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Abstract

We consider a classical inverse problem: detecting an insulating crack inside a homogeneous
2-D conductor, using overdetermined boundary data. Our method involves meromorphically
approximating the complexified solution to the underlying Dirichlet-Neumann problem on the
outer boundary of the conductor, and relating the singularities of the approximant (i.e. its
poles) to the singular set of the approximated function (i.e. the crack). This approach was in-
troduced in [18] when the crack is a real segment embedded in the unit disk. Here we show, more
generally, that the best L2 and L∞ meromorphic approximants to the complexified solution on
the outer boundary of the conductor have poles that accumulate on the hyperbolic geodesic arc
linking the endpoints of the crack if the latter is analytic and “not too far” from a geodesic. The
extension of the method to the case where the crack is piecewise analytic is briefly discussed.
We provide numerical examples to illustrate the technique; as the computational cost is low,
the results may be used to initialize a heavier local search. The bottom line of the approach is
to regard the problem of “optimally” discretizing a potential using finitely many point masses
as a regularization scheme for the underlying inverse potential problem. This point of view may
be valuable in higher dimension as well.
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imation, Hankel operators.
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1 Introduction

The present paper explores a new connection between complex analysis and inverse problems with
free boundary of the 2-D Laplacian. This may be viewed as one particular instance of a general
issue in inverse potential theory, namely what does the optimal discretization of a potential (with
respect to some criterion) tell us about the support of its generating measure?

Recall that, given a fundamental solution E of some elliptic operator A, the potential of a
compactly supported measure µ is the convolution pµ = E ∗ µ. The inverse problem of potential
theory is to recover information on µ from the knowledge of pµ outside a neighborhood N of
the support of µ [43]. Now, if one approximates pµ outside N , say optimally with respect to some
criterion, by the potential of a discrete measure with n point masses, the issue that we raise is: how
do these masses distribute with respect to the support of µ and how do they behave asymptotically
with n?

Of course, the relevance of that issue to the inverse problem is clear only if the optimal dis-
cretization can be carried out constructively and if the distribution of the corresponding point
masses can be related to µ explicitly. To the authors’ knowledge, such questions have received little
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attention so far, and no general framework is presently available to study them in a systematic
way. However, when A is the 2-D Laplacian so that E = − log |z|, we remark that ∂pµ/∂z is the
Cauchy integral of µ, which is a rational function if and only if µ is discrete; consequently, optimal
discretization with respect to Sobolev-type norms (i.e. approximating the derivative) amounts to
best rational approximation of Cauchy integrals. This last subject has made considerable progress
in recent years, enabling one to describe the asymptotic behavior of the approximants when the
degree grows large, provided that the Cauchy integral to be approximated is taken over so-called
symmetric arcs for the logarithmic or the Green potential [36, 68, 53, 69, 37, 21, 23, 50, 17]. This
is how the authors of the present paper were led to approach the problem of crack detection using
tools from Approximation Theory in the complex domain. Actually, we shall deal with a situation
where potentials are only known up to the addition of a harmonic function, and therefore we con-
sider meromorphic rather than rational approximation. This makes hardly any difference for the
application we have in mind.

Crack detection from overdetermined boundary data of diffusive phenomena is a classical inverse
problem for which many approaches exist already. Some exploit the propagation dynamics while
others rely on the analysis of the steady state solution satisfying Laplace’s equation. In Section 2 we
review briefly three methods of the latter type on simply connected planar domains, in order to put
the present work into perspective. Due to ill-posedness, every method involves a priori assumptions
on the crack, ranging from the very strong (e.g. it is a line segment) to mere Hölder-smoothness;
as a general rule, the stronger the assumptions the more constructive the method. The one we
present here requires analyticity on the crack while putting additional constraints on its shape (it
should not be too far from a geodesic arc in the hyperbolic geometry; see the quantitative bounds
in Theorem 7.2). This range of applicability can be enlarged considerably by appealing to finer
properties of meromorphic approximants (cf. [24]), making it possible to deal with more general,
piecewise analytic cracks; see the discussion in Section 7.2. This more extensive treatment is beyond
the scope of this paper, but the account below already contains all the necessary ingredients to
illustrate the method.

What we shall present is not a recovery algorithm, in that it can only locate the endpoints of
the crack in general. Indeed, the outcome of the procedure at step n is a set of n points (i.e. the
poles of the approximant) that converge in proportion, when n gets large, to the Green equilibrium
distribution on the geodesic arc linking these endpoints. The equilibrium distribution charges the
endpoints which is why they can be recovered asymptotically, whereas the crack itself will not
attract the poles unless it is a geodesic arc. On the one hand, a full assessment of the method
calls for estimates on the speed of convergence that are currently not available and would require
further a priori assumptions both on the crack and on the boundary data that are used. On the
other hand, numerical experiments indicate that this convergence is rather fast, and in any case
the non-asymptotic bounds in Proposition 6.1 and Corollary 6.2 provide one already with some
indication of how quickly the poles approach the geodesic arc. The computational cost is very low
as compared to other techniques, so our endeavor of spotting the endpoints of the crack is of major
interest to initialize a more accurate but “heavier” local search. Alternatively, recovering the crack
from the knowledge of its endpoints can be recast analytically as yet another extremal problem,
but we will not touch upon that issue here. Let us mention also that a similar approach can be
taken for the recovery of pointwise monopolar or dipolar sources [15].

The complex analytic tools that we shall use are mostly standard (cf. e.g. [1, 27, 75]), ex-
cept perhaps for the approximation-theoretic part. Specifically, we shall be concerned with two
types of meromorphic approximation on a smooth simply connected planar domain with rectifiable
boundary, namely those associated, respectively, with the L∞ and the L2 norms on the boundary
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of the domain. The first type is particularly interesting in that it is conformally invariant, and
constructively solvable via the Adamjan–Arov–Krein (in short: AAK) theory [2, 3]. Unfortunately,
it is not continuous with respect to the L∞ norm on the data, but only with respect to stronger
ones (e.g. Hölder or Wiener norms) [58] which makes it delicate to use in noisy situations. The L2

meromorphic approximation is better behaved in that respect, but it cannot be computed in closed
form and one has to rely on numerical search; that is why we take the precaution to stress results
that are valid for local minima and not just the global one. As a trade-off, one could work with Lp

meromorphic approximation with 2 ≤ p ≤ ∞ using results from [23], but we shall not deal with
such a generalization here. In all cases the asymptotic distribution of the poles is the same. In
principle, one could as well use multipoint Padé interpolation [?] instead of meromorphic approxi-
mation. Our line of approach applies mutatis mutandis to this setting, replacing throughout Green
potentials by logarithmic ones and hyperbolic geodesics by straight lines. Although this makes for
a linear algorithm, it is not feasible in practice because interpolation data have to be estimated
from pointwise values of the solution on the outer boundary, and such computations turn out to
be unstable. This is why we do not pursue this direction.

For simplicity, the numerical experiments reported at the end of the paper have been carried
out when the domain under consideration is normalized to be the unit disk. Then the analytic pro-
jection of a function is immediately deduced from its Fourier expansion, which makes for an easier
computation, both of the Hankel matrix needed for AAK-theory and of the long division providing
us with the L2-criterion, see comments in Section 8. Of course, the results that we illustrate are
formulated in a conformally invariant manner that does not depend on such a normalization.

2 2-D crack detection from Neumann-to-Dirichlet data

Consider a bounded simply connected domain D in the plane with oriented boundary Γ. Suppose
D is filled with a homogeneous body, except for a one-dimensional crack modeled by an oriented
Jordan arc γ ⊂ D with distinct endpoints, say, γ0 and γ1. The smoothness of Γ and γ will be
discussed shortly. For the time being, simply assume they have well-defined oriented normals nΓ

and n±γ whenever needed. Here nΓ points inward with respect to D, while n+
γ (resp. n−γ ) points

into the positive (resp. negative) region determined by the oriented arc γ, i.e. the region “to the
left” (resp. “right”) as one travers on γ. Functions defined on D \ γ will generally have two-fold
limits on γ; to avoid confusion, the limit will be superscripted by + or −, depending on which side
it is to be taken.

Let the conductor D be subject to some physical experiment, governed by the Laplace operator
(e.g. it could be heated or electrified), for which the crack acts as a perfect insulator. Specifically,
assume that we apply a flux Φ (of heat or current) on the outer boundary of the conductor. When
the equilibrium is reached, the physical phenomenon u (the heat or the potential) is a real-valued
function on D \ γ subject to the following Neumann boundary value problem:





∆u = 0 in Dγ = D \ γ ,

∂u

∂nΓ
= Φ on the boundary Γ = ∂D ,

∂u±

∂n±γ
= 0 on

◦
γ= γ \ {γ0, γ1} ,

(2.1)

where ∆u is the Laplacian of u.
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In order that a solution to (2.1) exists, the compatibility condition
∫

Γ
Φ |dw| = 0, (2.2)

must hold, where |dw| is the differential of arclength on Γ. The necessity of (2.2) comes from the
fact that the distribution u (of temperature or electricity) can be time-independent only if the total
flux (of heat or current) is zero. Also, it is clear that a solution to (2.1) is determined up to an
additive constant only. To avoid such trivial non-uniqueness, we may impose the normalization:

∫

Γ
u |dw| = 0. (2.3)

The inverse problem under consideration is:

If the crack γ is unknown, how can one recover it from overdetermined measurements (u,Φ)
on the boundary Γ of D?

Note that we assume there is only one crack. The case of finitely many cracks will be commented
upon in Section 7.2.

Our immediate goal is to review some of the results and techniques available in the literature to
tackle this inverse problem. These were derived assuming that Γ and γ are smooth, say of class C 2.
Using the trace theorem [39, Thm. 1.5.2.6], most of them would carry over with few modifications
to a piecewise-C1,1 setting, but we make no attempt at describing them in this greater generality.
Accordingly, in the remainder of this section, we let Γ and γ be C 2-smooth.

Denote by S1(D\γ) the Sobolev space of functions in L2(D\γ) whose distributional derivatives

of the first order again lie in L2(D \ γ). Traces of S1(D \ γ)-functions continuously exist in S
1

2 (Γ),
the interpolating space of exponent 1/2 between L2(Γ) and S1(Γ) [52, Ch. 1, Sec. 9-10]. Hence
by the Riesz-Fisher representation of linear functionals in a Hilbert space, a variational solution
to (2.1) uniquely exists in S1(D \ γ) whenever Φ belongs to the dual space S− 1

2 (Γ) of S
1

2 (Γ) [52,
Ch.1, Sec. 12], meaning that there is one and only one u ∈ S 1(D \ γ) satisfying (2.3) such that

∫

Γ
Φψ |dw| +

∫

D\γ
∇ψ · ∇u dm = 0 ∀ψ ∈ S1(D \ γ), (2.4)

where m is the 2-D Lebesgue measure and ∇ indicates the gradient vector field. Equation (2.4) is
obtained upon formally substituting (2.1) in Green’s first identity over D\γ, and does not formally
require that the Laplacian of u be a function.

The existence and uniqueness of a variational solution makes it possible to define the Neumann-
to-Dirichlet operator:

Fγ : S− 1

2 (Γ) −→ S
1

2 (Γ)
Φ 7−→ u|Γ,

(2.5)

which is convenient to discuss the three basic issues facing every inverse problem, namely:

• Identifiability.

Is the map γ 7→ Fγ injective? This question was originally considered in [34] where it is
shown that two particular fluxes on Γ are enough to characterize a single crack; one flux is
not sufficient in general. We remark that this result was subsequently extended [29, 9, 46] to
finitely many cracks, and that a similar statement holds for emerging cracks [11, 32] although
these are not a concern to us here.

4



• Stability.

Granted identifiability, let Φ1, Φ2 be a pair of characteristic fluxes for the crack under con-
sideration. Then, the stability of the solution with respect to the data amounts to requiring
that the map

(Fγ(Φ1),Fγ(Φ2)) 7−→ γ

be continuous with respect to suitable topologies. The case of a rather general crack is
considered in [6], but there only conditional stability can be proved since the problem is not
well-posed. Estimates of the same kind under less restrictive regularity assumptions may be
found in [62, 8]. We also remark that if there are several cracks, the Lipschitzian stability of
their relative angles is established in [34] for the case when they are line segments; see also
[7].

• Identification.

When identifiability and stability are met, one may ask for an identification procedure; that is,
a constructive means of approximating γ from the evaluation on Γ of finitely many functions
Fγ(Φj), 1 ≤ j ≤ N .

We shall distinguish between two types of identification methods:

– Iterative methods, usually of the descent type, where the direct problem is solved at
each step. These are usually based on minimizing a criterion (typically some distance
from the measurements) with respect to a parametrized family of cracks.

– Semi-explicit methods, where characteristic properties of γ are sought from the knowl-
edge of Fγ − F , where F is the Neumann-to-Dirichlet operator corresponding to the
“sane” domain D; i.e. when there is no crack. This way the direct problem need not be
solved repeatedly.

Generally speaking, semi-explicit methods are fast but not fully constructive unless strong
assumptions are made on the crack. They may typically be used to initialize iterative methods
that are more flexible but computationally heavier and flawed with local minima that could
prevent them from converging if the initial guess is inappropriate.

We refer the reader to [66] for a prototypical example of an iterative method on a problem
which is conjugate to (2.1). The method can be used quite generally but is only proved
convergent in the above reference when the crack is a line segment.

Below we sketch two examples of semi-explicit methods that are closer in spirit to the present
work. Both are based on a comparison between the Neumann-to-Dirichlet map of the “sane”
domain D and that of the “cracked” domain D \ γ. The first one makes the very strong
assumption that the crack lies on a straight line whereas the second is much more general
but not fully constructive.

– The reciprocity gap method.

This method was introduced in [10]. The direct problem being modeled by (2.1), let v
be harmonic in the sane domain D and set h = u|Γ. Then, by Green’s second identity:

∫

Γ

(
Φv −

∂v

∂nΓ
u

)
|dw| =

∫

γ
[u]γ

∂v

∂nγ
|dξ|, (2.6)
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where [u]γ = u+ − u− denotes the jump of u across γ. The left-hand side of (2.6)
defines the so-called reciprocity Gap operatorRG[Φ,h](v). Choosing elementary harmonic
polynomials for v generates linear equations for the parameters of the straight line L
containing γ. The latter is then determined by localizing the set {t ∈ L; [u]γ(t) > ε}
using Fourier analysis. The method could be adapted to more general algebraic curves
but very strong prior assumptions on γ have to be made anyway.

– The factorization method. This method was introduced in [28] after earlier work [47]
on inverse scattering. The direct problem being still described by (2.1), the difference
operator Fγ−F turns out to be positive L2

�(Γ) → L2
�(Γ) where the subscript “�” indicates

that the mean vanishes [28, Thm. 2.2.]. For σ an open arc of class C 2 in D, let v1 be
the double-layer potential:

v1(z) =
1

2π

∫

σ
ϕ(ζ)

∂

∂nσ
log

1

|z − ζ|
d|ζ|, z ∈ Dσ,

where ϕ is a smooth positive density function on σ that vanishes at the endpoints. Let
further v0 be harmonic in D with ∂v0/∂nΓ = ∂v1/∂nΓ, and c be the mean of v1 − v0. If

we set v = v1 − v0 − c, then σ ⊂ γ if, and only if, v|Γ lies in the range of (Fγ −F)
1

2 [28,
Thm. 3.1.].

Unfortunately one cannot check constructively whether a function belongs to a non-
closed subspace, nor can one exhaust the candidate-cracks σ in D. We refer the reader
to [28] for a heuristic criterion of whether v|Γ is “close” to lying in the range of the

compact operator (Fγ − F)
1

2 . This criterion is based on the numerical computation of
a large number of pairs (u,Φ) in order to evaluate sufficiently many eigenvalues and
eigenvectors of the square root operator, and on the estimation of a mean geometric
decay to guess the nature of the Picard series for the inverse.

Other approaches also exist, that are of a more heuristical type. Let us quote in particular [49],
where some approximation to a conformal map from an annulus to D \ γ is seeked in the sense of
kernel convergence, using numerical integration of conjugate differentials.

Note that the methods we just mentioned proceed by approximating, in different ways, the
solutions to (2.1) subject to the boundary conditions provided by the measurements. In contrast,
the approach below is based on approximating the boundary conditions themselves.

3 Overview of the results

Having reviewed in the previous section some existing methods to tackle the inverse problem of
recovering γ from the knowledge of Φ and u|Γ in (2.1), let us now briefly indicate how the results of
the present paper, that are function-theoretic in nature, can be used for that purpose. We assume
that D is simply connected with piecewise C1,α boundary Γ and no outward-pointing cusps; see
hypotheses H1-H2 in Section 4.

1 If γ is piecewise C1,α without cusps (see hypotheses H3-H4 in Section 4), and if Φ ∈ Lp(Γ)
with 1 < p < 2 while (2.2) is met, then (up to an additive constant) there is a unique solution
u to (2.1) whose gradient is uniformly summable over a sequence of curves tending to Γ ∪ γ
in D \ γ; moreover, u is the real part of a holomorphic function f whose derivative belongs
to the Smirnov class Ep(D \ γ). This is the content of Theorem 4.1.
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2 The function f is the sum of a holomorphic function on D which is continuous on D (in
fact absolutely continuous on Γ with Lp(Γ)-derivative), and of a Cauchy integral over γ.
This is the content of Theorem 4.4. In particular, it follows from characteristic properties of
conjugate differentials that

f(ξ) = u(ξ) − i

∫ ξ

ξ0

Φ(ζ) |dζ|, ξ ∈ Γ,

so that f can indeed be computed on Γ from the knowledge of u and Φ.

3 Granted f on Γ one can, for increasing values of n, compute best meromorphic approximants
to f from E∞

n (D) using AAK-theory or local best approximants from E 2
n(D) using descent

algorithms; see the details in sections 5 and 8.

4 If the crack γ is analytic in D and close enough to the hyperbolic geodesic arc G linking
its endpoints γ0 and γ1, and if the flux Φ does not make γ a level line of u, then the poles
of the best meromorphic approximants asymptotically distribute, as n increases, according
to the Green equilibrium measure of G in D. This is the content of Theorems 7.2 and 7.4.
In particular, since the Green equilibrium measure heavily charges γ0 and γ1, they can in
principle be spotted as clusters of poles.

5 The non-asymptotic relations (6.6) or (6.11) give a quantitative estimate of how far the poles
may lie from G for fixed n. This can be used to obtain geometric bounds on the location of
γ0 and γ1, see the remarks after Proposition 6.1 and Corollary 6.2.

In item 4, the geometric restrictions on γ can be weakened by choosing the flux Φ conveniently,
and the method can further handle piecewise analytic cracks whose hyperbolic convex hull is not
too big. In this case, however, the hyperbolic geodesic arc must be replaced by some appropriate
symmetric contour for the Green potential. Such generalization is beyond the scope of this paper;
see Section 7.2 for a short discussion and a conjecture that the endpoints and the vertices of a
piecewise smooth γ should always attract a positive proportion of poles, no matter whether it is
piecewise analytic or not.

