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Abstract We propose a model to describe the adaptation of a phenotypically structured pop-
ulation in a H-patch environment connected by migration, with each patch associated with a
different phenotypic optimum, and we perform a rigorous mathematical analysis of this model.
We show that the large-time behaviour of the solution (persistence or extinction) depends on
the sign of a principal eigenvalue, λH , and we study the dependency of λH with respect to H.
This analysis sheds new light on the effect of increasing the number of patches on the persis-
tence of a population, which has implications in agroecology and for understanding zoonoses;
in such cases we consider a pathogenic population and the patches correspond to different host
species. The occurrence of a springboard effect, where the addition of a patch contributes to
persistence, or on the contrary the emergence of a detrimental effect by increasing the number of
patches on the persistence, depends in a rather complex way on the respective positions in the
phenotypic space of the optimal phenotypes associated with each patch. From a mathematical
point of view, an important part of the difficulty in dealing with H ≥ 3, compared to H = 1 or
H = 2, comes from the lack of symmetry. Our results, which are based on a fixed point theorem,
comparison principles, integral estimates, variational arguments, rearrangement techniques, and
numerical simulations, provide a better understanding of these dependencies. In particular, we
propose a precise characterisation of the situations where the addition of a third patch increases
or decreases the chances of persistence, compared to a situation with only two patches.
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1 Introduction

In [15], we analysed PDE systems describing the dynamics of adaptation of a phenotypically
structured population, under the effects of mutation, selection and migration in a two-patch
environment, each patch being associated with a different phenotypic optimum. Consistently
with current literature [11,24,27] in evolutionary biology, our analysis showed that migration
between the two patches leads to a locally reduced fitness. This reduction in fitness is known as
a migration load [14] and implies decreased chances of persistence of the global population in a
two-patch system compared to a single patch environment.

From an epidemiological viewpoint, the two patches can be interpreted as two different types
of hosts (different species, or different genetic variants). Thus, the above result means that it
is more difficult for a pathogen to adapt and establish in a two-patch environment connected
by migration than in a single patch environment. This observation is in agreement with one of
the fundamental principles of agroecology [7,13], which is that host species diversification should
lead to a higher resilience of agroecosystems.

Nevertheless, as discussed in [19], what is right for two patches may not be necessarily right
for three patches or more. The presence of a third host may indeed cause a springboard effect,
leading to higher chances of persistence of the pathogen, compared to an environment with two
hosts. This is a common pattern in zoonoses. For instance the main reservoirs of influenza A
virus are the aquatic birds, but it is widely accepted that these viruses need to adapt in an
intermediate host (such as pig or poultry) before they lead to an outbreak in human populations
[28,33]. Coronaviruses, including SARS-CoV-1 and SARS-CoV-2, are also zoonotic, with bats as
presumed main reservoir. Intermediate hosts are also suspected to have played an important role
in the 2003 and 2019 outbreaks [17,18].

https://doi.org/10.17605/OSF.IO/QAV2M
https://doi.org/10.17605/OSF.IO/QAV2M
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Up to our knowledge, there is no rigorous mathematical framework to study the effect of host
diversification on the adaptation of a pathogen, when there are three hosts or more. Here, using
the same assumptions as in [15], we study a system for a phenotypically structured population,
under the effects of mutation, selection and migration between several hosts. Our main goal is to
check whether the introduction of a third host leads to the above-mentioned springboard effect, or
whether, on the contrary, it reduces the chances of persistence of the global population compared
to a situation with two hosts. Thus, we mostly focus on the case of three hosts, described by the
following system:

∂tu1(t,x) =
µ2

2
∆u1(t,x) + f1(x, u1(t, ·)) + δ

[
u2(t,x) + u3(t,x)

2
− u1(t,x)

]
,

∂tu2(t,x) =
µ2

2
∆u2(t,x) + f2(x, u2(t, ·)) + δ

[
u1(t,x) + u3(t,x)

2
− u2(t,x)

]
,

∂tu3(t,x) =
µ2

2
∆u3(t,x) + f3(x, u3(t, ·)) + δ

[
u1(t,x) + u2(t,x)

2
− u3(t,x)

]
,

for t > 0, and x = (x1, · · · , xn) ∈ Rn. Here, and as in [15], x is a breeding value for phenotype
(for short, we simply write “phenotype” in the sequel), and corresponds to a set of n ≥ 1 traits.
The unknowns ui are the phenotype densities in the hosts i ∈ {1, 2, 3}, the Laplace operator
describes the mutation effects on the phenotype, µ > 0 is a mutational parameter, δ > 0 the
migration rate, and the functions fi(x, ui(t, ·)) describe the growth of the phenotype x in the
host i (the precise assumptions on the functions fi are given below). Note that the migration
and mutation parameters are assumed to be identical over the three hosts. In particular, each
host sends migrants to the other hosts, at a rate δ, and the amount of migrants is evenly split
between the other hosts, hence the factor 1/2. The host dynamics are not explicitly modelled,
which implies that host population sizes are constant over the time period considered, and that
the presence of the pathogen does not affect host population sizes. Additionally, the symmetric
aspect of migration could be explained by the fact that the H hosts are well-mixed (mean field
approximation) and present in comparable proportions. This vision is of course schematic, and
cannot be directly applied to study the complex epidemiological dynamics of pathogens such as
influenza A or coronaviruses. Nonetheless, as we will see, it still allows us to capture relevant
and surprising effects of host diversification.

Some of our results also deal with the general case of H ≥ 2 hosts. Thus, we also consider
the following system:

∂tui(t,x) =
µ2

2
∆ui(t,x) + fi(x, ui(t, ·)) + δ

 H∑
k=1
k 6=i

uk(t,x)

H − 1
− ui(t,x)

, 1 ≤ i ≤ H, (1)

for t > 0 and x ∈ Rn. Again, we assume that each host sends migrants to the other hosts, at a
rate δ, and that the amount of migrants is evenly split between the other hosts, hence the factor
1/(H−1). With these assumptions, the migration rate from a given host i towards the pool made
up of all the H − 1 other hosts does not depend on H. In the particular case H = 1, there is no
migration and (1) reduces to the scalar equation ∂tu1(t,x) = (µ2/2)∆u1(t,x) + f1(x, u1(t, ·)).

Each host is characterised by a phenotype optimum Oi ∈ Rn. Namely, the fitness (reproduc-
tive success) of a phenotype x in the host i is described by a function ri(x) that decreases away
from the optimum Oi. As in [15] we use Fisher’s geometrical phenotype-to-fitness model (FGM),
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which assumes that:

ri(x) = rmax − α
‖x−Oi‖2

2
, (2)

where rmax ∈ R is the fitness of the optimal phenotype (Oi) in the host i, α > 0 is a measure of
the intensity of selection, and ‖ ‖ denotes the Euclidean norm in Rn (we use the same notation
for any dimension n ≥ 1, we also denote · the Euclidean inner product in Rn). Although the
geometrical FGM may appear oversimplified, it is grounded in several theoretical and empirical
arguments [23,31] and can be derived from a less constrained model of the phenotype-to-fitness
landscape based on random matrix theory [22]. As pointed out in [16], other non-quadratic fitness
functions may be more appropriate in specific situations, such as a changing environment.

In [15], we considered two types of growth functions, either linear (corresponding to a Malthu-
sian growth) or logistic-like. Here, we only consider the logistic-like growth term, which de-
scribes a nonlocal competition between the phenotypes within each host. It corresponds to
fi(x, φ) = φ(x)

(
ri(x) −

∫
Rn φ(y)dy

)
for any x ∈ Rn and any continuous L1(Rn) function

φ : Rn → R, that is,

fi(x, ui(t, ·)) = ui(t,x)

(
ri(x)−

∫
Rn
ui(t,y) dy

)
. (3)

This is the most biologically relevant (however see [30] for discussions on such choices) and
mathematically involved case.

When H = 2, we established in [15] the existence and uniqueness of the solution of the Cauchy
problem associated with (1) with growth functions (3), under some symmetry assumptions on the
initial conditions. Then, still in the case H = 2, we obtained a characterisation of the large-time
behaviour of the solution (persistence or extinction) based on the sign of a principal eigenvalue,
here denoted λ2.

In this work, we first extend these results to the general case H ≥ 2. Let us emphasise that,
when H ≥ 3, symmetry arguments are no longer applicable (except in some very particular
configurations). In Section 2, we thus state the existence and uniqueness of the solution of the
Cauchy problem associated with (1), and we establish a condition for the persistence of the
population, based on the sign of a principal eigenvalue denoted λH , and we describe the large-
time behaviour of the total population size. Then, we propose in Section 3 a mathematical
analysis of the effects of the parameters on the value of λH , including the effect of the mutation,
selection and migration parameters. As explained above, our main objective is to investigate the
effect of adding a third host, compared to a baseline situation with two hosts. In that respect, we
fix the position of the two optima O1 and O2, leading to a given value of λ2. Then, in Section 4,
we study the sign of λ2 − λ3, depending on the position O3 of the optimum of the third host.
This sign determines whether the presence of a third host increases (λ2 − λ3 > 0) or decreases
(λ2−λ3 < 0) the chances of persistence. We propose a mathematical analysis, completed by some
numerical simulations. The outcomes are various, and sometimes surprising, see the discussion
in Section 5. We gather all the proofs in Section 6.

2 Existence, uniqueness and persistence results

2.1 The Cauchy problem

For H ≥ 2, we consider the nonlinear and nonlocal system (1), where the functions x 7→ ri(x)
are as in (2), while the functions fi(x, ui(t, ·)) are as in (3). System (1) is supplemented with an
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initial datum

u0 = (u01, . . . , u
0
H), u0i ∈ C(Rn) ∩ L∞(Rn) ∩ L1(Rn) and u0i ≥ 0 for all 1 ≤ i ≤ H, (4)

and we focus on the well-posedness of the Cauchy problem (1)-(4), under some additional decay
properties on u0, see (5) below. The proofs are very different from that for the case H = 2 in [15],
where symmetry arguments were used to reduce the study of the nonlinear system (1) to that of
a linear scalar equation. Such arguments cannot be applied in the general case H > 2.

Theorem 1 (Well-posedness) Assume that there exist positive constants K and θ such that
the initial condition u0 in (4) satisfies

∀ 1 ≤ i ≤ H, ∀x ∈ Rn, 0 ≤ u0i (x) ≤ K e−θ‖x‖. (5)

Then, there is a unique solution u = (u1, . . . , uH) of (1)-(4) in C([0,+∞)×Rn,RH)∩C1;2
t;x ((0,+∞)×

Rn,RH) such that

∀ 1 ≤ i ≤ H, ∀ t ≥ 0, ∀x ∈ Rn, 0 ≤ ui(t,x) ≤ K e(rmax+1)t−min(θ,1/µ)‖x‖, (6)

and the maps t 7→
∫
Rn ui(t,x) dx are locally Lipschitz-continuous in [0,+∞).

2.2 The principal eigenvalue

Here, we present some linear material, namely the principal eigenvalue λH and the principal
eigenvector Φ = (ϕ1, . . . , ϕH) solving AΦT = λHΦ

T , where the operator

A := −µ
2

2
∆−



r1(x)− δ δ

H − 1
· · · δ

H − 1
δ

H − 1
r2(x)− δ . . .

...

...
. . .

. . .
δ

H − 1
δ

H − 1
· · · δ

H − 1
rH(x)− δ


(7)

is obtained by linearizing system (1) around the trivial solution (0, . . . , 0). Since δ > 0 and
since the fitness functions, defined in (2), satisfy ri(x) → −∞ as ‖x‖ → +∞, A can be seen
as a cooperative Schrödinger operator with confining potentials, of which the linear analysis is
classical, see [1,10] in a bounded domain, or [8,9] in a slightly different setting. Another approach,
used in [15], consists in defining λH as the limit, as R→ +∞, of the Dirichlet principal eigenvalue
λRH in the open Euclidean ball B(O, R) of center the origin

O := (0, . . . , 0)

and radius R > 0. Similarly, Φ = (ϕ1, . . . , ϕH) can be defined as in [15] as the locally uniform
limit of the functions ΦR (after suitable multiplication, say, with ΦR1 (O) = 1). The functions
ΦR belong to C∞0 (B(O, R))H from standard elliptic estimates, where C∞0 (B(O, R)) is the space
of C∞(B(O, R)) functions vanishing on ∂B(O, R). It is also known that the functions ϕi’s are
positive and decay exponentially as ‖x‖ → +∞, thanks to the confining property of the potentials
ri. We thus consider the principal eigenvalue λH , the normalised1 and positive (that is, positive

1 In the sequel, we say that Ψ ∈ L2(Rn)H is normalised whenever
∫
Rn ‖Ψ(x)‖2 dx = 1.
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componentwise) principal eigenvector Φ := (ϕ1, . . . , ϕH) ∈
(
C∞0 (Rn)∩L1(Rn)

)H
(with C∞0 (Rn)

being the space of C∞(Rn) functions converging to 0 as ‖x‖ → +∞), satisfying

− µ2

2
∆ϕi(x)− ri(x)ϕi(x)− δ

 H∑
k=1
k 6=i

ϕk(x)

H − 1
− ϕi(x)

 = λH ϕi(x) in Rn, 1 ≤ i ≤ H. (8)

We also know that Φ ∈ (H1(Rn) ∩ L2
w(Rn))H , with

L2
w(Rn) :=

{
ψ : Rn → R such that x 7→ ‖x‖ψ(x) ∈ L2(Rn)

}
,

and that the following Rayleigh formula is available:

λH = QH(Φ) = min
{
QH(Ψ) : Ψ ∈ (H1(Rn) ∩ L2

w(Rn))H ,

∫
Rn
‖Ψ(x)‖2 dx = 1

}
, (9)

where

QH(Ψ) = QH(ψ1, . . . , ψH):=

H∑
i=1

(
µ2

2

∫
Rn
‖∇ψi(x)‖2 dx−

∫
Rn
ri(x) (ψi(x))2 dx

)

+ δ

1−
∑

1≤i<j≤H

2

H − 1

∫
Rn
ψi(x)ψj(x) dx

 .

(10)

Furthermore, the principal eigenvector Φ and its opposite −Φ are the unique normalised minima
of QH in (H1(Rn) ∩ L2

w(Rn))H , and Φ is the unique nonnegative (componentwise) eigenvector
of A in (H1(Rn) ∩ L2

w(Rn))H .
The principal eigenvalue λH depends on the parameters δ, α, µ, rmax (on a trivial additional

manner, since λH + rmax is independent of rmax), as well as on the optima (Oi)1≤i≤H . In the fol-
lowing sections, depending on the context, we will also use the notations λH(δ), λH(O1, . . . ,OH),
or λH(δ, α, µ,O1, . . . ,OH) in order to emphasise the effect of the various parameters on λH .

For the particular case H = 1, we refer to Section 3.1.

2.3 Extinction vs persistence

Let u = (u1, . . . , uH) denote the solution of (1)-(6) given in Theorem 1. Remember that ui ≥ 0
in [0,+∞) × Rn, for each 1 ≤ i ≤ H. Assume without loss of generality that u0 6≡ (0, . . . , 0) in
Rn, that is, there is 1 ≤ j ≤ H such that uj 6≡ 0 in Rn. The strong parabolic maximum principle
applied to uj implies that uj > 0 in (0,+∞) × Rn, and then ui > 0 in (0,+∞) × Rn from the
strong parabolic maximum principle applied to each ui with i 6= j. For t ≥ 0, we define the
population size within each host 1 ≤ i ≤ H as

Ni(t) :=

∫
Rn
ui(t,y) dy,

which is a positive real number for t > 0, by (6) and the previous observations. Furthermore, the
Lebesgue dominated convergence theorem implies that each function Ni is continuous in [0,+∞).
The total population size in the system is defined as

N(t) := N1(t) + . . .+NH(t),
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and the mean growth rate within each host as

ri(t) :=

∫
Rn ri(y)ui(t,y) dy∫

Rn ui(t,y) dy
=

∫
Rn ri(y)ui(t,y) dy

Ni(t)
. (11)

By integrating (1) over [t1, t2] × B(O, R) for any 0 < t1 < t2 < +∞ and R > 0, by passing to
the limit as R→ +∞ and then as t2 − t1 → 0, and by using (6) as in the proof of Theorem 1 in
Section 6.1 (see especially (38) below), it follows that the population sizes are differentiable in
(0,+∞) and satisfy

N ′i(t) = ri(t)Ni(t)−Ni(t)2 +
δ

H − 1

H∑
k=1
k 6=i

(Nk(t)−Ni(t))

for every 1 ≤ i ≤ H and t > 0 (and even at t = 0 by continuity as t→ 0 in the above formula).
As classical in related literature, see [3,6] among many others, the sign of the principal

eigenvalue λH fully determines the fate of the population at large times.

Proposition 1 (Extinction vs persistence) Let λH be given by (9), and let u be the solution
of (1)-(6) given by Theorem 1, with a non-trivial initial condition u0, let Ni(t) be the corre-
sponding population sizes in each habitat, and let N(t) the total population size in the system.

(i) If λH > 0 and u0 is compactly supported, then

N(t)→ 0 as t→ +∞ (extinction of the population).

(ii) If λH = 0 and u0 is compactly supported, then

lim inf
t→+∞

(
min

1≤i≤H
Ni(t)

)
= 0 (partial extinction of the population).

(iii) If λH < 0, then

lim sup
t→+∞

N(t)≥ lim sup
t→+∞

(
max

1≤i≤H
Ni(t)

)
≥−λH>0 (persistence of the population). (12)

2.4 Stationary states

In this subsection, we are interested in positive bounded stationary states of (1). By positive, we
mean positive componentwise in Rn since, from the strong elliptic maximum principle applied
to this cooperative system, if a bounded stationary state is nonnegative componentwise in Rn,
it is either positive componentwise, or identically 0 in Rn. From the confining properties of the
fitnesses ri, any positive bounded stationary state of (1) necessarily decays to 0 exponentially as
‖x‖ → +∞. Therefore, it follows from Theorem 1 and the proof of Proposition 1 that (1) has no
positive bounded stationary state if λH ≥ 0 (see Remark 4 below for further details).

