suppose que toutes les fonctions appartenant à E sont de classe C^1 .

- 1) Montrer que l'application $\varphi: E \to \mathcal{C}([0,1])$ telle que $\varphi(f) = f'$ est continue. On pourra utiliser le théorème du graphe fermé.
- 2) Montrer que la boule unité fermée de E est compacte dans $\mathcal{C}([0,1])$. On utilisera le théorème d'Ascoli.
- 3) En déduire que E est de dimension finie.

Exercice 12 Soit E un Banach et $\varphi: E \times E \to \mathbb{R}$ une application bilinéaire.

- 1) Montrer l'équivalence de :
- a) φ est continue.
- b) φ est bornée sur les bornés.
- c) Il existe C > 0 telle que

$$|\varphi(x,y)| \le CN(x)N(y), \ \forall x,y \in E.$$

- 2) Montrer que φ est continue ssi elle est séparément continue.
- 3) Donner un exemple d'une application (non linéaire) $\varphi: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ séparément continue qui n'est pas continue.
- 4) Soit \mathcal{P} l'espace des polynômes à valeurs réelles sur [0,1], muni de la norme L^1 . Prouver que l'application

$$\varphi(p,q) = \int_0^1 p(t)q(t)dt$$

est une forme bilinéaire séparément continue qui n'est pas continue. On rappelle que \mathcal{P} est dense dans $L^1([0,1])$.

Exercice 13 Soit E un espace de Banach. Soit $F \subset E$ un sev. On dit que F admet un supplémentaire topologique G si F et G sont des supplémentaires algébriques et les projections $\pi_F: E \to F$, $\pi_G: E \to G$ sont continues.

- 1) Montrer que si F admet un supplémentaire topologique, alors F est fermé.
- 2) Montrer que si dim $F < +\infty$ alors F admet un supplémentaire topologique. On pourra considérer une base de F et les projections sur les coordonnées de cette base.

Exercice 14 Soit E un espace de Banach. Soit M (resp. N) un sous-espace vectoriel de E (resp. E^*). On définit

$$M^{\perp} := \{ f \in E^*, \ f(x) = 0, \ \forall x \in M \} \ et \ N^{\perp} := \{ x \in E, \ f(x) = 0, \ \forall f \in N \}.$$

- 1) Montrer que $(M^{\perp})^{\perp} = \overline{M}$.
- 2) Montrer que $(N^{\perp})^{\perp} \supset \overline{N}$, avec égalité si E est réflexif
- 3) Montrer que si $E = \ell^1(\mathbb{R})$ et si $N = c_0$, l'espace des suites qui tendent vers 0, alors l'inclusion est stricte.

Exercice 15 Soit H un espace de Hilbert sur \mathbb{C} et T un endomorphisme de H.

1) Montrer l'identité (qui généralise l'identité de polarisation) :

$$\forall x, y \in H, \quad (Tx, y) = \frac{1}{4} \sum_{n=0}^{3} i^{n} (T(x + i^{n}y), x + i^{n}y).$$

2) En déduire que T est nul ssi

$$\forall x \in H, \quad (Tx, x) = 0,$$

et montrer par un exemple que l'équivalence est fausse si H est un Hilbert réel.

3) On suppose T continu. Montrer que T est hermitien (i.e. $\forall x, y \in H, (Tx, y) = (x, Ty)$) ssi

$$\forall x \in H, \quad (Tx, x) \in \mathbb{R},$$

en particulier si T est positif alors T est hermitien (c'est faux sur un Hilbert réel). On pourra utiliser l'adjoint T^* de T qui est bien défini puisque T continu.

4) (Théorème de Hellinger-Toeplitz) Soit H Hilbert $sur \mathbb{R}$ ou \mathbb{C} et T hermitien sur H. Montrer que T est continu. On pourra utiliser le théorème du graphe fermé.

Exercice 16 Soit E espace normé sur \mathbb{R} et F un sous-espace de E qui ne soit pas dense dans E. Alors il existe $f \in E^*$, $f \neq 0$, telle que f = 0 sur F.

Exercice 17 Soit $f \in \mathcal{O}(\mathbb{C})$ une fonction entière telle que $f^k(0) \neq 0$ pour tout $k \in \mathbb{N}$. Soit $(\alpha_i) \in \mathbb{C}^{\mathbb{N}}$ une suite bornée de nombres complexes deux à deux distincts. On pose $g_i(z) = f(\alpha_i z)$ et

$$G := \text{Vect}\{g_i, i \in \mathbb{N}\}.$$

Montrer que G est dense dans $\mathcal{O}(\mathbb{C})$. On pourra utiliser le théorème de Hahn-Banach et on "rappelle" que le dual topologique de $\mathcal{O}(\mathbb{C})$ est l'ensemble des mesures de Borel à support compact ds \mathbb{C} .

Exercice 18 (Lemme des noyaux) Soit E un espace vectoriel sur \mathbb{K} , et soient n formes linéaires $u_1, u_2, ..., u_n$ sur E. Toute forme linéaire u qui s'annule sur l'intersection des noyaux de $u_1, ..., u_n$ est une combinaison linéaire de $u_1, ..., u_n$. On pourra considérer l'application

$$\phi = (u_1, \dots, u_n) : E \to \mathbb{K}^n$$

et montrer que l'application $f: Im(\phi) \to \mathbb{K}$ qui à $(u_1(x), \dots, u_n(x))$ associe u(x) est bien définie.