
Reduction of the Gibbs phenomenon for smooth functions with jumps by
the ε-algorithm1

Bernhard Beckermann, Ana C. Matos, Franck Wielonsky

Laboratoire Painlevé UMR 8524
UST Lille, F-59655 Villeneuve d’Ascq CEDEX, France
e-mail: {bbecker,matos,wielonsk}@math.univ-lille1.fr

September 4, 2007

Dedicated to our friend Claude Brezinski on the occasion of his retirement

Abstract

Recently, Brezinski has proposed to use Wynn’s ε-algorithm in order to reduce the Gibbs
phenomenon for partial Fourier sums of smooth functions with jumps, by displaying very
convincing numerical experiments. In the present paper we derive analytic estimates for
the error corresponding to a particular class of hypergeometric functions, and obtain the
rate of column convergence for such functions, possibly perturbed by another sufficiently
differentiable function. We also analyze the connection to Padé-Fourier and Padé-Chebyshev
approximants, including those recently studied by Kaber and Maday.
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1 Introduction

Spectral methods for partial differential equations consist in approximating the exact solution by
considering a discrete version of the original problem and expressing its solution as a truncated
Fourier series or as an expansion in a basis of orthogonal polynomials. These methods have been
mainly developped in the last decades with the advent of the fast Fourier transform and the use
of tensorization for multi-dimensional problems, see [BM97, GO] for more details. When the
solution is smooth, the convergence of the approximate solution is usually geometric (also termed
exponential or spectral in the literature), meaning that the error decays as e−αN , α > 0, N the
number of coefficients in the expansion. In contrast, when the solution exhibits discontinuities,
as is the case e.g. in physical problems with shocks or in image compression, the convergence
is poor, due to the occurrence of the Gibbs phenomenon. Then, one needs to filter the data,
that is to design more accurate solutions than the rough Fourier expansion. At this stage,
if the locations and amplitudes of the jumps are unknown, one first has to compute them.
Different techniques have recently been proposed, such as nonlinear optimization procedures
[E93, E95, KHS, K04] originally based on Prony’s method for exponential approximation, or
such as exploiting classical formulas for the jumps as limits of the conjugate or derivative of the
Fourier series, and accelerating the convergence by using suitable “concentration” kernels [GT99,
GT00, K98]. Assuming knowledge of the jumps, Gottlieb and Shu [GS97] have developped a
method based on projecting the Fourier expansion onto a space spanned by the Gegenbauer
polynomials. These are associated with the weight (1 − x2)λ, where the exponent λ grows
linearly like N , the number of Fourier coefficients, which has the effect of restoring geometric
convergence in any subinterval that does not include a discontinuity. Another approach consists

1This work was partly supported by INTAS network NeCCA 03-51-6637
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in substracting off the singularities [E98] which leads to a numerical method of high order for
computing derivatives and integrals of solutions. Theses singularities are assumed to be either
discontinuities of the function (or its derivatives) or branch points such that those of xα, α ∈ R.
The speed of convergence is then governed by the regularity of the remaining part of the original
function.

For smoothing the Gibbs phenomenon, Brezinski [Br02] has recently proposed a quite simple
procedure based on Padé approximation (or equivalently the ε-algorithm which consists in the
better conditioned “value problem”) of the analytic function Gn(f)(z), z = eit, t ∈ [−π, π], the
real part of which is the truncated Fourier series of the unknown solution f . The efficiency
of this technique, called the complex ε-algorithm, is shown in [Br02, Section 4] which presents
many numerical experiments. Note that the acceleration of Fourier series via the ε-algorithm
applied to the partial sums of Gn(f) has been already proposed by P. Wynn [Wy67], without
discussing the link with the Gibbs phenomenon. Wynn gives several examples where classical
linear acceleration procedures for Fourier series like Cesaro means or de la Vallée–Poussin means
have convergence behavior clearly weaker than the one discussed here, see Figure 1 below. Here,
one should also mention [KM05] where the model function f(t) = sign(cos(t)) is discussed, and
interesting acceleration properties are obtained by using linear Padé-Chebyshev approximants,
whose denominators are of fixed degrees, see [KM05, Theorem 4.10].

The aim of this paper is to provide error estimates for Brezinski’s method for some ”model”
functions f , possibly perturbed by a sufficiently smooth function. Actually, these “model”
functions will consist in real parts of hypergeometric functions, see Section 2, and these specific
functions already entails a large set of interesting examples, with jumps possibly in higher order

derivatives, see Table 1. We will show in Theorem 5.1 below that the quantity ε
(n)
2k corresponding

to Pade approximants with fixed denominator degree k allow for n → ∞ to improve convergence
by, roughly, the factor n−2k as long as we stay away from the singualities of f , and by n−2(1−τ)k

if we approach these singularities up to a distance of order n−τ for some τ ∈ [0, 1). Notice that
the error at the singularity itself cannot be zero since, implicitly, we approach a function with
singularities by a C∞ function.

Brezinski’s Padé approach has the advantage of being simple and does not require any a priori
knowledge about the location of singularites. However, there are more sophisticated methods
which allow for better approximation in a neighborhood of the singularities once the location
of these singularities is known, see for instance the numerical experiments reported in [DF01,
Figure 7]. Beside the linear Eckhoff approach [E98] of subtracting the ”singular” part, we would
like to mention in particular the recent method of Driscoll and Fornberg [DF01] of constructing
nonlinear approximants with built-in singularities. These latter authors suggest to consider a
”simple” function S (e.g. S(z) = log(1 − z)) having the same singularities as G(f) (after a
change of variables z = eit) which are supposed to be known. Subsequently they construct a
Hermite-Padé form (p1, p2, p3) of the triple of functions (1, S,G(f)), (which means that pj are
polynomials of prescribed degree such that the form p1 + Sp2 + G(f)p3 has the highest possible
order at zero), and then they solve the equation p1(z) + S(z)p2(z) + G(f)(z)p3(z) = 0 for the
unkown G(f)(z) to obtain an approximation of it. Numerical experiments provided in [DF01]
show that this Hermite-Padé approach allows to obtain a good rate of convergence also in a
neighborhood of the singularities, but no theoretical error estimates have been given so far. We
plan to investigate this question in a future publication.

The paper is organized as follows. In Section 2 we introduce the complex ε-algorithm in more
details and define the functions to which our analysis applies. In Section 3, we exhibit a link
between the Padé-Chebyshev approximants of a Chebyshev series (and more general rational
approximants of Fourier series) and the ordinary Padé approximants of the corresponding Taylor
series. We also relate our analysis to the results of [KM05]. In Section 4 , we study the rate of
convergence of Padé approximants (in a column of the Padé table) to some specific hypergeo-
metric functions, the real parts of which correspond to functions with prescribed discontinuities,
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Figure 1: The modulus of the error of approximation on a logarithmic scale of the Fourier series
of the sew tooth function (2.2). On the left we use the first 7 and on the right the first 17
coefficients of the Fourier series. The error for the partial sums is strongly oscillating, and,
according to the Gibbs phenomenon, remains quite large (about 1/10) even for higher order
Fourier sums. The error for Cesaro means is smoother, but about of the same size, even for
arguments far from 0, the singularity of our function, whereas the de la Vallée-Poussin mean

gives better approximants only far from 0. In contrast, the errors for ε
(0)
6 and ε

(0)
16 are much

smaller, even for arguments closer to the singularity.

possibly occuring in higher order derivatives. In Section 5, we extend the previous estimates
by adding functions with continuous derivatives (up to some order depending on the degree of
approximation) to the previous ones. Finally, in Section 6, we present numerical results.

2 Description of the method

The procedure is as follows, see [Br02]. Let

Sn(f)(t) =
a0

2
+

n∑

j=1

[aj cos(jt) + bj sin(jt)],

be the partial sum Sn(f) of the Fourier series of a function f : [−π, π] 7→ R with jumps, and
add to it i times the conjugate part

S̃n(f)(t) =

n∑

j=1

[aj sin(jt) − bj cos(jt)],

in order to get
Sn(f)(t) + iS̃n(f)(t) = Gn(f)(eit),

with Gn(f) the nth Taylor series of the (formal) series

G(f)(z) =
∞∑

j=0

cj(f)zj , c0(f) =
a0

2
, and for j > 1, cj(f) = aj − ibj .

