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Abstract. — We present a simple and general reduction algorithm for stiff monomolecular kinetic systems.
The reduction is based on algebraic techniques and consists in eliminating the fastest dynamics in the initial
system without any change of basis. This process is systematic and is not based on chemical conventional
assumptions or on singular perturbation techniques. Systems can be reduced even if they are not in the Tikhonov
form. This reduction process is applied to kinetic systems with kinetic constants belonging to different scales.

Error estimates for all species are given. Numerical tests are performed.

1 Introduction

Reacting flows occurring in a large variety of situations like air pollution, combustion processes
or biochemistry can be modelized by mathematical equations where chemistry, transport and
diffusion phenomena are considered together. For a faithful modelling, complex chemical net-
works have to be taken into account. The current air pollution models involve tens of chemical
species and reactions [1], [3]. On the other hand, the chemical reactions usually have widely
different time scales and the numerical resolution of such stiff chemical systems can reach 80%,
or more, of the computational time for models with simple transport and diffusion phenomena.
A first step is to isolate the chemistry. In the past decade, special effort has been carried out to
build reduced systems approximating the detailed chemical mechanism with the best possible
accuracy. Our goal in this paper is to define a systematic algorithm, different from the usual
reduction methods, in order to reduce any monomolecular isothermal chemical kinetics.

At the level of modelling, two main conventional reduction methods based on chemical
observations, the “quasi-steady state approximation” (q.s.s.a.) and the “partial equilibrium
assumption” have been successfully used to reduce kinetic systems [2], [21], [22], [23], [27], [32].
The q.s.s.a. asserts that the consumption and production rates of some well-chosen “quasi-
steady state species” (q.s.s. species) are high but very close to each other so that they cancel
each other out. The q.s.s. species are given from algebraic relations which are obtained by
zeroing the right-hand side of the first- or second-order time-derivatives of their concentrations.
The other species obey a reduced differential system. To enhance the chemical intuition, the
q.s.s. species can be found from numerical tests [7]. On the other hand, the partial-equilibrium
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approximation leads to algebraic relations by zeroing the first-order (or second-order) time-
derivatives of the rates of the reversible reactions whose direct and opposite sides are high but
very close to each other.

From a mathematical point of view, the stiffness of the chemical systems can usually be elim-
inated with two methods. The first approach consists in changing the basis of the species with-
out reducing the number of unknowns. The reduced systems involve non-pure species (as those
obtained from lumping techniques [11], [24]). The second approach consists in partitioning the
species into slow and fast ones and using some constraints to express the fast species. That can
be done by writting the original system under the standard Tikhonov form, with two “slow/fast”
sub-systems involving two different scales: &1 = vi(xy, z2,€), Xy = vo(21,29,£). Under some
semi-stability conditions for the “fast part” v, along the invariant manifold {vy(z1, x4, 0) = 0},
singular perturbation techniques guarantee that the solution z(t) = (z1(t),z2(t)) can be de-
veloped in the time scales ¢ and t/¢ and that the initial system can be approximated by the
reduced system i, = vy(x1,22,0), vo(x1,22,0) = 0 [6], [9], [13], [19], [29]. This manifold can
be pre-tabulated and its dimension can be given by partitioning the spectrum of the Jacobian
matrix of the source term [17], [20]. However, the concrete choice of the fast and slow species to
get a Tikhonov form is not obvious in general and may be based on the q.s.s.a. [9], [26], [28] or
may also require a change of basis [31]. An alternative way of finding the invariant manifold has
been developed by Lam and Goussis [14], [15]. It consists in expanding the chemical terms into
a sum of terms which are ordered by increasing time scales and in zeroing them recursively, but
without reducing the size of the differential system. We also refer to [25], [30] on other methods
of expanding the source terms by keeping the size of the differential system unchanged.

In this paper, our aim is to find a systematic and constructive reduction method for any
kinetic system where the chemistry is monomolecular with respect to a set of limitant species
whose concentrations have to be evaluated. We do not use either the quasi-steady state approx-
imation or the partial-equilibrium assumption. As for the second approach described above,
our goal is to construct, without any change of basis, a smaller and no longer stiff differential
system involving “slow” species and to express the other “fast” species from the slow ones. As
presented in section 2, the partitioning of the species is completely algorithmic and explicit.
Although the starting point consists, like in [14], [15], in finding the fastest dynamics in the
right-hand side of the original system, this is done in order to select some “slow” species and
to eventually get a smaller differential system involving these species. Moreover, this reduction
process can be done even if the system is not in the Tikhonov form. Unlike some optimiza-
tion techniques used in combustion and pollution to obtain simplified models where only some
species or group of species are evaluated [24], all species are here evaluated and time-global
error estimates between the detailed and the reduced systems are given. This reduction mech-
anism is applied to kinetic systems with multiple scales, the scales being naturally given by
the kinetic constants. Under some assumptions, we especially give a characterization of the
size of the reduced system and of the fastest species. In section 5, we perform numerical tests
by comparing the so-built reduced system with the detailed one and with the conventional
quasi-steady state assumption. We study a theoretical example with three scales and a realistic
example arising in biochemistry.

Some work has still to be carried out to deal with reactions which are at least bi-molecular
in terms of the limitant species. For such systems, local instabilities may occur.



2 Definition of the reduction process and main results

2.1 Framework

Consider an isothermal mixture of IV species Ay, - -+, Ay with relative concentrations y;. There
may also be some species N; in excess (like Oy or Ny in the air), whose concentrations are
assumed to be constant. We assume that M chemical reactions take place simultaneously in
the mixture and that each is mono-molecular with respect to the species A;, i.e.,

reaction r (1 <7 < M): A; + Ny +---+ Ny N As + Ny +-+ Ny

A reversible reaction A; = A, is represented by two reactions A; — A; and A; — A;. The rate

of the reaction r is w, = k,y; where, in this isothermal context, k, is a given positive kinetic

constant. We see that for each reaction r there is a unique pair (i, j) such that A; is a reactant

and Aj is a product. If the same pair (¢, j) occurs in different reactions ry,---,r,, we combine

these reactions together into a single reaction r by setting k., = k,, +---+ k, . Then, a pair

(A;, A;) can appear in at most one reaction as a pair reactant-product for such a reaction.
The evolution in time of each concentration y; is given by the law of mass action:

dy; .
dtZ:_ Zw,«—l— Zw,«, 1=1,---,N.
Ty ir=i Ty 5r:i
In other words, the concentrations’ vector y = (y1,---,yx)’ satisfies the following system % =
S w where w = (wy, -+, wy)T is the reaction rates’ vector and the rectangular stoechiometric

matrix S of size N x M is defined by: S;, = —1ifi =4, S;, = 1ifi = j, and S;, = 0
otherwise. Since w, = k,y; , the vector y(t) solves the differential system

d
(S) d_i =Jy, t>0, y(0) given (2.1)

where the real square matrix J of size N x N is given by:

Jii = — Z k,,
L0 i and iV ) # () (2.2)
97 ke ifi#j and if Ir (v ) = ().