Furthermore, it turns out that, when persistence occurs, that is, λH < 0, the nature of the
stationary states deeply depends on the number of hosts. Namely, when H = 1, 2, the stationary
states are proportional to the principal eigenfunctions (and the study of their “shapes” has
recently received a lot of attention, see e.g. [2,12,25,26]). This is no longer true in general in the
case H > 2, due to a possible symmetry breaking. More precisely, we have the following results.
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Proposition 2 (Stationary states) (i) Assume that H = 1 and λ1 < 0. The positive bounded
stationary state of (1) is unique and is given by:

p1(x) = −λ1
ϕ1(x)∫

Rn ϕ1(y) dy
, x ∈ Rn.

(ii) Assume that H = 2 and λ2 < 0. Then the principal eigenvector (ϕ1, ϕ2) of A in (H1(Rn) ∩
L2
w(Rn))2 satisfies

∫
Rn ϕ1(y) dy =

∫
Rn ϕ2(y) dy, and

x 7→ (p1(x), p2(x)) :=

(
−λ2

ϕ1(x)∫
Rn ϕ1(y) dy

, −λ2
ϕ2(x)∫

Rn ϕ2(y) dy

)
(13)

is a positive bounded stationary state of (1) proportional to (ϕ1, ϕ2), and satisfying
∫
Rn p1(x) dx =∫

Rn p2(x) dx = −λ2.
(iii) Assume that H > 2 and λH < 0. Then, there exists a configuration of the optima (O1, . . . ,OH)
such that any positive bounded stationary state (p1, . . . , pH) is not proportional to the principal
eigenvector (ϕ1, . . . , ϕH) of A.

3 Effect of the main parameters on persistence

In this section, we investigate the dependence of λH with respect to the parameters δ > 0, α > 0,
µ > 0, and the optima (Oi)1≤i≤H ∈ (Rn)H . It is useful to start with the “reference case”, namely
H = 1.

3.1 The reference case with a single host

In that case of a single host at position O1, there is no transfer rate, that is, (8) reduces to a
single equation with δ = 0. The principal eigenpair (λ1, G1) solving

−µ
2

2
∆G1(x)− r1(x)G1(x) = λ1G1(x) in Rn, (14)

is explicitly given by

λ1 = λ1(α, µ) =
µn
√
α

2
− rmax, G1(x) = G(x−O1), G(y) := CG e

−
√
α‖y‖2/(2µ), (15)

where CG > 0 is a normalising positive constant that guarantees that
∫
Rn G

2(y)dy = 1. No-
tice that, as the problem (14) is left invariant by any translation of the phenotypic space, the
eigenvalue λ1 does not depend on the position of the optimum O1.

3.2 The case of H hosts with H ≥ 2

In this subsection, we assume H ≥ 2 and denote λH = λH(δ, α, µ,O1, . . . ,OH) the principal
eigenvalue of A in (H1(Rn) ∩ L2

w(Rn))H , depending on δ > 0, α > 0, µ > 0, and (Oi)1≤i≤H . As
above, the corresponding normalised eigenvector is denoted Φ = (ϕ1, . . . , ϕH). Observe that, if
we consider (8) with δ = 0, the H equations are decoupled and we then define

λH(0, α, µ,O1, . . . ,OH) := λ1(α, µ) =
µn
√
α

2
− rmax. (16)
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For later use, we define, for 1 ≤ i ≤ H,

Gi(x) := G(x−Oi) = CG e
−
√
α‖x−Oi‖2/(2µ)

and it is convenient to straightforwardly compute∫
Rn
Gi(x)Gj(x) dx = e−

√
α ‖Oi−Oj‖2/(4µ). (17)

The following first result of this section asserts that the principal eigenvalue depends contin-
uously on the parameters, and that an increase of the migration rate δ > 0, or of the intensity
of selection α > 0, or of the mutational parameter µ > 0 reduces the chances of persistence of
the population.

Proposition 3 (Continuity and monotonicity w.r.t. parameters) Let H ≥ 2 be given. The
function (δ, α, µ,O1, . . . ,OH) 7→ λH(δ, α, µ,O1, . . . ,OH) is continuous in [0,+∞)× (0,+∞)2 ×
(Rn)H , and concave with respect to (δ, α, µ). Furthermore, λH(δ, α, µ,O1, . . . ,OH) is increas-
ing with respect to α > 0 and to µ > 0. Lastly, either the optima Oi are all identical and
λH(δ, α, µ,O1, . . . ,OH) = λ1(α, µ) = µn

√
α/2− rmax for all δ ≥ 0, or λH(δ, α, µ,O1, . . . ,OH)

is increasing with respect to δ ≥ 0.

The following bounds on λH shows, in particular, that the case with many hosts is always
less favourable for the population than the case with a single host.

Proposition 4 (Bounds on λH w.r.t. λ1) Let H ≥ 2 be given. Then, for all δ > 0, α > 0,
µ > 0, and (Oi)1≤i≤H ∈ (Rn)H ,

µn
√
α

2
−rmax =λ1(α, µ)≤λ1(α, µ) + δ

1−
∑

1≤i<j≤H

2

H − 1

∫
Rn
ϕi(x)ϕj(x)dx


≤λH(δ, α, µ,O1, . . . ,OH)

≤λ1(α, µ)+δ

1−
∑

1≤i<j≤H

2

H(H−1)

∫
Rn
Gi(x)Gj(x)dx


≤λ1(α, µ) + δ =

µn
√
α

2
− rmax + δ.

(18)

Moreover, for every µ > 0, α > 0 and (Oi)1≤i≤H ∈ (Rn)H , λH(δ, α, µ,O1, . . . ,OH) is bounded
independently of δ.

In the sequel, and without loss of generality, we fix the optima O1 and O2 at

O1 := (−β, 0, . . . , 0), O2 := (β, 0, . . . , 0), (19)

for some β ≥ 0. In the case H = 2, we now denote λ2(δ, α, µ, β) the principal eigenvalue of (8).
In [15], we defined the habitat difference by mD := ‖O1 −O2‖2/2 = 2β2, and we proved that
λ2(δ, α, µ, β) was an increasing function of mD (and therefore of β), see [15, Proposition 4]. We
also proved that λ2(δ, α, µ, β)→ λ1(α, µ) = µn

√
α/2− rmax as δ → 0+. The result below, which

is a direct consequence of Proposition 4 (together with (17)), extends this last result to the case
of H ≥ 2 hosts.
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Corollary 1 Let H ≥ 2 be given. Then, for every δ > 0, α > 0, µ > 0, β ≥ 0, and (Oi)1≤i≤H ∈
(Rn)H with O1 and O2 as in (19), there holds

λ1(α, µ) ≤ λH(δ, α, µ,O1, . . . ,OH) ≤ λ1(α, µ) + δ

(
1− 2

H(H − 1)
e−
√
αβ2/µ

)
.

Incidentally, for H = 2, λ2(δ, α, µ, β)− λ1(α, µ)→ 0 when α→ 0+, µ→ +∞ or β → 0.

Having understood, by Propositions 3-4, the small migration rate regime δ → 0, we now turn
to the asymptotics δ → +∞. The case H = 2 was investigated in [15, Proposition 4], where we
obtained that λ2(δ, 1, µ, β) → λ1(1, µ) + β2/2 = µn/2 − rmax + β2/2 as δ → +∞ (in the case
α = 1). We generalise here this result to any number H ≥ 2 of hosts.

Proposition 5 (Large migration rate) Let H ≥ 2, α > 0, µ > 0, and (Oi)1≤i≤H ∈
(Rn)H be given. Then λH(δ, α, µ,O1, . . . ,OH) ↗ λH,∞(α, µ,O1, . . . ,OH) as δ → +∞, where
λH,∞(α, µ,O1, . . . ,OH) is the principal eigenvalue for a population living in a single host and
with “effective” fitness equal to the mean of the H original fitness functions, that is,

− µ2

2
∆ϕ(x)−RH(x)ϕ(x) = λH,∞(α, µ,O1, . . . ,OH)ϕ(x), RH(x) :=

1

H

H∑
i=1

ri(x), (20)

with principal eigenfunction ϕ ∈ C∞0 (Rn). As a consequence, given the center of mass

M :=
1

H

H∑
i=1

Oi,

we have

λH,∞(α, µ,O1, . . . ,OH) = λ1(α, µ)−RH(M) + rmax. (21)

4 Effect of a third host

As seen in Proposition 4, the inequality λ1(α, µ) = λ1 ≤ λ2 = λ2(δ, α, µ,O1,O2) is always true
(as is the inequality λ1 ≤ λH for any H ≥ 2), meaning that the presence of a second host always
penalises the population. In this section, given δ > 0, α > 0, µ > 0, we investigate how the
introduction of a third host affects the chances of survival of the population, compared to the
case of only two hosts. To do so, we denote λ2 = λ2(O1,O2) the principal eigenvalue for two
hosts with optima O1 and O2 as in (19), and λ3 = λ3(O1,O2,O3) the principal eigenvalue for
three hosts with optima O1, O2 and O3. Our goal is to compare λ2(O1,O2) and λ3(O1,O2,O3).
As revealed in the following, the situation is very rich and the outcomes dramatically depend not
only on the different parameters but also the position of the third optimum O3. In the following,
we denote

Λδ :=
{
O3 ∈ Rn : λ3(O1,O2,O3) < λ2(O1,O2)

}
(22)

the region in the phenotypical space where the presence of a third host corresponding to an
optimum O3 causes a springboard effect, leading to higher chances of persistence of the pathogen,
compared to an environment with the two hosts with optima O1 and O2.

We first deal in Section 4.1 with the case of small or large migration regimes (δ small or
large), while Section 4.2 provides some comparisons which hold for any given δ > 0. Some
complementing numerical simulations are presented in Section 4.3.
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4.1 Large and small migration regimes

Large migration regime

Let us first consider the regime corresponding to the limit case δ → +∞. We denote

Λ∞ := {O3 ∈ Rn : λ3,∞(O1,O2,O3) < λ2,∞(O1,O2)}, (23)

where the quantities λH,∞ are defined in Proposition 5 (there, the dependence of λH,∞ on α
and µ was also emphasised; here α > 0 and µ > 0 are fixed, and we are mainly interested in
the dependence with respect to the position of the optima, this is why we use the notations
λ3,∞(O1,O2,O3) and λ2,∞(O1,O2)). We also recall that λ1 = µn

√
α/2 − rmax is independent

of δ.

For two hosts, the center of mass is M2 = (O1 + O2)/2 = (0, . . . , 0) = O, and the effective
fitness defined in Proposition 5 is R2(x) = (r1(x) + r2(x))/2 = rmax − α‖x‖2/2 − αβ2/2. As a
result

λ2,∞(O1,O2) = λ1 −R2(M2) + rmax = λ1 +
αβ2

2
.

For three hosts, the third optimum is denoted O3 = (a1, . . . , an), and the effective fitness of
Proposition 5 is

R3(x) =
r1(x) + r2(x) + r3(x)

3
= rmax −

α

2
‖x−M3‖2 −

α

2

(
2

3
β2 +

2

9
(a21 + · · ·+ a2n)

)
,

where M3 := 1
3O3 is the center of mass of the triangle O1O2O3. As a result

λ3,∞(O1,O2,O3) = λ1 −R3(M3) + rmax = λ1 +
α

2

(
2

3
β2 +

2

9
(a21 + · · ·+ a2n)

)
.

From this, we immediately identify the asymptotic region (as δ → +∞) where the third host
increases the chances of persistence (see right column of Figure 1).

Proposition 6 (Region leading to higher chances of persistence for large migration
rate) In the phenotypical space Rn, the region Λ∞ defined by (23) is the open Euclidean ball
B(O,

√
3/2β) centered at the origin O and of radius

√
3/2β.

Notice that both O1 and O2 belong to Λ∞. On the other hand, O3 = (0,±
√

3β, 0, . . . , 0),
which makes O1O2O3 an equilateral triangle, does not belong to Λ∞. This, as revealed below
(see Proposition 8), is actually true for all δ > 0.

Remark 1 Consider the “host in the middle” situation, that is O3 = O = (0, . . . , 0) so that
λ3,∞(O1,O2,O) = λ1 + αβ2/3. We now introduce a fourth host whose optimum is denoted
O4 = (b1, . . . , bn). As above we compute

λ4,∞(O1,O2,O,O4) = λ1 +
α

2

(
1

2
β2 +

3

16
(b21 + · · ·+ b2n)

)
.

Then the region where λ4,∞(O1,O2,O,O4) < λ3,∞(O1,O2,O) is the ball B(O,
√

8/9β) and,
this time, O1 and O2 do not belong to this ball.
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Small migration regime

Let us fix α > 0, µ > 0, β > 0, O1 and O2 as in (19), and let us now investigate Λδ given in (22)
for 0 < δ � 1. For given positions O1,O2,O3, using the notations λ3 = λ3(δ) and λ2 = λ2(δ), we
focus on the difference λ3(δ)−λ2(δ). As mentioned above, by (16), λ3(0)−λ2(0) = λ1−λ1 = 0,
and λ3(δ) − λ2(δ) → λ1 − λ1 = 0 by Proposition 4. Hence, if we define Λ0 as in (22) with
δ = 0, we have Λ0 = ∅. Thus, the quantity λ′3(0) − λ′2(0), if it exists, would be an important
information. For a general H ≥ 2, we denote λH = λH(δ), all other parameters α > 0, µ > 0
and (Oi)1≤i≤H ∈ (Rn)H being fixed.

Proposition 7 (Region leading to higher chances of persistence for small migration
rate) For any H ≥ 2, the function δ 7→ λH(δ) is differentiable in [0,+∞), with λ′H(δ) < 1 for
all δ ≥ 0. Furthermore, either the optima Oi are all identical and λH(δ) = λ1 = µn

√
α/2− rmax

for all δ ≥ 0, or λ′H(δ) > 0 for all δ ≥ 0.2 Lastly,

λ′H(0) =
H − µA
H − 1

, (24)

where

µA := max
q=(q1,...,qH)∈RH , ‖q‖=1

∑
1≤i,j≤H

aijqiqj

is the largest eigenvalue of the H ×H symmetric matrix A = (aij)1≤i,j≤H defined by

aij := e−
√
α‖Oi−Oj‖2/(4µ) > 0.

In particular, with O1 and O2 as in (19), there holds

P := {O3 ∈ Rn : λ′3(0) < λ′2(0)}

=
{

O3 ∈ Rn : k(O3) := g(O3) cos
(arccos(h(O3) g(O3)−3)

3

)
> 1
} (25)

with

g(O3) :=

√
1 + 2h(O3) cosh(

√
αa1β/µ)

3
, h(O3) := e

√
α(3β2−‖O3‖2)/(2µ),

and O3 = (a1, . . . , an). Thus, if O3 ∈ P, then there is δ0 > 0 such that O3 ∈ Λδ for every
0 < δ < δ0, with Λδ as in (22). On the other hand, if O3 6∈ P, then there is δ0 > 0 such that
O3 6∈ Λδ for every 0 < δ < δ0.

Let us now briefly comment on the properties of P given in (25). First of all, since the function
k is continuous in Rn and converges to cos(π/6)/

√
3 = 1/2 < 1 as ‖O3‖ → +∞, the set P is

open and bounded. Furthermore, it is symmetric with respect to the hyperplane {0}×Rn−1 and
axisymmetric with respect to the axis R×{0}n−1. When O3 = (0,

√
3β, 0, . . . , 0), then O1O2O3

is an equilateral triangle, and k(O3) = 1, hence O3 ∈ ∂P. This is, in some sense, sharp: we will
actually prove in Proposition 8 below that, for any δ > 0, O3 = (0,

√
3β, 0, . . . , 0) 6∈ Λδ.

On the other hand, for an arbitrary point O3 = (a1, . . . , an) ∈ Rn, formula (24) implies that

λ′2(0) = 1− e−
√
αβ2/µ and, with q := (1/

√
3, 1/
√

3, 1/
√

3),

λ′3(0) ≤ 3− qAq

2
= 1− e−

√
αβ2/µ + 2 e−

√
α(β2+‖O3‖2)/(4µ) cosh(

√
αa1β/(2µ))

3
.

2 Notice that the inequalities 0 ≤ λ′H(0) < 1 are coherent with Corollary 1.
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Therefore,

P ⊃
{

O3 ∈ Rn : e−3
√
αβ2/(4µ) < e−

√
αa21/(4µ) cosh

(√αa1β
2µ

)
e−
√
α(a22+···+a

2
n)/(4µ)

}
.

By studying the variations of the function a1 7→ e−
√
αa21/(4µ) cosh(

√
αa1β/(2µ)), one infers that

P ⊃ [−
√

3β,
√

3β]× {0}n−1,

hence O1 ∈ P and O2 ∈ P. Lastly,

P ⊃ {0} ×B′(O′,
√

3β),

where B′(O′,
√

3β) is the open Euclidean ball of radius
√

3β and centered at the origin O′ :=
(0, . . . , 0) in Rn−1.

4.2 The general case δ > 0

In this subsection, we fix the parameters δ > 0, α > 0, and µ > 0. We recall that, without loss
of generality, O1 and O2 are as in (19) with β ≥ 0, and that Λδ denotes the phenotypical region
where the presence of O3 leads to higher chances of persistence, as defined in (22).

Some fitness loss situations

We show that if the third optimum O3 is such that O1O2O3 forms an equilateral triangle, then
λ2−λ3 is always negative (reduced chances of persistence). Since, by uniqueness of the principal
eigenpair of (8), the map O3 7→ λ3(O1,O2,O3) is invariant by rotation around the line (O1O2)
containing O1 and O2, we can assume without loss of generality that O3 lies in R2 × {0}n−2,
that is, O3 = (0,±

√
3β, 0, . . . , 0).

Proposition 8 (Equilateral triangle configuration) Assume that δ > 0, α > 0, µ > 0
are fixed, together with O1 and O2 as in (19) with β > 0. If O3 = (0,

√
3β, 0, . . . , 0) or O3 =

(0,−
√

3β, 0, . . . , 0), then λ3(O1,O2,O3) > λ2(O1,O2), hence O3 6∈ Λδ.

