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Abstract. This work deals with travelling fronts solutions of some
reaction-diffusion equations in an infinite cylinder in dimension ≥ 2.
The problem is set in Σ = {(x1, y) ∈ R × ω} where ω ⊂ RN−1 is a
bounded and smooth domain with outward normal ν. The equations,
with unknowns c ∈ R and u ∈ C2(Σ), are

(P )






∆u − (c + α(y)) ∂1u + f(u) = 0 in Σ = R × ω
∂u

∂ν
= 0 on ∂Σ = R × ∂ω

u(−∞, ·) = 0 and u(+∞, ·) = 1

The function α ∈ C0(ω) is given. The nonlinearity f is assumed to
be of the “bistable type”: it changes sign once in (0, 1). Berestycki
and Nirenberg [8] proved that if ω is convex then the problem has a
solution. Here, by using the invariance by translation and the sliding
method, we construct an example of a non-convex domain ω and of a
function α for which we prove that (P ) has no solutions. This is in
sharp contrast with other types of nonlinearities for which solutions
exist whatever ω may be.

1. Introduction. This work is primarily concerned with a non exis-
tence result for the following semilinear elliptic problem set in an infinite
cylinder Σ = R × ω = {x = (x1, y) ∈ RN ; x1 ∈ R, y ∈ ω} in dimension
N ≥ 2:






∆u − (c + α(y))∂1u + f(u) = 0 in Σ
∂u

∂ν
= 0 on ∂Σ

u(−∞, ·) = 0 < u < u(+∞, ·) = 1.

(1.1)
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We assume that ω ⊂ RN−1 is a smooth bounded domain with outward unit
normal ν. The continuous function α ∈ C0(ω) and the Lipschitz-continuous
nonlinearity f are given. The unknowns are the parameter c ∈ R and the
function u defined in Σ. We denote by ∂1u the derivative ∂u

∂x1
. Throughout

this paper, the limits as x1 → ±∞ are understood to be uniform with respect
to y ∈ ω.

The purpose of this work is to construct, for a function f of the so-called
“bistable” type, an example of a domain ω which is nonconvex and of a
function α for which problem (1.1) has no solution, whereas it always has
a solution for other types of nonlinearities f . The results presented in this
paper have been announced in [3].

Let us first recall the origin of the problem and some of the known results.
In a few words, this kind of problem, set either in infinite cylinders, in the
real axis R or in the whole space RN , arises in several physical situations.
In particular, these reaction-diffusion equations arise in combustion or in
biological models according to the type of nonlinearity f (see e.g. Aronson,
Weinberger [2], Fife [11], Fisher [13], Hadeler, Rothe [15], Kanel’ [19], Kol-
mogorov, Petrovsky, Piskunov [21], Stokes [30], Zeldovic, Frank-Kamenetskii
[37]). For instance, in the thermo-diffusive model for premixed equidiffu-
sional flames (see Berestycki, Larrouturou [4]), the function u represents a
normalized temperature in a mixture including a reactant and a product. A
flame propagates with the speed c in this mixture and equation (1.1) is the
equation for the temperature in the frame moving with the speed c to the
left. The nonlinear source term f(u) may take into account the mass action
law and the Arrhenius’s law. In biological models, u is the concentration of
a species. Generally speaking, the parameter c is the speed of a front. The
Neumann condition on ∂Σ means that there is no flow across the walls of
the cylinder.

The known results for problem (1.1) highly depend on the profile of the
nonlinearity f . In this article, we mainly investigate the case of a source term
f of the “bistable” type. Namely, we assume that there exists θ ∈ (0, 1) such
that:

f < 0 on (0, θ), f > 0 on (θ, 1) and f(0) = f(θ) = f(1). (1.2)

Moreover, we assume that the function f satisfies the following hypotheses:

f ∈ C1,δ([0, 1]) for some 0 < δ < 1 (1.3)
f ′(0) < 0 and f ′(1) < 0. (1.4)
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Such a function f is called bistable because it has two zeros, 0 and 1, which
are stable for the dynamical system Ẋ = f(X). It also has another zero, θ,
which is unstable.