Note that if 4 # j then there exists at most one reaction r such that (i,,7.) = (j,7). In the
sequel, one assumes that, up to normalization, >~ y;(0) = 1.
The matrix .J is said to be kinetic ([16], [28]): it satisfies

(i) V1<i<N, Ji <0
(iii) VI<j<N, SN J; =0

and one has ([5], [28]): 1) the matrix .J is “semi-stable”: all its nonzero eigenvalues have negative
real parts and Ker(J) = Ker(J-.J), 2) zero is an eigenvalue of J with multiplicity equal to the
number of invariants in (2.1), and C ¥ = I'm(.J) @ Ker(J), 3) if A is an eigenvalue of .J, then X
is also an eigenvalue and |\| < 2max;<;<n |Jii|, 4) lastly, any solution of the Cauchy problem
(2.1) has a finite limit as ¢t — +o0.



2.2 Definition of the reduction process

We are now going to eliminate the fastest dynamics of (S) and the associated species. The
eigenvalues of the matrix J (which may not be diagonalisable) can be ordered so that

RO < <RAp) < Apg1 =+ = Ay = 0. (2.4)

Since the matrix .J is real, its eigenvalues are conjugated and two conjugated eigenvalues have
the same multiplicity. Hence, if A € IR is an eigenvalue of J with multiplicity 4, one can assume
that () > 0 and that \; = A\, A1t = A, Aiga = A, o+, Ajape = = )\ for some i.

Call J° = J and choose a nonzero left e1genvector bO e C N of JO for the eigenvalue \;. Let

iy be the smallest integer such that [0} | = max |b?| and define the matrix J* = (J};)i jzi, by

.. .. . 1 0 b 0
V1<i,7<N, i,j#iu, J; _sz_bTJm (2.5)
The choice of 7; is enlightened in Remark 4.3 in the case of a system with multiple scales. The
complex valued matrix J!, which only depends on J° = J and °, is called the “reduced matrix
at the first step”. Notice that if 1O is replaced with ab® (o € C ), then J' is unchanged.
Let us assume temporarily that the matriz J' admits the same eigenvalues as J except M\
(see Theorem 2.1 below). Now, two cases may occur:
— either \; € IR. Since J is real, we can then assume that the vector b° is real. The matrix
J! is then real and one then considers a nonzero left eigenvector b* of J! for the eigenvalue ).
— or (A1) > 0. In this case, the matrix J' may not be real. On the other hand, we know
that Ay = \;. Let us define the vector b' € C N~! by

., — b
Vi#i, b =0b)— n B0 (2.6)
We claim that (see the proof in section 3.1)
b' is a nonzero left eigenvector of J' for the eigenvalue Ay = ;. (2.7)

By induction, at any step & < N, we can construct a nonzero left eigenvector v*~! of
the matrix J*~! for the eigenvalue )\, by assuming temporarily that the eigenvalues of J¥~!
are Ag, -+, Ay. We then define the smallest integer i, € {1,---, N}\{é1,- -, ix_1} such that
657" = maxiz, ..i,_, [by "] Lastly, we define the “reduced matrix” J* = (JE); ;j2i,.i, by

V1<i,j<N, i j#iy i, J5= J’“l—bk—Jl’zkl. (2.8)

We point out that if ) is real, then v* ! can be assumed to be real ; if 3(A\;) > 0, then b¥ ! is
chosen arbitrarily but if \S(Ak) < 0, then b*! is chosen in terms of b* 2 and on b¥~2 as in (2.6):

bl = b"C — (b2 bk Z)bk for each i € {1,---, N}\{d1,-- -, ik 1}

Te—1
The close relationship between the dynamlcs of J° = .J and J* is stated in the following

Theorem 2.1 For any k > 1, the matriz J* € Mat(C Nk ¢ N’k) has the same eigenvalues
as J, except \i,--+,\y. The matriz J* is also semi-stable. Furthermore, if k is such that
S(\r) <0 (which also means that S(\,11) > 0), then J* is a real matriz.
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Remark 2.2 The matrices J* are successive reduced forms of .J but no longer involve the first
k eigenvalues of J which have the most negative real parts. Moreover, the fundamental property
of semi-stability is preserved and if the “eliminated” eigenvalues Ay, - -+, A are conjugated (i.e.
if $(A\g) <0), then J* is still real. However, the reduced matrices may not be kinetic.

For any k, set K = {1,---, N}\{i1, - -,ix}. Let us stop the reduction process at a step R,
1 < R < N —1, such that Ag € IR or J(Ag) < 0: the first R eigenvalues Ay, ---, Ag of J are
conjugated. Since the reduced matrix J# only contains the N — R eigenvalues of .J which have
the lowest real parts (in absolute values), we choose to approximate the solutions y(t) of the
Cauchy problem (2.1) by the following algebraic-differential system with unknowns y%(t):

4 d R '
3t = JRyR( )’ t = to, (yz'R(tU))iE’CR glven, for (yiR)iGICR = (yzR)zyéu,,zR
bk} 1 -
(SR) yl(t) z—Zbk -yl if \p € Ror S(\;) <0, k<R
111 9]
ko tk bkfl bigfl bk
vy == > |\ v iSO >0, k<R
. 1€ K41 bik b Tkt1

System (ST) is divided into two parts: first, a differential — and real — system for (y);cx,,, and,
second, R algebraic relations giving (y/);—i....i,, in terms of the other species. More precisely,
yﬁ{ is calculated in terms of (yf);cxp, next yﬁfl is calculated in terms of (y/);cx,_,, and so
on until yff. If £+ 1 < R and I(\g) > 0, then y is actually given in terms of (y/%)iex,,, (and
not in terms of the (y/%)icx, as in the other cases). The formula for y/* in the case S(\¢) > 0 is
chosen so that it could involve real coefficients (see Theorem 2.3 below). However, due to the
particular choice of the vector b* (in terms of b*~! and of b ~1) in the case I(\r1) < 0, it is

easy to check that system (S®) can be rewritten as

dy® .
di = Ik R( ) £ to, (4 t0)ierey given, o (5
t
(2.9)
yl(t - Z — yZ if £ < R.

ZE’Ck

Lastly, to is a new initial time for the reduced system (S%). It is speciﬁed in Theorem 2.3
below. If the eigenvalues Mgy, -+, Ay of J® remain bounded and if A;,---, A\ are very high,
then the differential system for (yf )ZGK;R is not stiff anymore. Under that assumption, t[] can be
viewed as an exit time from a boundary layer for the so-called “fast” species y;, i = i1, - -, ig-

The particular form met by this algebraic-differential system (S%) is relevant in the sense
that, given a number R of eliminated species, problem (S%) provides a good approximation of
the solutions (y;)1<;<n of system (5) for times larger than to:

Theorem 2.3 i) If R is such that \p € IR or S(\g) < 0, then J® is a real matriz and all the
coefficients of the algebraic relations governing the y[t (k=1,..., R) in (S%) are real.

ii) Besides, for any R, there exists a constant C such that, for any time t, >
max (0, maxj;<,<r (|[R(Ae)|7 In|R(A)|) and for any h >0,

if (Vi€Ke lyf(to) = yilto)l < h),

then (Y1 <i <N, ¥t >to, [yf(t) — 5a(t)] < C (h+ [ROR)[ ). (2.10)



In other words, the smaller the error between the exact solution and the reduced solution
for the species (y;)icx, at a given and precisely estimated exit time ¢, is and the larger the
last eliminated dynamics R(Ag) is, then the smaller the error between the exact solution and
the reduced solution for all species at any further time is. In practice, y®(¢y) can be obtained
by solving numerically the initial system (S) on the interval [0,%y] and h can be viewed as a
numerical error with respect to the exact solution at the time .