Now, still for any fixed δ > 0, α > 0, µ > 0, and O1, O2 as in (19) with β ≥ 0, we aim
at describing the behaviour of λ3 when the third optimum O3 is far away from the two other
optima. To do so, we introduce an auxiliary eigenvalue problem with two hosts, corresponding
to a situation with migration loss: half of the individuals are lost during the migration process.
Namely, we define the principal eigenvalue λ̃2(O1,O2) satisfying

− µ2

2
∆ϕ̃i(x)− ri(x) ϕ̃i − δ

(
1

2
ϕ̃j(x)− ϕ̃i(x)

)
= λ̃2(O1,O2) ϕ̃i, (26)

for (i, j) = (1, 2) and (i, j) = (2, 1) with (ϕ̃1, ϕ̃2) ∈
(
H1(Rn) ∩ L2

w(Rn) ∩ C∞0 (Rn) ∩ L1(Rn)
)2

the corresponding normalised principal eigenvector. Note the factor 1/2 in front of ϕ̃j which
describes the migration loss.

Before going further on, we note that an evaluation of the Rayleigh quotient associated with
λ̃2(O1,O2) at (G1, 0) (with G1 = G(· − O1) the principal eigenfunction associated with λ1)

implies that λ̃2(O1,O2) ≤ λ1 + δ. Additionally, multiplying (26) by ϕ̃1 for (i, j) = (1, 2) (resp.
by ϕ̃2 for (i, j) = (2, 1)), integrating by parts and adding the two equations, and using this time
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the Rayleigh formula associated with λ2(O1,O2), we observe that λ̃2(O1,O2) ≥ λ2(O1,O2) +
δ
∫
Rn ϕ̃1 ϕ̃2 > λ2(O1,O2) since δ > 0 and ϕ̃1 > 0, ϕ̃2 > 0 in Rn. Finally,

λ2(O1,O2) < λ̃2(O1,O2) ≤ λ1 + δ. (27)

When the third optimum “tends to infinity”, we expect the system to resemble this case
of two hosts with migration loss. Indeed, roughly speaking, the third host disappears from the
system taking with him migrants arriving from hosts 1 and 2, thus acting as a well or a black
hole. Precisely, the following holds.

Proposition 9 (Far away third optimum) Assume that δ > 0, α > 0, µ > 0 are fixed,
together with O1 and O2 as in (19) with β ≥ 0. For ‖O3‖ large enough, there holds

λ̃2(O1,O2) ≥ λ3(O1,O2,O3) ≥ λ̃2(O1,O2)−
δ

√
48 (λ̃2(O1,O2) + rmax)

√
α min(‖O3 −O1‖ , ‖O3 −O2‖)

, (28)

so that λ3(O1,O2,O3) → λ̃2(O1,O2) as ‖O3‖ → +∞, and λ3(O1,O2,O3) > λ2(O1,O2) for
all ‖O3‖ large enough.

Some situations where the presence of a third host leads to higher chances of persistence

In Section 4.1, the set Λδ where the presence of O3 leads to higher chances of persistence,
defined in (22), was captured for both regimes δ → +∞ and δ → 0+. For arbitrary δ > 0, a
sharp characterisation is very involved (see Proposition 11 and the numerical simulations below).
Nevertheless, we can provide the following information, saying that a third host with phenotypic
optimum close to that of one of the other two hosts is globally beneficial for the chances of
persistence.

Proposition 10 (When the third host resembles one of the two others) Assume that
δ > 0, α > 0, µ > 0 are fixed, together with O1 and O2 as in (19) with β > 0. Then there is
ρ > 0 such that

B(O1, ρ) ∪B(O2, ρ) ⊂ Λδ.

A host in the middle

Here we consider a different approach: we fix the parameters δ > 0, α > 0, µ > 0 and the third
optimum O3 as (O1 + O2)/2. In other words, O3 = (0, . . . , 0) = O, with our hypothesis (19).
We show that, when the two optima O1 and O2 are far enough from each other (meaning β > 0
large), this “host in the middle” configuration does not maximise the difference λ2(O1,O2) −
λ3(O1,O2,O3), that is, it does not minimise λ3(O1,O2,O3). This result, consistent with the
simulations in Figure 1, is slightly surprising (at least at first glance) and shows the richness of
the outcomes.

Proposition 11 (Host in the middle) Assume that δ > 0, α > 0 and µ > 0 are fixed. For
β > 0 large enough in (19), we have

λ3(O1,O2,O) > λ3(O1,O2,O1).

More precisely, λ3(O1,O2,O)→ λ1 + δ while λ3(O1,O2,O1)→ λ1 + δ/2 as β → +∞.
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We point out that, since λ3(O1,O2,O1) = λ3(O1,O1,O2) by symmetry, the limit λ1 +δ/2 =
limβ→+∞ λ3(O1,O2,O1) = limβ→+∞ λ3(O1,O1,O2) is coherent with the limit

lim
β→+∞

λ3(O1,O1,O2) = λ̃2(O1,O1) = λ1 +
δ

2
,

with λ̃2(O1,O1) being the principal eigenvalue of (26) in the case of identical optima (see the
proof of Proposition 11 in Section 6.3 for further details).

Decreasing λ3 by projecting

Next, still with O1 and O2 as in (19) without loss of generality, we show that replacing O3

by its projection on the line R × {0}n−1 containing O1 and O2 always decreases the principal
eigenvalue λ3, and thus increases the difference λ2−λ3, leading to higher chances of persistence.

Proposition 12 (Better on the line) Let O3 ∈ Rn, and let O]
3 be its projection on the line

R× {0}n−1, with O1 and O2 as in (19). Then

λ3(O1,O2,O3) ≥ λ3(O1,O2,O
]
3).

Existence of a best third optimum

With O1 and O2 being fixed, the following corollary asserts the existence of a minimum for
the function O3 7→ λ3(O1,O2,O3) defined in Rn, thus ensuring the existence of a point in the
phenotypic space maximizing the difference λ2(O1,O2)− λ3(O1,O2,O3).

Corollary 2 (Minimizing λ3(O1,O2, ·)) Assume that δ > 0, α > 0, µ > 0, O1 ∈ Rn and
O2 ∈ Rn are fixed. Then the function O3 7→ λ3(O1,O2,O3) has a minimum in Rn, equal to
O1 = O2 if these two optima are identical, or lying in the line (O1O2) if O1 6= O2.

Proof. Without loss of generality, one can assume that O1 and O2 are given as in (19). On the
one hand, if β = 0, then O1 = O2 = O and λ3(O1,O2,O) = λ2(O1,O2) = λ1, by Proposition 3,
while λ3(O1,O2,O3) > λ1 for all O3 6= O, by Proposition 3 again. The conclusion of Corollary 2
is then immediate in this case. On the other hand, if β > 0, the conclusion easily follows from
the continuity property in Proposition 3, together with Propositions 9, 10 and 12.

Remark 2 From Proposition 11, it follows that the middle optimum (O1 + O2)/2 is not a mini-
mum of the map O3 7→ λ3(O1,O2,O3) when ‖O1−O2‖ is large enough. Hence, for all ‖O1−O2‖
large enough, by symmetry, the map λ3(O1,O2, ·) has at least two different minima, of the type
(±aβ , 0, . . . , 0), for a certain aβ > 0, under the notation (19). For all ‖O1 −O2‖ large enough,
these optima maximise the difference λ2(O1,O2)− λ3(O1,O2, ·) (which is positive, by Proposi-
tion 10).

4.3 Numerical simulations

We present in Figure 1 a map of the positions of the third optimum O3 in the phenotypic plane
R2 with a colorbar picturing the corresponding difference λ2(O1,O2) − λ3(O1,O2,O3), with
O1 and O2 as in (19). We recall that the difference λ2(O1,O2) − λ3(O1,O2,O3) measures the
gain (or loss, if negative) in the chances of persistence, when the third host is added to the
system. All Matlab source code used to generate the analyses performed here is available at
https://doi.org/10.17605/OSF.IO/QAV2M.

https://doi.org/10.17605/OSF.IO/QAV2M
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δ = 0.01 δ = 1 δ = 10

β
=

0
.5

β
=

0
.7

β
=

1
β

=
2

λ2 − λ3 < 0 0 λ2 − λ3 > 0

Fig. 1 Effect of adding a third host on persistence. Each point represent the position of a third optimum,
while the two other optima are fixed, at the respective positions (−β, 0) and (β, 0), pictured in blue. The colormap
corresponds to the value taken by the difference λ2−λ3, depending on the position of the third optimum. Each row
corresponds to a different value of δ and each line to a different value of β. We assumed here that µ2/2 = α = 1.
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This figure serves as an illustration of the different results of this section. In each figure,
the set Λδ, defined in (22), corresponds to the green regions. The last column illustrates the
behaviour δ → +∞ of Proposition 6. In particular, on the first line, for β = 1/2, there is a
perfect match between the ball given in the asymptotic regime δ → +∞ and the numerical
simulations. For the other values of parameter β pictured here, δ = 10 seems not large enough
to be considered infinite, but one can still observe on the last two lines, going from the left to
the right a “convexification” of the set Λδ, for the lack of the better word, that points in the
direction of the convergence towards the eventual ball, denoted Λ∞ in Proposition 6.

On the other hand, the first column represents the regime δ → 0+, detailed in Proposition 7.
In particular, it can be observed that, for small β, the set Λδ has the shape of an “athletic
stadium”. Then, for larger β, the set Λδ becomes “oxygen molecule shaped”, and thus no longer
convex. Interestingly, increasing β leads to a loss of connectedness of the set Λδ, see the picture
for δ = 0.01 and β = 2. In particular, in agreement with Proposition 11, this shows that the
central point (0, 0) is not optimal in terms of persistence.

Actually, this (numerically observed) loss of connectedness suggests that the introduction
of the third host “in the middle” may lead to a decrease in pathogen fitness, compared to the
case of only two hosts. One should be careful that this rather surprising result is not implied
by Proposition 11, which compares the introduction of a third host having an optimum in the
middle of the first two hosts with that of a third host having the same optimum as one of
the first two hosts. Notice that, as seen in the computations after Proposition 7, O3 = (0, 0)
always belongs to P defined in (25). However, from the numerical simulations, it is natural to
conjecture that (0, 0) /∈ Λδ should occur for some “particular combinations of large β-small δ”
that should depend on µ (mutations) and α (selection). This makes the proof of this conjecture
very challenging.

Finally, we can verify that, as proved in Proposition 10, if the third optimum is very close (or
indeed at the same position) than one of the other two optima, then the fitness of the system with
three optima is better than the one with two. This corresponds to the concept of “evolutionary
springboard”, as adaptation to one optimum is favoured by the presence of another one nearby.
Incidentally, in accordance with Proposition 12, the closer the third optimum to the axis (O1O2),
the larger the chances of persistence. This means that on the x2-axis the third optimum is best
positioned at the same phenotypic height than the two fixed optima. On the other axis (the
x1-axis), despite the symmetry of the two fixed optima, it is much harder to get qualitative
information as exemplified above by the case where the third host is in the middle.

5 Discussion

We proposed a model to describe the adaptation dynamics of a phenotypically structured popula-
tion in a H-patch environment, with each patch associated with a different phenotypic optimum,
and performed a rigorous mathematical analysis of this model. This analysis sheds new light on
the effect of increasing the number of hosts on the persistence of a (say, pathogenic) population.
As is already known with two hosts, a pathogen population will always have more difficulty per-
sisting on multiple hosts connected by migration than on a single host (Proposition 4). Further-
more, increasing the migration rate δ > 0 further reduces the chances of population persistence
(Proposition 3). However, in some configurations where pathogen persistence is not possible with
two hosts, adding a third host achieves persistence. In such case, the presence of a third host
causes a springboard effect, by modifying the geometric configuration of the phenotypic space.
Thus, as we already know experimentally with the examples of zoonoses mentioned in the In-
troduction, the increase in the number of hosts does not necessarily mean a decrease in the
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chances of persistence as long as the initial number of hosts is at least equal to 2. However, the
occurrence of this springboard effect, or on the contrary of a detrimental effect of increasing the
number of hosts on the persistence of the pathogen, depends in a rather complex way on the
respective positions of the optimal phenotypes associated with each host. Our results, which are
based on a fixed point theorem, comparison principles, integral estimates, variational arguments
and rearrangement techniques, provide a better understanding of these dependencies.

In the asymptotic regimes of small and large migration rates, we were able to characterise
very precisely the situations where the addition of a third host increases or decreases the chances
of persistence of the pathogen, compared to a situation with only two hosts. Proposition 5 shows
that when the migration rate is large, the system with H host behaves as a single population,
living in a single host and with “effective” fitness equal to the mean of the H original fitness
functions. In this case, where the population can be qualified as “generalist”, we were able to
show that the addition of a third host is favourable to persistence if and only if the optimum
associated with this host is inside a certain ball containing the two other optima (Proposition 6).
When the migration rate is low, as shown in Proposition 7 (and Figure 1), the shape of the
region Λδ in the phenotypical space where the presence of a third host leads to higher chances of
persistence of the pathogen is more complex and depends on the parameters. In particular, we
see that this region is not necessarily convex especially if the two initial optima are far from each
other. Moreover, while the addition of a third host always decreases the chances of persistence
when the optima associated with the three hosts form an equilateral triangle in the phenotypic
space (Proposition 8), we observe that when migration is low this equilateral configuration is very
close to the Λδ region. Of course, some of these observations are only possible if the dimension
of the phenotype space is at least 2. This illustrates the importance of taking pleiotropy into
account (in the sense that a single mutation can affect multiple phenotypes), as already noted
in [32] in the case H = 1 (but with other assumptions on the mutational operator).

In the general case (i.e., with an arbitrary migration rate δ), and when the positions O1

and O2 of the two other hosts are fixed, we proved the existence of a position in the phenotypic
space of the optimum associated with the third host maximizing the chances of pathogen persis-
tence (Corollary 2). This position is necessarily on the line (O1 O2) (Proposition 12). However,
contrary to a natural intuition, it is not necessarily located in the exact mean position between O1

and O2 (Proposition 11). In particular, if the two initial optima O1 and O2 are far apart, it is
more beneficial for the persistence of the pathogen to introduce a third host associated with an
optimum O3 that is in a neighbourhood of O1 or O2. This result which is consistent with the
simulations in Figure 1 shows the richness of the outcomes.

From a mathematical point of view, an important part of the difficulty in dealing with H ≥ 3
hosts, compared to H = 1 or H = 2 hosts, comes from the lack of symmetry. In the H = 2 case,
provided that the initial conditions are themselves symmetric about (O1+O2)/2, the solutions u1
and u2 remain symmetric about this point. This type of symmetry argument was used in [15] to
reduce the study of the nonlinear system (1) to that of a linear scalar equation. Such arguments
cannot be applied in the general case H ≥ 3 where we had to treat the complete nonlinear and
nonlocal system. This has led to very different proofs, starting with the well-posedness of the
Cauchy problem (Theorem 1). The stationary states of the system illustrate well the complexity
induced by the absence of symmetry: when there is persistence and H = 1, 2, the stationary
states are proportional to the principal eigenfunctions, but this is no longer true in general in
the case H ≥ 3, because of a possible symmetry breaking (Proposition 2). Again because of
the lack of symmetry, the populations at equilibrium have no reason to be equal in each host.
Even when H = 2, the eigenfunctions are not radially symmetric (they are biased towards the
other optimum, see formula 46 in [15]). When H ≥ 3, the qualitative description of their profile
is even more involved, leading to new difficulties in the comparison between different geometric



Adaptation in a heterogeneous environment II: To be three or not to be 19

configurations of the positions of the optima. Although we were able to show that the “best
position” of O3 when O1 and O2 are fixed should belong to the line (O1 O2), the rearrangement
techniques that we used for this result did not allow to determine the best position exactly.
This is because the rearrangement result is only true in the directions where O1 and O2 are
stable by rearrangement (and thus not in the direction x1 with our conventions; otherwise the
position O3 = (O1 + O2)/2 would always be optimal, which would contradict the result of the
Proposition 11). Note that the rearrangement inequalities used in the proof of Proposition 12
are not standard, because of the unbounded domain and of the sign changes of ri.

As mentioned in the Introduction, one of the fundamental principles in agroecology is to pro-
mote diversified agroecosystems rather than uniform cultures. Our results show, with a rigorous
mathematical analysis, that what is true when moving from a monoculture to a varietal mixture
is not always true when moving from a varietal mixture with H ≥ 2 species to a mixture with
H + 1 species. In such a situation, it is necessary to know the respective positions of the optima
associated with the different hosts, from the point of view of the pathogen, to predict the positive
or negative impact of diversification. From an experimental point of view, it would therefore be
necessary to be able to estimate these positions, by comparing, for example, via cross-inoculation
experiments, the effect of pre-adaptation of a pathogen on each host i before its introduction on
a host j, for each pair i, j. Of course, the vision here, where each host is described by a unique
optimum (FGM model) and where the different parameters do not depend on the host i, is very
schematic, and the comparison with quantitative data would require more complex approaches.
However, the model (1) has the advantage of being mathematically tractable while capturing the
antagonistic effects of host diversification.

To conclude, we acknowledge that our work is not exhaustive and suggests several potential
avenues for future research. Specifically, we recommend exploring the relaxation of the assump-
tion of symmetric migration by incorporating a geographical proximity metric and considering
the response of the host population to epidemics. Such investigations would require a thorough
theoretical analysis and contribute to a more comprehensive understanding of the studied phe-
nomenon.

6 Proofs of the main results

This section is devoted to the proofs of all main results of the paper which have not been shown
along the way in the previous sections. The results of Section 2 are proved in Section 6.1, while
Section 6.2 contains the proofs of the results of Section 3, and Section 6.3 those of Section 4.