In dimension 1, problem (1.1) is reduced to

u′′ − cu′ + f(u) = 0, u(−∞) = 0, u(+∞) = 1. (1.5)

For a function f satisfying (1.2) and (1.4), Aronson, Weinberger [2], Fife,
McLeod [12] and Kanel’ [19] showed the existence and the uniqueness of a
solution (c, u) of (1.5). They also proved the stability of this wave u for
the evolution problem vt = v′′ − cv′ + f(v) under a large class of initial
conditions. With the same kind of nonlinearities, similar results have also
been obtained for systems of differential equations (see for instance Volpert,
Volpert, Volpert [34]).

In higher dimension, i.e., in infinite cylinders Σ with convex sections ω,
most of the results related to equation (1.5) were generalized for equation
(1.1) by Berestycki, Nirenberg [8] and Roquejoffre [29] (see also Papanico-
laou, Xin [26] and Xin [35] for similar problems in periodic media). We
especially mention the following theorem of Berestycki and Nirenberg:

Theorem 1.1. ([8] Th 1.3, Th 1.1’) Let f satisfy (1.2)-(1.4). If the domain
ω is convex, then there exists a solution (c, u) of problem (1.1). Furthermore,
whatever the domain ω is, if there exists a solution (c, u) of (1.1), then
∂1u > 0 in Σ and (c, u) is unique (up to translations in the x1-direction for
u).

Papanicolaou, Xin [26] and Xin [35] got the same result for problems in
periodic media. On the other hand, Hamel [17] proved the existence of an
interval (c−, c+) of speeds which are solutions of (1.1) if the nonlinearity f
depends on x1 and is nondecreasing in x1.
Statement of our main result. The purpose of this paper is to understand
the role of the assumption of convexity of ω. Throughout the paper, except
in section 4, we suppose that f satisfies (1.2)-(1.4).

For problem (1.1), in the case of a general (nonconvex) domain ω,
Berestycki and Nirenberg proved in [8] the existence of a solution (c, u) of

{
∆u − (c + α(y))∂1u + f(u) = 0 in Σ

∂u

∂ν
= 0 on ∂Σ

(1.6)
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Figure 1: Domain ωε

such that

u(−∞, ·) = 0 and u(+∞, y) = ψ(y) for y ∈ ω, (1.7)

where ψ is a function satisfying the following problem:
{
∆ψ + f(ψ) = 0 in ω

∂νψ = 0 on ∂ω.
(1.8)

Besides, either ψ ≡ 1 or 0 < ψ < 1 in ω. Notice that ψ is otherwise not
specified. It was not known in general if one thus obtained a solution of
problem (1.1), that is, one which also satisfied u(+∞, ·) = ψ = 1.

Consequently, the existence of a solution for problem (1.1) in a general
domain ω was an open question. The purpose of the present work is to
give a negative answer to this question. Indeed, we construct examples of
non-convex domains ω for which there is no solution of problem (1.1). In
other words, in such cylinders Σ = R × ω, every solution of the equations
(1.6)-(1.7) will be such that 0 < u(+∞, ·) = ψ < 1 in ω.

Let us now describe more precisely the construction. We will use a family
of smooth domains ωε, and cylinders Σε = R × ωε, where the ωε’s have a
familiar “dumbbell” shape (see Figure 1). We define them as follows: let us
choose two points A1 and A2 in RN−1 such that d(A1, A2) > 2. For i = 1, 2,
we denote by Di the open ball D(Ai, 1) in RN−1 with center Ai and radius
1. The open connected sets ωε are such that for ε > 0 small enough (ε < ε0)