The computational cost is very low, and the technique seems suited to initialize other methods
of crack recovery proper. Its limitation is of course that the accuracy on computing meromorphic
approximants for large n decreases with the precision on the data: at some point one starts ap-
proximating the measurement and truncation errors, and then the behavior of the poles becomes
different. This is why, in practice, one would rather iterate the steps above for several pairs (u,Φ)
while keeping n within reasonable bounds. Section 8 displays a few numerical examples.

4 Cauchy integrals

Below, we shall need a stronger type of solution to (2.1) than the variational one to make contact
with complex analysis. Specifically, we want to represent u as the real part of a holomorphic
function f whose derivative extends in an Lp manner on Γ = ∂D and from both sides on γ. This
will both enable us to represent u as the real part of a Cauchy integral and provide us with the
Hölder-continuity of f which is important to ensure continuity properties of best meromorphic
approximants. These requirements lead us to choose Φ to be a true function and not merely a
distribution on Γ, although we still want to allow this function to be somewhat irregular since the
flux which is applied to the outer boundary of D may well be discontinuous in practice.
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The situation that we face here is not completely classical: the theory of layer potentials on
Lipschitz domains (see e.g. [44, 45]) is not directly available because the endpoints of the crack
are (inward-pointing) cusps, and the regularity theory of [39] on polygonal domains is not easily
adapted either as it deals with homogeneous boundary conditions and does not include the estimates
that are necessary to control the conjugate function near the boundary. That is why we devise in
this section a theorem which suits our purposes.

Since we must deal with two inward-pointing cusps by the very nature of the problem, we may
as well handle any number of them and in addition allow for ∂D to have finitely many corners,
which is often convenient in applications (outward-pointing cusps are not allowed). However, we
make rather strong regularity assumptions on these singular points by requiring ∂D to be piecewise
C1,α-smooth. This will enable us to localize the singularities of the conjugate function, and to prove
a result which may be of independent interest, as it stands somewhat half-way between classical
Lp theorems on smooth domains [4, 33] and theorems on Lipschitz domains where the range of
p gets restricted [45]. We shall see in particular that the occurrence of inward-pointing cusps
forbids the use of p = 2, in contrast with Lipschitz domains. The technique of proof consists
in conformally mapping the Neumann problem over to an analytic domain, thus multiplying the
boundary conditions by the derivative of the mapping function, and to solve it there using classical
theorems on smooth domains. When mapping the solution back, we need to handle summability
with respect to the extra-weight coming from that derivative, which is done via the theory of
Muckenhoupt weights granted the detailed knowledge one has of the singularities of the conformal
map in the piecewise C1,α setting. Appealing to weighted norm inequalities to handle summability
of boundary values in the Neumann problem is not original in itself, as it was used to design
counterexamples to Lp theorems with variable coefficients [45]. But to the authors knowledge,
their use to obtain existence theorems on non-Lipschitz domains is new.

First, let us fix some terminology. We say that Γ is a piecewise-C 1,α polygon, 0 < α ≤ 1, if
there is on some interval [a, b] a continuous parameterization w : [a, b] → Γ with w(a) = w(b) which
is one-to-one [a, b) → Γ and satisfies, for some partition a = s0 < s1 < · · · < sN = b, that its
restriction to each interval [sj , sj+1] has a nonvanishing derivative which is Lipschitz-continuous of
order α. Recall that Lipschitz-continuity of order α of w ′ on [sj, sj+1] means that there exists a
constant Mj > 0 such that

|w′(τ) − w′(η)| ≤Mj |τ − η|α, τ, η ∈ [sj , sj+1].

The points Wj = w(sj) with 0 ≤ j ≤ N − 1 are the vertices of Γ. We denote by Γj = w([sj , sj+1])
the closed oriented arc that links Wj to Wj+1, and we endow Γ with the orientation inherited from
the Γj’s. We let further σjπ, for 1 ≤ j ≤ N − 1, be the oriented angle ŵj−1, vj ∈ [−π, π], where
wj−1 and vj are the respective tangents to Γj−1 and Γj at Wj ; we also set σ0π = ̂wN−1, v0. Thus
σjπ is the oriented jump of the argument of the forward tangent to Γ at Wj . Note that the jump of
the argument of the tangent at each vertex depends on the orientation: changing the orientation
changes its sign. If σj = 0 the tangent behaves continuously up to a reparametrization, and Wj is
not a true corner. If Γ is oriented counter-clockwise and σj = 1 we get an outward-pointing cusp
at Wj , whereas if σj = −1 we get an inward-pointing cusp. At every z ∈ Γ \ ∪jWj the oriented
unit tangent tΓ(z) does exist, and then the oriented normal at z is the unit vector nΓ(z) such that
(tΓ(z), nΓ(z)) is a positively oriented orthonormal frame.

We say that γ is a piecewise-C1,α closed arc if it obeys the same definition as given above for
a polygon, except that we do not require this time w(a) = w(b). The points γ0 = w(a), γ1 = w(b)
are called the endpoints of γ, and we shall distinguish them from other vertices.
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We now enumerate the hypotheses on the domain D and the crack γ that will be made in what
follows. In the forthcoming sections, when we consider the inverse problem of locating γ, we shall
strengthen the assumptions on the latter.

H1 D is a bounded Jordan domain in C whose boundary Γ is a piecewise-C 1,α polygon for some
α satisfying 0 < α ≤ 1, with vertices W0, . . . ,WN−1 where N ≥ 0. We orient Γ counter-
clockwise.

H2 For each j ∈ {0, . . . , N − 1}, the jump σjπ of the argument of the tangent to Γ at Wj is
neither 0 nor π (i.e. the Wj are truly corners if N > 0 and there is no outward-pointing
cusp).

H3 γ is a piecewise-C1,α oriented closed Jordan arc that lies interior to D, with distinct endpoints
γ0, γ1 and vertices V0, . . . , VM−1 where M ≥ 0.

H4 For each k ∈ {0, . . . ,M − 1}, the jump κkπ of the argument of the tangent to γ at Vk is
neither 0 nor ±π (i.e. the Vk are truly corners if M > 0 and there is no cusp).

To define the precise meaning that we assign to the boundary conditions in (2.1), we need now
introduce some standard terminology. For w ∈ Γ \ ∪j{Wj} and a > 0, we define a nontangential
region of approach to w from inside D \ γ by setting

C(a,w)
∆
= {z ∈ D \ γ; |z − w| < (1 + a) d(z,Γ ∪ γ)},

where d(z,Γ ∪ γ) is the Euclidean distance from z to Γ ∪ γ; the fact that w is a smooth boundary
point guarantees that w ∈ C(a,w). We say that a (complex or vector-valued) function v on D \ γ
converges nontangentially to v0 at w if, for each a > 0, one has

lim
z→w

z∈C(a,w)

v(z) = v0.

Associated with a, the nontangential maximal function of v on Γ is given by

Mav(w)
∆
= sup

z∈C(a,w)
‖v(z)‖,

which is well-defined except perhaps at the Wj ’s with values in [0,+∞].
On γ, these definitions will be modified to distinguish between nontangential approaches from

each side. The easiest way is to imbed γ into a bigger C 1,α-arc that cuts out D in two pieces
D+ and D−, to which we apply the previous definitions. This gives rise to one-sided notions of
nontangential limit and maximal function at each s ∈ γ \ ({γ0, γ1} ∪ (∪kVk)), that we distinguish
by putting a superscript ±, depending whether the approach is taken along nγ(ζ) or its negative.

For A a disjoint union of rectifiable Jordan arcs and σ the linear measure induced by arclength,
we let Lp(A) denote, for 1 ≤ p ≤ ∞, the familiar space of (equivalence classes of σ-a.e. coinciding)
measurable functions f on A such that ‖f‖Lp(A) <∞, where

‖f‖Lp(A)
∆
=

(∫

A
|f |p dσ

)1/p

if p <∞, ‖f‖L∞(A)
∆
= ess. sup. {|f(ζ)|; ζ ∈ A}.

If W is a non-negative weight function on A, we write f ∈ Lp(A,W ) to mean that fW ∈ Lp(A).
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For 0 < β < 1, denote by Λβ(A) the space of Hölder-continuous functions with exponent β on
A, endowed with the norm

‖f‖Λβ(A) = ‖f‖∞ + sup
ξ,ζ∈A

ξ 6=ζ

|f(ξ) − f(ζ)|

σ([ξ, ζ])β
, (4.1)

where [ξ, ζ] is an arc of minimal length linking ξ and ζ in A.
Recall that, for 0 < p <∞, the Hardy space Hp(Ω) of a plane domain Ω consists of all functions

f holomorphic in Ω such that |f |p, which is subharmonic, has a harmonic majorant there. When
p ≥ 1, a family of equivalent norms is obtained by picking a point in Ω and evaluating there the
least harmonic majorant of |f |p to the 1/p; this makes Hp(Ω) into a Banach space. The space
H∞(Ω) consists of all bounded holomorphic functions in Ω, endowed with the sup norm. Clearly,
these definitions are conformally invariant.

Two particular cases will be of importance to us; the first is Ω = Dr where Dr denotes the
open disk centered at 0 of radius r, and the second is Ω = Ar1,r2

where Ar1,r2
denotes the annulus

Dr2
\ Dr1

for 0 < r1 < r2. When 0 < p <∞ it is easy to check [35, Thm. 6.7] that

f ∈ Hp(Dr) if and only if sup
0≤ρ<r

(∫ 2π

0
|f(ρeiθ|p dθ

)1/p

<∞, (4.2)

and if p ≥ 1 the above supremum yields an equivalent norm on H p(Dr). Moreover [31, Thm. 2.6.],
each f ∈ Hp(Dr) has a nontangential limit a.e. on the circle Tr centered at 0 of radius r, which
is the Lp(Tr) limit of reiθ 7→ f(ρeiθ) as ρ → r from below. Subsequently, by the decomposition
theorem [63], [31, Thm. 10.12], it holds that

f ∈ Hp(Ar1,r2
) if and only if sup

r1<ρ<r2

(∫ 2π

0
|f(ρeiθ|p dθ

)1/p

<∞, (4.3)

and the supremum yields an equivalent norm on Hp(Ar1,r2
) for p ≥ 1. Each f ∈ Hp(Ar1,r2

) has a
nontangential limit a.e. on Tr`

, ` = {1, 2}, which is the Lp(Tr`
) limit of r`e

iθ 7→ f(ρeiθ) as ρ→ r`.
For 1 ≤ p ≤ ∞, we also introduce the so-called Smirnov class E p(Ω). It consists of all functions

f holomorphic in Ω for which there is a sequence of domains ∆n with ∆n ⊂ Ω, whose boundary
∂∆n is a finite union of rectifiable Jordan curves, such that each compact subset of Ω is eventually
contained in ∆n, and having the property that

sup
n∈N

‖f‖Lp(∂∆n) <∞. (4.4)

It follows from the definition and the maximum principle that E∞(Ω) = H∞(Ω).
It is true, although not immediately clear, that E p(Ω) is a Banach space on which the infimum

of (4.4) over all sequences ∆n as above defines a norm; in fact, there is a fixed sequence of this type
such that (4.4) already yields a norm [74], [31, Sec. 10.5]. When the boundary ∂Ω of Ω consists of
finitely many rectifiable Jordan curves, each f ∈ E p(Ω) has nontangential limits a.e. on ∂Ω with
respect to arclength and the boundary function thus defined lies in Lp(∂Ω); this boundary function
characterizes f completely in that it cannot vanish on a set of positive arclength unless f ≡ 0,
and its Lp(∂Ω)-norm is a norm on Ep(Ω) thereby identifying the latter with a closed subspace of
Lp(∂Ω). Moreover, f can be recovered from its boundary function by a Cauchy integral [73, 72],
[31, Sec. 10.5]. It is not difficult to see that these properties continue to hold if some components

10



of ∂Ω are rectifiable Jordan arcs rather than curves: the only difference is that nontangential limits
have to be taken from each side of the arcs, see [20, App. A1] for such generalizations with Hardy
spaces rather than Smirnov classes.

On finitely connected domains bounded by analytic Jordan curves, E p turns out to be identical
with Hp, but it is not so on domains with corners like D \ γ (see [73, 72, 74] and [31, Sec. 10.5]).
More precisely, one has the following criterion of membership to E p(Ω) when 1 ≤ p <∞:

CS Let Ψ map Ω conformally onto a domain Ω1 bounded by analytic Jordan curves, and f be
holomorphic in Ω. Then, f ∈ Ep(Ω) iff |f ◦ Ψ−1|p|(Ψ−1)′| has a harmonic majorant in Ω1.

Introducing the complex derivatives:

∂u/∂z =
1

2
(∂u/∂x− i∂u/∂y), ∂u/∂z̄ =

1

2
(∂u/∂x + i∂u/∂y), (4.5)

it is easily checked that f = ∂u/∂z is holomorphic when u is harmonic, and the property that
f ∈ Ep(Ω) becomes a uniform summability condition for ‖∇u‖p on at least one system of curves
tending to the boundary.

Theorem 4.1 Let D and γ satisfy assumptions H1–H4, and p satisfy 1 < p < 2. Assume that
Φ ∈ Lp(Γ) and φ± ∈ Lp(γ) are real-valued functions meeting

∫

Γ
Φ |dw| = 0 and

∫

γ
φ+|ds| =

∫

γ
φ−|ds|. (4.6)

Then, up to an additive constant, there is a unique harmonic function u in D \ γ such that:

(i) ∂u/∂z ∈ E1(D \ γ),

(ii) the function z 7→ ∇u(z) · nΓ(ζ) converges nontangentially to Φ(ζ) at almost every ζ ∈ Γ and
the function z 7→ ∇u(z) · n±

γ (ξ) converges nontangentially to φ±(ξ) at almost every ξ ∈ γ.

It holds in fact that ∂u/∂z ∈ Ep(D \ γ). Moreover, u is the real part of a function f holomorphic
in D \ γ that extends continuously to Γ and to γ from both sides. The boundary maps f |Γ on Γ and
f± on γ are absolutely continuous with derivative in Lp(Γ) and Lp(γ) respectively, and the map

(Φ, φ+, φ−) 7→

(
df|Γ
|dw|

,
df+

|dw|
,
df−

|dw|

)

is continuous from Lp(Γ) × Lp(γ) × Lp(γ) into itself.

Before we proceed with the proof, a couple of remarks are perhaps in order:

• We stated the theorem in slightly greater generality than needed to handle (2.1) since the
latter only deals with φ+ = φ− = 0. This restriction, however, would have been artificial, and
the present version is for instance useful to handle via fixed-point methods other boundary
conditions like ∂u±/∂n± = a(u∓ − u±). There, a positive constant a would express that the
crack is not perfectly insulating. We do not pursue this case below.

• Theorem 4.1 would hold for several piecewise C 1,α cracks and holes with obvious modifica-
tions. The proof is essentially the same, but the case of a single crack allows us to map
conformally D \ γ onto an annulus whose circular symmetry makes for an easy connection
with classical Fourier analysis.
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• In standard treatments on Lipschitz domains [44, 45], an important role is played by nontan-
gential estimates of the form

‖Ma ∇u‖Lp(Γ) ≤ c ‖Φ‖Lp(Γ), ‖Ma ∇u
±‖Lp(γ) ≤ c ‖φ±‖Lp(γ)

where the constant c depends only on p and the geometry. In our case, such estimates are
not sufficient to control ∇u at the cusps nor at the endpoints of γ, and we replaced them by
the belonging to some Smirnov class.

• By Hölder’s inequality, the fact that f has Lp derivative on Γ, and on γ from above and
below, implies that f|Γ and f± are Hölder-continuous of exponent 1 − 1/p. This, however,
does not imply that f satisfies a Hölder condition on D \γ. With a bit of extra-work, one can
show that, if ε > 0 is so small that max{σj , |κk|} < 1/(1 + ε), then f is Hölder-continuous of
exponent αε = ε(p − 1)/2p(1 + ε) with respect to the Riemannian metric R induced by |dz|
on D \ γ (which is equivalent to the Euclidean one away from cusps and endpoints of γ).

It will be convenient to formally define the closure of the doubly connected domain D \ γ in a way
that distinguishes between the positive and negative “sides” of γ. For this, we attach to every
ζ ∈ γ \ {γ0, γ1} a real number r(ζ) > 0 such that, if B(ζ, r(ζ)) denotes the open disk centered
at ζ of radius r(ζ), then B(ζ, r(ζ)) \ γ consists of two connected components B+

ζ and B−
ζ lying

respectively on the positive and negative side of γ with respect to the orientation. Subsequently
we define:

D \ γ
± ∆

=
(
D\

◦
γ
)
∪

◦
γ

+
∪

◦
γ
−
, (4.7)

where
◦
γ

+
and

◦
γ
−

are disjoint copies of
◦
γ= γ \ {γ0, γ1}, and where a neighborhood of ζ ∈

◦
γ

+
(resp.

◦
γ
−
) in D \ γ

±
contains a Euclidean neighborhood of ζ in B+

ζ (resp. B−
ζ ). For convenience, if

ζ ∈ γ \ {γ0, γ1}, we sometimes denote by ζ± the image of ζ in
◦
γ
±
. It is easily seen that D \ γ

±
is

just the completion of D \ γ under the metric R.
The technical facts from conformal mapping that we need are gathered in the next proposition.

Proposition 4.2 Let D and γ satisfy assumptions H1–H4. Then, there exists a conformal map

Ψ : D \ γ → A,

where A is an annulus bounded by the unit circle T and some circle TR of radius R > 1, having
the following properties:

(i) Ψ extends to a homeomorphism D \ γ
±

→ A that maps Γ onto TR and
◦
γ

+
∪

◦
γ
−

∪{γ0, γ1}
onto T (cf. definition (4.7)).

(ii) The derivative (Ψ−1)′ of Ψ−1 is such that

z −→

∏N−1
j=0 (z − Ψ(Wj))

σj
∏M−1

k=0 (z − Ψ+(Vk))
κk(z − Ψ−(Vk))

−κk

(z − Ψ(γ0))(z − Ψ(γ1))

(
Ψ−1

)′
(z)

extends continuously to A → C \ {0}.
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Proof: Let Ψ1 map conformally D onto the unit disk D. Since Γ is a Jordan curve, Ψ1 extends to
a topological homeomorphism D → D by Carathéodory’s theorem [61, Thm. 4.4.13]. Because Γ is
piecewise-C1,α, the corners Wj are Dini-smooth, and their opening angles (π minus oriented angle)
are strictly positive since there is no outward-pointing cusp. Hence it follows from [60, Thm. 3.9]
that

z −→
(
Ψ−1

1

)′
(z)

N−1∏

j=0

(z − Ψ1(Wj))
σj extends continuously D → C \ {0}. (4.8)

Next we put γ ′ = Ψ1(γ) which is a piecewise-C1,α closed Jordan arc with endpoints γ ′0 = Ψ1(γ0),
γ′1 = Ψ1(γ1), and vertices V ′

k = Ψ1(Vk) for 0 ≤ k < M . Let Ψ2 map conformally C \ γ ′ onto C \ D

with Ψ2(∞) = ∞. Note that Ψ−1
2 extends continuously to T by the local connectedness of γ ′ ([60,

Thm. 2.1]). From Caratheodory’s prime ends theorem [60, Thm. 2.15] there are unique preimages
Ψ2(γ

′
0) and Ψ2(γ

′
1) on T of γ′0 and γ′1, whereas each of the two closed arcs on T with endpoints

Ψ2(γ
′
0) and Ψ2(γ

′
1) is mapped homeomorphically onto γ ′ by Ψ−1

2 . In particular, each ζ ∈ γ ′\{γ′0, γ
′
1}

has two preimages Ψ±
2 (ζ) on T (so that γ is covered twice). Therefore Ψ−1

2 extends to a continuous

bijective map C \ D → C \ γ ′
±

(compare definition (4.7)) which must be a homeomorphism by the
compactness of C \ D on the Riemann sphere.