6.1 Proofs of Theorem 1 and Propositions 1-2

Proof of Theorem 1. Our strategy involves firstly a fixed point argument to construct a unique
local-in-time solution, and secondly the derivation of some estimates to conclude that the solution
is defined for all time t ≥ 0. One recalls that u0 = (u01, . . . , u

0
H) satisfies (4)-(5). Having in mind

the assumption (5) and the desired inequality (6), we can assume without loss of generality that

0 < θ ≤ 1

µ

in (5). Set r+max := max(rmax, 0), let ωn be the (n− 1)-dimensional Lebesgue measure of the unit
Euclidean sphere of Rn, let B := max1≤i≤H ‖Oi‖ and

C1 :=
e

3
θ−nωn(n−1)!×

[
|rmax|+αB2 +αθ−2n(n+ 1) +Ker

+
maxθ−nωn(n−1)!(e+ 3) + 2δ

]
. (29)
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Denote

T1 :=
(

1 +
θ2µ2

2
+ r+max + 3 θ−n ωn (n− 1)!K er

+
max+1 + 9C2

1

)−1
∈ (0, 1), (30)

and

E:=
{

u = (u1, . . . , uH) ∈ C([0, T1]× Rn,RH) such that ui(0, ·) = u0i in Rn,

0 ≤ ui(t, x) ≤ K e(rmax+1)t−θ‖x‖ for all (t,x) ∈ [0, T1]× Rn,

and t 7→
∫
Rn
ui(t,x) dx ∈ C0,1/2([0, T1]), for all 1 ≤ i ≤ H

}
.

(31)

We equip E with the distance

dE(u,v) := max
(

max
1≤i≤H

∥∥(t,x) 7→ (ui(t,x)− vi(t,x)) eθ‖x‖
∥∥
L∞([0,T1]×Rn)

,

max
1≤i≤H

∥∥∥t 7→ ∫
Rn

(ui(t,x)− vi(t,x))dx
∥∥∥
C0,1/2([0,T1])

)
,

(32)

where ‖g‖C0,1/2([0,T1]) = maxt∈[0,T1] |g(t)|+supt 6=t′∈[0,T1] |g(t)−g(t′)|/|t−t′|1/2 for g ∈ C0,1/2([0, T1]).
The space (E, dE) is a non-empty complete metric space.

Define now a mapping F as follows:

F : E → E
u 7→ F(u) := U,

where, for a given u ∈ E, U = (U1, . . . , UH) ∈ C([0, T1]×Rn,RH)∩C1;2
t;x ((0, T1]×Rn,RH) is the

classical bounded nonnegative solution of the linear system

∂tUi(t,x) =
µ2

2
∆Ui(t,x) +

(
ri(x)−

∫
Rn
ui(t,y) dy

)
Ui(t,x) +

δ

H−1

H∑
k=1
k 6=i

(Uk(t,x)−Ui(t,x))

in (0, T1] × Rn, for 1 ≤ i ≤ H, with initial condition Ui(0, ·) = u0i in Rn. Using the Hölder
continuity of the maps t 7→

∫
Rn ui(t,x) dx in [0, T1], such a solution U exists and is unique,

by [5].
To show that F(E) ⊂ E, let us first check that, for each u ∈ E, the image U = F(u) satisfies

the pointwise bounds of E. Notice that

∂tUi(t,x) ≤ µ2

2
∆Ui(t,x) + rmaxUi(t,x) +

δ

H − 1

H∑
k=1
k 6=i

(Uk(t,x)− Ui(t,x)) (33)

for every 1 ≤ i ≤ H and (t,x) ∈ (0, T1] × Rn. Take any vector ξ ∈ Rn such that ‖ξ‖ = 1 and
define

U i(t,x) := K e(rmax+1)t−θξ·x, 1 ≤ i ≤ H, t ∈ R, x ∈ Rn. (34)

Notice that the positive functions U i actually do not depend on i, and satisfy

∂tU i(t,x) =
µ2

2
∆U i(t,x) + (rmax + 1)U i(t,x)− θ2µ2

2
U i(t,x) (35)

in R× Rn. Since we had assumed that 0 < θ ≤ 1/µ without loss of generality, we get that

∂tU i(t,x) ≥ µ2

2
∆U i(t,x) + rmaxU i(t,x) +

δ

H − 1

H∑
k=1
k 6=i

(Uk(t,x)− U i(t,x)) (36)



Adaptation in a heterogeneous environment II: To be three or not to be 21

for every 1 ≤ i ≤ H and (t,x) ∈ R×Rn (recall that Uk−U i ≡ 0). Moreover, we know from (5) that
Ui(0, ·) = u0i ≤ U i(0, ·) in Rn. Therefore, by (33) and (36), U and U := (U1, . . . , UH) are sub- and
super-solutions of a linear cooperative system, and the parabolic maximum principle implies that
Ui(t,x) ≤ U i(t,x) for all 1 ≤ i ≤ H and (t,x) ∈ [0, T1]×Rn, that is, Ui(t,x) ≤ K e(rmax+1)t−θξ·x.
Since ξ was arbitrary in the Euclidean unit sphere of Rn, and remembering the nonnegativity of
each Ui, we get that

0 ≤ Ui(t,x) ≤ Ke(rmax+1)t−θ‖x‖ (37)

for all 1 ≤ i ≤ H and (t,x) ∈ [0, T1] × Rn. The Lebesgue dominated convergence theorem then
implies that each map t 7→

∫
Rn Ui(t,x)dx is well defined and continuous in [0, T1]. It remains to

show that each such map is in C0,1/2([0, T1]). Since the functions Ui and riUi decay exponentially
to 0 as ‖x‖ → +∞ uniformly in t ∈ [0, T1], it follows from standard parabolic estimates [20] that,
for each 0 < a ≤ b ≤ T1, the functions ∂xjUi decay exponentially to 0 as ‖x‖ → +∞ uniformly in
t ∈ [a, b], for every 1 ≤ i ≤ H and 1 ≤ j ≤ n. Therefore, for every 0 < t ≤ t′ ≤ T1, by integrating
the equation satisfied by Ui over [t, t′]×B(O, R) and passing to the limit as R→ +∞, one infers
that ∫

Rn
Ui(t

′,x)dx−
∫
Rn
Ui(t,x)dx=

∫ t′

t

(∫
Rn
ri(x)Ui(s,x)dx

)
ds

−
∫ t′

t

(∫
Rn
ui(s,x)dx

)(∫
Rn
Ui(s,x)dx

)
ds

+
δ

H − 1

H∑
k=1
k 6=i

∫ t′

t

∫
Rn

(Uk(s,x)− Ui(s,x))dx ds.

(38)

By (37) and the definitions of ri and E, the integrals
∫
Rn ri(x)Ui(s,x)dx,

∫
Rn ui(s,x)dx and∫

Rn Ui(s,x)dx are all bounded in absolute value, say by a constant C, uniformly in s ∈ [0, T1]
and 1 ≤ i ≤ H. Thus,∣∣∣ ∫

Rn
Ui(t

′,x)dx−
∫
Rn
Ui(t,x)dx

∣∣∣ ≤ (C + C2 + 2δC) |t− t′| (39)

for every 1 ≤ i ≤ H and 0 < t < t′ ≤ T1 (and also with t = 0 by continuity). As a consequence,
the maps t 7→

∫
Rn Ui(t,x)dx are of class C0,1([0, T1]) ⊂ C0,1/2([0, T1]). Finally, U ∈ E.

Next, we show that F is a contraction mapping, that is, there exists 0 < κ < 1 such that

∀ (u,v) ∈ E × E, dE(F(u),F(v)) ≤ κ dE(u,v). (40)

Take any u,v ∈ E, and denote U := F(u), V := F(v), w := u−v and W := U−V. With these
notations, for each 1 ≤ i ≤ H, the function Wi belongs to C([0, T1] × Rn,RH) ∩ C1;2

t;x ((0, T1] ×
Rn,RH) and solves

∂tWi(t,x) =
µ2

2
∆Wi(t,x) +

(
ri(x)−

∫
Rn
ui(t,y)dy

)
Wi(t,x)

− Vi(t,x)

∫
Rn
wi(t,y)dy +

δ

H − 1

H∑
k=1
k 6=i

(Wk(t,x)−Wi(t,x)) (41)

in (0, T1] × Rn, together with Wi(0, ·) = 0 in Rn. Consider any ξ ∈ Rn with ‖ξ‖ = 1. Our
supersolution candidate for this system will be W = (W 1, . . . ,WH) defined by

W i(t,x) :=
1

3
dE(u,v) et/T1−θξ·x, 1 ≤ i ≤ H, 0 < t ≤ T1, x ∈ Rn.
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Notice that the functions W i actually do not depend on i. First of all, we recall that ωn is
the (n− 1)-dimensional Lebesgue measure of the unit Euclidean sphere of Rn. Now, since V =
F(v) ∈ E, one has, for every 1 ≤ i ≤ H and (t,x) ∈ [0, T1]× Rn,∣∣∣Vi(t,x)

∫
Rn
wi(t,y)dy

∣∣∣ ≤ Vi(t,x)

∫
Rn
|ui(t,y)− vi(t,y)|dy

≤ dE(u,v)Vi(t,x)

∫
Rn
e−θ‖y‖dy

= θ−n ωn (n− 1)! dE(u,v)Vi(t,x)

≤ θ−n ωn (n− 1)! dE(u,v)K e(rmax+1)t−θ‖x‖

≤ θ−n ωn (n− 1)! dE(u,v)K e(r
+
max+1)T1−θξ·x.

(42)

On the other hand, the definition (30) of T1 yields

1

T1
≥ θ2µ2

2
+ r+max + 3 θ−n ωn (n− 1)!K e(r

+
max+1)T1−t/T1 (43)

for all t ∈ [0, T1]. Since ri ≤ rmax ≤ r+max in Rn and ui ≥ 0 in [0, T1] × Rn, it then follows
from (42)-(43) that each nonnegative function W i satisfies

∂tW i(t,x) ≥ µ2

2
∆W i(t,x) + r+maxW i(t,x)− Vi(t,x)

∫
Rn
wi(t,y) dy

≥ µ2

2
∆W i(t,x) +

(
ri(x)−

∫
Rn
ui(t,y) dy

)
W i(t,x)

−Vi(t,x)

∫
Rn
wi(t,y) dy +

δ

H − 1

H∑
k=1
k 6=i

(W k(t,x)−W i(t,x))

for all (t,x) ∈ (0, T1]× Rn (recall that W k −W i ≡ 0). Therefore, the functions Zi := W i −Wi

are continuous in [0, T1]× Rn, nonnegative at t = 0, and satisfy

∂tZi(t,x) ≥ µ2

2
∆Zi(t,x)+

(
ri(x)−

∫
Rn
ui(t,y)dy

)
Zi(t,x) +

δ

H−1

H∑
k=1
k 6=i

(Zk(t,x)−Zi(t,x))

in (0, T1]×Rn. The comparison principle for this linear cooperative system implies that Zi(t,x) ≥
0, that is, Wi(t,x) ≤W i(t,x), for every 1 ≤ i ≤ H and (t,x) ∈ [0, T1]×Rn. By changing Wi into
−Wi in (41) (and the sign of the first integral in the second line) and arguing similarly, one gets
that |Wi(t,x)| ≤W i(t,x) = (dE(u,v)/3)×et/T1−θξ·x for every 1 ≤ i ≤ H and (t,x) ∈ [0, T1]×Rn.
Since ξ was arbitrary in the unit Euclidean sphere of Rn, one concludes that

|Ui(t,x)− Vi(t,x)| = |Wi(t,x)| ≤ 1

3
dE(u,v) et/T1−θ‖x‖ ≤ e

3
dE(u,v) e−θ‖x‖ (44)

for every 1 ≤ i ≤ H and (t,x) ∈ [0, T1]× Rn.

In order to establish (40), it remains to estimate the C0,1/2([0, T1]) norm of the functions
t 7→

∫
Rn(Ui(t,x) − Vi(t,x)) dx. For every 1 ≤ i ≤ H and 0 < t < t′ ≤ T1, by using (38) for
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both Ui and Vi, one infers that∫
Rn
Wi(t

′,x)dx−
∫
Rn
Wi(t,x)dx=

∫ t′

t

(∫
Rn
ri(x)Wi(s,x)dx

)
ds

−
∫ t′

t

(∫
Rn
ui(s,x)dx

)(∫
Rn
Wi(s,x)dx

)
ds

−
∫ t′

t

(∫
Rn
wi(s,x)dx

)(∫
Rn
Vi(s,x)dx

)
ds

+
δ

H − 1

H∑
k=1
k 6=i

∫ t′

t

∫
Rn

(Wk(s,x)−Wi(s,x))dx ds.

(45)

Let us now bound in absolute value each term of the right-hand side of (45). Since |ri(x)| ≤
|rmax|+ α‖x‖2 + αB2 by (2) (we recall that B = max1≤i≤H ‖Oi‖), it follows from (44) that∣∣∣ ∫ t′

t

(∫
Rn
ri(x)Wi(s,x)dx

)
ds
∣∣∣

≤ e

3
dE(u,v)

[
(|rmax|+ αB2)θ−nωn(n− 1)! + α θ−n−2ωn(n+ 1)!

]
× |t− t′|

for all 0 < t < t′ ≤ T1. Similarly, using (44) and u ∈ E, together with T1 ≤ 1, the second term
of the right-hand side of (45) can be bounded by∣∣∣∫ t′

t

(∫
Rn
ui(s,x)dx

)(∫
Rn
Wi(s,x)dx

)
ds
∣∣∣≤ 1

3
dE(u,v)K er

+
max+2θ−2nω2

n(n− 1)!2 × |t−t′|,

for all 0 < t < t′ ≤ T1. Furthermore, since |wi(s,x)| ≤ dE(u,v) e−θ‖x‖ and |Vi(s,x)| ≤
K e(rmax+1)s−θ‖x‖ ≤ K er

+
max+1−θ‖x‖ for every 1 ≤ i ≤ H and (s,x) ∈ [0, T1] × Rn (because

V = F(v) ∈ E and T1 ≤ 1), the integral in the third line of the right-hand side of (45) can be
estimated as∣∣∣ ∫ t′

t

(∫
Rn
wi(s,x)dx

)(∫
Rn
Vi(s,x)dx

)
ds
∣∣∣ ≤ dE(u,v)K er

+
max+1θ−2nω2

n(n− 1)!2 × |t− t′|.

Lastly, (44) implies that∣∣∣ δ

H − 1

H∑
k=1
k 6=i

∫ t′

t

∫
Rn

(Wk(s,x)−Wi(s,x))dx ds
∣∣∣ ≤ 2

3
δ e dE(u,v) θ−nωn(n− 1)!× |t− t′|

for every 1 ≤ i ≤ H and 0 < t < t′ ≤ T1. Finally, putting all the above inequalities into (45) and
remembering the definition (29) of C1, it follows that∣∣∣ ∫

Rn
Wi(t

′,x)dx−
∫
Rn
Wi(t,x)dx

∣∣∣ ≤ C1 dE(u,v)× |t− t′|

for all 0 < t < t′ ≤ T1, and then for all 0 ≤ t ≤ t′ ≤ T1 by continuity of s 7→
∫
RnWi(s,x) dx in

[0, T1]. Remember now that C1T1 ≤ C1

√
T1 ≤ 1/3 by (30), and that Wi(0, ·) = 0 in RN for every

1 ≤ i ≤ H. As a consequence,∥∥∥t 7→ ∫
Rn
Wi(t,x) dx

∥∥∥
C0,1/2([0,T1])

≤ 2

3
dE(u,v)
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for all 1 ≤ i ≤ H. Together with (44), and using the definition (32) of dE , one obtains dE(U,V) ≤
κ dE(u,v), with κ := max(e/3, 2/3) = e/3 < 1, that is, (40) is proved.

The Banach-Picard fixed point theorem then implies the existence and uniqueness of u ∈ E
such that F(u) = u. Therefore, u belongs to C([0, T1] × Rn,RH) ∩ C1;2

t;x ((0, T1] × Rn,RH) and
it solves (1) in (0, T1] × Rn with initial condition u0. Furthermore, owing to the definition of
E in (31) and the inequality θ ≤ 1/µ, u satisfies (6) in [0, T1] × Rn and, by (39), the functions
t 7→

∫
Rn ui(t,x) dx are Lipschitz-continuous in [0, T1].

Let us now show that u can be extended to a global solution, that is, defined for all t ≥ 0.
First of all, observe that T1 in (30) can be written as

T1 =
(
A1 +A2K +A3K

2
)−1

,

for some positive constants A1, A2 and A3 that are independent of K. Consider then any T ′1 ∈
(0, T1). From (6) satisfied by u at time T ′1, one has 0 ≤ ui(T

′
1,x) ≤ K e(rmax+1)T ′1 e−θ‖x‖ for all

1 ≤ i ≤ H and x ∈ Rn. In other words, the continuous functions ui(T
′
1, ·) satisfy properties similar

to (4)-(5), with K replaced by K e(rmax+1)T ′1 . From the arguments of the previous paragraphs,
there exists a unique solution ũ = (ũ1, . . . , ũH) ∈ C([T ′1, T

′
2]×Rn,RH)∩C1;2

t,x ((T ′1, T
′
2]×Rn,RH)

such that, for every 1 ≤ i ≤ H, ũi(T
′
1, ·) = ui(T

′
1, ·) in Rn,

0 ≤ ũi(t, x) ≤ K e(rmax+1)T ′1 e(rmax+1)(t−T ′1)−θ‖x‖ = K e(rmax+1)t−θ‖x‖

for all (t,x) ∈ [T ′1, T
′
2]× Rn and the functions t 7→

∫
Rn ũi(t,x)dx are in C0,1([T ′1, T

′
2]), with

T ′2 − T ′1 =
(
A1 +A2Ke

(rmax+1)T ′1 +A3K
2e2(rmax+1)T ′1

)−1
.