Then apply the ε-algorithm to the sequence of partial sums (Gn(f)(eit))n for fixed t, and use the

real part of the resulting quantities ε
(n)
2k (t) for approaching f(t) = Re (G(f)(eit). In this paper

we consider functions of the form f = f1 + f2 where f1 has prescribed discontinuities and is
smooth elsewhere while f2 has sufficiently fast decreasing Fourier coefficients. For such functions,
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the partial Fourier series converges slowly and presents the so-called Gibbs phenomenon of
oscillation close to the singularities of f (or f1). The acceleration properties of the ε-algorithm
will essentially depend on f1.

A typical jump function f1 considered in this paper is given by (a multiple of) the 2π periodic
saw tooth function

s(t) = π + t for t ∈ (−π, 0], s(t) = −π + t for t ∈ (0, π], (2.1)

having one jump of absolute value 2π at t = 0 in [−π, π). We have for the saw tooth function
the Fourier expansion

Sn(s)(t) = −2
n∑

j=1

sin(jt)

j
, and thus G(s)(z) = 2i

∞∑

j=1

zj

j
= −2i log(1 − z). (2.2)

The error obtained by approximating s(t) via partial sums and via the ε-algorithm are displayed
in Figure 1.

In the present paper we will consider for G(f1) more general hypergeometric functions of the
form

G(α,β)(z) = 2F1

(
α + 1, 1

α + β + 2

∣∣∣∣ z
)

, where 2F1

(
a, b
c

∣∣∣∣ z
)

=
∞∑

j=0

(a)j (b)j
(c)j j!

zj , (2.3)

α, β > −1, and (a)0 = 1, (a)j = a(a + 1) · · · (a + j − 1) for j > 0, is the usual Pochhammer

symbol. Throughout, we denote by P
(α,β)
k the Jacobi polynomial of degree k, orthogonal with

respect to the measure (1 − x)α(1 + x)βdx, such that

∫ 1

−1
(P

(α,β)
k (x))2(1 − x)α(1 + x)βdx =

2α+β+1Γ(k + α + 1)Γ(k + β + 1)

(2k + α + β + 1)Γ(k + α + β + 1)k!
, (2.4)

see for instance [Chi78, Chapter 5, eqn 2.18]. As seen in Table 1(d)1−(d)4, (e)2, (f), and verified
by elementary computations, such a class of hypergeometric series allows us to include other
functions f1(t) with a particular jump behavior, like sign(cos(t)) (compare with [KM05]), having
two discontinuities, or like | sin( t

2)|, and (1− cos(t)) s(t), respectively, with first (and second) or-
der derivative having a discontinuity at 0. Moreover, combined with Table 1(a), (b), (c), (e)1 , we
may easily construct other examples where the argument is shifted, or where f1 ∈ C`−1([−π, π]),
with its `th derivative having one discontinuity.

Our main tool in deriving error estimates for the complex ε-algorithm will be the connection
to Padé approximation of perturbations of the (shifted) logarithm z 7→ log(1−z) (or more gener-
ally of Stieltjes functions with respect to measures related to the Jacobi orthogonal polynomials)
on the unit circle. Indeed, as already mentioned in [Br02], it is well-known that

ε
(n)
2k (t) = [n + k|k]G(f)(e

it) (2.5)

and hence we will have to estimate the modulus of

f(t) − Re (ε
(n)
2k (t)) = Re

(
G(f)(eit) − [n + k|k]G(f)(e

it)
)
. (2.6)

In particular, for n → ∞ and k fixed, we will have to find a Montessus de Ballore type conver-
gence theorem for perturbed Stieltjes functions. This is given below in Theorem 5.1 where we
show that, roughly, we gain a factor n−2k for t away from jumps, and a slightly weaker rate if
we approach the jump up to a factor n−τ for some τ ∈ (0, 1).

For even f (and hence bj = 0 for all j), Sn(f)(arccos(x)) is the partial Chebyshev series of
x 7→ F (x) := f(arccos(x)). Here, according to the well-known formula Tj(x) = cos(j arccos(x))
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f(t) G(f)(z) Padé approximant/reversed denominator

(a) f̌(t − t0) G(f̌)(e−it0z) [n + k|k]G(f)(z) = [n + k|k]G(f̌)(e
−it0z)

(b) f̌(2t) G(f̌)(z2) [2n + 2k|2k]G(f)(z) = [n + k|k]G(f̌)(z
2)

(c)

p(z) + czn+1 G(f̌)(z)
deg p ≤ n, c ∈ C.

Notice: G(f) = z`G(α,β)

=⇒ G(f̌) = G(α+n+1−`,β)

[n + k|k]G(f)(z)
= p(z) + c zn+1 [k − 1|k]G(f̌)(z)

(d) G(α,β)(z) qn+k−1,k(z) = P
(α+n,β)
k (1 − 2z)

(d)1 s(t), see (2.1)
−2i log(1 − z)

= 2i z G(0,0)(z)
qn+k,k(z) = P

(n,0)
k (1 − 2z)

(d)2
sign(cos(t)) =

(s(t − π
2 ) − s(t + π

2 ))/π
4z
π

G(− 1

2
,0)(−z2) q2n+2k,2k(z) = P

(n− 1

2
,0)

k (1 + 2z2)

(d)3 | sin( t
2 )| 2

π
− 4z

3π
G(− 1

2
,1)(z) qn+k,k(z) = P

(n− 1

2
,1)

k (1 − 2z)

(d)4 | sin(t)| + sin(t) 2
π
− iz − 4z2

3π
G(− 1

2
,1)(z2) q2n+2k,2k(z) = P

(n− 1

2
,1)

k (1 − 2z2)

(e)
(cos(t) − 1)`f̌(t),
aj+` = 2−`∆2`ǎj ,

bj+` = 2−`∆2`b̌j

p(z) + (z−1)2`

2`z` [G(f̌)(z) − G`−1(f̌)(z)]
deg p ≤ ` − 1,

(e)1
(cos(t) − 1)`f̌(t)

G(f̌) = G(α,β)

p + cz`G(α,β+2`)

deg p ≤ ` − 1, c = 2−`(β+1)2`

(α+β+2)2`

qn+2`+k−1,k(z) = P
(α+n,β+2`)
k (1 − 2z)

(e)2 (cos(t) − 1)s(t) − 3
2 iz + iz2

3 G(0,2)(z) qn+k+1,k(z) = P
(n,2)
k (1 − 2z)

Table 1: Some examples for Fourier series f , their associated power series G(f) and explicit
formulas for Padé approximants [n + k|k] or reversed Padé denominators qn+k,k (up to a nor-
malization constant). The quantities c, t0, t1, t2, α, β occurring in the table are real numbers
(α, β > −1), also n, k, ` are nonnegative integers (n ≥ −k for cases (a) and (b)), and p are
suitable polynomials, not necessarily the same for different rows of the table.

for the Chebyshev polynomials, it is not difficult to see that Re (ε
(n)
2k (arccos(x))) is a rational

function in x, the so-called Padé-Chebyshev approximant of type (n + k, k) of g due to Gragg
[BGM96, pp.383-387]. Following the nomenclature of Baker and Graves-Morris [BGM96, Sec-
tion 7.4], there are other approaches to rational approximation of Chebyshev series, and these
latter methods can also be adapted to Fourier series (see Section 3) or to series of general or-
thogonal polynomials (see, e.g., [GRS92]): for the so-called linear Padé-Chebyshev approximant
RLC

m,n = P LC
m,n/QLC

m,n, and the nonlinear Padé-Chebyshev approximant RNC
m,n = P NC

m,n/QNC
m,n, re-

spectively, we look for polynomials P LC
m,n, P NC

m,n of degree ≤ m and QLC
m,n, QNC

m,n of degree ≤ n

such that either the linearized error F QLC
m,n −P LC

m,n or the error F −RNC
m,n itself is orthogonal to

T0, T1, ..., Tm+n. Linear Padé-Chebyshev approximants are easy to compute (a solution of a lin-
ear system of equations with matrix of coefficients being Toeplitz plus Hankel) but require more
coefficients of the Chebyshev series; the acceleration properties of RLC

m,n(x) for the sign function
and n fixed, m → ∞ have been discussed by Kaber and Maday [KM05]. It was observed numer-
ically by Fleischer [Fl73] and proved rigorously by Gonchar, Rakhmanov and Suetin in [GRS92]
for Markov functions that nonlinear Padé-Chebyshev diagonal approximants (m = n → ∞) have
better approximation properties than the linear ones. However, the nonlinear approximants are
in general difficult to compute, which limits their impact in practical applications. We will show
in Theorem 3.1 below that, provided that f is even and the Padé approximant [n + k|k]G(f) of
G(f) has no poles in the closed unit disk |z| ≤ 1, the nonlinear Padé-Chebyshev approximant
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RNC
n+k,k of F = f ◦ arccos is given by