2.3 Applying the reduction to kinetic systems with multiple scales

In many situations, the kinetic constants k, of the chemical reactions range in very different
scales. The largest (resp. smallest) kinetic constants k, correspond to the fastest (resp. slowest)
reactions. In the sequel, we assume that there exist ¢ € (0,1) (considered to be small), two
positive constants 0 < C; < Cy (independent from ), S real numbers p; > --- > pg (not
necessarily of the same sign) and a partition of the set {1,---, M} into S subsets Ry,---,Rg,
such that, for any s € {1,---,S} and for any r € R, k.£P* does not depend on ¢ and

V1<s<S, VreR,, Cy e <k, <CyePe.

The reactions in the group R have the highest kinetic constants; the kinetic constants of the
reactions of the group Ry belong to the second highest scale, etc. DefineZ; = {1 <i < N, Ir €
R, i, =i} the set of reactants A; in at least one reaction of the group R and, by induction,

T, ={1<i<N, ig U I, IreR, i, =i}, 2<s<8

and Zg 1 = {1, -+, N}\ U1<s<5Zs. The sets Z;,---,Zg,q partition the set {1,---, N}. Lastly,
call R, = #R, (1 < s < S)and I; = #T; (1 < i < S+ 1), where #E means the cardinal
of E. FEven if it means permuting the subscripts of the species, we can always assume that
i ={1,---. Ii},.... Zs={1+ - +Is 141, -+ 1+ - +1Is}, Lsy1 = {[1+ - -+1s+1,---,N}.
Let us now define S square matrices A* (s =1,...,5) of size N x N, as follows:
-V 1<i#j < N: A =P Jy; =Pk, if Ir € Ry, (ir, Jr) = (4,4); Af; = 0 otherwise,
-V1I<i<N, Af = —eP 3 cr. =i bir
For each 1 < s < S, the matrix £7Ps A% only takes into account the kinetic constants of the
reactions of the group Rs. Each matrix A° is kinetic and satisfies (2.3). Furthermore, the
columns C} of A® vanish for i > I) + -+ I, + 1.
The initial system y = Jy can then be written as follows:

g=Jy= (A + .. 4 ePSA%) . (2.11)

The scales e7P1, ..., 7PS appear in the columns of .J. This is very different from the case where
the system is directly divided into a slow and a fast subsystem of the kind: @ = vy (21, 22) and
Ty = e 'wy(wy, 22) — the Tikhonov form — (see e.g. [6], [9], [29], or [8], [12] in the case of a
finite number of such subsystems). Notice that if, for instance, \; is in the scale e~' and if the
other eigenvalues are bounded as ¢ — 0, the initial system (2.11) could be put in the Tikhonov
form after a change of basis. But our goal is to find a reduced system involving pure species.
As in section 2.2, we can build a sequence of reduced matrices J* by eliminating the fastest
dynamics and some associated species. We now have to determine at which step R it seems



reasonable to stop the reduction process. Given a power p, (1 < ¢ < S5) and a real « such that
Pg > > peyr if ¢ # S or pg > aif ¢ = 5, let R be the first step such that J(Ag) < 0 and

IR(Tr(JH)| <e ™. (2.12)
Since R(Tr(JE)) = R(Ary1) + - + R(Ax) and R(N;) < 0, it follows that [R(N;)| < 7« if

i > R+ 1. Similarly, since the sequence (R();)) is nondecreasing, |[R(\;)| > v—7—¢ “ifi < R.

The following Theorem gives especially an estimation of the number of reduction steps and
the nature of the eliminated species.

Theorem 2.4 i) Let I} be the rank of A'. There exists ey > 0 such that if 0 < € < &, then
R>1I and V1<k<I, 1<i<I.

i) If o is chosen in (2.12) such that py > a > pe+PB(p1—p2) with f = (I —11)/(L— 11 +1) €
[0,1), then there exist two positive constants C' and &g such that if 0 < ¢ < &g, then R = I,

Vi > I +1, I\i| < Ce—P2—B(p1—p2)

V2<s<S VjeTI, Viti, -, ig |Jf| < CePe
Vj61-5+1,V7;7£2.1,"',7;R, JzI]{:O

and J® = o(s7P) as e — 0 in Mat(IRN %, RN F).

(2.13)

There are at least I] steps to eliminate the fastest dynamics and the size of the differential
system in (S%) is at most of N — I]. Moreover, the “fastest” —eliminated algorithmically— I]

species A;,, -+ -, A;, are reactants of at least one of the fastest reactions (group R4).
1

If «v is such that p; > « > ps + B(p1 — p2) and £ > 0 is small enough, one then has an exact
estimation of the number of reduction steps as well as very sharp estimates for the coefficients
of JE. In particular, the final reduced matrix J¥ does not contain any term in the highest scale
£7PL and its eigenvalues belong to scales O(z7P2~#(P1=P2)) Therefore, the reduced system (S*)
is not stiff with respect to the initial system (S). The scale e P2=#(P1=P2) can be viewed as a
scale separating the highest dynamics ¢ and the other ones.

Remark 2.5 In the case I] = [}, then « can be any number in (po, p1) and, after reduction, all
dynamics belong to the scale O(¢7??). This assumption I] = I; corresponds to the invertibility
assumption in Tikhonov’s Theorem. However, systems of the type (2.11) can be reduced even
if I < I, as for the following system

—ket—k ke 0 ket
i Y1 B 1€ B 3 _25 B . Y1 - L %1"42
gl 2= kie koe™ 0 Y2 |, associated to koe ,
Ys ks 0 0 Ys A5 A,

where I] =1 < I} = 2. The reactions of the group R, only involve the first I; species; hence,
the sum of the first I; lines of A' is zero. This condition is sufficient for I} < I; to hold.

Corollary 2.6 Let o € (po+3(p1—p2),p1) and assume p; > 0. Let pr, be a nonzero eigenvalue
of the matriz A" whose real part is the closest to 0. There exists a constant C such that, for
any 6 > [R(up)|~", there exists o such that for any 0 < e < g and for any t. > 6e”*|IneP],

(Vi € Kn, [yfi(t:) —yi(t-)| < ™) = (VI <i <N, VE > 1, [yf(t) — wi(t)| < Ce™).



This result—obtained thanks to Theorems 2.3 and 2.4—gives a precise estimation of the
boundary layer exit time ¢. from the highest dynamics. Provided that the (numerical) error
for the “slow” species (y;)icx, at this exit time is in the same scale eP* as the time scale of the
fastest dynamics, then the error with the exact solution stays in the same scale for all species
at any further time t. Furthermore, the stiffer the initial system is, the smaller that error is.
The values of y?(¢.) can be obtained by solving numerically the initial system (S) on the small
boundary layer [0,¢.]. Notice that on such an interval, the notion of fast and slow species is
not suited.

Remark 2.7 Under the assumptions of Corollary 2.6, the invariants of system (S) and the
positivity of the concentrations are preserved in the reduced system (S%) up to an error O ().