Since the uniqueness also holds in any interval [T ′1, T
′′
2 ] with T ′1 < T ′′2 ≤ T ′2 and since u restricted

to [T ′1,min(T1, T
′
2)] × Rn satisfies the same properties as the restriction of ũ to this set, one

gets that these two restrictions are equal. Therefore, the function u = (u1, . . . , uH) extended
by ũ in (T1, T

′
2] × Rn (provided this set is not empty), is then of class C([0, T ′2] × Rn,RH) ∩

C1;2
t;x ((0, T ′2]× Rn,RH). Furthermore, 0 ≤ ui(t, x) ≤ K e(rmax+1)t−θ‖x‖ for all (t,x) ∈ [0, T ′2]× Rn

and 1 ≤ i ≤ H, and the functions t 7→
∫
Rn ui(t,x)d x are in C0,1([0, T ′2]). Since this argument

holds for every T ′1 ∈ (0, T1), it follows that u can then be extended in [0, T2)× Rn, with

T2 − T1 =
(
A1 +A2Ke

(rmax+1)T1 +A3K
2e2(rmax+1)T1

)−1
,

and the above properties hold with [0, T ′2] and (0, T ′2] replaced by [0, T2) and (0, T2), respectively,
with the functions t 7→

∫
Rn ui(t,x)dx belonging to C0,1

loc ([0, T2)).
By an immediate induction, there exists a sequence (Tm)m≥1 of positive real numbers such

that, for every m ≥ 1,

Tm+1 − Tm =
(
A1 +A2Ke

(rmax+1)Tm +A3K
2e2(rmax+1)Tm

)−1
(46)

and u can be extended as a C([0, Tm) × Rn,RH) ∩ C1;2
t;x ((0, Tm) × Rn,RH) function satisfying

0 ≤ ui(t, x) ≤ K e(rmax+1)t−θ‖x‖ for all (t,x) ∈ [0, Tm) × Rn and 1 ≤ i ≤ H, and the functions
t 7→

∫
Rn ui(t,x)d x are in C0,1

loc ([0, Tm)). The sequence (Tm)m≥1 is increasing and is not bounded
(otherwise, it would converge to a positive real number while Tm+1 − Tm would converge to
0, which would contradict (46)). Therefore, Tm → +∞ and the function u is then defined in
[0,+∞)× Rn, and it satisfies all the desired properties of the conclusion of Theorem 1.

Finally, if v is another solution satisfying all the properties of u listed in Theorem 1, it follows
that the restrictions of v and u to [0, T1]× Rn belong to E defined in (31), and that F(v) = v,
from the equations satisfied by the functions vi. Therefore, by uniqueness, the restrictions of v
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and u to [0, T1]×Rn are equal. By an immediate induction, using the construction of the above
sequence (Tm)m≥1, one gets that v and u are equal in [0, Tm)×Rn for every m ≥ 1, hence u = v
in [0,+∞)× Rn. The proof of Theorem 1 is thereby complete.

Remark 3 It follows from the above proof that, for any ε ∈ (0, 1), the quantity rmax + 1 could
be replaced by rmax + ε in (6), at the expense of replacing min(θ, 1/µ) by min(θ,

√
ε/µ). Indeed,

in the above proof, by assuming that 0 < θ ≤ √ε/µ without loss of generality, the functions
U i in (34) would now be defined as U i(t,x) := K e(rmax+ε)t−θξ·x and would satisfy (35), with
rmax + ε instead of rmax + 1, but they would still fulfill (36). The rest of the proof is unchanged,
with just (rmax+1, r+max+1, r+max+2) replaced by (rmax+ε, r+max+ε, r+max+ε+1) in the definitions
or calculations. As a consequence, if rmax < 0, the solution u constructed in Theorem 1 is such
that, for every 1 ≤ i ≤ H, ‖ui(t, ·)‖L∞(Rn) → 0 as t→ +∞ exponentially fast.

Proof of Proposition 1. (i) We first assume λH > 0. Consider the following linear system, for
1 ≤ i ≤ H:

∂tvi(t,x) =
µ2

2
∆vi(t,x) + ri(x)vi(t,x) +

δ

H − 1

H∑
k=1
k 6=i

(vk(t,x)− vi(t,x)). (47)

It corresponds to a Malthusian growth of the population. Since Ni(t) =
∫
Rn ui(t,x) dx ≥ 0 for

all t ≥ 0 by (6), the solution u of (1)-(5) is a subsolution of (47), while the function (t,x) 7→
Φ(x) e−λHt is a solution, by definition of the principal eigenpair (λH , Φ) of (8). Since u0 is
assumed to be compactly supported and Φ is continuous and positive componentwise, there is a
constant A > 0 such that u0 ≤ AΦ componentwise in Rn. The comparison principle applied to
the cooperative system (47) implies that u(t,x) ≤ AΦ(x) e−λHt componentwise for all (t,x) ∈
[0,+∞)× Rn, hence Ni(t)→ 0 as t→ +∞ for every 1 ≤ i ≤ H.

(ii) We now assume that λH = 0. Notice that the previous arguments imply that the continuous
functions Ni are bounded in [0,+∞). More precisely, as in the previous paragraph, since u0 is
assumed to be compactly supported, there is a constant A > 0 such that u0 ≤ AΦ componentwise
in Rn, hence u(t,x) ≤ AΦ(x) componentwise for all (t,x) ∈ [0,+∞)×Rn. Assume now by way
of contradiction that lim inft→+∞min1≤i≤H Ni(t) > 0. Then there are T > 0 and ε > 0 such
that Ni(t) =

∫
Rn ui(t,x) dx ≥ ε for every 1 ≤ i ≤ H and t ≥ T . For t ≥ T , the solution u is a

subsolution of the linear system

∂tvi(t,x) =
µ2

2
∆vi(t,x) + (ri(x)− ε)vi(t,x) +

δ

H − 1

H∑
k=1
k 6=i

(vk(t,x)− vi(t,x)),

whereas (t,x) 7→ AΦ(x) e−ε(t−T ) is a solution (since λH = 0). The maximum principle applied
to this cooperative system implies that u(t,x) ≤ AΦ(x) e−ε(t−T ) for all (t,x) ∈ [T,+∞) × Rn.
Hence, Ni(t) → 0 as t → +∞, for every 1 ≤ i ≤ H, contradicting our assumption. As a
consequence, lim inft→+∞min1≤i≤H Ni(t) = 0.

(iii) Assume finally that λH < 0 and assume that the desired conclusion (12) is not satisfied.
Then there are T > 0 and ε ∈ (0,−λH) such that Ni(t) =

∫
Rn ui(t,x) dx ≤ −λH − ε for every

1 ≤ i ≤ H and t ≥ T . Since λH = limR→+∞ λRH , where λRH denotes the principal eigenvalue

of the operator A acting on (C∞0 (B(O, R)))H , there is R > 0 such that λRH ≤ λH + ε/2, hence
Ni(t) =

∫
Rn ui(t,x) dx ≤ −λRH − ε/2 for every 1 ≤ i ≤ H and t ≥ T . Now, each function

ui(T, ·) is continuous and positive in RN , hence there is η > 0 such that u(T,x) ≥ η ΦR(x)
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componentwise for all x ∈ B(O, R), where ΦR ∈ (C∞0 (B(O, R)))H denotes a principal eigenvector
of A, associated to the principal eigenvalue λRH (that is, ΦR is positive componentwise in B(O, R),

it vanishes on ∂B(O, R) and it satisfies AΦR = λRHΦ
R in B(O, R)). The function (t,x) 7→

η ΦR(x) e(ε/2)(t−T ) is a solution of the linear system

∂tvi(t,x) =
µ2

2
∆vi(t,x) + (ri(x) + λRH + ε/2)vi(t,x) +

δ

H − 1

H∑
k=1
k 6=i

(vk(t,x)− vi(t,x))

in R×B(O, R), with Dirichlet boundary conditions on R×∂B(O, R), whereas u is a supersolution
in [T,+∞) × B(O, R), and the functions are compared at time T . The maximum principle
applied to this cooperative system implies that u(t,x) ≥ η ΦR(x) e(ε/2)(t−T ) for all (t,x) ∈
[T,+∞)×B(O, R). Hence, Ni(t) ≥

∫
B(O,R)

ui(t,x) dx→ +∞ as t→ +∞, for every 1 ≤ i ≤ H,

contradicting our assumption. As a consequence, (12) is proved, and the proof of Proposition 1
is complete.

Remark 4 We here show that, when λH ≥ 0, the system (1) does not admit any positive bounded
stationary state. Assume by way of contradiction that such a stationary state p = (p1, . . . , pH)
exists. It necessarily converges to 0 exponentially as ‖x‖ → +∞, from the confining properties of
the fitnesses ri. Let R > 0 be such that ri(x) < 0 for all 1 ≤ i ≤ H and ‖x‖ ≥ R. Let also A > 0
be such that p(x) ≤ AΦ(x) componentwise for all ‖x‖ ≤ R, where Φ = (ϕ1, . . . , ϕH) denotes as
usual the, positive, principal eigenvector of (8). Notice that, from its positivity, the stationary
state p of (1) is a subsolution of the following linear system

µ2

2
∆pi(x) + ri(x)pi(x) +

δ

H − 1

H∑
k=1
k 6=i

(pk(x)− pi(x)) ≥ 0,

while Φ is a supersolution of the same linear system, because λH ≥ 0. The weak maximum
principle for this system then yields p(x) ≤ AΦ(x) componentwise for all ‖x‖ ≥ R. Hence,
p(x) ≤ AΦ(x) componentwise for all x ∈ Rn. Finally, let u be the solution of (1) given by
Theorem 1, with initial condition u0 := p. On the one hand, by the uniqueness property of
that theorem, there holds u(t,x) ≡ p(x) for all t ≥ 0 and x ∈ Rn. On the other hand, the
same arguments as in the proof of Proposition 1 in the cases λH > 0 or λH = 0 then imply
that, in both cases, one has at least lim inft→+∞

(
min1≤i≤H

∫
Rn ui(t,x) dx

)
= 0. This leads

to a contradiction, since
∫
Rn ui(t,x) dx =

∫
Rn pi(x) dx > 0 is independent of t ≥ 0, for every

1 ≤ i ≤ H. As a conclusion, (1) does not admit any positive bounded stationary state when
λH ≥ 0.

Proof of Proposition 2. (i) Assume that H = 1 and λ1 < 0. In this case, any positive bounded
stationary state p1 necessarily decays to 0 at least exponentially as ‖x‖ → +∞, and then belongs
to H1(Rn) ∩ L2

w(Rn) from standard elliptic estimates. It is also a principal eigenfunction of the
operator A defined in (7), with associated principal eigenvalue −

∫
Rn p1. By uniqueness of the

eigenpair (λ1, ϕ1), up to a multiplication of ϕ1 by positive constants, we deduce that there exists
κ > 0 such that p1 = κϕ1 in Rn, and that

∫
Rn p1 = −λ1. We get that κ = −λ1/

(∫
Rn ϕ1

)
. As it

is immediate to check that κϕ1 is a positive bounded stationary state of (1), this shows (i).

(ii) Assume that H = 2 and λ2 < 0. Without loss of generality, up to rotation and translation
of the phenotypic space, we can fix the optima O1 and O2 at O1 := (−β, 0, · · · , 0), O2 :=
(β, 0, · · · , 0), for some β ≥ 0. First, we recall from [15] that, by uniqueness of the principal
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eigenfunctions (up to multiplication) and by symmetry of the problem (1) with respect to the
origin, we have ϕ2(x) = ϕ1(ι(x)) > 0 for all x ∈ Rn, with

ι(x) := ι(x1, x2, . . . , xn) = (−x1, x2, . . . , xn).

It follows that
∫
Rn ϕ1 =

∫
Rn ϕ2 > 0. Furthermore, the principal eigenfunctions satisfy:

− µ2

2
∆ϕi(x)− ri(x)ϕi(x) + δ(ϕi(x)− ϕj(x)) = λ2 ϕi, x ∈ Rn, (48)

for (i, j) = (1, 2) and (i, j) = (2, 1). Define (p1, p2) as in (13) and ri as in (11), with ui(t,y)
replaced by pi(y). Owing to the definition (13), integrating (48) over Rn and using that the
ϕi’s and their first order derivatives decay at least exponentially as ‖x‖ → +∞, we infer that
r1 = r2 = −λ2. We also note that

∫
Rn p1 =

∫
Rn p2 = −λ2. Dividing (48) by

∫
Rn ϕi =

∫
Rn ϕj , and

multiplying by −λ2 we then get:

−µ
2

2
∆pi(x)− ri(x)pi(x) + δ(pi(x)− pj(x)) = −

(∫
Rn
pi(y) dy

)
pi(x), x ∈ Rn,

for (i, j) = (1, 2) and (i, j) = (2, 1). This proves (ii).

(iii) Assume that H ≥ 3 and consider the optima Oj ’s located at O1 := (−β, 0, . . . , 0) and
Oi := (β, 0, · · · , 0) for all 2 ≤ i ≤ H, with β > 0. Let (λH , Φ) be the principal eigenpair of (8),
with Φ = (ϕ1, . . . , ϕH) here normalised so that

∫
Rn ϕ1 = 1. First of all, by uniqueness, we readily

check that ϕi = ϕ2 for all 2 ≤ i ≤ H, hence the eigenfunctions satisfy:
−µ

2

2
∆ϕ1(x)− r1(x)ϕ1(x) + δ(ϕ1(x)− ϕ2(x)) = λH ϕ1(x),

−µ
2

2
∆ϕ2(x)− r2(x)ϕ2(x) +

δ

H − 1
(ϕ2(x)− ϕ1(x)) = λH ϕ2(x).

(49)

We now claim that, for all β > 0 large enough, no positive multiple of Φ is a stationary state of
the system (1). Assume by way of contradiction that there exist a sequence (βm)m∈N diverging to
+∞ and a sequence (κm)m∈N of positive real numbers such that (κmϕ1,m, κmϕ2,m, . . . , κmϕ2,m)
is a positive bounded stationary state of (1), associated with the optima O1,m := (−βm, 0, . . . , 0)
and O2,m = · · · = OH,m := (βm, 0, . . . , 0). Call (λH,m)m∈N the sequence of associated principal
eigenvalues, and normalise the principal eigenvectors so that

∫
Rn ϕ1,m(x)dx = 1. For each m ∈ N,

plugging the solution (κmϕ1,m, κmϕ2,m, . . . , κmϕ2,m) into (1) yields κm
∫
Rn ϕi,m(x) dx = −λH

for every 1 ≤ i ≤ H, hence
∫
Rn ϕ2,m =

∫
Rn ϕ1,m = 1 in (49) (with ϕ1 and ϕ2 replaced by ϕ1,m

and ϕ2,m). From the conclusion of Proposition 4 (whose proof is independent of this one), each
λH,m satisfies

λ1 ≤ λH,m ≤ λ1 + δ =
µn
√
α

2
− rmax + δ.

Therefore, up to extraction of a subsequence one can assume that

λH,m → λ∞ ∈ R as m→ +∞.

Call now φm := ϕ1,m(·+ O1,m) and ψm := ϕ2,m(·+ O1,m) = ϕ2,m(· −O2,m). From (49), one
has

− µ2

2
∆φm(x)−

(
rmax − α

‖x‖2
2

)
φm(x) + δ(φm(x)− ψm(x)) = λH,m φm(x) (50)

for all m ∈ N and x ∈ Rn. Since
∫
Rn φm =

∫
Rn ψm = 1 for all m ∈ N, it follows that the sequence

(∆φm)m∈N is bounded in L1
loc(Rn). If n = 1, one immediately sees that the sequence (φm)m∈N
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is bounded in W 1,∞
loc (R). Consider now n ≥ 2, and any R ≥ 1. Since the positive functions φm

have unit L1(Rn) norm, there is a sequence of real numbers (Rm)m∈N in [R + 2, R + 3] such
that supm∈N

∫
∂B(O,Rm)

φm<+∞. For each m ∈ N, let then ξm ∈ C∞(B(O, Rm))∩C(B(O, Rm))

be the harmonic function in B(O, Rm) with boundary value φm on ∂B(O, Rm). The sequence
(ξm)m∈N is bounded in L∞(B(O, R + 1)) by the Poisson formula, and then it is bounded
in C1(B(O, R)). Since φm − ξm = 0 on ∂B(O, Rm) and the sequence (∆(φm − ξm))m∈N is
bounded in L1(B(O, Rm)), one infers from [21, Theorem (5.1) and the preceding comments] or
[29, Proposition 5.1]3 that, for every 1 ≤ p < n/(n− 1), the sequence (φm − ξm)m∈N is bounded
in W 1,p(B(O, Rm)), hence so is the sequence (φm)m∈N in W 1,p(B(O, R)). As a consequence, the
sequence (φm)m∈N is bounded in W 1,p

loc (Rn) for every 1 ≤ p < n/(n− 1).