RNC
n+k,k(cos(t)) = Re (ε

(n)
2k (t)) = Re ([n + k|k]G(f)(e

it)). (2.7)

This observation, which to our knowledge is original, may help to understand the convergence

properties of Re (ε
(n)
2k (t)). A formal link between the denominators of both rational approximants

has been given before by Paszkowski [Pa63], without mentioning the necessary hypothesis on
the Padé approximant.

The information given in Table 1 requires additional explanations and proofs. Concerning
Table 1(a), we notice that a translation of the argument t of f is equivalent to a multiplication
of the variable z of G(f) with a constant of modulus one

f̆(t) = f(t − t0) =⇒ Sn(f̆)(t) = Sn(f)(t − t0) =⇒ G(f̆ )(z) = G(f)(e−it0z), (2.8)

since indeed ăj = aj cos(jt0)−bj sin(jt0), b̆j = aj sin(jt0)+bj cos(jt0), and thus cj(f̆) = ăj−ib̆j =
e−ijt0cj(f). In the last column of rows (a),(b), and (c) we recall some well-known properties
of Padé approximation [BGM96]. One may express the Padé approximants of G(α,β) by means
of the Gauss continued fraction (see, e.g., [Ba75, Chapter 5]), in particular, there exist explicit
formulas for the Padé denominator [Ba75, Eqn. (5.11)] which will enable us to estimate quite
precisely the Padé error on the unit circle of such functions. For the sake of completeness, this
connection between Jacobi orthogonal polynomials and the (reversed) Padé denominators of
G(α,β) claimed in the last column of Table 1(d) will be shown in Lemma 4.1 in Section 3. The
claims in rows (d)1 − (d)4 are obtained by combining (d) with the statements of (a) − (c), we
leave the details for the reader. The claims in rows (e), (e)1 and (e)2 are again not too difficult
to verify and left to the reader. From the information in Table 1, we see that, in order to study
the error (2.6) for f being equal to one of the functions s(t), s(t − t1) − s(t − t2), sign(cos(t)),
| sin( t

2 )|, or (1 − cos(t))s(t), it is sufficient to estimate the modulus of

G(α,β)(eit) − [n + k|k]G(α,β)(eit)

(up to some explicitly known constant not depending on n, k) in terms of the distance of eit to
the singularities of f . This will be done in Section 4 below. We will also show in Theorem 5.1
that similar bounds hold true for f = f1 + f2 with f1 as before and f2 sufficiently smooth.

3 Rational approximants of Fourier series

The most efficient way of evaluating the value at z = eit of a Padé approximant is known to be
Wynn’s ε-algorithm, as described in Table 2. In this section, we relate the approximant (2.5)
to other rational approximants such as linear or nonlinear Padé-Chebyshev and Padé-Fourier
approximants.

In what follows we denote as usual by L2([−π, π]) the set of square integrable functions on
[−π, π], with norm

‖f‖2 :=
( 1

π

∫ π

−π
|f(t)|2 dt

)1/2
.

For a Fourier series

f(t) =
a0

2
+

∞∑

j=1

(aj cos(jt) + bj sin(jt)) ,

recall that, by Parceval’s formula, ‖f‖2
2 = |a0|2

2 +
∑∞

j=1

(
|aj |

2 + |bj |
2
)
. We also deal with the

Hardy space H2 of functions G being analytic in the unit disk D, with

‖G‖2 := lim
r→1

−

( 1

2π

∫ π

−π
|G(reit)|2 dt

)1/2
< ∞.
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Input: integers n, k ≥ 0, partial sum Gn+2k(z) =

n+2k∑

j=0

gjz
j , a fixed argument z = eit

Initialization: for ` = 0, ..., n + 2k: ε
(`)
0 = G`(z), ε

(`)
−1 = 0.

Recurrence: for j = 0, 2, ..., 2k − 1, for ` = 0, ..., n + 2k − j − 1: ε
(`)
j+1 = ε

(`+1)
j−1 +

(
ε
(`+1)
j − ε

(`)
j

)
−1

Output: [n + k|k]G(z) = ε
(n)
2k

Table 2: Evaluating the Padé approximant [n + k|k]G(z) via the ε-algorithm.

One may show, see e.g. [NS91, Chapter 3.3], that for G(z) =
∑∞

j=0 Gjz
j , one has

‖G‖2
2 =

1

2π

∫ π

−π
|G(eit)|2 dt =

∞∑

j=0

|Gj |
2.

In particular we may represent such functions by means of the Cauchy formula with contour
being the unit circle T. As a consequence, we have for our real-valued Fourier series f that
f ∈ L2([−π, π]) if and only if G(f) ∈ H2, with

‖G(f)‖2
2 = ‖f‖2

2 −
|a0|

2

4
. (3.1)

We will show in the proof of Theorem 3.1 below that Re (ε
(n)
2k (t)) is a trigonometric rational

function in t ∈ [−π, π], with the numerator of degree n + k, and the denominator of degree
k. Following the nomenclature of Baker and Graves-Morris [BGM96, Section 7.4], the quan-

tity Re (ε
(n)
2k (t)) equals the Padé-Fourier approximant of type (n + k, k) of f . There are other

approaches to trigonometric rational approximation of Fourier series, and these latter methods
can be also adapted to series of general orthogonal polynomials, see for instance Section 1 for
Chebyshev series. For the so-called linear Padé-Fourier approximant RLF

m,n = P LF
m,n/QLF

m,n, and

the nonlinear Padé-Fourier approximant RNF
m,n = P NF

m,n/QNF
m,n, respectively, we look for trigono-

metric polynomials P LF
m,n, P NF

m,n of degree ≤ m and QLF
m,n, QNF

m,n of degree ≤ n such that either the

linearized error f QLF
m,n − P LF

m,n or the error f −RNF
m,n itself is orthogonal to the functions sin(jt)

and cos(jt) for j = 0, 1, ....,m + n.
We have the following link between these rational approximants.

Theorem 3.1 Let n, k ≥ 0, and consider the real–valued Fourier series f(t) := a0
2 +
∑∞

j=1[aj cos(jt)+
bj sin(jt)] ∈ L2([−π, π]) together with the associated series G(z) = G(f)(z) = a0

2 +
∑∞

j=1[aj −

ibj ]z
j . Suppose that the linear Padé approximant [n + k|k]G = P/Q of G has no poles in the

closed unit disk, i.e.,

deg P ≤ n + k, deg Q ≤ k,
G(z)Q(z) − P (z)

zn+2k+1
is analytic around 0, ∀|z| ≤ 1 : Q(z) 6= 0.

Then the nonlinear Padé-Fourier approximant RNF
n+k,k of f exists, and

RNF
n+k,k(t) = Re (ε

(n)
2k (t)) = Re ([n + k|k]G(eit)), t ∈ [−π, π].

