Analyse Fonctionnelle - Master 1

Feuille 6: Topologies faibles

Exercice 1 Soit E un espace vectoriel de dimension finie. Montrer qu'une suite converge faiblement si et seulement si elle converge fortement.

Exercice 2 Soit (x_n) une suite d'un espace de Hilbert H qui converge faiblement vers $x \in H$. Montrer que (x_n) converge fortement vers x ssi $\limsup ||x_n|| \le ||x||$.

Exercice 3 Montrer que toute suite dans la boule unité fermée de $L^2(\mathbb{R})$ admet une soussuite faiblement convergente. Trouver une suite faiblement convergente dans cette boule sans sous-suite convergente.

Exercice 4 Dans l'espace de Banach C([0,1]) on considère la suite de fonctions affines par morceaux f_n telle que $f_n(0) = 0$, $f_n(1/n) = 1$ et $f_n(x) = 0$ pour $x \ge 2/n$. Montrer que f_n converge faiblement mais pas fortement vers 0.

Exercice 5 Soit K un compact d'un espace de Banach. Montrer que toute suite dans K faiblement convergente est fortement convergente.

Exercice 6 Soit E un espace de Banach de dimension infinie et

$$S := \{x \in E, ||x|| = 1\} \text{ et } B := \{x \in E, ||x|| \le 1\}.$$

1) Soit $x_0 \in E$. On rappelle qu'une base de voisinages de x_0 pour la topologie faible s'obtient en considérant les voisinages, pour $\varepsilon > 0$ et $\varphi_1, \ldots, \varphi_s \in E^*$,

$$V_{\varepsilon,\varphi_1,\ldots,\varphi_s} = \{x \in E \mid |\varphi_i(x - x_0)| \le \varepsilon, \ 1 \le i \le s\}.$$

Montrer qu'un tel voisinage contient toujours une droite affine de E.

- 2) Montrer que B est d'intérieur vide.
- 3) Montrer que l'adhérence faible de S est égale à B.

Exercice 7 Soit E un Banach réflexif. Montrer que tout borné de E est relativement w-compact.

Exercice 8 Soit $E = C^0([0,1], \mathbb{R})$ muni de la norme du sup. On rappelle que E^* est l'ensemble des mesures de Radon sur [0,1]. Soit (f_n) une suite de E. Montrer que (f_n) converge faiblement vers 0 si et seulement si $(\|f_n\|_{\infty})_n$ est bornée et (f_n) converge simplement vers 0.

Exercice 9 (Théorème de Browder-Kirk) Soit H un espace de Hilbert réel et C une partie convexe, fermée, bornée et non vide de H. Soit T une application de C dans C telle que, pour tous $x,y \in C$,

$$||T(x) - T(y)|| \le ||x - y||$$
.

1) Soit $a \in C$. Pour tout $n \in \mathbb{N}^*$ et tout $x \in C$, on pose

$$T_n(x) = \frac{1}{n}a + \frac{n-1}{n}T(x).$$

Montrer qu'il existe un unique $x_n \in C$ tel que $T_n(x_n) = x_n$. (On remarquera que T_n est lipschitzienne)

- 2) Montrer que l'on peut extraire de $(x_n)_n$ une sous-suite faiblement convergente vers un élément $x \in C$.
- 3) On note encore (x_n) la suite extraite. Montrer que

$$\lim_{x \to 0} (\|T(x) - x_n\|^2 - \|x - x_n\|^2) = \|T(x) - x\|^2.$$

4) Montrer que

$$\lim \sup_{n \to \infty} (\|T(x) - x_n\| - \|x - x_n\|) \le 0.$$

- 5) En déduire que T(x) = x.
- 6) Montrer que $\{x \in C; T(x) = x\}$ est un fermé, convexe, non vide, de H.

Exercice 10 Pour $y \in \ell^1(\mathbb{R})$, on considère

$$\varphi_y : x \in c_0 \mapsto \sum_{k \in \mathbb{N}} x_k y_k \in \mathbb{R},$$

où c_0 désigne l'ensemble des suites réelles qui convergent vers zéro.

- 1) Montrer que (c_0, N_{∞}) est un Banach.
- 2) Montrer que φ_y est une forme linéaire continue sur c_0 . Réciproquement, montrer que pour toute $\varphi \in c_0'$, il existe un unique $y \in \ell^1$ tel que $\varphi = \varphi_y$.
- 3) Soit B la boule unité fermée de c_0 . Vérifier que si $y_k = 2^{-k}$ alors le supremum de φ_y sur B n'est jamais atteint. En déduire que B n'est pas faiblement compacte.

Exercice 11 On considère $E := \ell^{\infty}(\mathbb{R})$ et $f_n : E \to \mathbb{R}$ définie par

$$f_n(x) = \frac{1}{n} \sum_{k=1}^n x_k.$$

- 1) Montrer que $f_n \in E'$ et calculer $||f_n||$.
- 2) Montrer que (f_n) n'admet aucune sous-suite *-faiblement convergente. On pourra raisonner par l'absurde, supposer que $(f_{\varphi(n)})$ converge faiblement vers f et supposer de plus, quitte à extraire à nouveau, que $\varphi(n+1) \geq 3\varphi(n)$ pour tout $n \in \mathbb{N}$. On pourra alors considérer la suite $x = (x_j) \in E$ définie, pour $j \in \mathbb{N}$, par

$$x_j = (-1)^n \text{ si } \varphi(n) \le j < \varphi(n+1), \ n \in \mathbb{N}.$$

Exercice 12 On considère à nouveau $E = \mathcal{C}^0([0,1],\mathbb{R})$ muni de l'une des topologies L^1, L^{∞} ou la topologie faible.

- 1) Montrer qu'une application continue $f:(A,\tau)\to (B,\tau')$ entre deux espaces topologiques est séquentiellement continue. Montrer que la réciproque est vraie lorsque la topologie τ est métrisable.
- 2) Montrer que l'application identité $\Phi: (E, w) \to (E, N_1)$ n'est pas continue, mais qu'elle est séquentiellement continue (utiliser l'exercice 8). En déduire que la topologie faible n'est pas métrisable.
- 3) Montrer que l'application identité $\Psi:(E,w)\to(E,N_\infty)$ n'est pas séquentiellement continue.