Therefore, up to extraction of a subsequence, there is a nonnegative function φ∞ in W 1,p
loc (Rn)

for every 1 ≤ p < n/(n − 1) if n ≥ 2 (respectively for every 1 ≤ p ≤ +∞ if n = 1) such
that φm → φ∞ almost everywhere in Rn and in Lqloc(Rn) for every 1 ≤ q < n/(n − 2) if
n ≥ 3 (respectively for every 1 ≤ q < +∞ if n = 2, respectively in L∞loc(R) if n = 1), and
∂xjφm ⇀ ∂xjφ∞ weakly in Lploc(Rn) for every 1 ≤ p < n/(n− 1) if n ≥ 2 (respectively for every
1 ≤ p < +∞ if n = 1). Since

∫
B(O,R)

φ∞ = limm→+∞
∫
B(O,R)

φm ≤ 1 for every R > 0, it follows

from the monotone convergence theorem that
∫
Rn φ∞ ≤ 1. On the other hand, by integrating (50)

over Rn and using that
∫
Rn φm =

∫
Rn ψm = 1, one gets that

αR2

2

∫
Rn\B(O,R)

φm(x) dx ≤ α

2

∫
Rn
‖x‖2φm(x) dx = λH,m + rmax ≤

µn
√
α

2
+ δ (51)

for all m ∈ N and R > 0. Since the nonnegative functions φm converge to φ∞ in L1
loc(Rn) and have

unit L1(Rn) norm, it follows that
∫
Rn φ∞(x) dx = 1. As in (51), by using now ψm(·+ 2O2,m) =

ϕ2,m(·+ O2,m) instead of φm = ϕ1,m(·+ O1,m), one also has

αR2

2

∫
Rn\B(2O2,m,R)

ψm(x) dx ≤ α

2

∫
Rn
‖x‖2ψm(x+2O2,m) dx = λH,m+rmax ≤

µn
√
α

2
+δ

for allm ∈ N andR > 0. Since ψm ≥ 0 in Rn and since O2,m = (βm, 0, . . . , 0) with limm→+∞ βm =
+∞, it follows that ψm → 0 as m→ +∞ in L1

loc(Rn). Passing to the limit as m→ +∞ in (50)
after multiplying against any C∞(Rn) function with compact support, it follows that φ∞ is a
distributional solution of

− µ2

2
∆φ∞ −

(
rmax − α

‖x‖2
2

)
φ∞(x) + δφ∞ = λ∞ φ∞ (52)

in Rn. Since φ∞ ∈ W 1,p
loc (Rn) for every 1 ≤ p < n/(n − 1) if n ≥ 2 (respectively for every

1 ≤ p ≤ +∞ if n = 1), one infers from the weak formulation of (52) that ∂xjφ∞ actually belongs

to W 1,p
loc (Rn) for every 1 ≤ j ≤ n and then φ∞ ∈W 2,p

loc (Rn), for every 1 ≤ p < n/(n− 1) if n ≥ 2
(respectively for every 1 ≤ p ≤ +∞ if n = 1). Therefore, by bootstrapping and differentiating,
it follows that φ∞ is a C∞(Rn) solution of (52). Since it is nonnegative with unit L1(Rn) mass,
the strong elliptic maximum principle implies that φ∞ > 0 in Rn. In particular, there is R0 > 0
such that the function φ∞ is subharmonic in Rn \B(O, R0). Hence,

0 < φ∞(x) ≤ nω−1n
∫
B(x,1)

φ∞(y) dy ≤ nω−1n
∫
Rn\B(O,‖x‖−1)

φ∞(y) dy

3 The authors are grateful to L. Dupaigne, F. Murat and an anonymous referee for helpful bibliographical
comments on this point.
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for all ‖x‖ ≥ R0 + 1, where ωn/n is the Lebesgue measure of the Euclidean unit ball of Rn.
Since φ∞ ∈ L1(Rn), one then deduces that φ∞(x) → 0 as ‖x‖ → +∞. On the other hand,
for every σ > 0, there is R1 > 0 such that α‖x‖2/2 − rmax + δ ≥ λ∞ for all ‖x‖ ≥ R1 and
such that the function x 7→ e−σ‖x‖ is a supersolution of (52) in Rn \ B(O, R1). Therefore, by
choosing A > 0 such that max∂B(O,R1) φ∞ ≤ Ae−σR1 , the weak maximum principle implies that

0 < φ∞(x) ≤ Ae−σ‖x‖ for all ‖x‖ ≥ R1. As a consequence, φ∞ converges to 0 as ‖x‖ → +∞
faster than any exponentially decaying function. So does then the function x 7→ ‖x‖2φ∞(x), hence
standard elliptic estimates imply that ‖∇φ∞‖ also converges to 0 as ‖x‖ → +∞ faster than any
exponentially decaying function. Finally, φ∞ ∈ H1(Rn) ∩ L2

w(Rn) and, since it is positive, it is
therefore the principal eigenfunction of the operator −(µ2/2)∆ − (rmax − α‖x‖2/2) + δ, with
principal eigenvalue λ∞. Hence,

λ∞ = λ1 + δ =
µn
√
α

2
− rmax + δ. (53)

Finally, by arguing similarly with the functions φ̃m := ϕ1,m(· + O2,m) and ψ̃m := ϕ2,m(· +
O2,m), and passing to the limit as m→ +∞ in the equation

−µ
2

2
∆ψ̃m(x)−

(
rmax − α

‖x‖2
2

)
ψ̃m(x) +

δ

H − 1
(ψ̃m(x)− φ̃m(x)) = λH,m ψ̃m(x),

one similarly gets that

λ∞ = λ1 +
δ

H − 1
=
µn
√
α

2
− rmax +

δ

H − 1
, (54)

contradicting (53), since δ > 0 and H ≥ 3. The proof of Proposition 2 is thereby complete.

6.2 Proofs of Propositions 3-4 and 5

We actually start with the proof of Proposition 4, since its conclusion is used in the proof of
Proposition 3.

Proof of Proposition 4. First of all, since

2

∫
Rn
φ(x)ψ(x) dx ≤

∫
Rn

(φ(x))2 dx +

∫
Rn

(ψ(x))2 dx (55)

for any two L2(Rn) functions φ and ψ, and since the principal eigenvector Φ = (ϕ1, . . . , ϕH) of A
is normalised in L2(Rn)H , the first inequality in (18) follows immediately. The second inequality
follows from λH(δ, α, µ,O1, . . . ,OH) = QH(Φ) and the fact that λ1 is the minimum of QH when
δ = 0:

H∑
i=1

(
µ2

2

∫
Rn
‖∇ϕi(x)‖2 dx−

∫
Rn
ri(x) (ϕi(x))2 dx

)
≥

H∑
i=1

λ1(α, µ)

∫
Rn

(ϕi(x))2 dx = λ1(α, µ).

Now, recalling thatGi = G(·−Oi) and testing the Rayleigh quotientQH at Ψ := (G1/
√
H, . . . , GH/

√
H),

we get that

λH(δ, α, µ,O1, . . . ,OH) ≤ QH(Ψ)

= λ1(α, µ) + δ

1−
∑

1≤i<j≤H

2

H(H − 1)

∫
Rn
Gi(x)Gj(x) dx


≤ λ1(α, µ) + δ.
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Lastly, for any Γ ∈ H1(Rn) ∩ L2
w(Rn) such that

∫
Rn Γ

2 = 1/H, we observe that the quantity
QH(Γ, . . . , Γ ) is independent of δ and therefore the Rayleigh formula (9)-(10) (together with the
lower bound λH(δ, α, µ,O1, . . . ,OH) ≥ µn√α/2− rmax) implies that λH(δ, α, µ,O1, . . . ,OH) is
bounded independently of δ (for every given α > 0, µ > 0 and (Oi)1≤i≤H ∈ (Rn)H).

Proof of Proposition 3. Let us begin with the proof of the continuity of the map

(δ, α, µ,O1, . . . ,OH) 7→ λH(δ, α, µ,O1, . . . ,OH)

in (0,+∞)3 × (Rn)H . Fix (δ, α, µ,O1, . . . ,OH) ∈ (0,+∞)3 × (Rn)H and consider any sequence
(δm, αm, µm,Om

1 , . . . ,O
m
H)m∈N in (0,+∞)3 × (Rn)H and converging to (δ, α, µ,O1, . . . ,OH).

Since the sequence (λH(δm, αm, µm,Om
1 , . . . ,O

m
H))m∈N is bounded by Proposition 4, one can

assume that it converges to some real number λ, up to extraction of a subsequence. For each
m ∈ N, call Φm := (ϕm1 , . . . , ϕ

m
H) the normalised principal eigenvector associated to the principal

eigenvalue λH(δm, αm, µm,Om
1 , . . . ,O

m
H). As at the beginning of the proof of Proposition 4, the

inequality (55) applied to
∫
Rn ϕ

m
i ϕ

m
j implies that

H∑
i=1

(
(µm)2

2

∫
Rn
‖∇ϕmi (x)‖2 dx +

αm

2

∫
Rn
‖x−Om

i ‖2(ϕmi (x))2(x) dx

)
≤ QH(Φm) + rmax = λH(δm, αm, µm,Om

1 , . . . ,O
m
H) + rmax

for all m ∈ N. Together with
∫
Rn ‖Φm(x)‖2 dx = 1, the sequence (Φm)m∈N = ((ϕm1 , . . . , ϕ

m
H))m∈N

is bounded in (H1(Rn)∩L2
w(Rn))H . Hence, up to extraction of a subsequence, it converges weakly

in H1(Rn)H , strongly in L2
loc(Rn)H , and almost everywhere in Rn, to a certain limit Φ∞ :=

(ϕ∞1 , . . . , ϕ
∞
H ) ∈ (H1(Rn) ∩ L2

w(Rn))H , which is nonnegative componentwise. The boundedness
of the sequences (

∫
Rn ‖x‖2(ϕmi (x))2 dx)m∈N also implies (as for the function φ∞ after (51)) that

the sequence (Φm)m∈N converges to Φ∞ in L2(Rn)H , and that∫
Rn
‖Φ∞(x)‖2dx = 1.

By passing to the weak limit in (8) (with parameters (δm, αm, µm,Om
1 , . . . ,O

m
H)), it follows that

the pair (λ, Φ∞) is a weak solution of (8), with Φ∞ normalised in L2(Rn)H and nonnegative com-
ponentwise. From elliptic regularity, Φ∞ is actually a C∞(Rn)H solution of this problem and,
from the strong elliptic maximum principle, it is positive componentwise in Rn. By uniqueness
of the principal eigenpair of (8), one infers that Φ∞ = Φ and λ = λH(δ, α, µ,O1, . . . ,OH).
By uniqueness of the limit, it also follows that Φm → Φ in L2(Rn)H as m → +∞. One
has then shown the continuity of the map (δ, α, µ,O1, . . . ,OH) 7→ λH(δ, α, µ,O1, . . . ,OH) in
(0,+∞)3×(Rn)H . Together with the inequalities (18) and the definition (16), one concludes that
the map (δ, α, µ,O1, . . . ,OH) 7→ λH(δ, α, µ,O1, . . . ,OH) is continuous in [0,+∞)× (0,+∞)2 ×
(Rn)H .

Next, since the quantity QH(Ψ) in (10) is affine with respect to (δ, α, µ) ∈ (0,+∞)3 for each
Ψ ∈ (H1(Rn) ∩ L2

w(Rn))H , one gets from (9) that the map (δ, α, µ) 7→ λH(δ, α, µ,O1, . . . ,OH)
is concave in (0,+∞)3, for each (Oi)1≤i≤H ∈ (Rn)H . Together with the continuity proved in
the previous paragraph, one infers that the map (δ, α, µ) 7→ λH(δ, α, µ,O1, . . . ,OH) is concave
in [0,+∞)× (0,+∞)2.

Consider now δ ≥ 0, α > 0, 0 < µ1 < µ2, (Oi)1≤i≤H ∈ (Rn)H , and let us show that
λH(δ, α, µ1,O1, . . . ,OH) < λH(δ, α, µ2,O1, . . . ,OH). The case δ = 0 is obvious by (16), so let
us assume that δ > 0. Let Φ1 and Φ2 be the principal eigenvectors associated to the principal
eigenvalues λH(δ, α, µ1,O1, . . . ,OH) and λH(δ, α, µ2,O1, . . . ,OH), respectively, and let QH,1



Adaptation in a heterogeneous environment II: To be three or not to be 31

and QH,2 be the functionals defined in (10), associated with µ1 and µ2, respectively. Since no
component of the vector (ϕ1, . . . , ϕH) := Φ2 is constant, one has

∫
Rn ‖∇ϕi(x)‖2 dx > 0 for each

1 ≤ i ≤ H, hence

λH(δ, α, µ2,O1, . . . ,OH) = QH,2(Φ2) > QH,1(Φ2) ≥ λH(δ, α, µ1,O1, . . . ,OH).

The strict increasing monotonicity of λH(δ, α, µ,O1, . . . ,OH) with respect to α > 0 can be
shown similarly. Lastly, the monotonicity of λH(δ, α, µ,O1, . . . ,OH) with respect to δ ≥ 0 will
actually be shown independently in Proposition 7 in Section 6.3.

Proof of Proposition 5. The first part leading to (20) is actually a straightforward adaptation of
the proof of [15, Proposition 4 (i)] performed in the case H = 2. Details are omitted. Next, since
RH(x) = rmax − α‖x−M‖2/2 +RH(M)− rmax, we get (21).

6.3 Proofs of Propositions 7-12

Proof of Proposition 7. The parameters α > 0 and µ > 0 are fixed throughout the proof, as are
the optima (Oi)1≤i≤H ∈ (Rn)H . Let us first show that the map δ 7→ λH(δ) is differentiable in
(0,+∞). For δ > 0 and Ψ = (ψ1, . . . , ψH) ∈ (H1(Rn) ∩ L2

w(Rn))H , we denote by QH(Ψ, δ) the
Rayleigh quotient (10). We also denote Φδ = (ϕδ1, . . . , ϕ

δ
H) the principal (normalised) eigenvector

associated with λH(δ), so that λH(δ) = QH(Φδ, δ) = minΨ∈(H1(Rn)∩L2
w(Rn))H QH(Ψ, δ).

Fix any δ > 0. We notice that, for ε > 0,

QH(Φδ+ε, δ+ε)−QH(Φδ+ε, δ)

ε
≤ λH(δ+ε)−λH(δ)

ε
≤ QH(Φδ, δ+ε)−QH(Φδ, δ)

ε
, (56)

together with

QH(Φδ+ε, δ + ε)−QH(Φδ+ε, δ)

ε
= 1−

∑
1≤i<j≤H

2

H − 1

∫
Rn
ϕδ+εi (x)ϕδ+εj (x) dx (57)

and
QH(Φδ, δ + ε)−QH(Φδ, δ)

ε
= 1−

∑
1≤i<j≤H

2

H − 1

∫
Rn
ϕδi (x)ϕδj(x) dx. (58)

From the proof of the continuity property in Proposition 3, one knows that Φδ+ε → Φδ in L2(Rn)H

as ε→ 0. Thus, inserting (57) and (58) into (56) and passing to the limit as ε→ 0+, we get

λH(δ + ε)− λH(δ)

ε
−→
ε→0+

1−
∑

1≤i<j≤h

2

H − 1

∫
Rn
ϕδi (x)ϕδj(x) dx.

By reverting the inequalities in (56) when ε ∈ (−δ, 0), and using the arbitrariness of δ > 0, one
then concludes that the map δ 7→ λH(δ) is differentiable in (0,+∞), with

λ′H(δ) = 1−
∑

1≤i<j≤H

2

H − 1

∫
Rn
ϕδi (x)ϕδj(x) dx < 1 for all δ > 0. (59)

Notice also that, if the optima Oi are all identical, then by uniqueness the functions ϕδi are
also all identical, hence

∫
Rn ϕ

δ
i (x)ϕδj(x) dx = 1/H for all 1 ≤ i ≤ H (remember that Φδ =

(ϕδ1, . . . , ϕ
δ
H) has unit L2(Rn)H norm) and λ′H(δ) = 0 for all δ > 0. On the other hand, if

the optima Oi are not all identical, then, for any δ > 0, the functions ϕδi are not all identical:
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otherwise, each ϕδi ∈ H1(Rn)∩L2
w(Rn) would be a classical positive solution of −(µ2/2)∆ϕδi (x)−

ri(x)ϕδi (x) = λH(δ)ϕδi (x) in Rn and then ri(x) ≡ rj(x) in Rn and Oi = Oj for all 1 ≤ i, j ≤ H,
a contradiction. Thus, for every δ > 0, there are 1 ≤ i0 < j0 ≤ H such that ϕδi0 6≡ ϕδj0 in Rn,
hence ∫

Rn
ϕδi0(x)ϕδj0(x) dx <

1

2

∫
Rn

(ϕδi0(x))2 dx +
1

2

∫
Rn

(ϕδj0(x))2 dx,

while the large inequality always holds for every 1 ≤ i, j ≤ H. Therefore, (59) and the normali-
sation of Φδ = (ϕδ1, . . . , ϕ

δ
H) imply that λ′H(δ) > 0 for all δ > 0.

Let us now show the differentiability of δ 7→ λH(δ) at δ = 0. We recall that

λH(0) = λ1 =
µn
√
α

2
− rmax =

µ2

2

∫
Rn
‖∇Gi(x)‖2 dx−

∫
Rn
ri(x) (Gi(x))2 dx

for every 1 ≤ i ≤ H, with Gi(x) = G(x − Oi) and G defined in (15). We also observe
that Proposition 4 implies that the function δ 7→ λH(δ) is continuous at 0, and that 0 ≤
lim infδ→0+(λH(δ) − λH(0))/δ ≤ lim supδ→0+(λH(δ) − λH(0))/δ < 1 (the last strict inequality
comes from the third inequality in (18)).

Consider now any sequence (εm)m∈N of positive real numbers converging to 0. The same
arguments as in the proof of the continuity property in Proposition 3 imply that, up to extraction
of a subsequence, the sequence (Φεm)m∈N = ((ϕεm1 , . . . , ϕεmH ))m∈N converges weakly in H1(Rn)H ,
strongly in L2(Rn)H , and almost everywhere in Rn, to a certain limit Φ := (ϕ1, . . . , ϕH) ∈
(H1(Rn) ∩ L2

w(Rn))H , which is nonnegative componentwise and satisfies
∫
Rn ‖Φ(x)‖2 dx = 1.

Furthermore, each function ϕi is a C∞(Rn) ∩H1(Rn) ∩ L2
w(Rn) nonnegative solution of

−µ
2

2
∆ϕi(x)− ri(x)ϕi(x) = λ1 ϕi(x) in Rn.

Therefore, by uniqueness of the principal eigenfunction for this equation, it follows that there is
pi ∈ [0,+∞) such that

ϕi(x) = piGi(x) = piG(x−Oi) for all x ∈ Rn,

hence
(ϕεm1 , . . . , ϕεmH )→ (p1G1, . . . , pH GH) in L2(Rn)H as m→ +∞. (60)

Since Φ is normalised in L2(Rn)H , one also has

p21 + · · ·+ p2H = 1.