If moreover f(t) = F (cos(t)) is even (and thus bj = 0 for all j), then the nonlinear Padé-
Chebyshev approximant RNC

n+k,k of the Chebyshev series F (x) = a0
2 +

∑∞
j=1 ajTj(x) exists, and

RNC
n+k,k(cos(t)) = Re (ε

(n)
2k (t)) = Re ([n + k|k]G(eit)), t ∈ [−π, π].
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Proof. Denote by P ∗, and Q∗, respectively, the polynomials obtained by taking the complex
conjugate of the coefficients of P , and Q, then

Re ([n + k|k]G)(eit) =
P (eit)Q∗(e−it) + P ∗(e−it)Q(eit)

2Q(eit)Q∗(e−it)
=: R(t)

Here, the numerator and the denominator are trigonometric polynomials in t of degree n+k and
k, respectively, showing that R is indeed a candidate for the nonlinear Padé-Fourier approximant
of type (n+k, k) of f . If in addition f is even, then, with the coefficients of G, also the coefficients
of P and Q can be chosen to be real. In this latter case, P = P ∗ and Q = Q∗, implying that both
numerator and denominator of R(t) are even, and thus cosine polynomials. Using the relation
Tj(x) = cos(j arccos(x)) it follows that R(arccos(x)) is indeed a rational function in x, and thus
a candidate for the nonlinear Padé-Chebyshev approximant of type (n + k, k) of F = f ◦ arccos.

In order to conclude, we only need to show that the real-valued function f −R is orthogonal
to the functions cos(jt) and sin(jt) for j = 0, 1, ..., n + 2k. We have for j ∈ {0, 1, ..., n + 2k}

1

π

∫ π

−π
e−ijt(f(t) − R(t)) dt =

1

2π

∫ π

−π
e−ijt

[
G(eit) −

P (eit)

Q(eit)
+ G(eit) −

P (eit)

Q(eit)

]
dt

=
1

2πi

∫

|ζ|=1

[
G(ζ) −

P (ζ)

Q(ζ)

] dζ

ζj+1
+

1

2πi

∫

|ζ|=1

[
G(ζ) −

P (ζ)

Q(ζ)

]
ζj

dζ

ζ
.

By construction, G is an element of the Hardy space H2, and so is G − P/Q by assumption on
Q. In particular, G − P/Q is analytic in the unit disk and vanishes at zero, and therefore the
second integral on the right-hand side vanishes. The first integral equals the (j +1)th coefficient
of the Taylor expansion of G − P/Q at zero. By assumption, we have that 1/Q is analytic in
the unit disk, and that the first n + 2k + 1 coefficients in the Taylor expansion of GQ − P do
vanish. Hence also the first integral equals zero, and the above claim follows by taking real and
imaginary parts. 2

Let us illustrate the previous result with the sign function F (x) = sign(x). We have

f(t) = sign(cos(t)) =
1

π
(s(t −

π

2
) − s(t +

π

2
)),

and, according to (2.8), we get the Chebyshev series expansion

F (x) =
4

π

∞∑

j=0

(−1)j

2j + 1
T2j+1(x).

The convergence properties of the linear Padé-Chebyshev approximants RLC
n+k,k of the sign func-

tion F (x) = sign(x) for fixed k and n → ∞ has been discussed in detail in [KM05]. Paszkowski
[Pa63] gave an explicit expression for the nonlinear Padé-Chebyshev approximants RNC

n+k,k of the
sign function. Let us recover its denominator via Theorem 3.1: we have to compute the Padé
approximant of G = G(f), an odd function. In this case, it is well-known and easy to verify
that the Padé table of G(f) has a 2 × 2 block structure

[2n + 2k − 1|2k]G = [2n + 2k|2k]G = [2n + 2k − 1|2k + 1]G = [2n + 2k|2k + 1]G. (3.2)

In particular, the denominator of the linear Padé approximant of G of degree [2n + 2k|2k + 1]G
are vanishing at zero, and the hypothesis of Theorem 3.1 fails to hold. However, for the other
three members of the block (3.2), the denominator is the same, and its reversed counterpart has
been given in Table 1(d)2. In particular, all zeros of the denominator lie in (−i∞,−i) ∪ (i, i∞).
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Figure 2: The modulus of the error of approximation on a logarithmic scale at x = cos(t) of the
linear and the nonlinear Padé-Chebyshev approximant of F (x) = sign(x).

Thus Theorem 3.1 gives us the following formula for the denominator of the nonlinear Padé–
Chebyshev approximant of the sign function

QNC
2n+2k−1,2k(cos(t)) = |P

(n−1/2,0)
k (1 + 2e2it)|2

in terms of a Jacobi orthogonal polynomial.
In contrast, the approximants of index (N ,M) for the sign function used in [KM05] for

N ≥ M − 1 are rational functions of numerator degree 2N + 1 and denominator degree 2M,
which coincide with the linear Padé–Chebyshev approximants RLC

2n+2k−1,2k = RLC
2n+2k,2k for n ≥ 0.

The authors in [KM05] use an explicit formula for the denominator given by Németh and Páris
in [NP91]. Our numerical experiments reported in Figure 2 for k = 2 and n ∈ {0, 4} seem to
indicate that the nonlinear Padé-Chebyshev approximants have better approximation properties.

4 Error estimates for hypergeometric functions of type G(α,β)

In this section we study the Padé approximants to the functions

G(α,β)(z) = 2F1

(
α + 1, 1

α + β + 2

∣∣∣∣ z
)

=

∫ 1

0

dµ(α,β)(y)

1 − yz
, (4.1)

where α, β > −1 and the measure dµ(α,β) has the support [0, 1] and the density

dµ(α,β)(y) =
Γ(α + β + 2)

Γ(α + 1)Γ(β + 1)
yα(1 − y)βdy.

We notice that the diagonal Padé approximants [k|k]G(α,β) (and, by Table 1(c), also the off-
diagonal Padé approximants) are the even convergents of the Gauss continued fraction [Ba75,
Chapter 5], from which one may conclude uniform convergence for k → ∞ on compact subsets
of C \ [1,+∞). In the present context we are more interested in convergence on the unit circle
including in particular points close to z = 1. Also, we are interested in convergence of columns
[n + k|k]G(α,β) for fixed k and n → ∞.

Here it is useful to recall the well-known explicit representation of the Padé denominator
of G(α,β) in terms of Jacobi polynomials [Ba75, Eqn. (5.11)]. Indeed, we just need to use the
representation of G(α,β) as a Stieltjes function, see (4.1), to relate the reversed Padé denominators
to the polynomials orthonormal with respect to the measure dµ(α,β) on [0, 1], see [Ba75, Eqn.
(7.7)].
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Lemma 4.1 Let α, β > −1, and k ≥ 0, n ≥ −1 be two integers. The (n + k − 1, k) Padé
denominator Qn+k−1,k of G(α,β) is unique (up to multiplication with a scalar). More precisely,
we may normalize such that for the reversed denominator we get the formula

Q̃n+k−1,k(z) = zkQn+k−1,k(1/z) = γ
(α,β)
k,n P

(α+n,β)
k (1 − 2z),

where P
(α+n,β)
k denotes the classical Jacobi polynomial, see (2.4), and

γ
(α,β)
k,n =

√
(2k + α + n + β + 1)k!(α + β + 2)n+k−1

(α + 1)n+k(β + 1)k
. (4.2)

Moreover, for |z| = 1, the following upper bound holds true,

∣∣∣Qn+k−1,k(z)2
(
G(α,β)(z) − [n + k − 1|k]G(α,β)(z)

)∣∣∣ ≤
1

dist (z, [0, 1])
. (4.3)

Proof. We have

G(α,β)(z) =

∫ [
1 + yz + · · · + (yz)n−1 +

(yz)n

1 − yz

]
dµ(α,β)(y) = cn−1(z) + znG(α,β)

n (z),

where cn−1(z) is a polynomial of degree n − 1 in z and

G(α,β)
n (z) =

∫ 1

0

yndµ(α,β)(y)

1 − yz
.

The Padé approximant [n + k − 1|k]G(α,β) is obtained from the Padé approximant [k − 1|k]
G

(α,β)
n

in the following way

[n + k − 1|k]G(α,β)(z) = cn−1(z) + zn[k − 1|k]
G

(α,β)
n

(z).