3 General properties of the reduced systems

3.1 Proof of Theorem 2.1

Proof of the claim (2.7). Let b° be a nonzero left eigenvector of the matrix J for the
eigenvalue \; and assume that (A1) > 0. Let J' be the matrix given by (2.5) and b' be the
vector in € ¥! defined by (2.6). If the vector 0° is replaced with vb° (y € € *), then J' is
not changed and b' is replaced with 7b'. Hence, in order to prove that b' is a left eigenvector
of J! for the eigenvalue )y, it is sufficient to consider the case where b} = 1. This means that

b; = b_? — b9 for any j # iy and Jj; = Ji; — b} .Jy;, for any i, j # iy.
First of all, b" is not identically zero: otherwise b € IR for all j # 4y, then b° would be a real
and nonzero eigenvector of the real matrix J for the nonreal eigenvalue \;. This is impossible.
Let us now check that b'J" = M\yb' = \;b'. For each j # i1, we have

Sobidiy = 2 0 = ) (Jrg = U3 Jki) = D 0Tk — b D b Shiy — D 00k + b D b
k#i1 k#i1 k#i1 k#i1 k#iy k#iy

Since b°J = A;J and since b) =1, we deduce that

Zbllc‘]li] = ()‘_lb_g - Jilj) - b?()‘_l - Jilil) - ()‘lbg - Jilj) + b?()‘l - Jilil) = )‘_1(@ - bg) = )‘_lb;
ki1

The matrix J? is real if ()\;) > 0. Under the above notation, let us now prove that the
matrix .J* = ()i j2i i, defined by (2.8) isreal. Let iy be the smallest integer in {1,---, N}\{i1}
such that [bj,| = max;;, |bj|. For any couple (i,7) such that i,j # iy, i, one has

1

b 0 b]1 0 0
(Jiiy — by i) = Jij + (55703, — 05) Jiiy —

27
1 1
b;, b;,

1

b
Jiig .

g
1
b;,

Jiy = Jig — 0§ T, —

J

Remember that all the coefficients of J are real. Besides, for any j # i1, bjl- = _2 — b? € 1R
whence (b;/b;,) € IR. On the other hand, for any j # i,

by G0~ 1) T, — WL
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In the right hand side, both numerator and denominator are purely imaginary. Hence,
(b;/b;,)b), — b9 € IR and eventually the matrix J* is real. n

Furthermore, if (A1) > 0 and OWing to the definition of (S¥), the eliminated variables y!,
and y;, depend algebraically on the y ’s, j # 11,13. The coefficients involved in these algebraic
relations are: —b;/b;, for y;, and — (b7 — (bj/b;,)by,) for y;, (assuming that 0° is normalized so
that b) = 1). These coefficients turn out to be real from the above calculations.

Now assume temporarily that, at any step k£ of the reduction process, the eigenvalues of the
matrix J¥ are A4 1, -+, Ay (this is proved below in Theorem 2.1). If J* is real and if Ay, € IR,
then the eigenvector b* of J* for the eigenvalue )\, can be chosen in IRN~* and J**! is then
real. On the other hand, if J* is real and if $(\;11) > 0, then the above calculations yield that
the matrix J**2 is real. By induction, J* is real at any step k such that S()\) < 0.

Similarily, if S(\x) < 0, all the coefficients of the algebraic part of the reduced system (S¥)
are real. This actually proves assertion i) of Theorem 2.3.

Proof of Theorem 2.1. Remember first that the eigenvalues of J can be ordered such that

RM) < <RAp) <A1 =--=Ay =0
where m is the rank of .J, and that C N = Im(J) @ Ker(J). Since °.J = X\;.J, b is in Im(.J). Set
b*! := 1", From Schur reduction, there exists then a basis (b%',---, ") of C N and a matrix
T 0
0 _
7=(o o)

such that 7" is lower triangular, its diagonal is (A, -+, A\y), and J = J° = P°T?(P%)~! with
| . bU,l _

PY=|a" ... OV and (P! = :
| | e

Since JY = ¥, 451 ag PTby? for each (i, j), we get from the definition (2.5) of J* that

pq-J
bOl
Vi, j # i1, = Y alPTL (b1 - b‘élbfl’q). (3.1)
P,q>1 i1

In the right hand side, the sum for ¢ = 1 is clearly equal to 0. Next, for p =1 and ¢ > 2, we
have Tloq = 0 since T is lower triangular. Hence, the sum (3.1) actually starts for p,q > 2. In
other words, J! = P'T'Q! where the matrix T is the submatrix of T° obtained by dropping
the first row and the first column, and where

Pl=|a2 . oV |, o =0ad? Vi#i,p>2, (3.2)
| |
__pL2 ___
1 b- l,g _ 10,9 b01 0,9 : :
Q' = : , by =0 b01bu Vg > 2,7 # i1 (3.3)
o bl,N



In particular, the matrix P! is obtained from P° by dropping the first column a®! and the i‘{h
row. Let us now check that Q' = (P')~!, i.e. Q'P' = Iy _: for any p,q > 2, we have

0,9
b;;
0,1

11

0,1
b;’

i 10,q\ ,0p __ _ 10,g 0,py
0,1 bi1 )ai - (519,4 bil @y )
b;;

pha . glP = Z(b?,q _
Qi1

0,1 0py
(519,1 — by ag) ) = Op,q-

T

0 0
triangular and its diagonal is (g, -+ -, A, ). This implies that the eigenvalues of J* are those of
J except A; and that b2 is a nonzero left eigenvector of J! for the eigenvalue \y. This also
yields that J! is semi-stable. These properties hold good by induction at any step k. 7

In conclusion, the matrix J*' is similar to the matrix 7% = ( ) where T"' is lower

3.2 Proof of Theorem 2.3

First of all, the fact that the reduced system (S®) is completely real if I(Ag) < 0 has been
proved at the beginning of section 3.1 just before the proof of Theorem 2.1. The rest of this
section is devoted to the proof of the error estimates (2.10) which is divided into several lemmas.
In the proof of Theorem 2.1, we considered a left nonzero eigenvector b%! = b° of J for the
eigenvalue ;. Next, we used a basis (b%!,--- %") of C N and from this basis we built a basis
of vectors (b2, - -+, bN) of € ¥~ such that, for any ¢ > 2 and i # i1, b;'? = by? — (b /by )by
and the vector b2 turned out to be a nonzero left eigenvector of J' for the eigenvalue \o. In
the reduction process defined in section 2.2, we only need a left eigenvector b° € C ~ of J for
the eigenvalue \;, next we need a left eigenvector b' € C N1 of J! for the eigenvalue )y, etc.
The following lemma states that the given vectors b°,---,bF~! could actually be given

recursively from an orthogonal family (b™', - -, 0% e (C N)k. In the sequel, we denote
(a|b) = ¥1<p<n arbi and ||a|* = (ala) for any a,b€ C V.

Lemma 3.1 Let b° € CV,--- b0F=' € C Y L be nonzero left eigenvectors of the matrices
JO - JPY for the eigenvalues My, - -+, Ny (the matrices J* are defined as in (2.8)).
1) There erists an orthogonal family of k nonzero vectors (b, -+, b°*%) € (C M)* such that

VO<p<k—1, bW, =0, (3.4)

p

where the vectors 1€ C NP, 1<p<k—1,p+1<q<k are defined recursively by

V1<p<k-1,Vp+l1<q<h Vidiygo i, bT=00""— @ P/70) 5= (3.5)

)

2) If a family (b1, -+ 0%F) € (C N)* fulfills (3.4-3.5), then there ezist ay, € C such that
V1<g<h, b =Ab" + g 1"+ 40 00

Remark 3.2 If a vector b* is replaced with v6™¢ (v € C *), then the vector b7~ = b7 1 ig
multiplied by v whereas the vectors b* for k = 0, - - -, ¢ — 2 are unchanged. Since each matrix .J¢
is unchanged if 59~! is multiplied by any complex number, we can finally assume that the basis
(b%1, -+ b%N) is unitary. In the case k = N, this basis is then a Schur basis for the matrix J.
Its explicit determination is not needed in the reduction process, only its existence is needed.