Moreover, since C\γ ′ is a simply connected domain having (flat) piecewise-C 1,α boundary with
two Dini-smooth inward-pointing cusps at γ ′0, γ

′
1 and 2M Dini-smooth corners of aperture π ± κk

at (V ′
k)±, similar arguments to those we gave concerning the boundary behavior of Ψ1 will apply to

Ψ2 as well; the only difference is that, in order to formally use [60, Thm. 3.9], one must deal with
a conformal map from D (rather than C \ D) onto a subdomain of C (rather than C). To remedy
this, we first change C \ D into D by setting z = 1/s, and we also change C \ γ ′ into a subdomain
of C by performing a Möbius transformation that maps some smooth point of γ ′ to infinity. These
minor modifications are easily unwound to yield that

z −→

(
Ψ−1

2

)′
(z)
∏M−1

k=0

(
z − Ψ+

2 (V ′
k)
)κk
(
z − Ψ−

2 (V ′
k)
)−κk

(z − Ψ2(γ′0))(z − Ψ2(γ′1))
extends continuously to C\D → C\{0}.

(4.9)
Now, Ψ3 = Ψ2 ◦ Ψ1 conformally maps D \ γ onto an annular region A′ whose outer boundary
is the analytic Jordan curve C = Ψ2(T) and whose inner boundary is T. Since Ψ1 induces a

homeomorphism D → D that maps γ onto γ ′ and Ψ2 a homeomorphism C \ γ ′
±
→ C\D that maps

◦

γ′
+

∪
◦

γ′
−

∪ {γ′0, γ
′
1} onto T, it follows that Ψ3 extends to a homeomorphism D \ γ

±
→ A′ that

maps Γ onto C and
◦
γ

+
∪

◦
γ
−
∪{γ0, γ1} onto T. Finally, let Ψ4 map conformally A′ onto an annulus

A = {z; 1 < z < R}; the existence of such a map is well-known [65, Thm.VIII.6.1]. We claim
that Ψ4 extends to a homeomorphism A′ → A and that the derivative Ψ′

4 extends continuously
to A′ → C \ {0}. The fact that Ψ4 extends continuously and injectively to A′ → A can be
established as in the case of a conformal map from a simply connected domain with accessible
boundary points onto D; in fact, granted that each point of ∂A′ is accessible and that every
bounded analytic function on A′ has nontangential limits at almost every boundary point [31,
Thm. 10.3 and 10.12], the proof of [64, Thm. 14.18] applies almost mutatis mutandis. This
extension is necessarily a homeomorphism A′ → A by the compactness of A′. We may assume
up to an inversion z → R/z that Ψ4 maps T onto itself and C onto TR. Then, Ψ4 extends
holomorphically and injectively across T according to the reflection rule Ψ4(z) = 1/Ψ4(1/z̄), so
that Ψ′

4 extends continuously to T → C \ {0}. Similarly Ψ5 = Ψ4 ◦Ψ2|
D\γ′

extends holomorphically

and injectively across T via Ψ5(z) = R2/Ψ5(1/z̄), and by the conformal character of Ψ2 we deduce
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that Ψ′
4(z) = Ψ′

5(Ψ
−1
2 (z))/Ψ′

2(Ψ
−1
2 (z)) extends continuously to C → C\{0}. This proves the claim

Since Ψ1 is smooth (even holomorphic) on γ with nonvanishing derivative and similarly for Ψ2

on T, we get from (4.8), (4.9), the previous claim, and the chain rule, that (i) and (ii) hold.

We are now ready for the proof of Theorem 4.1, in which we shall have a first opportunity to
deal with Hardy spaces and Smirnov classes.

Proof of Theorem 4.1: We first show that a harmonic function u satisfying (i) and (ii)
is unique up to an additive constant. Let Ψ be as in Proposition 4.2, and observe by (ii) of
the latter that Ψ−1 is conformal up to ∂A \ ∪j,k,l{Ψ(Wj),Ψ(Vk),Ψ(γl)}, where ∂A = TR ∪ T is
the boundary of A. In particular, identifying a complex number with a vector in R2, we have
for ζ ∈ ∂A \ ∪j,k,l{Ψ(Wj),Ψ(Vk),Ψ(γl)} that n∂A(ζ) (which is just ±ζ/|ζ|) is mapped under
multiplication by (Ψ−1)′(ζ) to a vector which is normal to Γ∪γ at Ψ−1(ζ) and points inward D \γ.
In terms of the variables w ∈ Γ and t ∈ γ, this means exactly:

nΓ(w) = −

(
Ψ−1

)′
◦ Ψ(w) Ψ(w)∣∣(Ψ−1)′ ◦ Ψ(w)

∣∣R
, w ∈ Γ \ {W0, . . . ,WN−1},

n±γ (t) =

(
Ψ−1

)′
◦ Ψ±(t) Ψ±(t)∣∣(Ψ−1)′ ◦ Ψ±(t)

∣∣ , t ∈ γ \ {γ0, γ1, V0, . . . , VM−1}.

Thus upon setting Ψ(w) = ζ, Ψ±(t) = ξ±, and Ψ(z) = s for z ∈ D \ γ, we get from (4.5):

∇u(z) · nΓ(w) = −2Re
{
ζ
(
Ψ−1

)′
(ζ) ∂u/∂z ◦ Ψ−1(s)

} ∣∣∣R
(
Ψ−1

)′
(ζ)
∣∣∣
−1
,

∇u(z) · n±γ (t) = 2Re
{
ξ±
(
Ψ−1

)′
(ξ±) ∂u/∂z ◦ Ψ−1(s)

} ∣∣∣
(
Ψ−1

)′
(ξ±)

∣∣∣
−1
.

(4.10)

Next, observe from criterion CS, since ∂u/∂z is holomorphic, that (i) is equivalent to:

hu
∆
=
(
∂u/∂z ◦ Ψ−1

) (
Ψ−1

)′
∈ H1(A). (4.11)

In particular, see e.g. [31, Thms. 10.3, 10.12] or [67, 74], hu has nontangential limit hu(ξ) at
almost every ξ ∈ ∂A. Now, since Ψ−1 is conformal up to ∂A \ ∪j,k,l{Ψ(Wj),Ψ(Vk),Ψ(γl)}, it is
easy to check with the notations of (4.10) that z → w (resp. z → t) within a region C(a,w) (resp.
C±(a, t)) in D \ γ if, and only if, s→ ζ (resp. s→ ξ±) within a region C(a′, ζ) (resp. C(a′, ξ±)) in
A. Therefore, letting T± be the closed arc in T which is mapped homeomorphically by Ψ−1 onto
◦
γ
±
∪ {γ0, γ1}, we get from (ii) and (4.10) that

Φ
(
Ψ−1(ζ)

)
= −2Re {ζhu(ζ)}

∣∣∣R
(
Ψ−1

)′
(ζ)
∣∣∣
−1

for a.e. ζ ∈ TR,

φ+
(
Ψ−1(ξ+)

)
= 2Re {ξ+hu(ξ+)}

∣∣∣
(
Ψ−1

)′
(ξ+)

∣∣∣
−1

for a.e. ξ+ ∈ T+,

φ−
(
Ψ−1(ξ−)

)
= 2Re {ξ−hu(ξ−)}

∣∣∣
(
Ψ−1

)′
(ξ−)

∣∣∣
−1

for a.e. ξ− ∈ T−.

(4.12)

If u, v are harmonic functions in D \ γ satisfying (i) and (ii), and if we set h = hu − hv, then
F (z) = zh(z) lies in H1(A) since h(z) does, and from (4.12) we see that ReF = 0 a.e. on ∂A. By a
classical reflection principle∗, F extends holomorphically to the annulus R−1 < |z| < R2 according

∗The extension issue being a local one, one can restrict oneself to a subdomain {z = reiθ; 1 < r < R, θ1 < θ < θ2}
which is simply connected, and then apply [48, Ch. III, Sec. E] after conformal mapping onto the unit disk, thanks
to the conformal invariance of Hardy spaces.
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to the rule F (z) = −F (R2/z̄) if |z| > R and F (z) = −F (1/z̄) if |z| < 1. This shows a posteriori
that F was bounded in A; therefore its extension is also bounded and purely imaginary on TR2 and
T1/R. Iterating this extension process yields a holomorphic function in C \ {0} which is bounded
and therefore a constant, for zero must be a removable singularity [64, Thm. 10.21] and we can use
Liouville’s theorem [64, Thm 10.23]. Thus h(z) = ζ0/z, where ζ0 is purely imaginary. In another
connection, since by holomorphy ∂Ψ−1/∂z =

(
Ψ−1

)′
and ∂Ψ−1/∂z = 0, we get from (4.11) and the

chain rule that hu = ∂
(
u ◦ Ψ−1

)
/∂z. Hence

∂
(
(u− v) ◦ Ψ−1

)

∂z
=
ζ0
z
, z ∈ A,

from which it follows (recall u− v is real-valued and ζ0 is pure imaginary) that

(u− v) ◦ Ψ−1 + 2ζ0 log |z|

must be an analytic function in A because it vanishes when applying ∂/∂z to it. Consequently the
pure imaginary number ζ0 is zero (since log z has no single-valued branch in A) and so u and v
must differ by a real constant as desired.

Next we prove the existence of u and f claimed in Theorem 4.1. Put




Φ1(ζ) = Φ
(
Ψ−1(ζ)

) ∣∣∣
(
Ψ−1

)′
(ζ)
∣∣∣ , ζ ∈ TR,

Φ1(ξ) = ±φ±
(
Ψ−1(ξ)

) ∣∣∣
(
Ψ−1

)′
(ξ)
∣∣∣ , ξ ∈ T±,

(4.13)

which is well-defined a.e. on ∂A. From (4.13) and the fact that Φ ∈ Lp(Γ), φ± ∈ Lp(γ), we get

∫
∂A |Φ1|

p
∣∣∣
(
Ψ−1

)′∣∣∣
1−p

|dζ| =
∫

TR

∣∣Φ ◦ Ψ−1
∣∣p
∣∣∣
(
Ψ−1

)′∣∣∣ |dζ| +
∫

T+∪T−

∣∣φ± ◦ Ψ−1
∣∣p
∣∣∣
(
Ψ−1

)′∣∣∣ |dξ|
=

∫
Γ |Φ|p |dw| +

∫
γ |φ

+|p |ds| +
∫
γ |φ

−|p |ds| < +∞.

(4.14)
Factoring out

|Φ1(ζ)| =

(
|Φ1(ζ)|∣∣(Ψ−1)′ (ζ)

∣∣(p−1)/p

) (∣∣∣
(
Ψ−1

)′
(ζ)
∣∣∣
(p−1)/p

)
,

we see from (4.14) that the first factor lies in Lp(∂A) and from Proposition 4.2 (ii) that the second
factor lies in Lp(1+ε)/(p−1)(∂A), as soon as ε > 0 is so small that max{σj , |κk|} < 1/(1 + ε). We
can pick such an ε because σj and |κk| are strictly less than 1 and then, by Hölder’s inequality, we
obtain

‖Φ1‖Lβ(∂A) ≤ c0

(∫

Γ
|Φ|p |dw| +

∫

γ
|φ+|p |ds| +

∫

γ
|φ−|p |ds|

)1/p

, β
∆
=

1 + ε

1 + ε/p
> 1, (4.15)

where c0 = ‖(Ψ−1)′‖
(p−1)/p
L1+ε depends only on p and the geometry. Also, by (4.6) and (4.13),

∫

TR

Φ1(ζ) |dζ| =

∫

Γ
Φ1(Ψ(w))

∣∣Ψ′(w)
∣∣ |dw| =

∫

Γ
Φ(w) |dw| = 0 (4.16)

and likewise ∫

T

Φ1(ξ) |dξ| =

∫

γ
φ+(s) |ds| −

∫

γ
φ−(s) |ds| = 0.

Hence by a well-known existence result for the Neumann problem on smooth domains (see e.g.
[4]or [71, Chap. XVII], [33], [45, cor 2.2.14] for a more general version on C 1-domains), there is a
harmonic function u1 in A such that:
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a) Ma ∇u1 lies in Lβ(∂A) for some (and then every) a > 0,

b) z 7→ ∇u1(z).nTR
(ζ) converges nontangentially to Φ1(ζ) at almost every ζ ∈ TR,

c) z 7→ ∇u1(z).nT(ξ) converges nontangentially to Φ1(ξ) at almost every ξ ∈ T.

Actually (cf. the previous references), property a) can be made more precise in that

‖Ma ∇u1‖Lβ(∂A) ≤ c1 ‖Φ1‖Lβ(∂A), (4.17)

where the constant c1 depends only on a and R. As u1 is harmonic, the function

g(z)
∆
= ∂u1/∂z (4.18)

is holomorphic in A, and since 2|g| = ‖∇u1‖ it follows from a), (4.17) and (4.15) by an obvious
majorization that

sup
1<r<R

(∫ 2π

0
|g(reiθ)|β dθ

)1/β

≤ c2

(∫

Γ
|Φ|p |dw| +

∫

γ
|φ+|p |ds| +

∫

γ
|φ−|p |ds|

)1/p

(4.19)

where c2 depends only on p and the geometry. Taking for ∆n a nested sequence of subannuli that
exhausts A in (4.4), we see from (4.19) that g ∈ Eβ(A) = Hβ(A); thus it has nontangential limit
g(ξ) at almost every ξ ∈ ∂A, and moreover [31, Thms. 10.3, 10.12], [67, 74],

lim
r→R

1<r<R

∫ 2π

0
|g(Reiθ) − g(reiθ)|β dθ = lim

r→1

1<r<R

∫ 2π

0
|g(eiθ) − g(reiθ)|β dθ = 0. (4.20)

Let us show that ∫

Υ
g(z) dz = 0 (4.21)

whenever Υ is a smooth Jordan curve winding around T in A. First, this integral is pure imaginary,
because u1 is real so that

0 =

∫

Υ
du1 =

∫

Υ

∂u1

∂z
dz +

∫

Υ

∂u1

∂z̄
dz̄ =

∫

Υ

∂u1

∂z
dz +

∫

Υ

∂u1

∂z
dz = 2Re

{∫

Υ
g(z) dz

}

by (4.18). Second, using (4.18) again, it is straightforward to compute that

Im

{∫

Υ
g(z) dz

}
=

1

2

∫

Υ

∂u1

∂x
dy −

∂u1

∂y
dx = −

∫

Υ
∇u1 · nΥ |dz|. (4.22)

By Cauchy’s theorem, we may deform Υ into Tr for r ∈ (1, R) without changing the value of (4.22).
Thus in view of a), b), and (4.16), we get by dominated convergence when r → R that

Im

{∫

Υ
g(z) dz

}
= − lim

r→R

∫

Tr

∇u1 · nTr |dz| = −

∫

TR

Φ1(z) |dz| = 0.

From (4.21) it follows by elementary path integration that g has an integral in A, i.e. there is an
analytic function G, unique up to an additive constant, such that G′ = g there.

Define
f = 2G ◦ Ψ and u = Ref. (4.23)
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Clearly f is holomorphic in D \ γ and u is harmonic there. Moreover, we get for the derivatives:

f ′ = 2(g ◦ Ψ)Ψ′ and ∂u/∂z = f ′/2. (4.24)

For z = Ψ−1(s) ∈ D \γ and w = Ψ−1(ζ) ∈ Γ \∪j{Wj}, we compute as in (4.10) using (4.23)-(4.24)

∇u(z) · nΓ(w) = −2Re
{
ζ
(
Ψ−1

)′
(ζ) ∂u/∂z ◦ Ψ−1(s)

} ∣∣∣ζ
(
Ψ−1

)′
(ζ)
∣∣∣
−1

= −2Re
{
ζ
(
Ψ−1

)′
(ζ) g(s) Ψ′ ◦ Ψ−1(s)

} ∣∣∣ζ
(
Ψ−1

)′
(ζ)
∣∣∣
−1

= −2Re
{

(ζg(s)/|ζ|)
((

Ψ−1
)′

(ζ)/
(
Ψ−1

)′
(s)
)} ∣∣∣

(
Ψ−1

)′
(ζ)
∣∣∣
−1
.

(4.25)

As 2Re
{
ζg(ζ)|ζ|−1

}
= −Φ1(ζ) a.e. on TR by b) and (4.18), we see from (4.13) and Proposition 4.2

(ii) that the last term in (4.25), when viewed as a function of s, converges nontangentially to Φ(w) at
almost every ζ ∈ TR. But since z → w nontangentially in D \γ if and only if s→ ζ nontangentially
in A, we conclude that ∇u · nΓ(w) converges nontangentially to Φ(w) at a.e. w ∈ Γ. A similar
argument shows that ∇u± ·nγ(ξ) converges nontangentially to φ±(ξ) at almost every ξ ∈ γ, so that
point (ii) of Theorem 4.1 holds true.