Since G
(α,β)
n is a Stieltjes function, the reversed Padé denominator Q̃n+k−1,k(z) equals the or-

thonormal polynomial of degree k with respect to the measure yndµ(α,β)(y) supported on the
interval [0, 1] (up to normalization with a scalar), see, e.g., [Ba75, Eqn. (7.7)]. For the Jacobi
polynomials of indices (α + n, β), we have

∫ 1

0
P

(α+n,β)
i (1 − 2y)P

(α+n,β)
j (1 − 2y)yndµ(α,β)(y) = 0 for i 6= j, (4.4)

and it is easily checked from (2.4) that

∫ 1

0

(
P

(α+n,β)
k (1 − 2y)

)2
yndµ(α,β)(y) =

(α + 1)n+k(β + 1)k

(2k + α + n + β + 1)k!(α + β + 2)n+k−1
= (γ

(α,β)
k,n )−2.

(4.5)

Hence, Q̃n+k−1,k(z) = γ
(α,β)
k,n P

(α+n,β)
k (1 − 2z), and these polynomials are orthonormal with re-

spect to the measure yndµ(α,β)(y).
It is well-known, see e.g. [Br80, Chapter 1, Thm 1.17], that the error of the Padé approximant

[k−1|k] of a function f(z) = c
(

1
1−xz

)
, where c is a linear form acting on the variable x, is given

by

f(z) − [k − 1|k]f (z) =
z2k

P̃k(z)2
c

(
Pk(x)2

1 − xz

)
, (4.6)
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where Pk is the orthogonal polynomial of degree k with respect to the linear form c. Therefore,

the linearized error of the Padé approximant [k − 1|k]
G

(α,β)
n

of the Stieltjes function G
(α,β)
n is

given by

Qn+k−1,k(z)(G(α,β)
n (z) − [k − 1|k]

G
(α,β)
n

(z)) =
z2k

Qn+k−1,k(z)

∫
Q̃n+k−1,k(y)2

1 − zy
yndµ(α,β)(y)

which leads for G(α,β) to the linearized error

Qn+k−1,k(z)G(α,β) − Pn+k−1,k(z) =
z2k+n

Qn+k−1,k(z)

∫
Q̃n+k−1,k(y)2

1 − zy
yndµ(α,β)(y). (4.7)

From (4.7) and the orthonormality properties of Q̃n+k−1,k(z), we obtain for |z| = 1, z 6= 1 the
following upper bound

∣∣∣Qn+k−1,k(z)
(
Qn+k−1,k(z)G(α,β) − Pn+k−1,k(z)

)∣∣∣ ≤
1

dist (z, [0, 1])
.

2

The next lemma gives estimates on the modulus of Qn+k−1,k(e
it).

Lemma 4.2 Set
νk,n = |Qn+k−1,k(−1)| = γ

(α,β)
k,n P

(α+n,β)
k (3). (4.8)

Then,

|Qn+k−1,k(e
it)|2 ≤ ν2

k,n ≤
22k

k!

(α + β + 2)n+2k(n + k + 1 + α + β)k

(α + 1)n+k(β + 1)k
, (4.9)

and for 0 < δ ≤ |t| ≤ π, we have

|Qn+k−1,k(e
it)|2 ≥ |Qn+k−1,k(e

iδ)|2 ≥
2k

k!

(α + β + 2)n+2k

(α + 1)n(β + 1)k
(1 − cos δ)k. (4.10)

Proof. We recall the following representation of the Jacobi polynomials, see [Sze75, Chap.4,
Eqn 4.21.2, p. 62],

P
(α,β)
k (x) =

(α + 1)k

k!
2F1

(
−k, k + α + β + 1

α + 1

∣∣∣∣
1 − x

2

)
. (4.11)

Thus we get for the reversed denominators

Q̃n+k−1,k(z) = γ
(α,β)
k,n

(α + n + 1)k

k!
2F1

(
−k, α + n + 1 + β + k

α + n + 1

∣∣∣∣ z
)

. (4.12)

For α, β > −1, we denote by ai the coefficient of xi of the 2F1 polynomial. Then

sign (ai) = sign ((−k)(−k + 1) · · · (−k + i − 1)) = (−1)i,

and the coefficients of Q̃n+k−1,k(z) have alternating signs, which implies that

max
|z|=1

∣∣∣Q̃n+k−1,k(z)
∣∣∣ =

∣∣∣Q̃n+k−1,k(−1)
∣∣∣ .

Denote by xj,k ∈ (0, 1), j = 1, . . . , k, the zeros of Q̃n+k−1,k. We have

∣∣∣Q̃n+k−1,k(−1)
∣∣∣ = γ

(α,β)
k,n

(α + n + 1)k

k!

|(−k)k|

k!

(α + n + β + k + 1)k

(α + n + 1)k

∣∣∣∣∣∣

k∏

j=1

(−1 − xjk)

∣∣∣∣∣∣

≤ 2kγ
(α,β)
k,n

(α + n + β + k + 1)k

k!
.
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Plugging the expression (4.2) of γ
(α,β)
k,n into the square of the last upper bound leads, after some

computations to (4.9). Let us now obtain the lower bound. We can write

Q̃n+k−1,k(z) = Q̃n+k−1,k(0)
k∏

j=1

(
1 −

z

xjk

)
.

Then we obtain

∣∣∣Q̃n+k−1,k(e
it)
∣∣∣
2

=
∣∣∣Q̃n+k−1,k(0)

∣∣∣
2

k∏

j=1

2

xjk

(
xjk + 1/xjk

2
− cos(t)

)
.

This shows that
∣∣∣Q̃n+k−1,k(e

it)
∣∣∣
2

is increasing with t and so, for 0 < δ ≤ |t| < π,

∣∣∣Q̃n+k−1,k(e
it)
∣∣∣
2
≥
∣∣∣Q̃n+k−1,k(e

iδ)
∣∣∣
2

≥
∣∣∣Q̃n+k−1,k(0)

∣∣∣
2

k∏

j=1

[
2

xjk
(1 − cos(δ))

]
=

2k
∣∣∣Q̃n+k−1,k(0)

∣∣∣
2

∏k
j=1 xjk

(1 − cos(δ))k . (4.13)

The quotient Q̃n+k−1,k(0)/
∏k

j=1(−xjk) equals the leading coefficient of Q̃n+k−1,k(x), which, in
view of (4.12), equals

γ
(α,β)
k,n

(α + n + 1)k

k!

(−k)k(α + n + β + k + 1)k

(α + n + 1)kk!
= (−1)kγ

(α,β)
k,n

(α + n + β + k + 1)k

k!
.

On the other hand,

Q̃n+k−1,k(0) = γ
(α,β)
k,n P

(α+n,β)
k (1) = γ

(α,β)
k,n

(α + n + 1)k

k!
.

Making use of these two expressions in (4.13) leads to (4.10). 2

Corollary 4.3 Assume f is such that G(f) = G(α,β). Then, for 0 < δ ≤ |t| ≤ π and for all
integers k ≥ 0, n ≥ −1, we have that

|f(t) − Re (ε
(n)
2k (t))| ≤

k!(β + 1)k(α + 1)n+1

2k sin δ(1 − cos δ)k(α + β + 2)n+1+2k
, (4.14)

which implies that, for any 0 < δ ≤ π, 0 ≤ τ ≤ 1 and k ≥ 0,

max
δ/nτ≤|t|≤π

|f(t) − Re (ε
(n)
2k (t))| = O

(
n−(1−τ)(2k+1)−β

)
as n → ∞. (4.15)

Proof. We know that

f(t) − Re (ε
(n)
2k (t)) = Re (G(f) − [n + k|k]G(f))(e

it),

and, by (4.3), the modulus of the last expression is less than
(
dist (eit, [0, 1])

∣∣Qn+k,k(e
it)
∣∣2
)−1

≤
k! (α + 1)n+1(β + 1)k

2k sin δ(1 − cos δ)k(α + β + 2)n+1+2k
,

for 0 < δ ≤ |t| ≤ π, where in the last inequality we have used (4.10). This proves (4.14) from
which (4.15) is immediate. 2

This result shows the quite impressive convergence properties of the columns of the Padé table
for the Stieltjes function G(α,β). If we fix the parameters δ > 0, τ = 0 and the column k of
the table, then the error corresponding to the sequence of approximants [n + k|k](eit) is of
order O(n−2k−1−β) as n tends to infinity. This fact explains for the fast convergence of the
approximants observed when applying the ε-algorithm to the Fourier series of functions like
G(α,β).
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5 Error estimates for the sum of a G
(α,β) function and a smooth

function

In this section, we show that the results of Corollary 4.3 remain valid when adding a smooth
perturbation to a function f as in Section 4.