10



Proof of Lemma 3.1. The proof is done by induction on k. The case k = 1 is obvious. For
the sake of simplicity, we only do the induction from £ = 1 to k = 2. The general case is very
similar but leads to very long calculations (see [4]).

Let us first prove part 1). Let b° € C ¥ and b' € C ¥ ! as in Lemma 3.1. Set %' = b°
and b? = b'. From Remark 3.2, we can assume, up to normalization, that b} = 1 = max [b}|
and b, = 1 = max,;, |b}|. We look for a vector b>* € C " such that (3.4-3.5) hold and
( #) = 0. Formule (3.4-3.5) hold iff there exists § € C such that

bO 2 —
Since by' = 1, it follows that (b%2[b%!) = 0 is true if and only if

B4+ 800+ S b = 0.
i1 iiy

In other words, if 8 = —|[[b%![| 72,4, bi b (all the quantities in the right hand side are
known), then the family (b°!,6%?) is orthogonal and satisfies (3.4-3.5). Notice that b%? Z 0,
otherwise b"%(= b') would also be 0 by (3.5).

To prove part 2), take a family (b, 0°?) satisfying (3.4-3.5). In particular, b*! = b°, whence
bO1J = A\ b%'. Furthermore, there exists 3 € C such that (3.6) is satisfied. We shall now prove
that there exists ap; € C such that 0°2J = M\b%? + 10!, Take first j # i;. We have:

S0tk = > (07 + BN iy + B

1<k<N ki1
= Y 0T + 0 Tka) + BY by iy + BTy (from (2.5))
= kffbk Thi+ (3 0% Ty b%ﬁzl B (since b1J = A b%1)
= ’iiz; >+ (BM If Z by iy )b (since D12 J' = \ybh?)
= Mo (b7 — b2 kﬁml + 30 Ty )b
= Moy + [B(A — Xo) + f?bkl}kh]b?’l.
k#iy

On the other hand, for 5 = 4;, the right hand side of the last equality is equal to S\ +
> ktiy b,i’QJkil since b?l’l = 1. The left hand side is equal to

S0 Tk = S0 (077 4 B ks + BT = B+ S b Ty

1<k<N ki1 ki1
since b%1.J = A\;J and by = 1. Hence, 6%2.J = Ab®2 + [B(A\1 — Aa) + Csi, by Jri [0
Lemma 3.3 There ezists a constant C, which depends neither on t nor on J*, such that

VO<K<N, Vt>0, |le= sup lle”"'z||o < C (3.7)

N—k
o=(z)iex, €0 ', |lzlleo=1

where ||y||o = maxiex, |yi| for all y = (y;)iex, € C N 7F.

11



Remark 3.4 From Theorem 2.1, the reduced matrices J* are semi-stable but may not have
a kinetic structure. As a consequence, it can be easily shown that the constant C' in (3.7)
does not depend on ¢t. More precisely, since all the eigenvalues of J* have non-negative real
parts and the null eigenvalue of J* has a complete subspace of eigenvectors, then for a Cauchy
problem V'(t) = J*V + F(t) with a given V(0) = V5, Duhamel’s principle yields that |V (¢)| <
C(|Vo| + [ |F(7)|dr) for all t > 0, where C is a positive constant depending only on J*. We
shall go one step further by proving that C does not depend on the coefficients of J* either.

Proof of Lemma 3.3. Let us first prove (3.7) for £ = 0. Referring to the kinetic structure of
J ((2.3)-iii), the solution y(#) of the Cauchy problem (2.1) obeys S~ ¢/(t) = 0, whence

N

vVt >0, ZyZ(t) = Zyz(o) (3.8)

Next, since, for each i € {1,---, N}, yi(t) = X, Jijy; + Juy: with J;; > 0 and J;; < 0, the
domain RY = {y; > 0, i =1,---, N} is invariant. Assuming y;(0) >0 foralli=1,---, N, it
follows that y;(t) > 0 and 0 < y;(t) < N, % (0) for all # > 0 and for alli € {1,---, N}, whence

¥t >0, |ly(®)lleo = lle”y(0)lloc < Cilly(0)]lc,

where C)(= N) depends neither on the time ¢ nor on the coefficients of the matrix J. Next, by
writting any # € C V% as 2 = R(2)* — R(2)” +i3(2)" —iS(z)~ where R(2)*, R(z)~, S(2)*,
S(z)~ € RY, it follows that ||e”'z||o < 4C||z||s. This gives the estimate (3.7) for k& = 0.

The arguments above no longer work for the matrices J* (K > 1) since these matrices
may not be kinetic. Nevertheless, up to multiplication of the vectors b* by some complex
numbers, Lemma 3.1 and Remark 3.2 yield the existence of a unitary basis (b%!,---,0%") of
C N satisfying (3.4-3.5) and such that J can be written as J = P°T°(P°)~" where P° and

—pol

-1
(P°)" = :
— BN

are unitary and where T° is lower triangular. In particular, T7° = (P,) 'JP° and ||eT"||o <
(Po) lsolle” |sol|Pl|se < C%l|€”||se where Co = +/N. Since ||e”t||,, < 4C), we have

€7 ||oo < C5 = 4C,C2 for all > 0.
On the other hand, since b®' = b° is the first vector of the basis (0%!,--- 0%") and since
the formulae (3.3) and (3.5) are identical, the calculations done in the course of the proof of

Theorem 2.1 imply that J' = P'T(P')~! where
—ph2
(Pl)—l _ 7 b1,2 — bl’

—pbN

where P! is a submatrix of P and T! is the submatrix of T° obtained by dropping the first
row and the first column. In particular, ||P'||. < ||P°||oo < Cy and, for all ¢t > 0,

1 1 0 0
e oo = sup e 2|0 = sup e ylloe < [le"|oe < Cs.
2eC 777, |lg|loo=1 y=(0,e2,,23)EC 7, |lylloo=1
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Moreover, from the formula (3.3) and the definition of iy, it is found that ||(P') !]w <
2/[(P%) Y| < 2C5. Eventually |[e”||oe < ||P|ooll€” ] |oo|[(PY) " |so < 2C2C; for all t > 0.
An immediate induction completes the proof of Lemma 3.3. n

We now investigate the accuracy with which the solution y%() of the reduced system (S%)
approximates the solution y(¢) of the initial system (S). Let us first deal with the case R = 1.

Lemma 3.5 Let y'(t) be the solution of the algebraic-differential system (S') with the notations
of Theorem 2.3. There exists a constant C' that does not depend either on t or on the matrix

J, such that, for any to > max (0, |R(N\)| "' In|R(\1)|) and for any h > 0,

(Vi€ Ky (i #i1), |yi(to) — vilto)| < h)

L (VI <i< N, VE>to, () — m()] < Ch+ RO, B9

Proof. The proof is based on the existence of an algebraic-differential system which is equiva-
lent to (S) and which involves both the reduced matrix J' and the algebraic part of (S').