Pick θ1 such that g has a nontangential limit both at Reiθ1 and at eiθ1 , and select r0 ∈ (1, R).
Then, upon writing

G(reiθ2) = G(r0e
iθ1) +

∫ r

r0

g(ρeiθ1)eiθ1 dρ+

∫ θ2

θ1

g(reiθ)ireiθ dθ, (4.26)

we deduce from (4.20) that G extends continuously to A and that it is absolutely continuous on
∂A with derivative dG/|dζ| = iζg(ζ)/|ζ|. Hence, in view of (4.23) and Proposition 4.2, f in turn

extends continuously to D \ γ
±
; moreover f|Γ and f± are absolutely continuous with respect to

arclength on Γ \ ∪j{Wj} and
◦
γ \ ∪k {Vk} respectively, where they have derivative:

df|Γ
|dw|

= 2i
Ψ

|Ψ|
(g ◦ Ψ) |Ψ′|,

df±

|dw|
= 2i

Ψ±

|Ψ±|

(
g ◦ Ψ±

)
|
(
Ψ′
)±

| . (4.27)

Using the parametrization θ → Ψ−1(Reiθ) of Γ (which is absolutely continuous by Proposition 4.2
(ii) because σj < 1 for all j), we deduce from (4.27) that

∥∥∥∥
df|Γ
|dw|

∥∥∥∥
p

Lp(Γ)

= 2p

∫

TR

|g(ζ)|p
∣∣∣
(
Ψ−1

)′
(ζ)
∣∣∣
1−p

|dζ| (4.28)

that we now prove is finite. Since 2Re
{
eiθg

(
Reiθ

)}
= −Φ1

(
Reiθ

)
for a.e. θ, equation (4.14) yields

(2/R)p

∫

TR

|Re{ζg(ζ)}|p
∣∣∣
(
Ψ−1

)′
(ζ)
∣∣∣
1−p

|dζ| ≤

∫

Γ
|Φ|p |dw| +

∫

γ
|φ+|p |ds| +

∫

γ
|φ−|p |ds|. (4.29)

As a member of Eβ(A), the function zg(z) is the Cauchy integral of its boundary values [74][31,
Sec. 10.5], hence we can write zg(z) = g1(z) + g2(z) with

g1(z) =
1

2iπ

∫

T

ζg(ζ)

z − ζ
dζ for |z| > 1, g2(z) =

1

2iπ

∫

TR

ζg(ζ)

ζ − z
dζ for |z| < R, (4.30)

where we note that g1 ∈ Hβ(C \ D) (equivalently g1(1/z) ∈ Hβ(D)) and g2 ∈ Hβ(DR) by the
continuity of the Cauchy projection Lβ(Tr) → Hβ(Dr) for 1 < β < ∞ (which is an immediate
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consequence of the M. Riesz theorem, see [35, Thm. 2.3]). Applying Hölder’s inequality in (4.30),
we obtain in view of (4.19) that

‖g1‖L∞(TR) < c3

(∫

Γ
|Φ|p |dw| +

∫

γ
|φ+|p |ds| +

∫

γ
|φ−|p

)1/p

(4.31)

where c3 depends only on p and the geometry. As 1 < p < 2 while −1 ≤ σj , we certainly have

p < 1 − 1/σj whenever σj < 0 (4.32)

so that 1/(Ψ−1)′ ∈ Lp−1(TR) by Proposition 4.2 (ii). Thus by (4.29) and (4.31)

∫

TR

|Re{g2(ζ)}|
p
∣∣∣
(
Ψ−1

)′
(ζ)
∣∣∣
1−p

|dζ| ≤ c4

(∫

Γ
|Φ|p |dw| +

∫

γ
|φ+|p |ds| +

∫

γ
|φ−|p |ds|

)
(4.33)

where c4 depends only on p and the geometry. At this point, recall that a non-negative locally
integrable weight W on TR is said to satisfy the condition Ap of Muckenhoupt if, and only if† :

sup
t∈[0,2π)

sup
0<ε<π

(
1

2Rε

∫ t+ε

t−ε
W p dθ

)1/p (
1

2Rε

∫ t+ε

t−ε
W−q dθ

)1/q

< +∞, 1/p+ 1/q = 1. (4.34)

Moreover, since |(Ψ−1)′| behaves like a power weight on TR by Proposition 4.2 (ii), it follows from
[30, Thm. 2.2] that W = |(Ψ−1)′|1/p−1 has Ap if, and only if (4.32) holds. But it is well-known [42]
(or e.g. [35, Thm. 6.2] for an exposition on the line rather than the circle) that Ap characterizes
the boundedness of the conjugate operator from Lp(TR,W ) into itself. Since g2 ∈ Hβ(DR) its
imaginary part is conjugate to its real part on TR, and therefore g2(ζ) ∈ Lp(TR,W ); adding g1
back, we thereby conclude from (4.31) and (4.28) that

∥∥∥∥
df|Γ
|dw|

∥∥∥∥
p

Lp(Γ)

≤ c5

(∫

Γ
|Φ|p |dw| +

∫

γ
|φ+|p |ds| +

∫

γ
|φ−|p

)
(4.35)

where c5 depends only on p and the geometry. Starting from the relation:

∥∥∥∥
df+

|dw|

∥∥∥∥
p

Lp(γ)

+

∥∥∥∥
df−

|dw|

∥∥∥∥
p

Lp(γ)

= 2p

∫

T

|g(ζ)|p
∣∣∣
(
Ψ−1

)′
(ζ)
∣∣∣
1−p

|dζ|,

a similar argument where g1 and g2 get swaped while (4.32) gets replaced by

−1 < κk < 1 and 1 < p < 2

(this ensures that W has Ap on T hence that g1 ∈ Lp(T,W )) leads us to

∥∥∥∥
df+

|dw|

∥∥∥∥
p

Lp(γ)

+

∥∥∥∥
df−

|dw|

∥∥∥∥
p

Lp(γ)

≤ c6

(∫

Γ
|Φ|p |dw| +

∫

γ
|φ+|p |ds| +

∫

γ
|φ−|p

)
(4.36)

where c6 depends only on p and the geometry. The continuity of (Φ, φ+, φ−) 7→
(

df|Γ
|dw| ,

df+

|dw| ,
df−

|dw|

)

asserted in the theorem now follows from (4.35) and (4.36).

†This definition is not the most commonly used : many articles and textbooks would say that W satisfies Ap if
W 1/p meets (4.34) and accordingly would write f ∈ Lp(A,W ) to mean fpW ∈ L1(A) instead of fpW p ∈ L1(A)
which is our present convention. Our definition of Ap is as in [30] in order to conveniently quote Thm. 2.2 there.
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Finally let us prove that ∂u/∂z ∈ Ep(D \ γ). Define two functions on DR and D by:

ϕΓ(z) =
∏N−1

j=0 (z − Ψ(Wj))
σj(1−1/p), z ∈ DR,

ϕγ(z) =
(
(1 − zΨ(γ0)) (1 − zΨ(γ1))

)1/p−1
M−1∏

k=0

(
1 − zΨ+(Vk)

1 − zΨ−(Vk)

)κk(1−1/p)

, z ∈ D.
(4.37)

Clearly ϕΓ and ϕγ are well-defined and holomorphic since z − Ψ(Wj) 6= 0 has no zero in DR

while neither 1 − zΨ±(Vj) nor 1 − zΨ(γ`) can have a zero in D. Moreover, since 1 < p < 2
while σj > −1 and −1 < κk < 1, it is easy to check that ϕΓ ∈ Hp(DR) and ϕγ ∈ Hp(D) (their
Lp(Tr)-means are uniformly bounded by dominated convergence). In another connection, we saw
through (4.34)-(4.36) that g1, g2 defined in (4.30) are such that g1 ∈ Lp(T,W ), g2 ∈ Lp(TR,W )
with W = |(Ψ−1)′|1/p−1. Taking Proposition 4.2 (ii) into account, and using that 1/ζ = ζ̄ on T,
this may equivalently be rewritten as the following two conditions:

∫

T

|g1(1/ζ)|
p |ϕγ(ζ)|p |dζ| < +∞,

∫

TR

|g2(ζ)|
p |ϕΓ(ζ)|p |dζ| < +∞. (4.38)

Consider the functions

h1(z) = g1(1/z)ϕγ (z), z ∈ D and h2(z) = g2(z)ϕΓ(z), z ∈ DR. (4.39)

Pick some real λ such that 0 < λ < ε/(1 + ε), where ε is as in (4.15). Since λ < 1, we have that

|h1(z)|
λ ≤ (1 + |g1(1/z)|) |ϕγ (z)|λ, z ∈ D, and |h2(z)|

λ ≤ (1 + |g2(z)|) |ϕΓ(z)|λ, z ∈ DR,

hence by Hölder’s inequality we get upon letting 1/β + 1/β ′ = 1:

∫ 2π

0

∣∣∣h1(re
iθ)
∣∣∣
λ
dθ ≤

(∫ 2π

0

(
1 +

∣∣∣g1
(
e−iθ/r

)∣∣∣
)β
dθ

)1/β (∫ 2π

0

∣∣∣ϕγ(reiθ)
∣∣∣
λβ′

dθ

)1/β′

(4.40)

∫ 2π

0

∣∣∣h2(re
iθ)
∣∣∣
λ
dθ ≤

(∫ 2π

0

(
1 +

∣∣∣g2(reiθ)
∣∣∣
)β
dθ

)1/β (∫ 2π

0

∣∣∣ϕΓ(reiθ)
∣∣∣
λβ′

dθ

)1/β′

, (4.41)

where it is understood that 0 ≤ r < 1 in (4.40) and that 0 ≤ r < R in (4.41). The first factor in
the right-hand side of (4.40) and (4.41) is bounded independently of r because g1(1/z) ∈ Hβ(D)
and g2(z) ∈ Hβ(DR). Besides, it is easy to see from (4.37) that the second factor is also bounded,
for |σj|, |κk| do not exceed 1 while

β′λ(1 − 1/p) = λ
1 + ε

ε
< 1.

As (4.40) and (4.41) are majorized independently of r, it holds that h1 ∈ Hλ(D) and h2 ∈ Hλ(DR)
[35, Ch. II, Sec. 1]; but since their boundary functions lie in Lp(T) and Lp(TR) respectively by
(4.38), we deduce that in fact h1 ∈ Hp(D) and h2 ∈ Hp(DR) [35, Ch. II, Cor. 4.3].

Now, according to criterion CS, we shall have that ∂u/∂z ∈ E p(D \ γ) if only

∣∣∂u/∂z ◦ Ψ−1
∣∣p ∣∣(Ψ−1)′

∣∣ has a harmonic majorant in A. (4.42)

From (4.23), it is straightforward to check that

∣∣∂u/∂z ◦ Ψ−1
∣∣p ∣∣(Ψ−1)′

∣∣ = |g|p
∣∣(Ψ−1)′

∣∣1−p
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and therefore, granted Proposition 4.2 (ii) and (4.37), property (4.42) is equivalent to:

z 7→ |zg(z)ϕΓ(z)ϕγ(1/z)|p |z|2−3p has a harmonic majorant in A. (4.43)

The factor |z|2−3p is bounded, so it can safely be ignored. If we write zg(z) = g1(z) + g2(z), where
g1, g2 are as in (4.30), and if we take into account the convexity of x 7→ xp for x ≥ 0 when p > 1,
we are left to show in view of (4.39), that

|h1(1/z)ϕΓ(z)|p + |h2(z)ϕγ(1/z)|p (4.44)

has a harmonic majorant in A. We argue on each summand separately, and distinguish whether
R > |z| ≥ R/2 or R/2 > |z| > 1. For R > |z| ≥ R/2, we know that |h1(1/z)| is bounded since
h1 ∈ Hp(D) while |ϕΓ(z)|p has a harmonic majorant because ϕΓ ∈ Hp(DR); for R/2 > |z| > 1, we
observe that |h1(1/z)|

p has a harmonic majorant because h1(1/z) ∈ Hp(C\D) by conformal invari-
ance of Hardy spaces, while |ϕΓ(z)| remains bounded. Therefore, the first summand in (4.44) has a
harmonic majorant in A. A similar argument, using that h2 ∈ Hp(DR) and ϕγ(1/z) ∈ Hp(C \ D),
shows that the second summand in (4.44) also has a harmonic majorant in A, thereby achieving
the proof of the Theorem 4.1.

In the situation of Theorem 4.1, we say for short that u is a solution to the Neumann problem
with flux Φ on Γ and φ± on γ. This causes no confusion since, by the uniqueness part of the
theorem, u is well-defined no matter the value of p > 1 for which Φ ∈ Lp(Γ) and φ± ∈ Lp(γ). The
next corollary is useful to normalize the geometry of the inverse problem described in Section 2.

Corollary 4.3 Notations being as in Theorem 4.1, let Ψ1 map D conformally onto the unit disk
D and put γ ′ = Ψ1(γ). Then Ψ1 extends continuously to Γ → T, and u ◦ Ψ−1

1 is a solution to the
Neumann problem in D \ γ ′ with flux (Φ ◦ Ψ−1

1 )|(Ψ−1
1 )′| on T and (φ± ◦ Ψ−1

1 )|(Ψ−1
1 )′| on γ′.

Proof: In the proof of Proposition 4.2, we saw that Ψ1 extends continuously Γ → T and we
obtained the representation Ψ = Ψ5 ◦ Ψ1, where Ψ5 conformally maps D \ γ ′ onto A. Now, from
(4.8), it follows as in (4.14)-(4.15) that (Φ ◦Ψ−1

1 )|(Ψ−1
1 )′| ∈ Lβ(T) and (φ± ◦Ψ−1

1 )|(Ψ−1
1 )′| ∈ Lβ(γ′)

where β > 1. Thus, it makes sense to speak of the solution to the Neumann problem on D \ γ ′

associated with these fluxes; call this solution v. In the proof of Theorem 4.1, we can put Ψ1 = id
when Γ = T to obtain that v = u1 ◦ Ψ5, where u1 solves the Neumann problem on A with fluxes
given by (4.13); but from the same proof u = u1 ◦ Ψ = u1 ◦ Ψ5 ◦ Ψ1, thereby proving the corollary.

Theorem 4.1 also yields a Cauchy representation of the solution to the Neumann problem on
D \ γ which is basic to our approach of the inverse problem in Section 7:

Theorem 4.4 Let f be as in Theorem 4.1. Then, we can write

f(z) = H(z) −
1

2iπ

∫

γ

σ(ξ)

z − ξ
dξ, z ∈ D \ γ, (4.45)

where H is holomorphic in D and continuous on D. The boundary map H|Γ is absolutely continuous
with Lp(Γ) derivative. The density σ of the Cauchy integral in (4.45) is equal to f+ − f−, which
is absolutely continuous on γ with Lp(γ) derivative, and it vanishes at the endpoints γ0, γ1.

20



Proof: Fix z ∈ D \ γ and imbed γ into a rectifiable Jordan arc that splits D into two domains D+

and D− in such a way that z lies in one of them, say D+. Since f extends continuously to D, we
can apply the Cauchy integral formula in D+ and Cauchy theorem in D− to obtain

f(z) =
1

2iπ

∫

Γ

f(ξ)

ξ − z
dξ −

1

2iπ

∫

γ

f+(ξ) − f−(ξ)

z − ξ
dξ. (4.46)

The first integral in (4.46) will serve as a definition of H, thereby establishing (4.45). Clearly H is
smooth near γ while the Cauchy integral of σ on γ is smooth near Γ, so the remaining assertions
on the smoothness of H|Γ and σ follow from Theorem 4.1.

Recall that the Wiener algebra W is the space of functions on T whose Fourier series is absolutely
convergent. When D = D so that Γ = T, the absolute continuity of H|T asserted in Theorem 4.4
implies that H ∈ W [41, Ch. 5, Sec. 4] and Φ → H is continuous Lp(Γ) → W. This will warrant
the use of truncation in our numerical treatment of Fourier series; see comments in Section 8.

5 Meromorphic approximation

Let D and γ satisfy hypotheses H1–H4 of the preceding section, and C(Γ) be the space of complex
continuous functions on Γ. We denote by Pn the space of algebraic polynomials of degree at most
n, and by MD

n the set of monic polynomials of degree n having all their roots in D.
For 1 ≤ q ≤ ∞, we introduce a class of meromorphic functions with at most n poles in D by

setting:
Eq

n(D) = {h/qn; h ∈ Eq(D), qn ∈ MD
n }. (5.1)

From elementary division one sees that, alternatively,

Eq
n(D) = {g + pn−1/qn; g ∈ Eq(D), qn ∈ MD

n , pn−1 ∈ Pn−1}. (5.2)

Identifying functions with their nontangential limits, E q
n(D) becomes a subset of Lq(Γ).

We shall consider two types of meromorphic approximation with at most n poles to a function F
defined on Γ: the first is with respect to the L2(Γ)-norm in which case we seek best approximants
out of E2

n(D), and the second is with respect to the L∞(T)-norm in which case we seek best
approximants out of E∞

n (D). Actually, we only deal with functions of the form:

F (z) = G(z) −

∫

γ

dν(ξ)

z − ξ
, G ∈ Eq(D), ν a complex measure on γ, (5.3)

where q = 2 or q = ∞ depending on which type of approximation we are considering. Later, when
dealing with q = ∞ in Section 5.2, we will assume in addition that F (thus also G) is continuous
on Γ. Note in particular that the representation (5.3) holds when F is as in (4.45).

The fact that in each case a best approximant does exist follows easily from the weak compact-
ness of balls in L2(Γ), the weak-* compactness of balls in L∞(Γ), and the next lemma.‡

Lemma 5.1 Let D satisfy hypotheses H1–H2. Then E q
n(D) is weakly closed in Lq(Γ) for 1 < q <

∞, and E∞
n (D) is weak-* closed in L∞(Γ).

‡This argument actually shows that a best approximant from E q
n to F ∈ Lq(Γ) exists for 1 < q ≤ ∞. It fails when

q = 1, because E1
n(D) ⊂ L1(Γ) is closed but not weak-* closed when viewed as a set of measures on Γ. Still a best

approximant exists in this case too, as can be proved by adapting to D the reasoning carried out on D in [23, p. 74].
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Proof: Let Ψ1 map conformally D onto the unit disk D as in the proof of Proposition 4.2, and
put Ξ = Ψ−1

1 . The function Ξ′ cannot vanish on D and therefore it has a well-defined q-th root
for 1 ≤ q < ∞. From criterion CS in Section 4, it follows that h ∈ E q(D) if, and only if,
(h ◦Ξ)(Ξ′)1/q ∈ Hq(D) = Eq(D). Moreover, since g ∈ E∞

n (D) if, and only if, it is meromorphic with
at most n poles in D and bounded outside some compact subset of D, it is elementary to check
that g ∈ E∞

n (D) if, and only if, g ◦ Ξ ∈ E∞
n (D). Consequently, as E q

n(D) = Eq(D) E∞
n (D) by (5.1),

we see upon writing h/qn ∈ Eq
n in the form h times 1/qn that

g ∈ Eq
n(D) if and only if (g ◦ Ξ)(Ξ′)1/q ∈ Eq

n(D), 1 ≤ q ≤ ∞. (5.4)

From [23, lemma 5.1.], the conclusion of the lemma holds when D = D. By (5.4), E q
n(D) is the

preimage of Eq
n(D) under the continuous (indeed: isometric) map g 7→ (g ◦ Ξ)(Ξ′)1/q from Lq(Γ)

onto Lq(T). Hence we conclude that E q
n(D) ⊂ Lq(Γ) is weakly closed for 1 < q <∞. Also, E∞

n (D)
is the preimage of E∞

n (D) under the transpose of the continuous map f 7→ (f ◦ Ψ1)Ψ
′
1 from L1(T)

onto L1(Γ) (this transpose maps L∞(Γ) onto L∞(T)). Therefore E∞
n (D) ⊂ L∞(Γ) is weak-* closed.

In this section, we state some basic properties of best approximants of either type above, and
we point out a common feature to them namely that their denominators, when written in the
form (5.1), satisfy certain non-Hermitian orthogonality relations. From these, information on the
distribution of the poles can be obtained after the work in [17] when γ is a hyperbolic geodesic arc.
Our approach consists in mapping the meromorphic approximation problem onto the unit circle,
where we can quote existing results.