D1 ∪ D2 ⊂ ωε ⊂ D1 ∪ D2 ∪ {x ∈ RN−1; d(x, (A1A2)) < ε},

where d(x, (A1A2)) is the distance from a point x ∈ RN−1 to the seg-
ment [A1, A2]. We call Bi (i = 1, 2) the points at the intersection of
∂Di with [A1, A2]. We suppose moreover that the family (ωε)ε>0 satisfies:



non-existence of travelling front solutions 727

ωε ⊂ ωε′ if 0 < ε < ε′ < ε0 and
⋂

0<ε<ε0
ωε = D1 ∪ D2 ∪ [B1, B2]. As a

consequence, the domains ωε are not convex for 0 < ε < 1.
Lastly, we consider a family of functions αε ∈ C0(ωε) such that

0 ≤ αε(y) ≤ 1 in ωε, αε = 1 in D1 and αε = 0 in D2.

Our main result is the following

Theorem 1.2. For ε > 0 small enough, there does not exist any solution
(c, u) of problem (1.1) in the cylinder Σε = R × ωε for the choice α = αε.

Comments. Theorem 1.2 implies in particular the existence of a noncon-
stant solution ψ of (1.8) for any nonlinearity f of the bistable type and in
any domain ωε for ε > 0 small enough. Notice that this last result had been
independently proved by Matano [22] and Matano, Mimura [23] for elliptic
equations or systems in similar domains.

Theorem 1.2 stands in sharp contrast with other types of nonlinearities
f that are often considered in the literature. We are going to emphasize two
special types of functions f . The first case consists in assuming that there
exists a real θ ∈ (0, 1) such that f = 0 on [0, θ] ∪ {1}, f > 0 on (θ, 1) and
f ′(1) < 0 (θ is said to be an ignition temperature). This case arises in com-
bustion models. The one-dimensional model was investigated by Kanel’ [19]
and by Berestycki, Nicolaenko, Scheurer [7]. As far as the multidimensional
problem (1.1) is concerned, Berestycki, Larrouturou, Lions, Nirenberg and
Vega [5], [6], [8], [32] proved the existence and the uniqueness of a solution
(c, u) of (1.1), whatever the domain ω may be. For the second type of func-
tions f , we assume that f > 0 on (0, 1), f(0) = f(1) = 0 and f ′(0) > 0,
f ′(1) < 0 (so-called KPP or ZFK cases). Then, whatever the domain ω may
be, Berestycki and Nirenberg proved that there exists a half-line [c∗, +∞[
of speeds which are solutions of (1.1) and that the profiles u are unique for
any c ≥ c∗ (this result generalized to the higher dimensions well-known one-
dimensional results: Aronson, Weinberger [2], Freidlin [14], Hadeler, Rothe
[15], Kolmogorov, Petrovsky, Piskunov [21], Stokes [30], Uchiyama [31]).

In the case of a bistable nonlinearity f , if α(y) = α is constant (or also
if Σ = R), then there exists a solution (c, u) of (1.1) and the function u
depends only on x1. In this case, the geometry of the section ω does not
play a role. Hence, the nonexistence result given in theorem 1.2 is due to an
higher dimensional effect in the sense that both the dependence of α on y
and the geometry of ω play a role.
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Lastly, let us mention several papers that also shed light, in other frame-
works, on the role played by the velocity field in non-propagation phenomena.
First, for a bistable nonlinearity, in the one-dimensional case, Xin proved the
non-existence of travelling waves if the coefficients of the diffusion and con-
vection terms are periodic in the direction of propagation and vary enough
from their mean values (see [36]). Second, in the limit of the large activation
energies for slowly varying flames, Berestycki and Sivashinsky proved that
the flames quench if the flow field is periodic and has oscillations with large
amplitude (see [9]). Similarly, Pauwelussen [27] and next Ikeda, Mimura
[18] proved some wave-blocking phenomena for one-dimensional equations
or systems with highly varying diffusion coefficients.