First of all, observe that the characteristic variable 2°(¢) = b° - y(¢) solves (2°)'(t) = A\;2°
since b = b%! is a left eigenvector of J for the eigenvalue \;. As already underlined, one
can assume, up to normalization, that b = b = 1. Then, 2°(t) = 2°(0)eM! and y;, (t) =
— iz, b2 yi(t) + 2°(0)eMt. Next, each y;(t) for i € Ky = {1,---, N}\{i1} satisfies

5% —] kzl 1 ao JTjokb
:j,kzil lezl:cl a; ,erokb?’kyl 4 j,;z\; ag’jz}okb?lky“
= E T T R+ 20,
- E Jie + 22(0)eM T from (3.1).

i1

\

Therefore, system (S) is equivalent to the following system (S,):

(Se) { Y= Jly + 2°(0)erM I for (yi)izi, vi(0) given for i # 4,
Ui () = = Siex, b wilt) + 2(0)eM!

where the vector [J°] € RN ! is given componentwise by [J°]; = J7 for i # iy,
Let us now compare y'(t) with y(¢) and derive the error estimate (3.9) from a time t, > 0
that shall be explicited later. For i = 1,---, N, denote ¢} (t) = y;(t) — y!(t). Thanks to the

equivalent system (S.), the vector e'(¢) := (¢; (£))ixi, solves the Cauchy problem
{ Lel = Jle! + 20(0)eM![J°]
i(to) = vilto) — yi(to), i#dr

Thus, e!() = e’ ¢=)el () + [ 2°(0)eMTe” =D J0] dr for all t > t,. Assuming ||e!(to)]|o0 < b,
it follows that

(3.10)

1 1 T
vt >t le' (@)l < [le” T ooh + [°(0 I/ RO Do || oo d7

< Ch + C[|[7)||oo2"(0 |/ RO g
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where the constant C', which is independent from ¢, J and J*', is given by Lemma 3.3. Remember
now that the chemical species are assumed to be chosen at t = 0 so that Y ;(0) = 1
with 3;(0) > 0 for all i. Hence, |2°(0)] < XN, 6" |:(0) < 1 from the definition of 4,. On
the other hand, it follows from the kinetic structure of the matrix J° = J (see (2.3)) that
[T < || < |TrJ° < NIR(\)| for all 4, j. Then, even if it means changing the constant C'
one has

t
VE > to, |le'(t)]]ls0 < Ch+ O|§R()\1)|/t ROV dr = Ch + CeRPo| R g (311)
0

Taking any time ¢, such that ¢5 > max (0, [R(\)| ' In|R()\;)|) eventually leads to
Vi >t |le'(B)lleo < C (h+ RO (3.12)

To conclude the proof, we shall estimate ¢; () for t > to. We have e (t) = y;, (t) —y, (t) =
— Yitis blel(t) + 2°(0)eMt, whence

Vi >ty el (1) < 30 les (1)] + |2°(0) [ < ST el ()] 4+ RO
i#i1 (£

As a consequence, from (3.12) and from the choice of 1y, it is found that, for some constant C"
Vt>to, e, (B < (N =1)le! (#)]lo + [RODIT < Clh+ [RO)[T. J

Proof of Theorem 2.3, part ii). Let us now turn to establish the semilar error estimate
analysis as above after R eliminations with R > 1. We prove (2.10) by induction on R.

Let us assume that (2.10) is true at the step R — 1. In other words, there exists a constant
C} such that, for any t{ > max(0, maxi<x<g—1 [R(A\g)| ' 1n |R(A;)]) and for any h > 0, one has

(Vi?ﬁila"'ainla |yR l(t,)_yz(t6)| Sh)

— (W2t vie (LN O —uO < Gl RO ) ). )

where (y®1) = (y/*~")1<i<n solves the Cauchy problem (SE-1) i.e. (2.9), from time .

Take any initial time ¢, > max(0, max;<x<g [R(Ax)| ' In [R(\x)|) and suppose that |y (ty) —
Yi(to)| < h for all i # 4y, - -+, ig, where (y®) = (yF)1<i<n solves the Cauchy problem (S%) from
time t5. We shall prove (2.10). As already underlined, one can assume, up to normalization,

that b} ' = bf}:l’k =1 for each k = 1,---, R. Observe first that the vector (y/);zi, ..ip_, solves
d : . . .
E(yz‘R) = J®yf"),  yf(to) given, for i #£iy,---,ig
R-1,R
Yie == Litieinli Ui

whereas the R—1 other components are given by y{i = = Dty i bf_l’kle fork=1,---,R—1.
Consider now the solution (y*~')i<;<n of the following Cauchy problem

d - - . :
Zw ) =TT, w () = wilto), @A i sing (3.14)

yz}i b =— Zi;ﬁil,~~~,ik bf_lkyzR b ofor k= -~ R—-1
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The results of Lemma 3.5 can then be applied to the vectors (y/)izi, .in_, and (y7 Miziy i,
of size N—R+1. Namely, for any i # i1, - - -, i, we have |yF(to) =y~  (to)| = [yF(to)—yi(to)| < h
with #9 > max(0, maxi<g<p [R(A\x)| ' In [R(Ax)|) > max(0, |R(Ag)| ' 1In |R(Ag)|). Then

¥t >ty, Vigiyeoipan [y -yt (O] < Calh + [R(AR)TY (3.15)

for some constant Cy which depends neither on ¢, h nor on the coefficients of J#!.
Let us now find an upper bound for |yf(t) — ' (t)|, for i =iy,---,ig_1. We have

VE>to, [yl () =yl O] =D ins bfﬁ’R*l(yI;(p —yl 1)
< Pitiyiny [WEE) — 4 ()]
< (NZRT1) Colh+ RO from (3.15).

We can repeat this calculation for [yf_ (¢) — ¢ L (8))],---, [yf(t) — y'(¢))]. An immediate
induction eventually yields the existence of another constant C5 such that
Vt>to, Vie{l-- N} Jy(8) =y ()] < Ca(h+ [R(OR) T (3.16)

On the other hand, since the vector (y* ')icicy solves (3.14) and since t, >
max (0, max;<g<p [R(Ax)| H1n [R(A)|) > max(0, maxi<p<r—1 [R(Ax)| FIn|R(Ag)|), (3.13) yields

Vt>to, Vi€ {l- NboJy (1) - w(t)] < GRS (3.17)
As a conclusion, (3.16) and (3.17) imply that, for each ¢t > ¢, and each i,
Y (t) — yi(t)] < Csh + CslR(AR)| ! + CLIR(AR 1) < (Cr + Cs)(h+ [R(AR)| )

since |R(Ag—1)| > |R(Ag)|. That is the required result. The proof of Theorem 2.3 is complete.

4 Reduction of a kinetic systems with multiple scales

This section is devoted to the application of the reduction process defined in section 2.2 to a
kinetic system of the type (2.11). In (2.11), the matrix J is written as a finite sum of kinetic
matrices e P* A° with p; > --- > pg. It is then reasonable to think that the matrix J has some
eigenvalues in the scale e7P, namely those of e Pt A! approximatively.