From a computational point of view, the two types of approximation that we consider are
complementary in the following sense. On the one hand, the closed expression (5.22) for the best
L∞ approximant on the unit circle, together with the conformal invariance of such approximants,
make for fast and guaranteed computations. However, these are sensitive to irregular perturbations
of the data: the best approximation projection is not continuous with respect to the L∞-norm,
and only generically continuous with respect to stronger norms like Cα, Besov, or Wiener norms
(all of which take into account the variation of the function) [58, 40]. On the other hand, best
L2 approximants are more robust numerically as they generically depend L2-continuously on the
data [13], but their computation requires a numerical search that can get trapped in local minima
namely points where the map h 7→ ‖F − h‖L2(Γ) has a relative minimum with respect to h ∈ E 2

n.
Such points are also called local best approximants to F from E 2

n, and their possible occurence is
the reason why, besides best approximants, we consider more generally critical points of the L2

criterion, i.e. triples (g, pn−1, qn) ∈ E2(D) × Pn−1 × MD
n in the notation of (5.2) such that the

(Fréchet) derivative of ‖F−g−pn−1/qn‖
2
L2(Γ) with respect to g vanishes together with its (ordinary)

derivatives with respect to the coefficients of pn−1 and qn. A local best approximant is the primary
example of a critical point.

5.1 Meromorphic Approximation in the L
2(Γ) norm

Let us assume first that D = D, the unit disk, so that Γ = T, the unit circle. Since E q(D) = Hq(D),
it does not matter whether we use the Smirnov or the Hardy class and we shall work with the latter
to match the references that we quote. For simplicity, we write H q instead of Hq(D) and we set
and Hq

n to mean Eq
n(D) throughout.

When functions get identified with their nontangential limits on the unit circle, H 2 becomes
the subspace of L2(T) consisting of functions with vanishing Fourier coefficients of strictly negative
index [64, 17.10]. Then, if we put H2,0 to mean the subspace of H2 consisting of functions with

22



vanishing mean, we get the orthogonal decomposition:

L2(T) = H2 ⊕H
2,0

(5.5)

where H
2,0

indicates the complex conjugates of functions in H 2,0 (this follows from Parseval’s

theorem since H
2,0

consists of L2(T)-functions with vanishing Fourier coefficients of non-negative
index). By conformal invariance of Hardy spaces, it is easily checked on considering z 7→ 1/z that

H
2,0

isometrically identifies with those functions in H 2(C\D) that vanish at infinity. In particular,

the Cauchy integral in (5.3) defines a H
2,0

-function since it is bounded in |z| ≥ 1 and zero at
infinity. This remark yields the following fact:

Lemma 5.2 Let F be given by (5.3) where q = 2 and D = D while γ satisfies H3-H4. If F =
F1 − F2 is the orthogonal decomposition of F according to (5.5), then

F1 = G and F2 =

∫

γ

dν(ξ)

z − ξ
. (5.6)

Proof: Obvious from what precedes.

On the unit circle, best meromorphic L2(T)-approximation with at most n poles reduces to
rational approximation. Indeed, if F = F1 + F2 according to (5.5) so that F1 = PH2F and
F2 = P

H
2,0F where PH2 , P

H
2,0 indicate the orthogonal projections, and if we parametrize the

approximant as in (5.2), we get by orthogonality since pn−1/qn ∈ H
2,0

that

‖F − g + pn−1/qn‖
2
L2(T) = ‖F1 − g‖2

L2(T) + ‖F2 − pn−1/qn‖
2
L2(T). (5.7)

From (5.7), it is apparent that g − pn−1/qn is a best approximant to F from E2
n if, and only if,

g = F1 and pn−1/qn is a best rational approximant with at most n poles to F2 in H
2,0

. In fact,
it is clear that g − pn−1/qn is a local best approximant to F from E 2

n if, and only if, g = F1 and

pn−1/qn is a local best rational approximant with at most n poles to F2 in H
2,0

(the notion of local
best rational approximant is defined analogously to that of local best meromorphic approximant).
More generally, it follows easily from (5.7) that g − pn−1/qn is critical for ‖F − g + pn−1/qn‖

2
L2(T)

if, and only if g = F1 and the derivatives of ‖F2 − pn−1/qn‖
2
L2(T) with respect to the coefficients of

pn−1, qn, do vanish; in this case we say that pn−1/qn is a critical point in rational approximation
with at most n poles to F2. Considering that g = PH2F is determined explicitly, we are thus left
with the following rational approximation problem:

Pb2
n−1,n: Given F2 ∈ H

2,0
and some integer n ≥ 0, minimize ‖F2 − pn−1/qn‖L2(T) over pn−1 ∈

Pn−1 and qn ∈ MD
n (note that the rational function pn−1/qn belongs to H

2,0
).

A solution to Pb2
n−1,n has exact degree n (i.e. pn−1 and qn are coprime) unless F2 is rational

of degree less than n; this is actually true of all local minima of ‖F − pn−1/qn‖
2 [13]. A best

approximant needs not be unique [51] although uniqueness is a strongly generic property (i.e.

holding on an open dense subset of H
2,0

[13, 12]), and in any case there may be local minima .
This is why we stress below properties of critical points of exact degree n and not merely of best
approximants, for a local minimum is all one can guarantee in general from a numerical search.
More on the uniqueness issue can be found in [26, 22, 25, 14], and an efficient algorithm to generate
local minima is described in [16, 38].
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When F2 is as in (5.6), the somewhat degenerate case where F2 is rational of degree less than n
happens if, and only if ν is a discrete measure consisting of less than n point masses. Indeed, the
“if” part is clear and conversely, if F2 coincides on T with some rational function Rn−1 having at
most n− 1 poles, then F2 and Rn−1 must agree on C\γ by analytic continuation (here we use that
γ does not disconnect the plane because it is an arc and not a closed curve). As ν is a complex
measure F2 is locally integrable with respect to the area measure m, and since m(γ) = 0 the same
is true of Rn−1; in particular the latter has simple poles. Now, F2 and Rn−1 agree a.e. as locally
integrable functions on C hence they agree as distributions. Because 1/z is a fundamental solution
of the ∂ equation, we conclude from this and the definition of F2 that ∂Rn−1/∂z̄ = ∂F2/∂z̄ = ν,
and since ∂Rn−1/∂z̄ is the sum of at most n− 1 point masses located at the poles of Rn−1, we get
the “only if” part.

On the disk, the non-Hermitian orthogonality relations that we mentioned previously go as
follows.

Theorem 5.3 Let F be given by (5.3) where q = 2 and D = D while γ satisfies H3-H4. Assume
moreover that the support of ν comprises at least n points. If gn is a critical point in best mero-
morphic approximation to F from E 2

n having exactly n poles, and if we write gn = g + pn−1/qn
according to (5.2), then

∫

γ

qn(ξ)

q̃2n(ξ)
ξkdν(ξ) = 0, k ∈ {0, 1, . . . , n− 1}, (5.8)

where q̃n(ξ) = ξn qn(1/ξ̄) is the reciprocal polynomial of qn. This holds in particular if gn is a local
best approximant to F from E2

n.

Proof: From Lemma 5.2 and the discussion after (5.7), we know that gn = g + pn−1/qn is a
critical point in best meromorphic approximation to F from E 2

n having exactly n poles if, and only
if g = G and pn−1/qn is a critical point of degree n in problem Pb2

n−1,n. Granted the Cauchy
representation (5.6) for F2, the orthogonality relations (5.8) now follow from [23, Prop. 10.3.,
Eqn. (136)]; alternatively, the argument given in Section 4 of [26] when γ ⊂ (−1, 1) and ν is
positive also applies here without modification. Finally, as the support of ν contains at least n
points, we saw that F2 cannot be rational of degree less than n and therefore, as mentioned af-
ter Pb2

n−1,n, each local best rational approximant to F2 with at most n poles has exact degree n.

The orthogonality relations (5.8) are nonlinear and difficult to solve in general, but they yield
information on the behavior of the zeros of qn as we shall see in Section 6. To give these relations a
more intrinsic meaning, we need to bring in two classical definitions. The first one is the complex
Green “function” of a simply connected domain. Recall that when D ⊂ C is a simply connected
domain whose complement contains at least two points, the Green function with pole at w ∈ D is
the unique real-valued function z 7→ gD(z, w) which is harmonic in D \ {w}, whose value at z is
O(log |z−w|−1), and which is such that limz→ξ gD(z, w) = 0 for every ξ ∈ ∂D (see e.g. [61, Thms.
4.2.11, 4.4.2 and 4.4.9]). The complex Green function with pole at w, denoted by GD(z, w), is then
the (multi-valued) holomorphic function in D \ {w} whose real part is gD(z, w). When D = D, we
have the explicit formula:

GD(z, w) = log

(
1 − wz

z − w

)
, z, w ∈ D.

The second notion that we must introduce is that of reproducing kernel: if H is a Hilbert space of
functions, defined on a set E, for which pointwise evaluation is continuous, the reproducing kernel
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ξ 7→ KH(ξ, ζ) is, for fixed ζ ∈ E, the unique member of H such that f(ζ) =< f,KH(·, ζ) >H for
all f ∈ H, where < ·, · >H designates the scalar product. In H2, the reproducing kernel is just the
familiar Cauchy kernel (see e.g. [59, Ch.I, Sec. 6]):

KH2(ξ, ζ) = (1 − ξζ)−1, ξ, ζ ∈ D.

Now, for qn ∈ MD
n , let us write

qn(z) =
d∏

j=1

(z − ξj)
mj ,

d∑

j=1

mj = n, (5.9)

where ξ1, . . . , ξd ∈ D denote the zeros of qn with respective multiplicity mj. Subsequently, we define

bn(z)
∆
=
qn(z)

q̃n(z)
=

d∏

j=1

(
z − ξj

1 − zξj

)mj

(5.10)

which is called the (normalized) Blaschke product with zeros ξj of multiplicity mj. Up to a multi-
plicative unimodular constant, bn it is the unique rational function with the afore-mentioned zeros
–and no others– whose modulus on T is identically 1. Note that we can rewrite bn in the form:

bn(z) = exp


−

d∑

j=1

mj GD(z, ξj)


 , (5.11)

where this time the exponential makes the right-hand side single-valued. More generally, on a
domain D with complex Green function GD, the function

Bn(z) = exp


−

d∑

j=1

mj GD(z, ξj)


 (5.12)

is called the (normalized) Blaschke product on D with zeros ξj of multiplicity mj.
With these definitions, (5.8) translates into:

∫

γ
bn(ξ)KH2(ξ, ξj)

k dν(ξ) = 0, 1 ≤ j ≤ d, 1 ≤ k ≤ mj . (5.13)

As we shall see, (5.13) –with bn given by (5.11)– is a conformally invariant version of (5.8).
Let us now come back to best approximation from E 2

n(D) in L2(Γ) and no longer assume that
D = D. This more general case reduces to the previous one by means of the following result.

Proposition 5.4 Let D and γ satisfy hypotheses H1–H4, and Ψ1 map D conformally onto the
unit disk D with Ξ = Ψ−1

1 the inverse map. Then, it holds that

(i) g is a best approximant (resp. a local best approximant, a critical point in best approximation)
from E2

n(D) to F ∈ L2(Γ) if, and only if (g ◦ Ξ)(Ξ′)1/2 is a best approximant (resp. a local
best approximant, a critical point in best approximation) from H 2

n to (F ◦ Ξ)(Ξ′)1/2 ∈ L2(T).

(ii) If F is given by (5.3) where q = 2, then (F ◦ Ξ)(Ξ′)1/2 assumes a similar form on D:

(F ◦ Ξ)(Ξ′)1/2(z) = G1(z) −

∫

γ′

dν1(ξ)

z − ξ
, G1 ∈ H2,

with γ′ = Ψ1(γ) and dν1 = (Ξ′)−1/2d(ν ◦ Ξ).
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Proof: Letting ξ = Ξ(ζ), we get from (4.8) that

∫

Γ
|F (ξ) − g(ξ)|2 |dξ| =

∫

T

∣∣∣(F ◦ Ξ(ζ))
(
Ξ′
)1/2

(ζ) − (g ◦ Ξ(ζ))
(
Ξ′
)1/2

(ζ)
∣∣∣
2
|dζ|

from which (i) follows in view of (5.4).
To establish (ii), define F2 through formula (5.6) and let ν0 = ν ◦Ξ be the complex measure on

γ′ = Ψ1(γ) given by ν0(E) = ν(Ξ(E)) for every Borel subset E ⊂ γ ′. Composing F2 with Ξ and
letting ξ = Ξ(ζ) in the integral, we obtain:

F2 ◦ Ξ(s) =

∫

γ′

dν0(ζ)

Ξ(s) − Ξ(ζ)
, s ∈ D \ γ′.

Put

(Ξ(s) − Ξ(ζ))−1 =
1/Ξ′(ζ)

s− ζ
+H(ζ, s) (5.14)

where H(ζ, s) is holomorphic in D × D, and introduce a measure ν̃0 on γ′ by dν̃0 = dν0/Ξ
′. Then

F2 ◦ Ξ = H1 +H2, with H1(s) =

∫

γ′

H(ζ, s) dν0(ζ), H2(s) =

∫

γ′

dν̃0(ζ)

s− ζ
. (5.15)

Now, by elementary properties of the Cauchy projection, it holds for any f ∈ L2(T) that

P
H

2,0f(s) =
1

2iπ

∫

T

f(ξ)

s− ξ
dξ, |s| > 1.

Hence by Fubini’s theorem and Cauchy’s formula as applied to H2(s) in (5.15):

P
H

2,0

(
(Ξ′)1/2H2

)
(s) =

∫

γ′

dν̃0(ζ)
1

2iπ

∫

T

(Ξ′)1/2 (ξ)

ξ − ζ

dξ

s− ξ
=

∫

γ′

(Ξ′)1/2 (ζ)

s− ζ
dν̃0(ζ), |s| > 1.

By inspection the above formula extends holomorphically to s ∈ C\γ ′, thus letting ν1 be such that
dν1 = (Ξ′)1/2dν̃0 = (Ξ′)−1/2dν0, we get that

(Ξ′)1/2(s)H2(s) = PH2

(
(Ξ′)1/2H2

)
(s) +

∫

γ′

dν1(ζ)

s− ζ
, s ∈ D \ γ′. (5.16)

Next we observe that H1 in (5.15) is holomorphic on D and continuous (in fact even Hölder-
continuous) on D because, in view of (5.14) and (4.8), so is H(s, ζ), uniformly on D × γ ′. Con-
sequently, since (Ξ′)1/2 ∈ H2 as Ξ′ ∈ H1 by the rectifiability of Γ [60, Thm. 6.8], it follows that
(Ξ′)1/2H1 ∈ H2. In another connection, since G ∈ E 2(D) by (5.3), we know from criterion CS that
(Ξ′)1/2G ◦ Ξ ∈ H2. Thus if we let

G1 = (Ξ′)1/2(G ◦ Ξ) − (Ξ′)1/2H1 − PH2

(
(Ξ′)1/2H2

)
,

then G1 ∈ H2 and from (5.3), (5.6), (5.15) and (5.16), we get:

(F ◦ Ξ(s)) (Ξ′)1/2(s) = G1(s) −

∫

γ′

dν1(ζ)

s− ζ
, s ∈ D \ γ′, (5.17)
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which is the announced decomposition.

One consequence of Proposition 5.4 is that the poles of a best (or local best) approximant to
F ∈ L2(Γ) from E2

n(D) are the images under Ξ (counting multiplicities) of the poles of a best (or
local best) approximant to (F ◦ Ξ)(Ξ′)1/2 ∈ L2(T) from H2

n.
We can now state a conformally invariant version of Theorem 5.3.

Theorem 5.5 Let D and γ satisfy hypotheses H1-H4, and F be given by (5.3) where q = 2.
Assume moreover that the support of ν comprises at least n points. If gn is a critical point in
best meromorphic approximation to F from E 2

n(D) having exactly n poles, and if we write gn =
g + pn−1/qn according to (5.2), where qn ∈ MD

n has zeros ζ1, . . . , ζd ∈ D of respective multiplicity
m1, . . . ,md with

∑
j mj = n, then it holds that
∫

γ
Bn(ζ)KE2(D)(ζ, ζj)

k dν(ζ) = 0, 1 ≤ j ≤ d, 1 ≤ k ≤ mj, (5.18)

where Bn is the Blaschke product on D defined in (5.12). This holds in particular if gn is a local
best approximant to F from E2

n.

Proof: Let Ψ1 map D conformally onto the unit disk D with Ξ = Ψ−1
1 the inverse map. Clearly,

the points ξj = Ψ1(ζj) ∈ D with respective multiplicity mj are the poles of (g ◦ Ξ)(Ξ′)1/2 ∈ H2
n.

Therefore, if we define qn, bn through (5.9)-(5.10), we deduce from Proposition 5.4 and Theorem
5.3 that (5.8), thus also (5.13) hold with γ replaced by γ ′ = Ψ1(γ) and dν replaced by dν1 =
(Ξ′)−1/2d(ν ◦ Ξ). Putting ζ = Ψ1(ξ) in this last relation, we obtain (5.18) from (5.11) if we take
into account the identity GD(ξ, ξj) = GD(Ξ(ξ), ζj) [61, 4.4.4] and the fact that

KH2(ξ, ξj) = (Ξ′(ξ))1/2(Ξ′(ξj))
1/2KE2(D)(Ξ(ξ), ζj)

which is immediate from the definition of a reproducing kernel in view of criterion CS and the
Cauchy formula.

5.2 Meromorphic Approximation in the L
∞ norm

As in the preceding section, we first assume that D = D and consequently that Γ = T. When
considering best approximation to F from H∞

n in L∞(T), we shall assume from the start that
F ∈ H∞ + C(T), the space of all functions on T of the form h + ϕ where h ∈ H∞ and ϕ
is continuous; this space is in fact a closed subalgebra of L∞(T) [35, Ch.IX]. The hypothesis that
F ∈ H∞+C(T) leads to a rather explicit description of best approximants and will be no restriction
to us since it follows automatically from (5.3) when q = ∞.

The meromorphic approximation problem with at most n poles, in the uniform norm on the
circle, can be stated as follows:

Pb∞
∞,n: Given F ∈ H∞ + C(T) and some integer n ≥ 0, minimize ‖F − g‖L∞(T) over g ∈ H∞

n .

The solution of problem Pb∞
∞,n is connected to the spectral decomposition of Hankel operators

by the celebrated AAK theory [2, 3], for which the reader may consult the textbooks [57, 59] or
[55, Ch. 7]. To explain the connection, let us define the Hankel operator with symbol F :

AF : H2 → H
2,0

g 7→ P
H

2,0(Fg).
(5.19)
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Since H∞H2 ⊂ H2, the Hankel operator AF only characterizes the symbol F up to the addition of
some H∞-function, and it turns out to be a compact operator when F ∈ H∞ +C(T) (see e.g. [57,
Thm 3.14]). For k = 0, 1, 2, . . ., let us introduce the singular values of AF by the standard formula:

sk(AF ) := inf
{
||AF −A||; A an operator of rank ≤ k from H2 into H

2,0
}
, (5.20)

where || || denotes the operator norm. The singular values are the square roots of the eigenvalues
of the compact self-adjoint operator A∗

FAF , arranged in non-increasing order, where A∗
F denotes

the adjoint. A k-th singular vector is then an eigenvector of A∗
FAF of unit L2(T)-norm associated

to s2k(AF ). The main result of AAK theory asserts that

inf
g∈H∞

n

‖F − g‖∞ = sn(AF ) (5.21)

where the infimum is attained, and that the unique minimizer gn is given by the formula

gn = F −
AFvn

vn
=
PH2(Fvn)

vn
, (5.22)

where vn ∈ H2 is any n-th singular vector of AF ; moreover the error function F − gn, which is
equal to AF vn/vn by (5.22), has constant modulus sn(AF ) a.e. on T. Thus (5.21) tells us about
the value of problem Pb∞

∞,n and (5.22) about its solution, in terms of the spectral decomposition
of the operator A∗

FAF .
Henceforth we rule out the case where F ∈ H∞

n , to the effect that sn(AF ) 6= 0. Note that when
F is given by (5.3), the discussion before Theorem 5.3 makes the requirement F /∈ H∞

n equivalent
to the assumption that ν is not a discrete measure with less than n points of support.