Theorem 5.1 Let f = f1+f2 with G(f1) = G(α,β), α, β > −1, and f2 ∈ Cm−1(R) a 2π–periodic

function such that f
(m)
2 exists almost everywhere, with f

(m)
2 ∈ L1([0, 2π]). Let 0 < δ ≤ π,

0 ≤ τ < 1, and k ≥ 0 an integer such that m ≥ 2k + 5/2 + β − τ . Then the same estimate as in
Corollary 4.3 holds true, namely,

max
δ/nτ≤|t|≤π

|f(t) − Re (ε
(n)
2k (t))| = O

(
n−(1−τ)(2k+1)−β

)
as n → ∞.

In the sequel, we set

pk,n(x) = γ
(α,β)
k,n P

(α+n,β)
k (1 − 2x),

that is, pk,n is the orthonormal polynomial of degree k with respect to the measure yndµ(α,β)(y)
(and thus the reversed (n+k− 1, k) Padé denominator of G(f1), see the preceding section). We
also set

En(f) = f − Sn−1(f)

for the remainder of order n in the Fourier expansion of f .
Before proving Theorem 5.1, we establish three preliminary lemmas.

Lemma 5.2 Let f = f1 + f2 be a function on [−π, π] with G(f1) = G(α,β) and assume that
the Fourier coefficients of f2 decrease sufficiently fast. Namely, we suppose that there exists an
Nk ≥ 0 such that, for all n ≥ Nk,

‖En(f2)‖2




k∑

j=0

ν2
j,n


 <

1

2
, (5.1)

where the numbers νj,n = |pj,n(−1)| have been defined in (4.8). Then, for all n ≥ Nk, the
(n+k−1, k) Padé denominator Qn+k−1,k of G(f) is unique (up to multiplication with a scalar),
and its reversed counterpart admits the decomposition

Q̃n+k−1,k(z) = pk,n(z) +

k−1∑

j=0

aj,k,npj,n(z), (5.2)

with coefficients aj,k,n satisfying

|aj,k,n| ≤ 2νj,nνk,n‖En(f2)‖2 < 1, j = 0, . . . , k − 1. (5.3)

Proof. Let c(n) be the linear form acting on the space of polynomials such that c(n)(zj) is the
coefficient of zn+j in the power series of G(f). In view of the integral representation (4.1) of
G(α,β) and the Cauchy formula for G(f2) ∈ H2,

G(f2)(z) =
1

2πi

∫

|ξ|=1

G(f2)(ξ)

ξ − z
dξ,

we have that for any polynomial P ,

c(n)(P ) =

∫
ynP (y)dµ(α,β)(y) +

1

2πi

∫

|ξ|=1
ξ−n−1P

(
1

ξ

)
G(f2)(ξ)dξ. (5.4)
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The second integral equals

1

2πi

∫

|ξ|=1
ξn−1P (ξ)G(f2) (1/ξ) dξ =

1

2πi

∫

|ξ|=1
ξn−1P (ξ) gn(1/ξ)dξ,

where in the last inequality we have set gn(ξ) = G(En(f2))(ξ), and have used the fact that
ξn−1(f2(1/ξ) − En(f2)(1/ξ)) = ξn−1Sn−1(f2)(1/ξ) is analytic in the closed unit disk.

Let us suppose for a moment that there is a reversed denominator Q̃n+k−1,k of the Padé
approximant [n + k − 1|k]G(f) which is of degree exactly k. Then, after possibly multiplying
with a scalar, there exists coefficients aj,k,n such that (5.2) holds. The order condition for the
linearized Padé error yields the orthogonality conditions

c(n)(Q̃n+k−1,kpj,n) = 0, j = 0, . . . , k − 1. (5.5)

Setting

Al,j = −
1

2πi

∫

|ξ|=1
ξn−1pj,n(ξ)pl,n(ξ)gn(

1

ξ
)dξ, l, j = 0, · · · k − 1,

these orthogonality relations rewrite as

(I − A)a = b,

where A denotes the matrix (Al,j)l,j=0...k−1, a = (a0,k,n, . . . , ak−1,k,n)T and b = (A0,k, . . . , Ak−1,k)
T .

From the Cauchy-Schwarz inequality together with (3.1) and (4.9) we obtain that

|Al,j|
2 ≤

(
1

2π

∫

|ξ|=1
|pj,n(ξ)pl,n(ξ)|2 |dξ|

)(
1

2π

∫

|ξ|=1
|gn(1/ξ)|2 |dξ|

)
≤ ν2

j,nν2
l,n‖En(f2)‖

2
2,

(5.6)
so that, in view of (5.1), we have the following upper bound for the Frobenius norm of A,

‖A‖2
F =

k−1∑

l,j=0

A2
j,l ≤ ‖En(f2)‖

2
2




k−1∑

j=0

ν2
j,n




2

<
1

4
.

As a consequence, the matrix (I − A) is invertible and the vector a = (a0,k,n, . . . , ak−1,k,n)T is
given by

a = (I − A)−1b =
∞∑

m=0

Amb.

Let us show by induction on m that

∀m ≥ 0, |(Amb)j | ≤
νj,nνk,n

2m
‖En(f2)‖2, j = 0, . . . , k − 1. (5.7)

When m = 0, this is true, see (5.6). Assume we have

|(Am−1b)j | ≤
νj,nνk,n

2m−1
‖En(f2)‖2, j = 0, . . . , k − 1.

Then,

|(Amb)j |
2 ≤

(
k−1∑

l=0

A2
j,l

)
k−1∑

l=0

|(Am−1b)l|
2

≤ (ν2
j,n(

k−1∑

l=0

ν2
l,n)‖En(f2)‖

2
2)(

ν2
k,n

4m−1
(

k−1∑

l=0

ν2
l,n)‖En(f2)‖

2
2)

≤ 4−mν2
k,nν2

j,n‖En(f2)‖
2
2.
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where in the last inequality we have used (5.1). Hence, (5.7) holds true for any m ∈ N. It
implies that

|aj,k,n| ≤
∞∑

m=0

|(Amb)j | ≤ 2νj,nνk,n‖En(f2)‖2,

where the last upper bound is less than 1 in view of (5.1).
It finally remains to show that Q̃n+k−1,k is necessarily of degree k (which also implies that this

reversed Padé denominator is unique up to multiplication with a constant). By contradiction,
suppose that κ := deg Q̃n+k−1,k < k. Then, after possibly multiplying with a scalar, we may
write

Q̃n+k−1,k(z) = pκ,n(z) +
κ−1∑

j=0

aj,κ,npj,n(z),

and get the same estimates for the coefficients Al,j and aj,κ,n. In particular, relation (5.5) for
j = κ leads to

0 = |c(n)(pκ,nQ̃n+k−1,k)| = |1 − Aκ,κ −
κ−1∑

j=0

aj,κ,nAκ,j|

≥ 1 − |Aκ,κ| −
κ−1∑

j=0

|aj,κ,n| |Aκ,j | ≥ 1 − ν2
κ,n ‖En(f2)‖ −

1

2
ν2

κ,n ‖En(f2)‖ ≥
1

4
,

a contradiction. Hence deg Q̃n+k−1,k = k. 2

We now give a lower bound for the modulus of Q̃n+k−1,k(z).

Lemma 5.3 Let f = f1 + f2 satisfy the assumptions of Lemma 5.2. Then, for all n ≥ Nk, we
have

|Q̃n+k−1,k(e
it)| ≥

1

2
|pk,n(eit)|, provided that

π

3

√
k(β + k)

n − 1
≤ |t| ≤ π. (5.8)

Proof. By the interlacing property of the (simple) zeros xl,j ∈ (0, 1), l = 1, . . . , j, of the
orthonormal polynomials pj,n, we can write

pj−1,n(z)

pj,n(z)
=

j∑

l=1

βlj

z − xl,j
, j = 1, . . . , k,

with βlj > 0. Then,

∣∣∣∣
pj−1,n(z)

pj,n(z)

∣∣∣∣ ≤

j∑

l=1

|xl,j|

|z − xl,j|

βlj

|xl,j|

≤ max
1≤l≤j

∣∣∣∣
xl,j

z − xl,j

∣∣∣∣
∣∣∣∣
pj−1,n(0)

pj,n(0)

∣∣∣∣ ≤
1

dist(z, [0, 1])

∣∣∣∣
pj−1,n(0)

pj,n(0)

∣∣∣∣ .