Now, consider any q = (q1, . . . , qH) ∈ RH with ‖q‖ = 1, and call Ψ := (q1G1, . . . , qHGH) ∈
(H1(Rn) ∩ L2

w(Rn))H . Notice that
∫
Rn ‖Ψ(x)‖2 dx = 1. Observe also that each ϕεmH,i belongs to

H1(Rn) ∩ L2
w(Rn), hence

λ1

∫
Rn

(ϕεmi (x))2dx

≤ µ2

2

∫
Rn
‖∇ϕεmi (x)‖2dx−rmax

∫
Rn

(ϕεmi (x))2dx +
α

2

∫
Rn
‖x−Oi‖2(ϕεmi (x))2(x)dx︸ ︷︷ ︸

=:Q1(ϕ
εm
i ,0)

and λH(0) = λ1 ≤ QH(Φεm , 0) by summing the inequalities from i = 1 to H. The inequality
λH(εm) = QH(Φεm , εm) ≤ QH(Ψ, εm) and the equality QH(Ψ, 0) = λ1 = λH(0) then imply that

QH(Φεm , εm)−QH(Φεm , 0)

εm
≤ λH(εm)− λH(0)

εm
≤ QH(Ψ, εm)−QH(Ψ, 0)

εm
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for every m ∈ N, hence, as in (57)-(58),

1−
∑

1≤i<j≤H

2

H − 1

∫
Rn
ϕεmi (x)ϕεmj (x) dx

≤ λH(εm)− λH(0)

εm
≤ 1−

∑
1≤i<j≤H

2

H − 1

∫
Rn
qi qj Gi(x)Gj(x) dx.

(61)

Using (60) and passing to the limit as m→ +∞ in the left-hand side of the previous inequality
leads to ∑

1≤i<j≤H

∫
Rn
qi qj Gi(x)Gj(x) dx ≤

∑
1≤i<j≤H

∫
Rn
pi pj Gi(x)Gj(x) dx,

hence ∑
1≤i,j≤H

∫
Rn
qi qj Gi(x)Gj(x) dx ≤

∑
1≤i,j≤H

∫
Rn
pi pj Gi(x)Gj(x) dx,

since each Gi = G(· − Oi) has unit L2(Rn) norm and since both vectors p := (p1, . . . , pH)
and q = (q1, . . . , qH) of RH have unit Euclidean norm. Denote A = (aij)1≤i,j≤H the symmetric
matrix whose entries are

aij :=

∫
Rn
Gi(x)Gj(x) dx = e−

√
α ‖Oi−Oj‖2/(4µ) > 0, (62)

by (17). One has then obtained that qAq ≤ pAp for all q ∈ RH with unit Euclidean norm
(namely the quadratic form associated to A is maximal on the unit Euclidean sphere of RH at
the normalised vector p). From the Perron-Frobenius theorem, since aij > 0 and pi ≥ 0 for all
1 ≤ i, j ≤ H, it follows that pAp is the largest eigenvalue µA of A, that p is the unique normalised
principal eigenvector of the matrix A, and that pi > 0 for all 1 ≤ i ≤ H. By uniqueness of the
limit, one concludes that Φε → (p1G1, . . . , pHGH) in L2(Rn)H as ε→ 0+. Furthermore, by using
q = p and ε instead of εm in (61), and by passing to the limit as ε→ 0+, one gets that δ 7→ λH(δ)
is differentiable at 0, with

λ′H(0) = 1−
∑

1≤i<j≤H

2

H − 1

∫
Rn
pi pj Gi(x)Gj(x) dx = 1− 1

H − 1

∑
1≤i 6=j≤H

pipjaij . (63)

But
∑

1≤i 6=j≤Hpipjaij = pAp−∑1≤i≤H p
2
i = µA − 1. Finally,

λ′H(0) = 1− µA − 1

H − 1
=
H − µA
H − 1

. (64)

Observe that (63) confirms that λ′H(0) < 1 (since aij > 0 and pi > 0 for all 1 ≤ i, j ≤ H).
Furthermore, if the optima Oi are all identical, then we already know that λ′H(δ) = 0 for all
δ > 0, hence the function δ 7→ λH(δ), which is continuous in [0,+∞) is constant in [0,+∞), thus
λ′H(0) = 0 too and λH(δ) = λH(0) = λ1 = µn

√
α/2 − rmax for all δ ≥ 0. On the other hand,

if the optima Oi are not all identical, then the functions Gi are not all identical and there are
1 ≤ i0 < j0 ≤ H such that Gi0 6≡ Gj0 , hence pi0 Gi0 6≡ pj0 Gj0 (remember that pi > 0 for all
1 ≤ i ≤ H and that the functions Gi have all unit L2(Rn) norm) and∫

Rn
pi0 pj0 Gi0(x)Gj0(x) dx <

1

2

∫
Rn

(pi0 Gi0(x))2 dx +
1

2

∫
Rn

(pj0 Gj0(x))2 dx =
p2i0 + p2j0

2
,

while the large inequality holds for all 1 ≤ i, j ≤ H. Therefore, (63) and the equality p21 + · · ·+
p2H = 1 imply that λ′H(0) > 0.



34 M. Alfaro, F. Hamel et al.

Lastly, with O1,O2 as in (19), formula (64) implies that

λ′2(0) = 1− e−
√
αβ2/µ

and

λ′3(0) = 1−
√
a212 + a213 + a223

3
× cos

[
1

3
arccos

(
a12a13a23

√
27

(a212 + a213 + a223)3

)]
,

from the del Ferro-Cardan formula for the roots of the characteristic polynomial of the matrix
A (notice that the argument inside the arccos ranges in (0, 1] from the positivity of the aij ’s and
the arithmetic-geometric mean inequality). After some algebraic transformations based on (62),
one infers that P := {O3 = (a1, . . . , an) ∈ Rn : λ′3(0) < λ′2(0)} is given by formula (25), and
that {O3 = (a1, . . . , an) ∈ Rn : λ′3(0) > λ′2(0)} = Rn \ P. The last conclusion of Proposition 7
immediately follows, and the proof is thereby complete.

Proof of Proposition 8. Denote λe3 = λ3(O1,O2,O3), with O1 = (−β, 0, . . . , 0), O2 = (β, 0, . . . , 0),
O3 = (0,

√
3β, 0, . . . , 0), and β > 0. We first show some symmetry properties. Let (ϕ1, ϕ2, ϕ3)

be the normalised principal eigenvector associated with the principal eigenvalue λe3. Define the
symmetry

ι(x) = ι(x1, x2, . . . , xn) := (−x1, x2, . . . , xn). (65)

As r2 ◦ ι = r1 and r3 ◦ ι = r3, we get that (ϕ2 ◦ ι, ϕ1 ◦ ι, ϕ3 ◦ ι) is also a normalised positive
eigenvector. By uniqueness, it follows that

ϕ2 = ϕ1 ◦ ι and ϕ3 = ϕ3 ◦ ι.

Now, define

κ(x) = κ(x1, x2, . . . , xn) :=

(
1

2
(x1 − β) +

√
3

2
x2,

√
3

2
(x1 + β)− 1

2
x2, x3, . . . , xn

)
,

which is the orthogonal affine reflection with respect to the hyperplane parallel to the directions
x3, . . . , xn and containing the line joining O1 and (O2 + O3)/2. We refer to the illustration of
Figure 2.

• •

•

O1 O2

O3
•

•

x

κ(x)

Fig. 2 Schematic representation of the affine reflection κ.

We have

r1 ◦ κ = r1, r2 ◦ κ = r3, r3 ◦ κ = r2.
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Additionally, one has ∆(ϕ ◦ κ)(x) = (∆ϕ)(κ(x)) for all ϕ ∈ C2(Rn) and x ∈ Rn. Thus, (ϕ1 ◦
κ, ϕ3 ◦ κ, ϕ2 ◦ κ) is also a normalised positive eigenvector. Again, by uniqueness, one infers that

ϕ1 = ϕ1 ◦ κ, ϕ2 = ϕ3 ◦ κ, and ϕ3 = ϕ2 ◦ κ.

Consider now the equation satisfied by ϕ1, namely

− µ2

2
∆ϕ1(x)− r1(x)ϕ1(x)− δ

(
ϕ2(x) + ϕ3(x)

2
− ϕ1(x)

)
= λe3 ϕ1(x). (66)

Multiplying by ϕ1 and integrating by parts, we get∫
Rn

(
µ2

2
‖∇ϕ1(x)‖2 − r1(x) (ϕ1(x))2

)
dx + δ

∫
Rn

(ϕ1(x))2 dx

−δ
2

∫
Rn
ϕ1(x)ϕ2(x) dx− δ

2

∫
Rn
ϕ1(x)ϕ3(x) dx = λe3

∫
Rn

(ϕ1(x))2 dx.

Moreover, ∫
Rn
ϕ1(x)ϕ3(x) dx =

∫
Rn

(ϕ1 ◦ κ)(x) (ϕ2 ◦ κ)(x) dx =

∫
Rn
ϕ1(x)ϕ2(x) dx.

Thus we have∫
Rn

(
µ2

2
‖∇ϕ1(x)‖2 − r1(x)(ϕ1(x))2

)
dx + δ

∫
Rn

(ϕ1(x))2 dx

−δ
∫
Rn
ϕ1(x)ϕ2(x) dx=λe3

∫
Rn

(ϕ1(x))2 dx,

(67)

and, by symmetry (using a composition with the function ι),∫
Rn

(
µ2

2
‖∇ϕ2(x)‖2−r2(x)(ϕ2(x))2

)
dx+δ

∫
Rn

(ϕ2(x))2 dx

−δ
∫
Rn
ϕ1(x)ϕ2(x) dx=λe3

∫
Rn

(ϕ2(x))2 dx.

(68)

Adding (67) and (68), we observe that

Q2

 ϕ1√∫
Rn(ϕ2

1 + ϕ2
2)(x) dx

,
ϕ2√∫

Rn(ϕ2
1 + ϕ2

2)(x) dx

 = λe3, (69)

where Q2 is the Rayleigh quotient defined by (10) with H = 2. Since (ϕ1, ϕ2) ∈ (H1(Rn) ∩
L2
w(Rn))2, it follows from (9) that λe3 ≥ λ2(O1,O2).

Finally, if λe3 were equal to λ2(O1,O2), since the principal eigenvector associated with the
principal eigenvalue λ2(O1,O2) with H = 2 is the unique positive normalised minimum of Q2

in (H1(Rn) ∩ L2
w(Rn))2, it would follow from (69) that (ϕ1, ϕ2) would be (up to normalisation)

a principal eigenvector of (8) with H = 2. Together with (66) and using the positivity of δ, one
would infer that ϕ3 ≡ ϕ2 in Rn. Similarly, by using the equation similar to (66) satisfied by ϕ2,
one would get that ϕ3 ≡ ϕ1 in Rn. Finally, ϕ1 ≡ ϕ2 ≡ ϕ3 in Rn and (66) implies that ϕ1 would
be a positive multiple of the normalised principal eigenfunction G1 = G(· −O1) of the case of
only one host. But, similarly, ϕ2 would be a positive multiple of G2 = G(· −O2). This leads to
a contradiction, since O1 6= O2 (because β > 0). Therefore, λ3(O1,O2,O3) = λe3 > λ2(O1,O2)
and the proof of Proposition 8 is thereby complete.
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Proof of Proposition 9. With the notation (26), evaluating the Rayleigh quotient associated with

λ3 = λ3(O1,O2,O3) at Φ̃ := (ϕ̃1, ϕ̃2, 0), we get

λ3 ≤ Q3(Φ̃) = λ̃2 = λ̃2(O1,O2). (70)

On the other hand, as the minimum in the Rayleigh quotient Q3 is reached at Φ = (ϕ1, ϕ2, ϕ3),
the normalised eigenvector associated with λ3, we have

λ3≥ min
(ψ1,ψ2)∈E2∫

Rn ψ
2
1+ψ

2
2=1−

∫
Rn ϕ

2
3

{
µ2

2

∫
Rn
‖∇ψ1‖2 + ‖∇ψ2‖2 −

∫
Rn

(r1 ψ
2
1 + r2 ψ

2
2)− δ

∫
Rn
ψ1 ψ2

}

+ min
ψ∈E∫

Rn ψ
2=

∫
Rn ϕ

2
3

{
µ2

2

∫
Rn
‖∇ψ‖2 −

∫
Rn
r3 ψ

2

}
+ δ − δ

∫
Rn
ϕ3 (ϕ1 + ϕ2),

where E = H1(Rn) ∩ L2
w(Rn). As the first minimum in the above formula is precisely (λ̃2 −

δ)
(
1−

∫
Rn ϕ

2
3

)
, and the second minimum is λ1

∫
Rn ϕ

2
3, we get

λ3 ≥ (λ̃2 − δ)
(

1−
∫
Rn
ϕ2
3

)
+ λ1

∫
Rn
ϕ2
3 + δ − δ

∫
Rn
ϕ3 (ϕ1 + ϕ2). (71)

Our goal is now to show that
∫
Rn ϕ3 (ϕ1 + ϕ2) becomes small as ‖O3‖ → +∞. Since λ3 =

Q3(Φ), we have

λ3 > −
3∑
i=1

∫
Rn
riϕ

2
i + δ − δ

∑
1≤i<j≤3

∫
Rn
ϕi ϕj ≥ −

3∑
i=1

∫
Rn
riϕ

2
i

since
∫
Rn ‖Φ‖2 = 1. Using (70) and the definition (2) of ri(x), we get

α

3∑
i=1

∫
Rn

‖x−Oi‖2
2

(ϕi(x))2 dx < λ̃2 + rmax.

This implies that, for any radius R > 0, and i = 1, 2, 3,

‖ϕi‖2L2(Rn\B(Oi,R)) <
2 (λ̃2 + rmax)

αR2
.

Next, we have, for i = 1, 2,∫
Rn
ϕ3 ϕi =

∫
B(Oi,R)

ϕ3 ϕi +

∫
Rn\B(Oi,R)

ϕ3 ϕi

≤ ‖ϕ3‖L2(B(Oi,R))‖ϕi‖L2(B(Oi,R)) + ‖ϕ3‖L2(Rn\B(Oi,R))‖ϕi‖L2(Rn\B(Oi,R)).

Taking R = min(‖O3 −O1‖ /2, ‖O3 −O2‖ /2), we have B(Oi, R) ⊂ Rn\B(O3, R) for i = 1, 2.
Thus, we get∫

Rn
ϕ3 (ϕ1 + ϕ2) ≤ ‖ϕ3‖L2(Rn\B(O3,R))(‖ϕ1‖L2(Rn) + ‖ϕ2‖L2(Rn))

+ ‖ϕ3‖L2(Rn) (‖ϕ1‖L2(Rn\B(O1,R)) + ‖ϕ2‖L2(Rn\B(O2,R)))

≤

√
2(λ̃2 + rmax)

αR2
(‖ϕ1‖L2(Rn) + ‖ϕ2‖L2(Rn) + 2‖ϕ3‖L2(Rn)) (72)

≤

√
12(λ̃2 + rmax)

αR2
,
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where the last inequality uses
∫
Rn ‖Φ‖2 =

∫
Rn ϕ

2
1+
∫
Rn ϕ

2
2+
∫
Rn ϕ

2
3 = 1 together with the Cauchy-

Schwarz inequality a+ b+ 2c ≤
√

6(a2 + b2 + c2) for any (a, b, c) ∈ R3.
We come back to (71). Since

∫
Rn ϕ

2
3 ∈ (0, 1), we have

λ3 ≥ inf
a∈(0,1)

{(λ̃2 − δ) (1− a) + λ1 a}+ δ − δ
∫
Rn
ϕ3 (ϕ1 + ϕ2).

Using (27), namely λ̃2 − δ ≤ λ1, we get

λ3 ≥ λ̃2 − δ
∫
Rn
ϕ3 (ϕ1 + ϕ2).

Finally, we recall that R = min(‖O3 −O1‖ /2, ‖O3 −O2‖ /2) in (72) and, together with (70),
we get (28). The last conclusion of Proposition 9 then follows from (27).

Proof of Proposition 10. We denote (ϕ1, ϕ2) the normalised principal eigenvector associated with
λ2 = λ2(O1,O2). By symmetry we have ϕ1 = ϕ2 ◦ ι, with ι as in (65), hence

∫
Rn ϕ

2
1 =

∫
Rn ϕ

2
2 =

1/2. Next, we take O3 ∈ B(O2, ρ) for some ρ > 0 (the case O3 ∈ B(O1, ρ) can be handled simi-
larly), we call λ3 = λ3(O1,O2,O3), and we test the Rayleigh quotient Q3 at Φ := (aϕ1, aϕ2, bϕ2)
with

a2 +
b2

2
= 1,

so that Φ is normalised. We obtain after some straightforward computations

λ3 ≤ Q3(Φ) = a2λ2 + b2
(
µ2

2

∫
Rn
‖∇ϕ2‖2 − r2ϕ2

2

)
+ b2

∫
Rn

(r2 − r3)ϕ2
2

+δ

(∫
Rn
b2ϕ2

2 + a2ϕ1ϕ2 − abϕ1ϕ2 − abϕ2
2

)
= a2λ2 + b2

(
λ2

∫
Rn
ϕ2
2 + δ

∫
Rn

(ϕ1 − ϕ2)ϕ2

)
+ b2

∫
Rn

(r2 − r3)ϕ2
2

+δ

(∫
Rn
b2ϕ2

2 + a2ϕ1ϕ2 − abϕ1ϕ2 − abϕ2
2

)
= λ2 + δ

(
(b2 + a2 − ab)

∫
Rn
ϕ1ϕ2 − ab

∫
Rn
ϕ2
2

)
+ b2

∫
Rn

(r2 − r3)ϕ2
2.

We now select a = b =
√

2/3 and thus obtain

λ3 − λ2 ≤
2δ

3

(∫
Rn
ϕ1ϕ2 −

∫
Rn
ϕ2
2

)
+

2

3

∫
Rn

(r2 − r3)ϕ2
2.

Since the Cauchy-Schwarz inequality yields
∫
Rn ϕ1ϕ2 −

∫
Rn ϕ

2
2 < 0 (ϕ1 and ϕ2 are not colinear

because β 6= 0) and since the dominated convergence theorem implies that
∫
Rn(r2 − r3)ϕ2

2 → 0
as ρ→ 0, we have λ3 − λ2 < 0 if ρ > 0 is small enough.