If the singular value sn(AF ) is simple (the generic case), then vn is unique up to multiplication
by a unimodular constant, and it has exactly n zeros in D (counting multiplicities) that are the
poles of gn. More precisely, one can write vn = cbnwn where c ∈ T and bn = qn/q̃n is a Blaschke
product of degree n as defined in (5.10) for some qn ∈ MD

n , while wn ∈ H2 is a so-called outer
function, meaning that log |wn(eiθ)| ∈ L1(T) and that wn can be represented as

wn(z) = exp

{
1

2π

∫ 2π

0

eiθ + z

eiθ − z
log |wn(eiθ)| dθ

}
, z ∈ D ; (5.23)

here, we recall that any Hq function is log-modulus summable on T [35, Ch.II, Thm 4.1.].
When sn(AF ) has multiplicity δ > 1 (δ is finite since A∗

FAF is compact and sn(AF ) 6= 0 by
assumption), things get more complicated: if kn ≤ n is the smallest non-negative integer such that
skn(AF ) = sn(AF ), i.e.

skn(AF ) = skn+1(AF ) = . . . = sn(AF ) = . . . = skn+δ−1(AF ) > skn+δ(AF ),

then a n-th singular vector vn is no longer unique up to a multiplicative constant but they all give
rise to the same gn via (5.22). Each of them will have at least kn zeros in D (counting multiplicities)
which are the poles of gn, plus possibly finitely many extra-zeros that will cancel out with zeros
of PH2(Fvn) in formula (5.22) so as to leave gn unchanged. To be specific, let qkn ∈ MD

kn
be

the monic polynomial of degree kn whose zeros are the poles of gn and put bkn = qkn/q̃kn for the
Blaschke product having the same zeros. Then, for vn an arbitrary n-th singular vector, it holds
that vn = cbknbvnwvn , where c ∈ T and bvn is a Blaschke product carrying the extra-zeros of vn

(that are not poles of gn), while wvn is an outer function. With these notations, it is a consequence
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of AAK theory that vn/bvn = bknwvn is also a n-th singular vector (see [23, Eqn. (79)] and the
discussion thereafter). Thus there always exists a n-th singular vector whose zeros are precisely
the poles of gn, and any such vector will be called minimal. For minimal singular vectors, the
non-Hermitian orthogonality relations that we seek go as follows:

Theorem 5.6 [23, Eqns. (125)-(126)] Let F be given by (5.3) where q = ∞ and D = D while γ
satisfies H3-H4. Assume that the support of ν comprises at least n points. If vn = bknwn is a
minimal n-th singular vector of AF with bkn = qkn/q̃kn for some qkn ∈ MD

kn
while wn an outer

function, then ∫

γ

qkn(ξ)

q̃2kn
(ξ)

ξkwn(ξ)dν(ξ) = 0, k ∈ {0, 1, . . . , kn − 1}. (5.24)

Here one should note the similarity between (5.24) and (5.8).
Let us now consider a general domain D with boundary Γ satisfying H1–H2. Using conformal

mapping, the issue of best approximating F ∈ E∞(D) + C(Γ) from E∞
n (D) easily reduces to a

problem of type Pb∞
∞,n as follows.

Proposition 5.7 Let D and γ satisfy hypotheses H1–H4, and Ψ1 map D conformally onto the
unit disk D with Ξ = Ψ−1

1 the inverse map. Then, it holds that

(i) gn is a best approximant from E∞
n (D) to F ∈ E∞(D) + C(Γ) if, and only if gn ◦ Ξ is a best

approximant from H∞
n to F ◦ Ξ ∈ H∞ + C(T).

(ii) If F is given by (5.3) where q = ∞, then F ◦ Ξ assumes a similar form on D:

F ◦ Ξ(z) = G1(z) −

∫

γ′

dν1(ξ)

z − ξ
, G1 ∈ H∞, (5.25)

with γ′ = Ψ1(γ) and dν1 = (Ξ′)−1d(ν ◦ Ξ).

Proof: Note that indeed F ◦Ξ ∈ H∞+C(T) by the conformal invariance of E∞(D) = H∞(D) and
the continuity of Ξ on T (cf. Proposition 4.2 (i)). Statement (i) is now obvious from (5.4) and the
conformal invariance of the sup-norm. Assertion (ii) in turn follows from (5.15) with G1 = G−H1.

By Proposition 5.7 the poles of a best approximant to F ∈ E∞(D) +C(Γ) from E∞
n (D) are the

images under Ξ (counting multiplicities) of the poles of a best approximant to (F ◦ Ξ) ∈ L∞(T)
from H∞

n . At this point, the question arises whether best meromorphic approximation in L∞(Γ)
can be carried out using an appropriate definition of a Hankel operator on D, without reference to
conformal maps. This is indeed the case as the following construction shows.

On a domain D with boundary Γ satisfying H1–H2, we define the Hankel operator AF with
symbol F ∈ E∞(D) + C(Γ) in analogy with (5.19):

AF : E2(D) → E2,⊥(Γ)
g 7→ PE2,⊥(Γ)(Fg),

(5.26)

where E2,⊥(Γ) denotes the orthogonal complement of E 2(D) in L2(Γ). If we let Ψ1 denote as before
a conformal map from D onto D and Ξ = Ψ−1

1 its inverse, we can define a unitary transformation:

J : L2(Γ) → L2(T)

g 7→ (g ◦ Ξ)(Ξ′)1/2,
(5.27)
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and it follows from criterion CS that J maps E 2(D) onto H2. Using the properties of J , it is
easily checked from (5.19) and (5.26) that

AF = J−1AF◦Ξ J , (5.28)

i.e. the operators AF and AF◦Ξ are unitarily equivalent. Since F ◦ Ξ ∈ H∞ + C(T) , we see
from (5.28) that AF is compact because so is AF◦Ξ, and that its singular values sk(AF ) (i.e. the
eigenvalues of A∗

FAF arranged in non-increasing order) are the singular values as AF◦Ξ; moreover,
the n-th singular vectors of AF (i.e. the normalized eigenvectors of A∗

FAF associated with sn(AF ))
are precisely the functions J −1(vn) where vn is a n-th singular vector of AF◦Ξ. Now, by conformal
invariance, the best approximant to F from E∞

n (D) in L∞(Γ) is gn ◦ Ψ1, where gn is the the best
approximant to F ◦Ξ from H∞

n , and therefore we obtain from what precedes a conformally invariant
version of AAK-theory:

Proposition 5.8 Let D satisfy hypotheses H1–H2 and F ∈ E∞(D)+C(Γ). Then, the unique best
approximant to F from E∞

n (D) in L∞(Γ) is given by the formula

gn = F −
AFVn

Vn
=
PE2(D)(FVn)

Vn
, (5.29)

where Vn ∈ E2(D) is any n-th singular vector of the operator AF defined in (5.26). Moreover, the
error function F − gn has constant modulus sn(AF ) a.e. on Γ, where sn(AF ) is the n-th singular
value of AF .

Proof: This is obvious from (5.21), (5.22), (5.27), (5.28) and what precedes.

Proposition 5.8 is interesting from the constructive viewpoint, because on the one hand algebraic
polynomials are dense in E2(D) since D is a so-called Smirnov domain (this comes from the outer
character of the derivative of the conformal map Ξ : D → D to be checked from (4.8), see [31, Thm.
10.6]), and on the other hand polynomials in z and z are dense in C(Γ) thus also in L2(Γ) by the
Stone-Weierstrass theorem. Therefore, one can in principle recursively compute orthogonal bases
of E2(D) and E2,⊥(Γ) and form the infinite matrix for AF , so as to estimate its singular values and
vectors without recourse to conformal mapping.

As in the case of AF , we say that a n-th singular vector Vn of AF is minimal if its zeros are
exactly the poles of the best approximant gn to F from E∞

n , that is to say if it has no common zeros
with PE2(D)(FVn). When sn(AF ) is simple, a n-th singular vector is unique up to a multiplicative
constant thus it is necessarily minimal, and if sn(AF ) has multiplicity δ > 1 then the existence
of a n-th minimal singular vector for AF follows from the existence of such a vector for AF◦Ξ. In
any case, denoting by ζ1, . . . , ζd the poles of gn and by m1, . . . ,md their respective multiplicities,
any minimal n-th singular vector for AF assumes the form BknWn, where Bkn is the Blaschke
product on D given by the right-hand side of (5.12) and where Wn ∈ E2(D) is such that J (Wn) =
(Wn ◦ Ξ)(Ξ′)1/2 is outer. To fix some terminology, let us recall that a holomorphic function h on
D is called outer if h ◦ Ξ is outer on D as defined in (5.23)§. But from (4.8) it is easy to see that
(Ξ′)−1/2 is outer on D (see e.g. [35, Ch.II, Cor. 4.7]), and it is otherwise clear that the product of
two outer functions is outer, so that Wn is in fact outer on D. We call it the outer factor of Vn.

We can now give a conformally invariant version of the orthogonality relations (5.24):

§This does not depend on the particular choice of the conformal map Ξ : D → D and amounts to say that h has no
zeros and log |h| solves a generalized Dirichlet problem in D, namely it is the integral of its nontangential boundary
values with respect to harmonic measure [65, App. A3].
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Theorem 5.9 Let D and γ satisfy H3-H4, and F be given by (5.3) where q = ∞. Assume that
the support of ν comprises at least n points. If Vn = BknWn is a minimal n-th singular vector
of AF with Bkn a Blaschke product on D given by the right-hand side of (5.12) and Wn its outer
factor, then

∫

γ
Bkn(ξ)KE2(D)(ζ, ζj)

k Wn(ζ) dν(ζ) = 0, 1 ≤ j ≤ d, 1 ≤ k ≤ mj. (5.30)

Proof: If Ξ maps D conformally onto D, and if we let bkn = Bkn ◦ Ξ and wn = (Wn ◦ Ξ)(Ξ′)1/2,
then we know from (5.28) and the discussion thereafter that vn = bknwn is a minimal n-th singular
vector of AF◦Ξ with bkn a Blaschke product and wn and outer function. Granted this, (5.30) follows
from Proposition 5.7 and Theorem 5.6 in exactly the same way as (5.18) follows from Proposition
5.4 and Theorem 5.3.

6 Behavior of the poles

On a plane domain whose complement contains at least two points, the hyperbolic distance is the
maximal conformal Riemannian metric with curvature less than or equal to −1, see [5, Sec. 1.5.].
On the unit disk its differential element is 2|dz|/(1 − |z|2), so the hyperbolic distance is given by

λ(z1, z2) = min
C

∫

C

|dz|

1 − |z|2
, z1, z2 ∈ D, (6.1)

where the minimum is taken over all rectifiable curves C in D from z1 to z2. The geodesic arc
(i.e. the minimizing C in (6.1)) is simply the arc of circle between z1 and z2 which is orthogonal
to T (here a radius is an arc of circle through infinity). Such an arc is the image of a real segment
[a, b] ⊂ (−1, 1) under a Möbius transformation of the form

z → ξ0
z − z0
1 − zz̄0

, ξ0 ∈ T, z0 ∈ D. (6.2)

These are precisely the conformal automorphisms of D so they preserve the hyperbolic distance.
The latter can be explicitly computed [5, 60] so as to yield:

λ(z1, z2) = Arctanh

∣∣∣∣
z1 − z2
1 − z1z2

∣∣∣∣ . (6.3)

If Ψ1 conformally maps D onto D, the differential element of the hyperbolic metric on D is
2|Ψ′

1||dz|/(1 − |Ψ1|
2), and the geodesics are the images under Ψ−1

1 of the geodesics in D.
When the arc γ in (5.3) is a hyperbolic geodesic, rather precise information can be deduced on

the geometry of the poles of a best (or local best) meromorphic approximant to F . To state it, we
first need to introduce some notation as follows.

If C is a Jordan arc with distinct endpoints and c : I → C an injective parametrization defined
on some real interval I, we say that x0, . . . , xk ∈ C are consecutively ordered if c−1(x0), . . . , c

−1(xk)
is a monotonic sequence in I. Clearly this does not depend on the parametrization, and for ϕ a
function defined on S ⊂ C we denote its variation by

V (ϕ, S) = sup

{∑ k

j=1
|ϕ(xj) − ϕ(xj−1)|; k ∈ N, x0, x1, . . . , xk consecutively ordered in S

}

31



which is a non-negative number or +∞. In particular, when C is smooth and tC(x) indicates the
unit tangent at x, we let the total curvature of C be

Θ(C)
∆
= V (arg tC , C) (6.4)

where arg tC is any argument function for tC which is continuous on C.
In this section we consider the special case where γ is a hyperbolic geodesic arc in D. Using

the Radon-Nikodym theorem, we write the complex measure ν appearing in (5.3) in polar form:

dν(t) = eiϕ(t)dµ(t), (6.5)

where µ is a positive Borel measure supported on γ –the so-called total variation of ν– and ϕ is
a real µ-measurable function which is an argument function for dν/dµ on γ. Of course ϕ is by
no means unique since it is defined up to the addition of an arbitrary µ-measurable function with
values in the multiples of 2π; thus when we make an assumption on ϕ, we mean that ϕ can be
chosen so as to meet that assumption. Note that the support of µ is identical to the support of ν,
and it is a compact subset of γ that we denote by S.

Finally, for ζ ∈ D, we put θD(ζ, γ) to designate the hyperbolic angle in which γ is seen at ζ, that
is the angle at ζ between the two hyperbolic geodesics in D that run through ζ and the endpoints
of γ. It is well-defined unless ζ is an endpoint of γ, in which case we set θD(ζ, γ) = π. This
hyperbolic angle is conformally invariant, meaning that θD(ζ, γ) = θΨ(D)(Ψ(ζ),Ψ(γ)) whenever Ψ
is a conformal map on D. Clearly θD(ζ, γ) ≤ π with equality if, and only if ζ ∈ γ.

Proposition 6.1 Let D satisfy hypotheses H1-H2 and γ be a hyperbolic geodesic arc in D. Assume
that ν is a complex measure on γ whose support S contains at least n points, and let (6.5) be the polar
decomposition of ν. With the above notations, if ζ1, . . . , ζd ∈ D satisfy (5.18) with m1+. . .+md = n,
then we have that

d∑

j=1

mj(π − θD(ζj, γ)) ≤ 2V (ϕ, S) + Θ(γ). (6.6)

This holds in particular if the ζj, with respective multiplicity mj, are the poles of a best (or local
best approximant) from E2

n(D) to F as in (5.3) with q = 2.

Proof: When D = D, the result appears in slightly refined form as [17, lem. 6.1]. To carry it over
to more general D, consider a conformal map Ψ1 from D onto D and let Ξ = Ψ−1

1 be the inverse
map. Because Ψ1(γ) is a hyperbolic geodesic arc in D, we may assume up to composing with a
Möbius transformation that Ψ1(γ) is a real segment [a, b] ⊂ (−1, 1). If we set ξj = Ψ1(ζj), we
get as in the proof of Theorem 5.5, that (5.13) holds with γ replaced by [a, b] and dν replaced by
dν1 = (Ξ′)−1/2d(ν ◦ Ξ). Let dν1(s) = eiϕ1(s)dµ1(s), be the polar decomposition of dν1. From the
known result on the disk, we get the inequality:

d∑

j=1

mj(π − θD(ξj , [a, b])) ≤ 2V (ϕ1,Ψ1(S)), (6.7)

where we used the fact that Θ([a, b]) = 0. By conformal invariance of hyperbolic angles the left-hand
side of (6.7) equals that of (6.6), so it remains to prove that

2V (ϕ1,Ψ1(S)) ≤ 2V (ϕ, S) + Θ(γ). (6.8)
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But it is immediate from (6.5) and the definition of ν1 that

dν1(s) =

(
Ξ′(s)

|Ξ′(s)|

)−1/2

eiϕ(Ξ(s))
∣∣Ξ′(s)

∣∣−1/2
d(µ ◦ Ξ),

and therefore we may choose

ϕ1(s) = ϕ(Ξ(s)) −
1

2
arg(Ξ′(s)), s ∈ Ψ1(S), (6.9)

where arg(Ξ′) is a continuous argument function for Ξ′ on [a, b]; such a function exists because Ξ′

is smooth and does not vanish on D. Now, since Ξ(s) yields a smooth parametrization of γ for
s ∈ [a, b], it follows from definition (6.4) that Θ(γ) = V (arg(Ξ′), [a, b]) hence (6.8) follows from
(6.9) and the triangle inequality.

If V (ϕ, S) <∞, the proposition gives a quantitative appraisal of the fact that most of the poles
of best (or local best) approximants from E 2

n(D) to F must cluster to γ as n goes large. Indeed, the
right-hand side of (6.6) is independent of n, whereas π− θD(ζj , γ) is non-negative and may become
small only if ζj approaches γ.

Remark: For the inverse problem considered in Section 7, it is of special interest to make
(6.6) effective in order to check the hypothesized location of γ against the computation of the ζj

as poles of a best (or local best) meromorphic approximant from E 2
n to F given by (5.3). This

requires bounding V (ϕ, S) from above, granted γ and the restriction of F to Γ. In fact, we can
assume up to a conformal mapping that D is a disk of radius R > 1 while γ = [−1, 1], and then the
question is to majorize the variation of the argument of a complex measure ν on [−1, 1], granted its
moments which are just (up to a power of R) the Fourier coefficients of strictly negative index of
the function F (Reiθ). This is an interesting but apparently open issue in general. In the particular
case dealt with in Theorem 7.1, where dν = σ(t)dt with σ a nonzero function which is analytic in
a neighborhood of [−1, 1] except for branchpoints of order 2 at −1 and 1, we can at least obtain
an asymptotic estimate as follows. Put h(t) = (1 − t2)1/2σ(t) whose argument is the same as the
argument ϕ(t) of σ for t ∈ [−1, 1]. Then h is smooth on [−1, 1] and the Jackson polynomials
Q2m−2(h, t) (see e.g. [70, Ch. 5, sec. 1]) can be computed from the moments of σ. They will
converge uniformly to h and their derivatives will likewise converge to those of h, from which it
is easily seen that V (ϕ, [−1, 1]) (where it is understood that each zero of h on (−1, 1) with odd
multiplicity contributes to the variation by π) is subject to the inequality:

V (ϕ, [−1, 1]) ≤ lim sup
m→∞

(
πZo (Q2m−2(h1, .)) +

∫

[−1,1]

∣∣∣∣Im
Q′

2m−2(h1, t)

Q2m−2(h1, t)

∣∣∣∣ dt
)
, (6.10)

where Zo indicates the number of zeros of odd multiplicity on (−1, 1). It is not difficult to check
that the right-hand side of (6.10) is indeed finite, and exceeds the left-hand side by at most 2π in
the generic case where σ has no zero on (−1, 1) and a zero of exact order 1/2 at −1 and 1 (i.e.
kj = 1 in (7.2)).