Open questions. The open sets ωε and the functions αε can be chosen so
that the ωε’s depend continuously on ε > 0 and are convex for ε > 0 large
enough (and non-convex for ε > 0 small enough). Hence, problem (1.1) has
no solution for small ε > 0 whereas it has a solution for large ε > 0. The
question of the bifurcation between the existence and the non-existence of
solutions (c, u) of (1.1) is still open. On the other hand, if the domain ω is
convex, the solutions u of (1.1) are stable under a large class of perturbations
(Roquejoffre [29]). If ε > 0 is small enough, the question of the stability of
the solution u of (1.6)-(1.8), with ψ < 1, is also open.

In conclusion, we shall say that, although the classification of all the
stable and unstable solutions of (1.8) in domains of the type ωε (for small
ε > 0) is now known (see Hale, Vegas [16], Mimura, Ei, Fang [24], Vegas
[33]), the knowledge of all the properties of the travelling waves solutions of
(1.6)-(1.8) in infinite cylinders with sections ωε has not been reached yet.
Our paper at least shows that some of the facts about the travelling waves in
cylinders with convex sections ω or with constant velocity fields α no longer
hold for the travelling waves in the cylinders R × ωε with the velocity fields
αε.

Outline of the proof of theorem 1.2. Let us describe the main arguments
to derive this nonexistence result. We argue by contradiction. Suppose that
for some sequence ε = εn → 0 (we omit the subscript n), there exists a
solution (cε, uε) of problem (1.1) in the cylinder Σε = R × ωε for the choice
α = αε. These couples (cε, uε) are unique, up to translation in the x1-
direction for uε. The proof is based on several steps:

1) by comparing the functions uε’s with special solutions depending only
on x1, we show that the speeds cε’s are bounded,
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2) by passing to the limit cε′ → c for some subsequence ε′ → 0 and
by normalizing suitably the functions uε′ ’s in D1, we get the existence of a
solution (c, u) of






∆u − (c + 1) ∂1u + f(u) = 0 in R × D1

∂νu = 0 on R × ∂D1

u(−∞, ·) = 0 and u(+∞, ·) = 1 uniformly in D1.

Since this problem does not depend on the transversal coordinate y ∈ D1,
theorem 1.1 implies that u depends only on x1 and is solution of

ü − (c + 1)u̇ + f(u) = 0 in R, u(−∞) = 0, u(+∞) = 1.

3) by normalizing next the functions uε′ ’s in D2, we get the existence of a
solution (c, u′) of

ü′ − (c + 1)u̇′ + f(u′) = 0 in R, u′(−∞) = 0, u′(+∞) = 1.

4) we then get the existence of two couples (c + 1, u) and (c, u′) which are
solutions of the same problem of the type (1.1) in the “cylinder” Σ = R.
Since this problem admits a unique couple solution by theorem 1.1, this
leads to a contradiction.
Structure of the paper. The paper is organized as follows. In section
2, we recall some preliminary results. Section 3 is concerned with the proof
of theorem 1.2. The goal of section 4 is to explain why different types of
nonlinearities f , for which there exist solutions (cε, uε) with the same choice
of ωε and αε, give rise to radically different limiting behaviours by passing
to the limit ε → 0.

2. Some preliminary results.

2.1. Asymptotic behaviour as x1 → ±∞. In this paper, one essen-
tial tool is to know the asymptotic behaviour, as x1 → ±∞, of the possible
solutions uε of problem (1.1) in the cylinders Σε.

In this subsection, we recall some results of [1], [8], [28] which are used
later in the proofs. These results deal mainly with the asymptotic behaviour
as x1 → −∞ of positive solutions u of

{
∆u − β(y)∂1u + f(y, u) = 0 in Σ− = (−∞, 0) × ω

∂νu(x1, y) = 0 ∀ x1 < 0, y ∈ ∂ω
(2.1)
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such that u(x1, y) → 0 as x1 → −∞ uniformly in y. Here the function f(y, s)
is assumed to be of class C1,δ with respect to s in a neighbourhood of s = 0,
and f(y, 0) = 0 for all y ∈ ω. The function β : ω → R is continuous. The
study of the asymptotic behaviour as x1 → +∞ systematically boils down
to the previous study by changing the variables x1 → −x1.