Since pj,n(0) = γ
(α,β)
j,n P

(n+α,β)
j (1), we obtain using (4.11) that, for j = 1, ..., k,

∣∣∣∣
pj−1,n(0)

pj,n(0)

∣∣∣∣ =
γ

(α,β)
j−1,n

γ
(α,β)
j,n

∣∣∣∣∣
P

(α+n,β)
j−1 (1)

P
(α+n,β)
j (1)

∣∣∣∣∣

=

√
2j − 1 + α + β + n

2j + 1 + α + β + n

j(β + j)

(α + β + n + j)(α + j + n)
≤

√
k(β + k)

n − 1
.
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Thus, by assumption on t,

∣∣∣∣
pj−1,n(eit)

pj,n(eit)

∣∣∣∣ ≤
1

dist(eit, [0, 1])

√
k(β + k)

n − 1
≤

1

sin |t/2|

√
k(β + k)

n − 1
≤

1

3
.

Since from (5.3) we know that |aj,k,n| < 1, we obtain

∣∣∣∣∣
Q̃n+k−1,k(e

it)

pk,n(eit)

∣∣∣∣∣ ≥ 1 −

∣∣∣∣∣∣

k−1∑

j=0

aj,k,n
pj,n(eit)

pk,n(eit)

∣∣∣∣∣∣
≥ 1 −

k−1∑

j=0

∣∣∣∣
pj,n(eit)

pk,n(eit)

∣∣∣∣ ≥ 1 −
k−1∑

j=0

1

3k−j
=

1

2
.

2

Lemma 5.4 Let f = f1 + f2 satisfy the assumptions of Lemma 5.2, and let

en,k(z) = G(f)(z) − [n + k − 1|k]G(f)(z),

be the error corresponding to the Padé approximant [n + k − 1|k]G(f). Then for all n ≥ Nk and
|z| = 1 we have

|Qn+k−1,k(z)2en,k(z)| ≤
2

dist (z, [0, 1])
+ 4ν2

k,n

∞∑

j=0

‖En+j(f2)‖2. (5.9)

Proof. By adapting the reasoning leading to (4.7), the error en,k(z) can be written in the
following way

en,k(z) =
zn+2k

Qn+k−1,k(z)2
c(n)

(
Q̃n+k−1,k(x)2

1 − xz

)
,

where c(n) has been defined at the beginning of the proof of Lemma 5.2. Replacing c(n) by the
expression obtained there, we get

Qn+k−1,k(z)2en,k(z)

= zn+2k

∫
Q̃n+k−1,k(y)2

1 − yz
yndµ(α,β)(y) +

zn+2k

2πi

∫

|ξ|=1

ξn−1Q̃n+k−1,k(ξ)
2

1 − ξz
gn(1/ξ)dξ.

Let us denote by I1 and I2 the two terms in the previous sum. We first bound the modulus of
I1. Using the decomposition (5.2), we have

Q̃n+k−1,k(y)2 =
k∑

j,l=0

aj,k,nal,k,npj,n(y)pl,n(y),

where ak,k,n = 1. From the orthonormality of the pj,n with respect to the measure yndµ(α,β)(y)
and the fact that |z| = 1, we obtain

|I1| ≤ dist (z, [0, 1])−1
∫

Q̃n+k−1,k(y)2yndµ(α,β)(y) = dist(z, [0, 1])−1
k∑

j=0

a2
j,k,n. (5.10)

Moreover, from (5.3) and assumption (5.1), we derive that

k−1∑

j=0

a2
j,k,n ≤ 4ν2

k,n‖En(f2)‖
2
2




k−1∑

j=0

ν2
j,n


 ≤ 1,
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which, together with (5.10) and the fact that ak,k,n = 1, shows that

|I1| ≤ 2/dist (z, [0, 1]). (5.11)

For the second term, we have

I2 =
zn+2k

2πi

∞∑

j=0

zj

∫

|ξ|=1
ξn−1+jQ̃n+k,k(ξ)

2gn(1/ξ)dξ

=
zn+2k

2πi

∞∑

j=0

zj

∫

|ξ|=1
ξn−1+jQ̃n+k−1,k(ξ)

2gn+j(1/ξ)dξ,

where in the second equality, we have used the fact that ξn+j−1(gn+j − gn)(1/ξ) is analytic in
the unit disk. Then, by applying the Cauchy-Schwarz inequality to the integrals, we obtain that
the modulus of I2 satisfies

|I2| ≤ max
|z|=1

∣∣∣Q̃n+k−1,k(z)2
∣∣∣

∞∑

j=0

[
1

2π

∫

|ξ|=1
|gn+j(ξ)|

2 |dξ|

]1/2

= max
|z|=1

∣∣∣Q̃n+k−1,k(z)2
∣∣∣

∞∑

j=0

‖En+j(f2)‖2. (5.12)

Using (5.2), (5.1), (5.3), and the first inequality in (4.9), we obtain, for n ≥ Nk and |z| = 1,

∣∣∣Q̃n+k−1,k(z)
∣∣∣
2

=

∣∣∣∣∣∣

k∑

j=0

aj,k,npj,n(z)

∣∣∣∣∣∣

2

≤ 2


ν2

k,n +

∣∣∣∣∣∣

k−1∑

j=0

aj,k,npj,n(z)

∣∣∣∣∣∣

2


≤ 2ν2
k,n + 8ν2

k,n‖En(f2)‖
2
2




k−1∑

j=0

ν2
j,n




2

≤ 4ν2
k,n.

Hence, inequality (5.9) follows from (5.11) and (5.12). 2

Proof of Theorem 5.1. Since f
(m)
2 ∈ L1, we know from the Riemann-Lebesgue Lemma [Ru87,

(5.14)] that its Fourier coefficients satisfy

|aj(f
(m)
2 )| + |bj(f

(m)
2 )| = o(1) as j → ∞.

Taking into account that |aj(f
(m)
2 )| + |bj(f

(m)
2 )| = jm(|aj(f2)| + |bj(f2)|) for j ≥ 1, we may

conclude that, as n → ∞,

‖En(f2)‖2 = o(n1/2−m),

∞∑

j=0

‖En+j(f2)‖2 = o(n3/2−m).

On the other hand, we know from (4.9) that ν2
k,n = O(n2k+1+β) as n → ∞ for fixed α, β, k, and

1/2 − m + 2k + 1 + β ≤ τ − 1 ≤ 0, by assumption on f2 and τ . Hence, as n → ∞,

‖En(f2)‖2




k∑

j=0

ν2
j,n


 = o(1), ν2

k,n

∞∑

j=0

‖En+j(f2)‖2 = o(nτ ),

and the assumption of Lemma 5.2 is true for sufficiently large Nk by the choice of m. We also
observe that [

δ

nτ
, π

]
⊂

[
π

3

√
k(β + k)

n − 1
, π

]
,
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|function - approximant Re([n+k|k](exp(i*t)))|
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Figure 3: The modulus of the error of approximation on a logarithmic scale of the Fourier series
of f(t) = | sin( t

2 )|. On the left we use the first 7 and on the right the first 17 coefficients of the
Fourier series.

for sufficiently large n by assumption on δ, τ .
Using Lemmas 5.3 and 5.4 we get for the Padé error that

max
δ/nτ≤|t|≤π

∣∣en,k(e
it)
∣∣ ≤ max

δ/nτ≤|t|≤π

4

|pn,k(eit)|2

[
2

dist (eiδ/nτ
, [0, 1])

+ o(nτ )n→∞

]
,

and hence Theorem 5.1 follows from (4.10).
�

Notice that, according to the explicit form of Lemmas 5.3 and 5.4, it would be possible to give
more explicit bounds for the Padé error in case where explicit expressions for ‖En(f2)‖2 are
available.