Since the columns C; of A' are equal to 0 for i > I, A' can be written as A' = <g 8)

where B is a square matrix of size I} X I; (remember that [ is the number of species which are
reactants of at least one of the fastest reactions). The eigenvalues p; of the kinetic matrix Al
can be ordered so that R(u;) < -+ < R(pyr) < pyry1 = -+ = py = 0 where the rank I7 of A’
satisfies I] < I,. For each i < I, let m; be the multiplicity of the eigenvalue e 771 p; of e Pt AL

Lemma 4.1 There exist two constants Cy and €9 > 0 such that if 0 < ¢ < gy, then the
eigenvalues Ay, - -+, An of the matriz J can be ordered so that (2.4) holds and

V1 <i<lI, N — e P < C g—P1+(p1—p2)/m;
VI <i<Li+--+1I;, |Ni| < Cp e7P2Bip2) (4.1)
VIhL+---+1s <i<N, A =0,

where § = (I, — I1)/(I; — I} + 1). Moreover, |\;| < 2C3R 7P* for each 1 < i < N.
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For ¢ small enough, the system g = Jy contains then exactly I](< I;) dynamics in the scale
e~P'. Moreover, all the eigenvalues \; for i > I] 4+ 1 belong to lower scales than the first I ones
and if I; = I, then those eigenvalues range in scales O(¢ 72). However, the determination of
all the dynamics of J in the scale £7P2 or in smaller scales is not clear in general.

The proof of Lemma 4.1 can be done by comparing the characteristic polynomials of .J and
e Pt Al (see [4] for the technical details) and it especially uses the bounds:

OSJZ'J'SCQS_;DS 1fj7£2

_(Rs + -4 RS)02 e7Ps < J; < —C £7Ps, (42)

V1 <s<S8, WEIS,{

Remark 4.2 Lemma 4.1 can be seen as an application of Puiseux series expansions for a special
type of a matrix J whose highest part 7”1 A" has only a finite number of nonzero columns (see
[10] for similar general results).

Let us now turn to the
Proof of Theorem 2.4, part i). First, remember that the eigenvalues \; of J are ordered
as in (2.4) and that the final reduction step R is the first step such that S(Ag) < 0 and
IR(Tr(JR))| < e (where p, > @ > p,+1). From Lemma 4.1, there exists C' > 0 such that

V1<i<I, [N >R(N\)|>CeP  (for € small enough). (4.3)

On the other hand, we saw in section 2.3 that |R()\;)| < &7 for i > R+ 1. Since p; > a, one
has R > I} for € small enough.

From now on, we set pg,1 = —o0 and £7>° = 0. Consider now the first step in the reduction
process. The vector i° € C N satisfies 8°J = A\b° and i; is the smallest integer such that
09 | = maxi<;<n |bf]. Let 2 < s < S+1andj € Z and let us prove that [b9] < [b] | for &
small enough, which yields i; < I;. Since \b" = b°J, one has bO = A7! Efvlb? ;;. Hence,
09 < |62 | |\]7P Y [J35]- By (2.3) and (4.2) applied to j(€ Zy), we have £ |J;;| = 2|Jj5] <
2C5M &P+ (M is the number of chemical reactions). Combining that with (4.3) gives

1] < 20, MO PP [0 |.

Since p; > py > ps, this yields |b2| < |y, | for & small enough. Eventually, 1 < iy < I;.

Take now any i, j # i;. From (2 3) and (4.2) and owing to the definition (2.5) of J!, we get:

-if j € Ty and if i # j, then |J| = |Ji; — (09)/(0)) Jiu, | < 20577,

-if j € Z; and if ¢ = j, then |J; |§(M+ )025 pl

-ifj € T, with2 < s < S+1 and if i # j, then |.J}}] § Cy e7Ps 4+ (20, MO~ eP17Ps) (Che™P1) <
C (]. + 202M07 ) Sips

-ifj eI, Wlth2<s<5+1 and if ¢ = j, then |J}| < CoM(1 4 2C,C 1) e7Ps.

In any case, there exists a constant C' such that for any 4,j # 1, and j € Z, with 1 < s <
S +1, then |J;| < CePs.

At the second reduction step, one has b'J! = Myb' and i, is the smallest integer in
{1,--+, N}\{i1} is such that |b} | = max;y; |b;|. From (4.3), we have || > Ce ™ for
small enough (provided that I; > 2). Since the matrix J' satisfies the same kind of bounds
(4.2) as J, the same arguments as above yield that, for £ small enough, io < I; and that the
new reduced matrix J? satisfies | J5| < Ce™s for any s and for any i,j # i1, i, with j € Z,.
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This result holds by induction at any j;th step in the reduction process, provided that & < I].
Proof of Theorem 2.4, part ii). Assume now that p; > a > ps + 3(p1 — p2). From (2.12),
we observed in section 2.3 that |[R(\;)| > ﬁe_a for each 1 < ¢ < R. On the other hand,
Lemma 4.1 states that |\;| < Coe™P2=#(P1=P2) for each i > I!. This finally implies that R < I
for € small enough, whence R = I] from the part i) of Theorem 2.4.

The formulze (2.13) for the final reduced matrix J% = J'i are a particular case of the bounds
given in the previous paragraphs for the coefficients of the reduced matrices J* for k < I7.

Let us now prove that J" = o(¢7?') as ¢ — 0. Take a sequence ¢ — 0. For ¢ small enough,
the conclusion of Lemma 4.1 as well as the first part of Theorem 2.4 are valid. We have
i1(e) € {1, -, I1}. Up to extraction of some subsequence, we can then assume that i;(¢) = 4,
does not depend on ¢, with Y (¢) = 1 (up to normalization), and that (b°(¢)). converges to
some vector b’ such that by =1 = max|b}|. The vectors b°(¢) satisfy

0 (e)J(e) = "B ()AL + - - + 277500 () A% = M\ (e)b° ().

Multiplying this equation by P! and passing to the limit ¢ — 0 leads to »°A' = p;0° since
el )\ (e) — py as € — 0 by Lemma 4.1.

As done for J' in section 2.2, define the matrices A®!'() and A*' for any 1 < s < S by
Afj’-l (e) = A — b)(e)Aj;, and Afj’-l = A3 — 09 A3, for any i, j # iy (remember that b)) =1). We
see that A®!(g) — A%! as e — 0. From (2.11) and the definition of the matrix J'(¢), we have

Jl(&.) — 5*171141,1(5) NI SfpSAS,l(g).

Since the matrices A*!(g) are uniformly bounded as ¢ — 0, one gets e”*.J!(g) — AVt as e — 0.

By induction, and up to normalization and extraction of some subsequences, we can sim-
ilarly define dy,---, iy and b',---, 017" such that b} '(¢) = 1 = maxis, ..;,, [bf '(e)] and
Bl(e) — bl as e — 0 for each 2 < k < If. Set ADF = AT — ¢ 1A for any
i,j # 1,-+-,i. With the same arguments as above, it follows that eP1.J*(s) — A% as ¢ — 0
for each 1 < k < I] and that b* ! # 0 satisfies bF LAV ~1 = 1, 0%, Eventually, the matrices
AL .. AL are the reduced matrices (in the sense of section 2.2) of the matrix A'. At the
step I7, all the nonzero eigenvalues of the kinetic matrix A' have been eliminated. From The-
orem 2.1, the matrix A"" is still semi-stable and therefore it is the 0 matrix. This means that
ePJli(e) — 0 as € — 0, which completes the proof of Theorem 2.4. _

Proof of Corollary 2.6. From Theorem 2.3, there exists C\y > 0 such that for any t; >
max (0, max;<g<p [R(Ax)| 7" In [R(Ax)|), if the initial condition for (S7) satisfies |y (to)—yi(to)| <
Pt for all i # iy, -+, ig, then |yf(t) —y;(t)| < Co(eP* +|R(\g)|™") forall 1 < i < N and t > t.
Under the assumptions of Corollary 2.6, Theorem 2.4 gives R = I] for ¢ > 0 small enough.
Take § > [R(py;)| ™" From Lemma 4.1, R(Ag) = R(Ap) ~ e P R(uy) as € — 0. Moreover,

max (0, | max [ROG) T In R ~ [R(up)] e Ine ™ < 6eP|Ine?| as e — 0.