Proof of Proposition 11. First, from Proposition 4 and Corollary 1, we know that, whatever the
position of O3, we have

λ1 ≤ λ1 + δ

1−
∑

1≤i<j≤3

∫
Rn
ϕi(x)ϕj(x)dx

 ≤ λ3 ≤ λ1 + δ

(
1− e−

√
αβ2/µ

3

)
. (73)
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Set ψi = ϕi(·+ Oi). We have

λ3=−rmax+

3∑
i=1

∫
Rn

(
µ2

2
‖∇ψi(x)‖2 +

α

2
‖x‖2(ψi(x))2

)
dx+δ−δ

∑
1≤i<j≤3

∫
Rn
ϕi(x)ϕj(x)dx

≥−rmax +

3∑
i=1

∫
Rn

(
µ2

2
‖∇ψi(x)‖2 +

α

2
‖x‖2 (ψi(x))2

)
dx.

Thus, from (73), we obtain that

3∑
i=1

∫
Rn

α

2
‖x‖2 (ψi(x))2 dx ≤ rmax + λ1 + δ

(
1− e−

√
αβ2/µ

3

)
.

Considering any radius R > 0, the last inequality implies that

‖ψi‖2L2(Rn\B(O,R)) ≤
2 (rmax + λ1 + δ)

αR2

for every β > 0 and 1 ≤ i ≤ 3.
Now, consider the particular case where O3 = O = (0, . . . , 0), so that the Euclidean distance

between two optima is at least β. In this case, ψ3 = ϕ3 and we have, for every R > 0 and β ≥ 2R,∫
Rn
ϕ1(x)ϕ3(x) dx =

∫
Rn
ψ1(x−O1)ψ3(x) dx

=

∫
B(O,R)

ψ1(x−O1)ψ3(x) dx +

∫
Rn\B(O,R)

ψ1(x−O1)ψ3(x) dx

≤ ‖ψ1‖L2(B(O1,R))‖ψ3‖L2(Rn) + ‖ψ1‖L2(Rn) ‖ψ3‖L2(Rn\B(O,R))

≤ ‖ψ1‖L2(Rn\B(O,R))‖ψ3‖L2(Rn) + ‖ψ1‖L2(Rn) ‖ψ3‖L2(Rn\B(O,R))

≤ ‖ψ1‖L2(Rn\B(O,R)) + ‖ψ3‖L2(Rn\B(O,R))

since B(O1, R) ⊂ Rn \B(O, R) and ‖ψi‖L2(Rn) = ‖ϕi‖L2(Rn) ≤ 1 for each 1 ≤ i ≤ 3. As a result∫
Rn
ϕ1(x)ϕ3(x)dx ≤

√
8 (rmax + λ1 + δ)

R
√
α

.

Applying the same arguments, we finally get∑
1≤i<j≤3

∫
Rn
ϕi(x)ϕj(x) dx ≤

√
72 (rmax + λ1 + δ)

R
√
α

.

Together with (73), this shows that

λ3(O1,O2,O)→ λ1 + δ as β → +∞.
Consider now the case O3 = O1. We note that λ3(O1,O2,O1) = λ3(O1,O1,O2). Then,

using the result of Proposition 9, we obtain that λ3(O1,O1,O2) → λ̃2(O1,O1) as β → +∞,

where λ̃2(O1,O1) is defined by (26), in the particular case where the two optima are at the same
position. In such case, ϕ̃1 = ϕ̃2 by uniqueness and therefore, from (26),

−µ
2

2
∆ϕ̃1 − r1(x)ϕ̃1 +

δ

2
ϕ̃1 = λ̃2(O1,O1) ϕ̃1,

so that λ̃2(O1,O1) = λ1 + δ/2, and we are done.
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Remark 5 The conclusion limβ→+∞ λ3(O1,O2,O1) = λ1 + δ/2 of Proposition 11 looks at first
glance similar to the conclusion (54) derived in the proof of Proposition 2 (iii). However, the
arguments used in both proofs are not the same, since the proof of Proposition 11 mainly relies
on L2 estimates, while that of Proposition 2 (iii) is based on L1 estimates, with a reasoning done
by contradiction and actually leading to the contradicting conclusions (53) and (54). Notice also
that the system (26) used in the proof of Proposition 11 is symmetric in (ϕ̃1, ϕ̃2), whereas the
system (49) derived in the argument by contradiction in the proof of Proposition 2 (iii) is not
symmetric in (ϕ1, ϕ2), complicating its analysis.

Proof of Proposition 12. We need to recall the notion of Steiner symmetrisation of a function
with respect to the variable xk. Consider first a measurable function h : R → R, x 7→ h(x),
which is either nonnegative and belongs to Lp(R) for some 1 ≤ p < ∞, or which is such that
h(x) → infR h ∈ [−∞,+∞) as |x| → +∞. Then there exists a unique (in the class of functions
which are identical almost everywhere) function h] : R → R, x 7→ h](x), such that: (i) h] is
symmetric with respect to x = 0 and nonincreasing in [0,+∞), i.e., for all x, y ∈ R, h](x) ≥ h](y)
if |x| ≤ |y|; (ii) h] has the same distribution function as h, that is,

meas {x ∈ R : h](x) > α} = meas {x ∈ R : h(x) > α}

for all α ∈ R, where meas denotes the one-dimensional Lebesgue measure.
Consider now a measurable function h : Rn → R, x 7→ h(x), which is either nonnegative

and belongs to Lp(Rn) for some 1 ≤ p <∞, or which is such that h(x)→ infRn h ∈ [−∞,+∞)
as ‖x‖ → +∞. For 1 ≤ k ≤ n and (x1, . . . , xk−1, xk+1, . . . , xn) ∈ Rn−1, the measurable func-
tion xk 7→ h(x1, . . . , xk, . . . , xn) is either nonnegative and belongs to Lp(R) (for almost ev-
ery (x1, . . . , xk−1, xk+1, . . . , xn) ∈ Rn−1), or is such that h(x1, . . . , xk, . . . , xn) → infRn h =
infR h(x1, . . . , xk−1, ·, xk+1, . . . , xn) ∈ [−∞,+∞) as |xk| → +∞. We can then rearrange the
function xk 7→ h(x1, . . . , xk, . . . , xn) as above. This corresponds to the Steiner rearrangement of
h with respect to the variable xk, and we denote it by h]k : Rn → R, x 7→ h]k(x). We also refer
to [3] for the use of Steiner rearrangements in periodicity cells of periodic functions in Rn, and
to [4] for properties and applications of the monotone rearrangement with respect to a variable
in straight cylinders.

In the sequel, we use some known properties of this rearrangement, which we briefly recall.
Firstly, for any nonnegative function h ∈ Lp(Rn) with 1 ≤ p <∞, the nonnegative function h]k

belongs to Lp(Rn) too, and ∫
Rn
hp =

∫
Rn

(h]k)p. (74)

Secondly, for any nonnegative L2(Rn) functions h and j, the Hardy-Littlewood inequality asserts
that

0 ≤
∫
Rn
h j ≤

∫
Rn
h]k j]k . (75)

Thirdly, the Pólya-Szegö inequality says that, for any nonnegative function h ∈ W 1,p(Rn) with
1 ≤ p <∞, the function h]k belongs to W 1,p(Rn) too, and∫

Rn
‖∇h‖p ≥

∫
Rn
‖∇h]k‖p. (76)

Equipped with this, we are in position to prove the result in Proposition 12. For the proof,
without loss of generality; using the notation (19) and the fact that the map O3 7→ λ3(O1,O2,O3)
is invariant by rotation around the axis R × {0}n−1, we can assume that O3 ∈ R2 × {0}n−2.
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Let (ϕ1, ϕ2, ϕ3) ∈ (H1(Rn) ∩ L2
w(Rn))3 be the normalised positive eigenvector associated with

λ3 = λ3(O1,O2,O3). Remember from (9) that

λ3 =

3∑
i=1

∫
Rn

(
µ2

2
‖∇ϕi‖2 − ri ϕ2

i

)
+ δ − δ

∫
Rn

(ϕ1 ϕ2 + ϕ2 ϕ3 + ϕ1 ϕ3). (77)

Consider (ϕ]21 , ϕ
]2
2 , ϕ

]2
3 ) the Steiner symmetrisations of the eigenfunctions with respect to the

variable x2. From (74), we know that∫
Rn

(ϕ]21 )2 + (ϕ]22 )2 + (ϕ]23 )2 =

∫
Rn
ϕ2
1 + ϕ2

2 + ϕ2
3 = 1. (78)

Additionally, from (75), we have∫
Rn

(ϕ1 ϕ2 + ϕ2 ϕ3 + ϕ1 ϕ3) ≤
∫
Rn

(ϕ]21 ϕ]22 + ϕ]22 ϕ]23 + ϕ]21 ϕ]23 ). (79)

Now, we have to prove that, for each i = 1, 2, 3, the function ϕ]2i belongs to H1(Rn) ∩
L2
w(Rn). First of all, it belongs to H1(Rn), from (74) and (76). Let us now show that the integral∫
Rn ‖x‖2 (ϕ]2i (x))2 dx converges. To do so, for any R > 0, call bR the nonnegative L2(Rn) function

defined by bR(x) := max(R2 − ‖x‖2, 0) and observe that∫
Rn

min(‖x‖2, R2) (ϕi(x))2 dx =

∫
Rn
R2 (ϕi(x))2 dx−

∫
Rn
bR(x) (ϕi(x))2 dx

≥
∫
Rn
R2 (ϕ]2i (x))2 dx−

∫
Rn
b]2R (x) (ϕ]2i (x))2 dx

from (74)-(75) (we here use the fact that ϕ2
i belongs to L2(Rn), since it is continuous and decays

to 0 faster than exponentially as ‖x‖ → +∞). Since b]2R = bR, one then gets that∫
Rn
‖x‖2 (ϕi(x))2 dx ≥

∫
Rn

min(‖x‖2, R2) (ϕi(x))2 dx

≥
∫
Rn

(R2 − bR(x)) (ϕ]2i (x))2 dx =

∫
Rn

min(‖x‖2, R2) (ϕ]2i (x))2 dx.

The monotone convergence theorem then yields the convergence of
∫
Rn ‖x‖2 (ϕ]2i (x))2 dx. Thus,

ϕ]2i ∈ H1(Rn) ∩ L2
w(Rn), for each i = 1, 2, 3.

Next, we claim that, for each i = 1, 2, 3, the Hardy-Littlewood inequality can be applied to
the couple (ri, ϕ

2
i ), although ri is not only sign-changing but actually unbounded from below

in Rn, namely we claim that∫
Rn
ri ϕ

2
i ≤

∫
Rn
r]2i (ϕ2

i )
]2 =

∫
Rn
r]2i (ϕ]2i )2. (80)

To show (80) by overcoming the difficulty arising from the unboundedness of ri from below, we
use a truncation method together with the dominated convergence theorem. Notice first that all
integrals in (80) converge since the functions ϕi and ϕ]2i belong to L2(Rn) ∩ L2

w(Rn) and since

(r]21 , r
]2
2 , r

]2
3 ) = (r1, r2, rO]

3
), where

rO]
3
(x) = rmax − α

‖x−O]
3‖2

2
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(the equality r]23 = rO]
3

holds because O3 ∈ R2 × {0}n−2). To show (80), set, for any arbitrary

K > 0, rKi (x) := ri(x) + K if ri(x) + K > 0 and rKi (x) := 0 otherwise, that is, rKi (x) =
max(ri(x)+K, 0). The function rKi is continuous and compactly supported, hence it is in L2(Rn).
Notice also that the function ϕi is positive and decays exponentially at infinity. Thus, for every
(x1, x3, . . . , xn) ∈ Rn−1, the positive functions ϕ̃i := ϕi(x1, ·, x3, . . . , xn) and ϕ̃]i belong to L2(R),

while (ϕ̃]i)
2 is symmetric in R, non-increasing in [0,+∞), and

meas {x2 ∈ R : (ϕ̃]i)
2(x2) > α} = meas {x2 ∈ R : ϕ̃]i(x2) >

√
max(α, 0)}

= meas {x2 ∈ R : ϕ̃i(x2) >
√

max(α, 0)}
= meas {x2 ∈ R : ϕ̃2

i (x2) > α}

for each α ∈ R. Hence, by uniqueness of (ϕ̃2
i )
], there holds (ϕ̃]i)

2 = (ϕ̃2
i )
] a.e. in R, and, since

ϕ̃]i(x2) = ϕ]2i (x1, x2, x3, . . . , xn) and (ϕ̃2
i )
](x2) = (ϕ2

i )
]2(x1, x2, x3, . . . , xn) for all x2 ∈ R, one

finally concludes that (ϕ]2i )2 = (ϕ2
i )
]2 . Now, from (75) applied to the nonnegative L2(Rn) func-

tions rKi and ϕ2
i , we infer that

0 ≤
∫
Rn
rKi ϕ2

i ≤
∫
Rn

(rKi )]2 (ϕ]2i )2.

As (rKi )]2 = max(r]2i +K, 0) by definition of ri in (2), we get that∫
ri+K>0

ri ϕ
2
i +K

∫
ri+K>0

ϕ2
i −K

∫
r
]2
i +K>0

(ϕ]2i )2 ≤
∫
r
]2
i +K>0

r]2i (ϕ]2i )2. (81)

It also follows from (74) that the functions ϕi and ϕ]2i have the same L2(Rn) norm, hence

K

∫
ri+K>0

ϕ2
i −K

∫
r
]2
i +K>0

(ϕ]2i )2 = −K
∫
ri+K≤0

ϕ2
i +K

∫
r
]2
i +K≤0

(ϕ]2i )2. (82)

Next, we note that there are some positive constants C and K0 such that{
x ∈ Rn : ri(x) +K ≤ 0

}
∪
{
x ∈ Rn : r]2i (x) +K ≤ 0

}
⊂ Rn \B(O, C

√
K)

for all K ≥ K0 and 1 ≤ i ≤ 3. Thus, (82) implies that, for all K ≥ K0,∣∣∣∣∣K
∫
ri+K>0

ϕ2
i −K

∫
r
]2
i +K>0

(ϕ]2i )2

∣∣∣∣∣ ≤ K
∫
Rn\B(O,C

√
K)

ϕ2
i + (ϕ]2i )2. (83)

We then use the fact that the functions x 7→ ‖x‖ϕi(x) and x 7→ ‖x‖ϕ]2i (x) are in L2(Rn) (the

property for ϕ]2i follows from the previous paragraph). Hence,

C2K

∫
Rn\B(O,C

√
K)

(ϕi(x))2 dx ≤
∫
Rn\B(O,C

√
K)

‖x‖2 (ϕi(x))2 dx→ 0 as K → +∞,

and a similar property holds for ϕ]2i . Finally, (83) shows that

K

∫
ri+K>0

ϕ2
i −K

∫
r
]2
i +K>0

(ϕ]2i )2 → 0 as K → +∞.

Passing to the limit K → +∞ in (81) and using the dominated convergence theorem, we ob-
tain (80).
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Finally, using (76), we get that

3∑
i=1

∫
Rn
‖∇ϕi‖2 ≥

3∑
i=1

∫
Rn
‖∇ϕ]2i ‖2. (84)

Coming back to (77), and using (79), (80) and (84), it follows that

λ3 ≥
3∑
i=1

∫
Rn

(
µ2

2
‖∇ϕ]2i ‖2 − r]2i (ϕ]2i )2

)
+ δ − δ

∫
Rn

(ϕ]21 ϕ]22 + ϕ]22 ϕ]23 + ϕ]21 ϕ]23 ). (85)

Using (78) and (ϕ]21 , ϕ
]2
2 , ϕ

]2
3 ) ∈ (H1(Rn)∩L2

w(Rn))3, together with (r]21 , r
]2
2 , r

]2
3 ) = (r1, r2, rO]

3
),

it follows that (ϕ]21 , ϕ
]2
2 , ϕ

]2
3 ) is an admissible triplet in the Rayleigh quotient associated with the

optima (O1,O2,O
]
3). As a conclusion, (85) yields λ3 ≥ λ3(O1,O2,O

]
3), which proves Proposi-

tion 12.
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14. G. Garćıa-Ramos and M. Kirkpatrick. Genetic models of adaptation and gene flow in peripheral populations.
Evolution, 51:21–28, 1997.

15. F. Hamel, F. Lavigne, and L. Roques. Adaptation in a heterogeneous environment. I: Persistence versus
extinction. J. Math. Biology, 83:14, 2021.

16. C. A. Klausmeier, M. M. Osmond, C. T. Kremer, and E. Litchman. Ecological limits to evolutionary rescue.
Phil. Trans. Royal Society B, 373: 20190453, 2020.

17. A. Latinne, B. Hu, K. J. Olival, G. Zhu, L. Zhang, H. Li, A. A. Chmura, H. E. Field, C. Zambrana-Torrelio,
J. H. Epstein, B. Li, W. Zhang, L.-F. Wang, Z.-L. Shi, and P. Daszak. Origin and cross-species transmission
of bat coronaviruses in China. Nature Communications, 11:1–15, 2020.

18. S. K. P. Lau, P. C. Y. Woo, K. S. M. Li, Y. Huang, H.-W. Tsoi, B. H. L. Wong, S. S. Y. Wong, S.-Y. Leung,
K.-H. Chan, and K.-Y. Yuen. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe
bats. Proc. Natl. Acad. Sciences, 102:14040–14045, 2005.



Adaptation in a heterogeneous environment II: To be three or not to be 43
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24. G. Meszéna, I. Czibula, and S. Geritz. Adaptive dynamics in a 2-patch environment: a toy model for allopatric
and parapatric speciation. J. Biol. Systems, 5:265–284, 1997.

25. S. Mirrahimi. A Hamilton–Jacobi approach to characterize the evolutionary equilibria in heterogeneous
environments. Math. Models Methods Appl. Sci., 27:2425–2460, 2017.

26. S. Mirrahimi and S. Gandon. Evolution of specialization in heterogeneous environments: equilibrium between
selection, mutation and migration. Genetics, 214:479–491, 2020.
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