Corollary 6.2 Let D, γ, and ν be as in Proposition 6.1, and F be as in (5.3) with q = ∞.
If ζ1, . . . , ζmn are the poles of a best approximant to F from E∞

n , each of them repeated with its
multiplicity, and if Wn is the outer factor of a minimal n-th singular vector of the Hankel operator
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AF defined in (5.26), then

d∑

j=1

mj(π − θD(ζj , γ)) ≤ 2V (ϕ, S) + 2V (arg(Wn), S) + Θ(γ). (6.11)

Proof: Note that arg(Wn) is well-defined on D since Wn has no zeros there. Now, in view of
Theorem 5.9, we obtain the corollary from AAK-theory on applying Proposition 6.1, replacing ν
by ν̃ such that dν̃ = Wndν.

Remark: To make (6.11) effective in the context of section 7, we need to bound V (ϕ, S) and
V (arg(Wn), S) from above granted γ and F on Γ. The first majorization was already discussed in
the remark after Proposition 6.1. As to the second, it is much easier because Wn is known on Γ by
the very computation of the best approximant to F from E∞

n (cf. Section 5.2) and then it can be
computed on γ as the Cauchy integral of its boundary values.

Inequality (6.11) substantially differs from (6.6) in that the right-hand side depends on n through
Wn. In particular, it does not imply alone that the poles of the best approximant to F from
E∞

n cluster to γ as n goes large. To see that this is indeed the case, we need to clarify the
asymptotic behavior of Wn. Recall that a family of holomorphic functions on a domain Ω is
normal if it is uniformly bounded on compact subsets of Ω. This is equivalent requiring that
it is relatively compact in the space of holomorphic functions on Ω, endowed with the topology
of uniform convergence on compact sets. When this is the case, the family of derivatives is also
normal.

Proposition 6.3 Assume that D satisfies hypotheses H1-H2 and let γ be a hyperbolic geodesic
arc in D. Consider a complex measure ν on γ with infinite support S, whose polar decomposition is
given by (6.5). Let F be as in (5.3) with q = ∞, and for each positive integer n define Wn to be the
outer factor of some minimal n-th singular vector of the Hankel operator AF . If V (ϕ, S) <∞, then
{Wn}n∈N is a normal family on D, no limit point of which has a zero. In particular, V (arg(Wn), S)
is bounded independently of n.

Proof: If we establish the normality of {Wn} and the fact that no limit function has a zero in D,
the boundedness of V (arg(Wn), S) independently of n will follow from the uniform boundedness of
W ′

n/Wn in L1(γ).
Let Ψ1 map D conformally onto D and Ξ = Ψ−1

1 be the inverse map. Up to further composing
Ψ1 with a Möbius transformation, we may assume that γ ′ = Ψ1(γ) is a real segment. From the
discussion before Theorem (5.9), we know that Wn is the outer factor of a minimal n-th singular
vector of AF if, and only if wn = (Wn ◦ Ξ)(Ξ′)1/2 is the outer factor of a minimal n-th singular
vector of AF◦Ξ. Since Ξ is a topological map and Ξ′ does not vanish on D, it is clear that the family
{Wn} is normal on D if, and only if {wn} is normal on D. Note from Proposition 5.7(ii) that F ◦Ξ
is in turn of the form (5.3) on T, the Cauchy integral now being taken over γ ′. Moreover, in the
polar decomposition dν1(s) = eiϕ1(s)dµ1(s) of the measure ν1 appearing in (5.25), we may choose
ϕ1 = ϕ ◦ Ξ − arg(Ξ′) and then we get by hypothesis and the smoothness of Ξ′ that

V (ϕ1,Ψ1(S)) ≤ V (ϕ, S) + V (arg(Ξ′),Ψ1(S)) <∞.

Altogether, we see it is enough to prove the proposition when D = D and γ is a real segment.
In this case the normality of {wn} follows by essentially the same argument as in the proof of [23,

Thm. 10.1], although there are minor modifications that we now indicate. First, as V (ϕ, S) <∞,
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we can extend ϕ which is a priori defined µ-a.e. on S, into a function of bounded variation defined
on all of γ. Indeed ϕ may first be defined everywhere on S without increasing the variation since
it has limits from the left and from the right at every s ∈ S, and then one can extend ϕ linearly
on every component of γ \ S; the latter extension does not increase the variation either. Next, we
appeal to [17, lem. 3.4] and we find a polynomial T and a δ > 0 such that

| arg(eiϕ(t)T (t))| < π/2 − δ for t ∈ γ, T (t) 6= 0. (6.12)

Now, following the argument in the proof of [23, Thm. 10.1], inequality (6.12) is all we need to
establish an analog to equation (144) of [23], where the functions b and P in that equation are
replaced in our case by T and 0 respectively. Specifically, this analog assumes the form:

∫

γ

∣∣T (t) b2kn
(t)wn(t)

∣∣ dµ(t) ≤ C sn(AF ), (6.13)

where bkn is the Blaschke product of degree kn such that vn = bknwn is a minimal n-th singular
vector of AF (see the discussion before Theorem 5.6) and where C is a constant depending only on
δ, T , and the geometry. In another connection, [23, eqn. (142)] tells us (set p = ∞ thus s = 2 in
that equation) that since vn is a n-th singular vector of AF , we have

sn(AF ) jn(z̄)wn(z̄) =

∫

γ

b2kn
(t)wn(t)

1 − zt
dν(t) z ∈ C \ γ−1, (6.14)

where jn is some Blaschke product of finite degree. Because the support of ν is infinite by hypothesis,
we saw in Section 5.2 that F /∈ H∞

n ; hence sn(AF ) 6= 0, and since in addition jn(z̄) has all its zeros
in D (conjugate to those of jn) we deduce from (6.14) that wn(z̄) extends holomorphically to C\γ−1.
On replacing everywhere b by T , the computation that leads from equation (142) to equation (145)
in [23] (compare (129)-(130) in that reference) takes us from (6.14) to

sn(Af )PH2

(
T (e−iθ) jn(e−iθ)wn(e−iθ)

)
=

∫

γ

T (t)b2kn
(t)wn(t)

1 − eiθt
dν(t). (6.15)

Comparing (6.15) and (6.13) and canceling out sn(AF ), we deduce that

PH2

(
T (e−iθ)jn(e−iθ)wn(e−iθ)

)
,

which is in H2 by construction, extends to a holomorphic function in C \ γ−1 which is locally

uniformly bounded there, independently of n. Besides, since it is the projection on H
2,0

of a
function whose L2(T)-norm is bounded independently of n (recall that |jn| = 1 on T and that wn

has unit L2(T)-norm), we have that

P
H

2,0

(
T (e−iθ)jn(e−iθ)wn(e−iθ)

)

extends to a holomorphic function in C\D which is also locally uniformly bounded independently of

n by the Cauchy formula. Adding up, we see that T (e−iθ)jn(e−iθ)wn(e−iθ) extends holomorphically
in C \ {γ−1 ∪D} to a function which is locally uniformly bounded independently of n. By analytic
continuation this function is nothing but T (1/z)jn(z̄)wn(z̄), and since jn(z̄) has modulus greater
than 1 if |z| > 1 because it is a Blaschke product, we get that T (1/z)wn(z̄) is locally uniformly
bounded on C \ {γ−1 ∪ D}, independently of n. Since it is in fact analytic in C \ γ−1, it must be
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locally uniformly bounded there, independently of n, by the maximum principle. Therefore, on any
Jordan subdomain of C \ γ−1 whose boundary contains no zero of T (1/z), we conclude that wn(z̄)
(which is holomorphic as we already know) is bounded independently of n by the maximum princi-
ple. This proves the normality of {wn(z̄)} thus also of {wn} on C\γ−1, and since ‖wn‖L2(T) = 1 no
limit function of the family {wn} can be the zero function. But as wn has no zero on D, it follows
from a classical theorem of Hurwitz that a limit function of {wn} is either the zero function or does
not vanish on D, and since we ruled out the first possibility the latter necessarily holds.

Propositions 6.1-6.3 and Corollary 6.2 show that when F is as in (5.3) and is not already
meromorphic, the poles of a best (or local best) approximant gn to F from E2

n(D) or E∞
n (D) must

cluster to γ when the latter is a geodesic arc, at least when ν has an argument of bounded variation.
To make this more precise, let us introduce the counting measure of the poles of gn, denoted by µgn ,
which is the discrete probability measure having equal mass at each poles, counting multiplicities.
We also recall that a sequence of compactly supported measures µn converges weak∗ to a measure
µ if

∫
fdµn →

∫
fdµ for every continuous function f with compact support in C. For a geometric

interpretation, observe that µgn converges weak∗ to µ if, and only if the proportion of the poles of
gn contained in an open set U ⊂ C converges to µ(U) as n → ∞ (remember all the poles lie in D
so that no mass can go to infinity).

To state a weak∗ convergence result for µgn , we need to introduce the hyperbolic equilibrium
distribution of a compact subset K ⊂ D. We merely state the basic definitions, and refer the reader
to [65, Ch. II] for a detailed treatment. Given any probability measure µ with support in K, the
Green potential of µ with respect to the domain D is the superharmonic function

pD(µ, z) =

∫
gD(z, ζ)dµ(ζ) ≥ 0, z ∈ D,

and the Green energy of µ is

ID(µ) =

∫
pD(µ, z)dµ(z)

which is a non-negative number or +∞. If K is so thin that no µ has finite Green energy on K, then
we say that it is polar ; polar sets look very bad: for instance they are totally disconnected. If on the
contrary there is a probability measure on K of finite Green energy, then there also exists a unique
probability measure ωD,K of minimal Green energy called the hyperbolic equilibrium distribution of
K. For instance if [a, b] ⊂ (−1, 1) is a real segment, then

dωD,[a,b] =
C dt√

(1 − bt)(b− t)(t− a)(1 − at)
,

where C is some normalizing constant. For the approach to inverse Dirichlet-Neumann problems
considered in the next section, it is an important feature of the equilibrium distribution that it
charges more the corner points and endpoints of K. In this respect, the previous example where
the density is infinite at the endpoints of [a, b] is rather typical. The conformal invariance of the
Green function immediately results in the conformal invariance of the Green equilibrium measure,
that is if Ψ maps D conformally onto D ′ and takes K to K ′, then ωD,K = ωD′,K′ ◦ Ψ.

The quantity C(Γ,K) = 1/ID(ωD,K) is called the capacity of the condenser (Γ,K), and by
convention this capacity is zero when K is polar. We say that K is regular if pD(ωD,K , z) is con-
tinuous on D; all nice compact sets are regular, in particular all whose boundary has no connected
component that reduces to a point.
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In the statement of the theorem below, we use B(z0, r) to denote the open ball centered at z0

of radius r, and we let | · | indicate the linear measure induced by arclength on γ.

Theorem 6.4 Let D satisfy hypotheses H1-H2 and γ be a hyperbolic geodesic arc in D. Assume
that ν is a complex measure on γ whose support S is regular and whose polar decomposition (6.5)
satisfies V (ϕ, S) <∞ and

µ
(
B(x, δ) ∪ S

)
≥ c

∣∣∣B(x, δ) ∩ S
∣∣∣
L

for all x ∈ S and for all δ ∈ (0, 1), (6.16)

where c, L are positive constants. Suppose that F is given by (5.3) where q = 2 (resp. q = ∞). If
for each n ∈ N we let gn be a best or local best approximant to F from E 2

n (resp. a best approximant
to F from E∞

n ), then the sequence µgn of counting measures of the poles of gn converges weak∗ to
the Green equilibrium distribution ωD,γ as n tends to ∞.

Proof: By Propositions 5.4, 5.7, and the conformal invariance of Green equilibrium distributions,
it is enough to prove the result when D = D. Then, it becomes a consequence of Theorem 5.3 and
[17, Thm. 5.1] when q = 2, and of Theorem 5.6, Proposition 6.3 and [17, cor. 6.2] when q = ∞.

7 Crack detection

In this section we return to the inverse Dirichlet-Neumann problem posed in Section 2. When
the crack γ is a geodesic arc, the preceding results may be used to localize its endpoints. Indeed,
if we assume that Φ ∈ Lp(Γ) for some p such that 1 < p < 2, the solution u to (2.1) can be
obtained from Theorem 4.1 on setting φ+ = φ− = 0, and by Theorem 4.4 we have that u = Ref
where f is of the form (5.3) for all q. Since ∂u/∂z ∈ E p(D \ γ) by Theorem 4.1, the nontangential
convergence of ∇u.n±

γ to zero a.e. on γ means that Re{nγ∂u
±/∂z} = 0 a.e. on γ in the sense of

nontangential limits, where we have kept the notation nγ to indicate the complex number whose
real and imaginary parts are the coordinates of the unit normal to γ. Now, if we write f = u+ iv,
the Cauchy Riemann equations (that remain valid a.e. on γ when taking nontangential limits from
each side) imply that ∂u±/∂z = i∂v±/∂z, and since ±tγ = in±γ we get ∇v±.tγ = Re{tγ∂v

±/∂z} = 0
a.e. on γ. Thus v± is constant on γ (remember f± is absolutely continuous). By the reflection

principle, it follows that f± locally extends holomorphical across
◦
γ; hence the density σ in (4.45)

is analytic except for branched singularities at γ0, γ1, and the assumptions of Theorem 6.4 are
satisfied (see the detailed argument in the proof of Theorem 7.1(ii) below) unless σ = 0, that is,
unless γ is a level line of the solution to the Neumann problem in the sane domain D. In the
latter case, the flux which is used cannot identify the crack and should be modified. In the former,
one can look for clusters of the poles of best meromorphic approximants to f in order to locate γ,
as indicated in Section 3. Note that the constant functions v+ and v− must agree, because from
Theorem 4.4 we know that σ = f+ − f− vanishes at γ0 and γ1. Hence σ is in fact real on γ where
it is equal to u+ − u−.

Of course the assumption “γ is a hyperbolic geodesic arc”, which is of the same type as the
assumption “γ is line segment” made in the reciprocity gap method as described in Section 2,
is overly strong. Now, if γ is no longer a geodesic arc, it is natural to ask whether it can be
deformed into such an arc while keeping the endpoints γ0 and γ1 fixed, without changing the value
of (4.45). By Cauchy’s theorem this will be possible if σ extends holomorphically to a sufficiently
large domain, and then one could use what precedes to recover at least γ0 and γ1. Still we note
that this involves strong assumptions on γ: it must be an analytic arc, being a level line of the
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imaginary part of the holomorphic function σ. Conversely, as soon as γ is analytic, σ = f + − f−

extends locally holomorphically across
◦
γ because both f+ and f− do by reflection. The whole

point when γ is analytic is therefore to give conditions under which the domain of analyticity of σ
contains the geodesic arc linking γ0 and γ1 in D. The next section explores that issue.

7.1 Close-to-geodesic analytic cracks

Let us first consider as an example the case where γ is a line segment in D. Denote by Π+ and
Π− the positive and negative half-planes cut-out by the line supporting this segment. Since f is
analytic in Π± ∩D and extends continuously to γ± where it has a constant imaginary part as we
have seen, it can be analytically continued from each side across the interior of γ by the Schwarz
reflection principle. Hence, σ = f+ − f− has an analytic continuation all the way to G if, and only
if the domain of analyticity of f contains the reflection of G across γ. Note that this reflection may
well lie partly outside of D, and therefore additional requirements both on how γ sits in D and on
the regularity of f may be in order. The next result formalizes this idea.

Theorem 7.1 Let D satisfy assumptions H1-H2 and Φ ∈ Lp(Γ) with 1 < p < 2. Let further
P : O → U be a conformal map between simply connected domains in C, where O is bounded and
contains [0, 1]. Suppose that γ := P ([0, 1]) is included in D, with γ0 = P (0) and γ1 = P (1), and
denote by G be the hyperbolic geodesic arc between γ0 and γ1 in D. Assume that G ⊂ U and that
the reflection of P−1(G) across the real axis is included in O. Finally, let us make the hypothesis
that the function f obtained from Theorem 4.1 with φ+ = φ− = 0 extends holomorphically to U \ γ
(this is automatic if U ⊂ D) and that σ = f+ − f− is not the zero function on γ. Then:

(i) The function σ = f+ − f−, initially defined on γ, can be analytically continued over a two-
sheeted Riemann surface lying above an open set V containing the interior of both γ and G
but excluding their endpoints γ0 and γ1. At these two points, the function σ has limit zero.
The contours γ and G are homotopic in V so that, in the complement of any simply connected
domain D containing γ and G, the singular part of f in (4.45) can be rewritten as

1

2iπ

∫

G

σ(ξ)

ξ − z
dξ, z /∈ G. (7.1)

(ii) The holomorphic continuation of σ to G \{γ0, γ1} has an argument of bounded variation, and
the measure µ having density |σ| with respect to arclength on G has support S = G and meets
(6.16).

Proof: The function h = f ◦ P is analytic in O \ [0, 1] and the limits h+ and h− from above and
below on [0, 1] are continuous, with constant imaginary part. Thus, by the reflection principle, h
continues analytically across (0, 1) from above and below, according to the formula h(z) = h(z).
Since applying twice this reflection rule gives back h(z), the latter is naturally defined on a two-
sheeted Riemann surface above O ∩ Os \ {0, 1}, where Os denotes the reflection of O across the
real axis. Of necessity λ = h+ − h− also has an analytic continuation to that Riemann surface,
and applying P we get an analytic continuation of σ to some two-sheeted Riemann surface above
P (O∩Os)\{γ0, γ1}. Moreover, we know from Theorem 4.4 that σ vanishes continuously at γ0 and
γ1. Now, there exists a continuous homotopy from [0, 1] to P −1(G) in O∩Os, since each connected
component of the latter is simply connected (as is the case for the intersection of two bounded
simply connected domains) and since [0, 1] and P −1(G) lie in the same component for they have
the same endpoints. Therefore, on applying P , we see there is a continuous homotopy from γ to G
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in P (O ∩Os). By Cauchy’s theorem, this implies that (7.1) is indeed equal to the Cauchy integral
in (4.45), and achieves the proof of assertion (i).
Next, since σ is a nonzero analytic function with branchpoints at γ0 and γ1 by (i), it has a Puiseux
expansion at γj of the form

σ(z) = (z − γj)
kj/2Lj

(
(z − γj)

1/2
)
, Lj(0) 6= 0, j = 0, 1, (7.2)

where Lj is holomorphic in a neighborhood of 0. From (7.2) it is clear that arg σ(z) has a smooth
limit as z → γj along G (remember that G is smooth), and that σ has only finitely many zeros on
G \ {γ0, γ1}, say, z1, . . . , zm. Each zj contributes either π or 2π to the variation of the argument,
depending whether the order mj of zj is odd or even, and the function

σ(z)∏m
j=1(z − zj)mj

is clearly smooth and non vanishing on G \ {γ0, γ1} so it has a smooth argument there. Finally,
from (7.2) and the analyticity of σ on G \ {γ0, γ1}, it follows easily that the support S of µ, which
is included in G by definition, is in fact equal to it and that (6.16) holds. This proves (ii).