6 Numerical results

We have seen already in Figure 1 that for the saw tooth function s of (2.2) and hence

G(s)(z) = −2i log(1 − z) = 2izG(0,0)(z)

(compare with Table 1(d1)) we have an impressive acceleration of convergence via the ε-algorithm
even for low order. Indeed, as shown in Corollary 4.3, the error is dominated by the Padé error
on the unit circle of the diagonal approximants [3|3]G(s)(z) = 2iz [2|3]G(0,0) (z) and [8|8]G(s)(z) =
2iz [7|8]G(0,0) (z), which is quite small: for the second approximant we obtain for z = eit, δ =
π/4 ≤ |t| ≤ π from Corollary 4.3 the upper bound 3.57 10−8/[sin δ(1 − cos δ)8] = 8.08 10−7,
which is approximately attained for t = δ.

Let us compare in Figure 3 these findings with a 2π-periodic function being C 0 but having
a derivative with a discontinuity at zero, namely

f(t) = | sin( t
2 )| = 2

π − 4 cos(t)
3×5×π − 4 cos(2t)

5×7×π − 4 cos(3t)
7×9×π − ... =⇒ G(f)(z) = 2

π − 4z
3πG(− 1

2
,1)(z)

(compare with Table 1(d1)). We again observe that the error for the partial sums is strongly
oscillating, and remains quite large even for higher order Fourier sums, namely about 1/100 for
order 7, and 1/1000 for order 17 (smaller as for the saw tooth function in Figure 1, since of
cause the latter function is less regular). In this example we see that both linear acceleration
procedures, namely the Cesaro means and the de la Vallée-Poussin mean, give very disappointing
results (in what follows we will no longer display them). According to Table 1(c), the error
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error for n=8, k=2
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Figure 4: The modulus of the error of approximation on a logarithmic scale of the Fourier series
of f1(t) = s(t − π) (on the top) and of f(t) = f1(t) + (1 − cos(t))3s(t) (on the bottom). On the

left we display the error for ε
(2`)
4 and on the right for ε

(0)
4+2`, ` = 0, 2, 4, 8.

obtained by the real part of ε
(n)
2k (t) (here for k = 3 and k = 8) is dominated by 4

3π times
the error on the unit circle of [k − 1|k]

G(− 1
2 ,1) , the latter being estimated in Corollary 4.3.

Again, even for arguments close to the singularity t = 0 we have a quite impressive convergence
improvement. We should mention that all numerical experiments have been performed using
Maple with sufficiently high precision such that rounding errors can be neglected.

In our last example in Figure 4 we consider the functions

f1(t) = s(t − π) 6∈ C0, f2(t) = (1 − cos(t))3s(t) ∈ C5 \ C6

and hence G(f1)(z) = −2izG(0,0)(−z). We compare the improvements obtained for columns
of the Padé table (here k = 2 and n = 2` for ` ∈ {0, 2, 4, 8}) and diagonals (here n = 0 and
k = 2 + ` for ` ∈ {0, 2, 4, 8}). Notice that the number of terms of the Fourier series required

for ε
(2`)
4 and for ε

(0)
4+2` is the same (namely 5 + 2`). We observe that in both cases there is

improvement of convergence for increasing `, however, the rate is much more interesting for our

diagonal sequence ε
(0)
2+2`, in particular for f(t) = f1(t).

The error for ε
(2`)
2 on the bottom of Figure 4 (that is, f(t) = f1(t) + f2(t)) and sufficiently

large ` has been discussed (implicitly) in Theorem 5.1: since G(f1)(z) = −2izG(0,0)(−z), we

replace z = eit by −z = ei(π−t), and set k = 2, α = β = 0. Also, f2 ∈ C5, and f
(6)
2 ∈ L1 (with

one jump), such that m = 6, showing that the asymptotic rate O(n−5(1−τ)) of Theorem 5.1 is
valid for all 0 ≤ τ < 1. In order to be more precise for finite n, we have to to compute explicitly
the quantity N2 (or even Nk for diagonal sequences) in the hypothesis of Lemma 5.2. Observe
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that, by (4.8) and (4.11),

2∑

j=0

ν2
j,n = (n + 1) + (n + 3)(2n + 3)2 + (n + 5)(n + 2)2(2n + 5)2 ≤ 5(n + 5)(n + 2)4,

and from Table 1(e)1 for n ≥ 3

||f2 − Sn−1(f2)||
2
L2([−π,π]) ≤ 4(

2−3(1)6
(2)6

)2
∞∑

j=n−3

(
(1)j
(8)j

)2 ≤ (
1

28
)2

∞∑

j=n−2

(
(1)7
(j)7

)2 ≤
1802

13
(n − 3)−13.

Thus, with the very rough choice N2 ≥ 83, the hypothesis of Lemma 5.2 is true, and a combi-
nation of Lemma 5.3, Lemma 5.4, and (4.10) enables us to establish more explicit bounds for
n ≥ N2.

Finally, we should comment on the peak of the error on the lower right plot of Figure 4
around t = 0: indeed, the influence of f2 on [n+k|k]G(f1+f2) is negligible for fixed k and n → ∞,
but this is no longer true for fixed n and k → ∞: here the zeros of the Padé denominator also
detect the singularities of G(f2).

7 Concluding remarks and open questions

In the present paper we have established a link between the complex ε-algorithm applied to
partial Fourier sums, and the non-linear Padé-Chebyshev and Padé-Fourier approximants. We
were able to show by deriving explicit error estimates for a class of hypergeometric functions
that the complex ε-algorithm allows one to accelerate convergence of partial Fourier sums. In
particular, as observed numerically by Brezinski [Br02], this technique allows one to smooth the
Gibbs phenomenon for functions which either themselves or their higher order derivatives have
a jump. Finally we have shown that the rate of convergence for columns is preserved even after
smooth perturbations of the underlying function.

There are several remarks or open questions about this field of research:
– we have seen in our numerical experiments that, for ray sequences of the form k = [λn]

with λ > 0, we get a rate of convergence better than that of columns (k fixed). Here one could
derive a result similar to Theorem 5.1 by using the strong asymptotics of Jacobi polynomials
with varying parameters as derived in [GS91, MO05]. However, then for the hypothesis (5.1) we
would require very smooth f2 with exponentially decaying ‖En(f2)‖2, obtained for instance for
rational G(f2). It would also be interesting to combine our findings with those of Rakhmanov
[Ra77] who discusses the error of diagonal Padé approximants where G(f1) is a Stieltjes function
and G(f2) is rational.

– a nice test function sm not included in our class of hypergeometric functions would be the
m-th primitive of the saw tooth function s of (2.1), with j-th derivative being continuous for all
j 6= m, and having one jump for j = m. Notice that, by (2.2),

G(sm)(z) = 2i4m+1
∞∑

j=1

zj

jm+1
=

2i4m+1

m!
z

∫ 1

0

(log(1/y))m

1 − yz
dy,

that is, we essentially get a Stieltjes function. Therefore, it would be interesting to extend
Corollary 4.3 and Theorem 5.1 to general Stieltjes functions.

– it would be nice to understand the convergence behavior for functions f having several
jumps, like t 7→ f0(t) = s(t− t0)−s(t+ t0), having two jumps at ±t0, and reducing to a multiple
of t 7→ sign(cos(t)) for t0 = π/2. One may derive an explicit formula for the diagonal Padé
denominators of G(f0), showing that the poles stay outside the unit disk, but are no longer on
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the real axis but now on a circle orthogonal to the unit circle and intersecting the unit circle at
e±it0 .

– sometimes the data available in spectral methods for PDEs are partial sums of Legendre
series. We suspect that by exploiting the link with Baker-Gammel approximants [BGM96,
Section 7.2] we should get similar convergence results.

– from the numerical experiments, it seems very plausible that the Gibbs overshoot at the
discontinuity is reduced when applying the complex ε-algorithm. It would be interesting to
theoretically answer this conjecture.

Acknowledgement The authors would like to thank the anonymous referees whose remarks
have helped them in improving the presentation of the paper.
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[Ba75] G.A. Baker, Essentials of Padé approximants, Academic Press, London (1975).
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