Finally, by setting C' = Co(1 + 2/[R(s21)]), we conclude that if £ > 0 is small enough and if
to > 0eP'|IneP|, then one has

Ve >ty ViEe{l, Nbo|yi(t) —wilt)] < Ce

if [yR(to) — vi(to)| < P for each i # iy, - -+ ,ig. That completes the proof of Corollary 2.6.
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Remark 4.3 (About the choice of the indices i) The fact that [ | is the highest component
of b° really matters. We see in the following counterexample what happens if i; is ill-chosen.

Consider the reaction scheme A, A4, E—_1>./42L>.,43, A, - A, The vector (y1,--+,ys)T solves
Y1 —-1—-ct 0 0 2 Y1 Y1
ﬁ Y2 | _ et -1 0 0 Y2 | _ 5| Y2
dt | ys | 1 I 0 0 ys | Y3
Ya 0 0 0 -2 Ya Ya

The eigenvalues of J are —e ' — 1, —2, —1 and 0. A left eigenvector b° for the eigenvalue

A =—e'—1isb =(1,0,0,—2¢/(1 —¢)). For £ small enough, i; = 1 (see Theorem 2.4) and
y, is the only eliminated species. The reduced system is

g (v 1.0 2/(L—¢) \ (% e e
o ys | =] 1 0 2¢/(1—¢) wul=Tul| w= T— Yo
Yi 0 0 ~2 Yi Yi

and one has eJ' — 0 as ¢ — 0. If we choose to eliminate y*, we get the reduced system

a (% 200Ny
— |y |=l¢ —-10 Yo s Ys = Yi-
i) L1 o)\ 2

This system contains some terms in the scale e 1. This is awkward in the numerical calculations.

Remark 4.4 Why not reduce e P*A'? Since J = e P A + ... + ¢7Ps A% and the coefficients
of the matrices e P* A* (s > 2) are small compared to the norm of £ ”* Al another reduction
process could be the following: 1) find an eigenvector b” of the matrix 7P A' for the eigenvalue
7Py, 2) define i; to be the smallest integer such that |b?1| = max |b°;], 3) build the reduced

matrix J' in terms of J° and b° with the same formulza as in section 2.2, 4) repeat this procedure
I] times and eliminate all nonzero eigenvalues e Py, -+, e Py of 7Pt Al However, this
method may introduce some errors in the coefficients of the reduced matrices.

Indeed, consider the matrix

—e 11 g1 1 -1 1 0 -1 0 1
J = g1 —e -1 0 |=¢' 1 =10+ 0 =1 0 |=c'A'+ 4%
1 1 1 0 0 0 1 1 1

The eigenvalues of .J are —2e=! —1, —2 and 0. A left eigenvector for the eigenvalue —2e=! —1

is 0° = (1, -1+ ¢£2?/2,—¢/2), and i; = 1 for £ small enough. In this case, we have I} = 1 and if
1> a>1/2, then R =1 from Theorem 2.4. The final reduced system reads

d (y; _ [ —-1-¢/2 1/2 Ys gl Ys 1 _ 2 1 1

By Theorem 2.1, we know that the eigenvalues of the reduced matrix J' are —2 and 0.
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On the other hand, the eigenvalues of the matrix e A are —2¢ ! and 0 (with multiplicity
2). Under the above notations, one has b, = (1,—1,0), i; = 1 and the reduced system is

%@%):(_21 —01><£>:f (%) Uy = Uy (4.4)

We then observe that the matrices J' and J' are different. In particular, 0 is an eigenvalue
of J' and not of J'. The invariants are not conserved in (4.4): (y},y},ys) converges to (0,0,0)
whereas y{ + ys + y1 is approximatively equal to the constant y;(0) + y2(0) + y3(0) > 0.

5 Numerical tests with 2 or 3 scales

In this section, we apply our reduction method to two chemical kinetic systems: one theoretical
example with three different scales and one realistic example with two scales.

Let us begin with a theoretical reaction network with 10 species, 13 reactions and 3 time
scales e % ¢! and 1, which is drawn on Figure 1. Let us choose ¢ = 102 and y;(t = 0) = 1
for each 7. The exact eigenvalues of the associated matrix J are: —20000, —10100, —10001,
—101, —100, —100, —2, —1, —1 and 0, and one has I = I = 1. After a first reduction, the
eliminated “fast” species are A;, A, A3. We solve the reduced system (S?) on the interval
I. = [1.2 ¢%|Ine?|,1.2 ¢|In¢|] and the evolution of the concentration of the “slow” species A,
which is calculated either with the detailed system, or with our reduced system or with the
reduced system obtained from the q.s.s. approximation, is plotted on Figure 2 (left). All the
curves for Ay are almost identical (as for the other species). The system has been reduced once
more to remove the time scale O(e!). The eliminated “intermediary” species for this second
reduction are Ay, As, Ag. The evolution of the concentrations of the same “slow” species Ay
after the time 1.2 ¢|Ine| ~ 0.055 is plotted on Figure 2 (right), where r2 (resp. QSSA2)
means the solution obtained from our reduction method (resp. the qg.s.s.a.) applied twice. The
computational cost to find the solutions obtained by our method, say on the interval I, is close
to 4s (including the calculations of the eigenvalues and eigenvectors) on a workstation, whereas
it is about 32s for the exact solution and 4s for the q.s.s.a.

The second example arises in biochemistry and modelizes the dynamics of thyroid hormones,
see [18]. The chemical network involves 8 species and 14 exchange rates between these species,
and, in first approximation and up to a normalization of some volumes, the reaction network
is that of Figure 3, under the notation of [18]. The fastest reactions are those whose rates are
5, 2.5, 1 (twice) and the reactants of these reactions are A;,---, A;. The eigenvalues of this
system are —5.159, —2.517, —1.300, —1.091, —1.231- 1073, —1.176 - 10~° and 0 (twice). Four
steps are needed to get the final reduced system. The evolution of the concentration of one of
the slow species, say Ag (T'4), after the initial boundary layer and up to 9 - 10*s, is plotted on
Figure 4 (left) using either our method (total computational cost = 4s), or the q.s.s.a. (4s), or
the exact solution (584s with a Gear scheme). The curves are almost identical. The evolution
of one of the fast species, say A; (T'3F), is plotted on Figure 4 (right), up to 9-103s. The total
computational costs are 4s for our reduction method and the q.s.s.a., and 69s for the exact
solution.

As a conclusion, our reduced method, which is not based on chemical solutions unlike the
q.s.s. method, provides very good approximations of the exact solution and it is much faster.
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Figure 1: Theoretical reaction scheme with 3 time scales
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Figure 2: Theoretical network, “slow” species Ag: —, yo(t); o, yg(t); — —, yg‘?SSA(t), after first
(left) and second (right) reduction
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Figure 3: Reaction scheme
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