In order to apply Theorem 7.1 to a given analytic crack γ, we need to know that:
(i) the mapping P : [0, 1] → γ which parameterizes γ can be holomorphically continued to a
sufficiently large simply connected domain O, containing the reflection of P −1(G) with respect to
the real axis. In particular, this will be satisfied if γ is parametrized through an entire function,
e.g. a polynomial.
(ii) the function f admits an analytic continuation to P (O) \ γ. This is automatic if P (O) ⊂ D,
but may otherwise be delicate for it requires choosing the flux Φ carefully in connection with the
singularities of Γ and making prior assumptions on the location of γ.

Specific applications of this principle in the case where D = D can be found in [54]. Here,
we rather illustrate the fact that if γ is globally analytic in D (i.e. the image of a real segment
under a conformal map which is onto D) and sufficiently close to a geodesic arc in some sense, then
Theorem 7.1 can be applied.

Theorem 7.2 Let D satisfy H1-H2 and P conformally map a bounded domain Ω containing [0, 1]
onto D. Set γ = P ([0, 1]) and denote by G the hyperbolic geodesic arc in D linking γ0 = P (0) and
γ1 = P (1). For the assumptions of Theorem 7.1 to hold, it is sufficient that one of the following
two conditions be satisfied.

(i) The hyperbolic distance in D between any two consecutive intersection points of G and γ is
less than cD, where cD > 0 depends only on D; a possible value for cD is 0.2856.

(ii) The hyperbolic distance in D from any point of G to γ is less than some constant K, with
K > 0.17328.

Remark: In particular (i) or (ii) is satisfied if the hyperbolic length of γ is less than cD or K.

Proof: The statement being conformally invariant, it is enough to consider the case where D = D.
Let h = P−1 which is conformal from D onto Ω. Since P (Ω) = D, point (ii) above the statement of
the Theorem is obvious, so we need only show that the reflection h(G)s of h(G) across the real axis
is included in Ω if either condition (i) or (ii) holds. We first prove the sufficiency of (i), for which
we may assume that γ ∩G is a finite set, otherwise γ = G by analyticity thus h(G) = [0, 1] = h(G)s.
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For 0 ≤ k ≤ m, denote by ak, the intersection points of γ and G ordered along the oriented arc G,
with a0 = γ0 and am = γ1. Letting Gk be the subarc of G linking ak and ak+1 for 0 ≤ k ≤ m− 1,
we will show that h(Gk)

s ⊂ Ω if λ(ak, ak+1) < 0.2856 and this will prove (i) is sufficient. Fix
k ∈ {0, . . . m − 1} and let ϕ be an automorphism of D, of the form (6.2), such that for some
c ∈ (0, 1) we have:

ϕ(−c) = ak, ϕ(c) = ak+1, and ϕ ([−c, c]) = Gk.

Note from (6.3) that

λ(ak, ak+1) = λ(−c, c) = Arctanh
2c

1 − c2
. (7.3)

by the conformal invariance of the hyperbolic metric.
Now, a sufficient condition for the inclusion h(Gk)

s ⊂ Ω is that the (Euclidean) length l(h(Gk))
of h(Gk) is less than the length of any rectifiable path from h(ak−1) to h(ak) that intersects the
boundary ∂Ω of Ω. Setting H = h ◦ ϕ, this last condition is implied by the following one:

l(H([−c, c])) < dist(H(−c), ∂Ω) + dist(H(c), ∂Ω), (7.4)

where “dist” means Euclidean distance. By Koebe’s distortion Theorem [60, Theorem 1.3] one has

∣∣H′(0)
∣∣ 1 − |z|

(1 + |z|)3
≤
∣∣H′(z)

∣∣ ≤
∣∣H′(0)

∣∣ 1 + |z|

(1 − |z|)3
, z ∈ D, (7.5)

and from [60, Cor. 1.4] we get

1

4

(
1 − |z|2

) ∣∣H′(z)
∣∣ ≤ dist(H(z), ∂Ω) ≤

(
1 − |z|2

) ∣∣H′(z)
∣∣ ; (7.6)

hence

dist(H(−c), ∂Ω) + dist(H(c), ∂Ω) ≥
1

4
(1 − c2)

(∣∣H′(−c)
∣∣ +
∣∣H′(c)

∣∣) . (7.7)

Applying respectively (7.5) for z = ±c and z = τ ∈ (0, c), we get

1

4
(1 − c2)

(∣∣H′(−c)
∣∣ +
∣∣H′(c)

∣∣) ≥ 1

2

∣∣H′(0)
∣∣
(

1 − c

1 + c

)2

(7.8)

and

l(H([−c, c])) =

∫ c

−c

∣∣H′(τ)
∣∣ dτ ≤ 2

∫ c

0

∣∣H′(0)
∣∣ 1 + τ

(1 − τ)3
dτ =

∣∣H′(0)
∣∣ 2c

(1 − c)2
. (7.9)

Thus, in order for(7.4) to hold, it is enough in view of (7.7)-(7.9) that

2c

(1 − c)2
<

1

2

(
1 − c

1 + c

)2

which is equivalent to
(1 − c)4 − 4c(1 + c)2 > 0. (7.10)

The left-hand side of (7.10), when viewed as a polynomial in c, has a unique root c∗ ∈ (0, 1). Thus
(7.10) will hold provided that c < c∗, and by (7.3) this amounts to:

λ(ak, ak+1) < Arctanh
2c∗

1 − (c∗)2
.
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But it is easily checked that c∗ > 0.13697 and subsequently that the above right-hand side is larger
than 0.2856, as desired.

To prove (ii), we appeal to the inequality

|T (z) − T (0)| ≤
∣∣T ′(0)

∣∣ |z|

(1 − |z|)2
, z ∈ D, (7.11)

which is valid for every conformal map T from D into C [60, Thm. 1.3]. Let z1 ∈ G and z0 ∈ γ. If
ϕz0

denotes the Möbius transformation (6.2) with ξ0 = 1, we get on applying (7.11) with T = h◦ϕ−1
z0

and z = ϕz0
(z1) that

|h(z1) − h(z0)| ≤
∣∣h′(z0)

∣∣ (1 − |z0|
2)

|z|

(1 − |z|)2
,

hence from (7.6) with H replaced by h:

|h(z1) − h(z0)| ≤ 4 dist (h(z0), ∂Ω)
|z|

(1 − |z|)2
.

As h(z0) is real, the previous equation implies that h(z1) ∈ Ω as soon as |z|/(1 − |z|)2 < 1/4, that
is, as soon as |z| < x0 where x0 is the unique root in (0, 1) of the equation (1 − x)2 − 4x = 0. But
from (6.3) we know that λ(z1, z0) = Arctanh |z|, so we conclude that h(G)s ⊂ Ω provided that

min
z0∈γ

λ(z1, z0) < Arctanh x0
∆
= K, z1 ∈ G.

Numerical estimation shows that x0 > 0.17157 and then that K > 0.17328, as desired.

The hypothesis that the crack is globally analytically in D is of course quite strong. To obvi-
ate this a little, let us point out the following corollary.

Corollary 7.3 Let the assumptions and notations be as in Theorem 7.2, except that P need not
be onto D. Let O ⊂ D be the image of P , and assume that G ⊂ O. If the hyperbolic distance in O
from any point of G to γ is less than K, then the assumptions of Theorem 7.1 do hold.

Proof: In the proof of Theorem 7.2, we never used that G was a geodesic arc when showing the
sufficiency of (ii).

Theorems 6.4, 7.1, and 7.2 team up in the following and last result:

Theorem 7.4 Suppose the assumptions of Theorem 7.1 are met; in particular this is the case when
D satisfies H1-H2 and either (i) or (ii) of Theorem 7.2 holds, while γ is not a level line of the
solution to the Neumann problem on D with flux Φ. If µ2,n (resp. µ∞,n) is the counting measure
of the poles of best or local best (resp. best) approximants from E 2

n (resp. from E∞
n ) to f in (4.45),

then both µ2,n and µ∞,n converge weak∗ as n→ ∞ to the hyperbolic equilibrium distribution ωD,G,
where G is the hyperbolic geodesic arc linking the endpoints of γ.

Remark: It should be observed that the limit distribution of the poles of both type of approximants
is independent from the particular flux Φ which has been prescribed on Γ.
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7.2 More general cracks

The scope of the mechanism behind Theorem 7.1 broadens significantly if we consider piecewise
analytic cracks, that is, if γ is a concatenation of finitely many arcs each of which is parametrized
by a map P as in the theorem; this time there is no need to assume that γ is connected, i.e. there
may be several cracks. In this case the hyperbolic geodesic arc between the endpoints is no longer
the right object that attracts the poles, and it is to be replaced by a certain system of analytic
arcs whose endpoints comprise the endpoints and the edges of γ. This system of arcs, that we call
S, is the solution to the extremal problem of minimizing C(Γ,S) while keeping σ single-valued in
D \ S¶. Much like in Theorem 7.2, geometric conditions can be given for σ to extend analytically
to S so that the singular part of f in (4.45) can be rewritten as

1

2iπ

∫

S

σ(ξ)

ξ − z
dξ, z /∈ S, (7.12)

and then one can establish an analog of Theorem 7.4 where G gets replaced by S. Such generaliza-
tion would take us too far afield; let us simply mention that a detailed study of the geometry of
the so called symmetric contour S can be found in [69], that the weak∗ convergence of the counting
measure of the poles of best meromorphic approximants to (7.12) toward the Green equilibrium
distribution on S depends on unpublished work [24], and that no analog to the non-asymptotic
relations (6.6), (6.11) is available at present. Some of the numerical experiments in the next sec-
tion illustrate this more general situation. Here again, the equilibrium distribution charges the
endpoints and the edges of γ, so that clusters of poles enable one in principle to locate them (see
figure 6).

Let us also point out that the geometric conditions on γ set forth in Theorem 7.2, that enabled
us to apply Theorem 7.1, can be weakened considerably if one chooses the flux Φ in a more specific
manner. For instance, let us consider the case where γ is the injective image of a real segment by an
entire function P (e.g. a polynomial) which needs not, however extend injectively onto D (as was
the case in Theorem 7.2); by Corollary 4.3, we may assume that D = D. Now, if A is a geodesic
arc in D that does not meet γ and A cuts out D in two domains D1, D2 with, say, γ ⊂ D1, we may
choose Φ = 0 on T ∩ ∂D1 so that f will continue analytically across this arc, allowing for further
deformation of γ within the domain of analyticity of σ denoted by W. There are two sources of
difficulty here: the first is that we cannot ascertain a priori that a given arc A does not meet γ,
and only retrospectively may we check such an assumption. This is common in inverse problems.
The second difficulty is that we may this time encounter critical values of P when trying to deform
γ into G within W. In this case the critical values of P become branch points for σ, and we end
up again deforming γ into a system of arcs S of the type mentioned above.

Finally, the authors are willing to conjecture that endpoints and edges always attract a positive
proportion of the poles, even if γ is not piecewise analytic, provided that it is piecewise smooth.

8 Numerical experiments

In this last section, we produce numerical experiments that illustrate the above theoretical results.
In view of Corollary 4.3 we fix the domain D to be the unit disk, in which we explicitly embed
various cracks γ, see below. The data, i.e. the functional pair (Φ, u) on T, is obtained by choosing
Φ analytically and then numerically computing u at equispaced points on T, using finite elements

¶This, actually, is what the geodesic arc does when σ can be continued analytically over D \ {γ0, γ1}.
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methods from the NAG and the MATLAB libraries. Within this approach, for numerical reasons,
γ gets approximated by a thin surface element. Typically 1000 values of u were estimated, and
they were subsequently splined to order three on T before computing the Fourier coefficients by
means of quadrature formulas.

8.1 Numerical implementation of the AAK algorithm

In practice, the singular value decomposition of the Hankel operator Af can be made constructive
only when it has finite rank, that is when f = H+R where H ∈ H∞ and R is rational (see e.g. [57,
Thm. 3.11]). Thus a preliminary (non-optimal) rational approximation to f on T (usually of high
degree) has to be performed, and the issue of continuity of best approximants with respect to f
arises naturally. It is known [56] that the best approximant from H∞

n to f ∈ C(T) is discontinuous
at every f /∈ H∞

n . Therefore, in that preliminary step, one needs to approximate f with respect
to some stronger norm than the L∞(T)-norm. Such an approximation can generically be obtained
in the Wiener norm, by simply truncating the Fourier series of F which is absolutely convergent
as pointed out at the end of Section 4. Indeed, it is proved in [40] that the operator of best
approximation from H∞

n (mapping f to gn according to (5.22)) is continuous in Wiener norm
provided that the (n + 1)–th singular value of Af is simple. Numerically the assumption of non-
multiplicity cannot be verified, but it is generically true [19].
Of course this truncation technique is justified only if the Fourier coefficients can be computed
accurately, whereas u is only estimated at a discrete set of equispaced points on T due to our use
of finite elements to simulate the experiments. To avoid difficulties here, we chose smooth fluxes
to the effect that u is likewise smooth, and then the error on each Fourier coefficients when using
M interpolation points and cubic splines is of the order of 1/M 2, while the Fourier coefficients
themselves decay polynomially fast. This way the truncation error can be kept small.

To evaluate the degree of approximation, up to which the location of the poles remains mean-
ingful, one can observe the magnitude of the singular values as well as their rate of decrease, namely
the quotient sn/sn+1 of two consecutive singular values. Indeed, it is known [37] that the rate of
decrease for functions like (4.45) is geometric, so when the quotient sn/sn+1 approaches 1 one may
suspect that the numerical precision becomes insufficient and the results no more significant.

8.2 Numerical implementation of the H
2 rational approximation

Here, again, the function f is considered to be a trigonometric polynomial of large degree. As
explained above, computing this representation entails various difficulties. However, there is a
main difference with the previous case since, as follows from [13], H 2 rational approximation is
continuous with respect to the L2 norm. From a practical point of view, we use the hyperion
software described in [38]. Note that the computation in quadruple precision of the Fourier series
of the splines constructed from the data is available in the hyperion software. Here, we increase
the degree of approximation until the criterion reaches the numerical precision of the computer.

8.3 Numerical experiments

1) Crack lying on a diameter with a positive jump of temperature
We choose the crack to be the line segment (−1/2, 1/2), and the flux to be Φ(θ) = sin θ, θ ∈ [0, 2π].
Because the jump of temperature across γ is positive, the poles should lie on γ in this case [18]. The
values of u were collected at 1000 points on T, and the Fourier series of the resulting f was truncated
from degree -70 to 70. The decrease of the singular values is regular up to the degree 10, while

43



s11 ' 10−14. Since the L∞ norm of f is approximatively 1, we see that the ratio of s11 with the norm
of f corresponds to the double precision used for the computations. In Figure 1, poles and zeros of
the AAK approximants of degree 11 and 12 are plotted. In Figure 2, poles of the H 2 approximant
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(a) Poles of the approximant of degree 11
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(b) Poles of the approximant of degree 12

Figure 1: Behavior of the AAK poles for Φ(θ) = sin θ.

of degree 6 is represented. In this case, it is difficult to compute approximants of higher degree,
because at degree 6 the criterion is very small already: ‖f − p/q‖2

L2(T) / ‖f‖
2
L2(T) = 4.561.10−15 .

2) Crack lying on a diameter with a change of sign in the jump of temperature
We now choose the flux Φ(θ) = cos θ + 2 cos 2θ + 2 sin 2θ. Then, the temperature has one change
of sign on the crack. Note that the crack γ as well as the terms cos θ and 2 cos 2θ in the definition
of Φ are invariant under the symmetry with respect to the real axis. Hence, these terms induce
limits u+ and u− for the temperature on γ that are equal and thus induce no jump of temperature.
Consequently, it is equivalent to consider the flux Φs(θ) = 2 sin 2θ. Since it is symmetric with
respect to the origin, we deduce that u+(z) = u−(−z), z ∈ γ, so that the jump of temperature
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Figure 2: The crack and the poles of the H2 approximant of degree 6 for Φ(θ) = sin θ
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(a) Poles of the approximant of degree 9
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(b) Poles of the approximant of degree 10

Figure 3: Behavior of the AAK poles for Φ(θ) = cos θ + 2 cos 2θ + 2 sin 2θ

σ is an odd function of z on γ, and the integral in (7.1) is an even function of z in Dγ , say
S(z). If gn(z) is the best AAK approximant to S(z), so is gn(−z). By uniqueness, gn is an even
function, in particular gn can only have an even number of poles. Hence, g2p+1 = g2p, p ≥ 0, and all
singular values have multiplicity 2. Of course, numerically, the singular values do not repeat exactly
from odd degree to even degree, but the poles in odd degrees do not bring any new information
with respect to poles in even degrees. This can be verified on Figure 3, where one sees that the
approximant of degree 9 has a pole near T that almost coincide with a zero, suggesting that they
should cancel each other. In degree 10, such phenomenon does not occur. Finally, note that s10

has a magnitude of 10−14 while the L∞ norm of f equals approximatively 3.36.
3) Crack not lying on a diameter
We assume that the flux is given by Φ(θ) = sin θ and that the crack γ is a line segment joining the
two endpoints γ0 = (−1/5, 1/5) and γ1 = (4/5, 1/5). Then, with a truncation of the Fourier series
between the degrees -150 and 150, the first thirteen singular values decrease geometrically. The
poles (and zeros) of the AAK approximant of degree 12 are shown in Figure 4. As foreseen by the
theoretical results, they indeed approach quite well the geodesic joining γ0 and γ1. The magnitude
of s12 is about 10−14. The results for L2 approximants are quite good as well, see the poles of
the approximant of degree 6 in Figure 5. The corresponding criterion ‖f − p/q‖2

L2(T) / ‖f‖
2
L2(T) is

already very small, equal to 3.51.10−13 .
4) Piecewise rectilinear cracks
Finally we take up two examples of piecewise rectilinear cracks, using the same flux as in Figure 3.
The results of [24] mentioned (but not proved) in Section 7.2 predict that the counting measure of
the poles should converge to the Green equilibrium distribution of the compact subset of minimal
Green capacity outside of which the function in (7.1) is holomorphic and single-valued. In the
present case, this set coincides with the continuum of minimum Green capacity connecting the
endpoints of γ. Figure 6 illustrates this fact.
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Figure 4: Poles of the AAK approximant of degree 12, with 150 Fourier coefficients
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Figure 5: Poles of the L2 approximant of degree 6
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(a) 3 branch points (AAK with 10 poles)
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(b) 4 branch points (AAK with 14 poles)

Figure 6: Numerical experiments with 3 and 4 branch points
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