Consider the linearized problem of (2.1) around the function 0:
{
∆w − β(y)∂1w − a(y)w = 0 in Σ−

∂νw = 0 ∀ x1 < 0, y ∈ ∂ω
(2.2)

with a(y) = −fs(y, 0). In various cases which are developed below, this
problem has “exponential” solutions of the form w(x1, y) = eλx1φ(y) for a
real λ > 0 and a function φ > 0 on ω. The real λ and the function φ are
said to be a principal eigenvalue and a principal eigenfunction. They are
solutions of

{
−∆φ+ a(y)φ = (λ2 − λβ(y))φ in ω

∂νφ = 0 on ∂ω.
(2.3)

Generally speaking, if a(y) is a bounded function on ω, we call µ1 the first
eigenvalue of the problem

{
(−∆+ a(y))σ = µ1σ in ω

∂νσ = 0 on ∂ω.
(2.4)

The solutions of the elliptic equation (2.1) can be expressed in terms of the
special exponential solutions of the linearized problem (2.2):

Lemma 2.1. ([8] Th 2.1 and 4.4) Let u be a positive solution of (2.1) with
u(−∞, ·) = 0 and call µ1 the first eigenvalue of problem (2.4) with a(y) =
−fs(y, 0).

1) If µ1 ,= 0, then

(i) u(x1, y) = αeλx1φ(y) + o(eλx1) as x1 → −∞ or

(ii) u(x1, y) = αeλx1(−x1φ(y) + φ0(y)) + o(eλx1) as x1 → −∞.

In (i) and (ii), α is a positive constant, λ > 0 and φ are respectively principal
eigenvalue and eigenfunction of (2.3). Furthermore the case (ii) may only
occur if µ1 < 0 and if the principal positive eigenvalue λ solution of (2.3) is
unique.
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2) If µ1 > 0, then (2.3) admits exactly one positive and one negative
principal eigenvalue. For each one, there exists a unique positive eigenfunc-
tion φ solving (2.3) up to multiplication by a positive constant. Furthermore,
if β ≤ β, β ,≡ β, then the respective principal positive eigenvalues λ and λ
in (2.3) are such that 0 < λ < λ.

3) If µ1 < 0, then (2.3) admits 0, 1 or 2 principal eigenvalues. If two
exist, they have the same sign.

Now return to problem (1.6). We assume that f is of class C1,δ in the
neighborhood of 0 with f(0) = 0 and f ′(0) < 0. We have the

Lemma 2.2. ([8] Lemma 4.1) Let u and u′ be positive solutions of (1.6) in
Σ− with the same c. Assume that u ≥ u′ and that (i) is true for both u and
u′ with the same values of α, λ and φ. Then u ≡ u′ in Σ−.

2.2. Properties of the solutions ψ of (1.8). In this subsection, we
assume that f is of the bistable type, i.e., f satisfies (1.2)-(1.4). As men-
tioned in the introduction, for a general domain ω, Berestycki and Nirenberg
proved the existence of a solution (c, u) of (1.6) such that u(−∞, ·) = 0,
u(+∞, y) = ψ(y) where ψ is some solution of (1.8). If the section ω is con-
vex, the function ψ is identically equal to 1 ([8]). This last result is based
on the following propositions proved by Berestycki, Nirenberg [8], Casten,
Holland [10] and Matano [22]. They will be used in Section 3.2 of this paper.

Proposition 2.3. ([10], [22]) Let ψ be a non-constant solution of (1.8). If
ω is convex and f is C1, then ψ is unstable in the sense that the principal
eigenvalue µ1(ψ) of the operator −∆y − f ′(ψ(y)) with Neumann boundary
conditions on ∂ω, is negative.

We mention here that this last result was generalized by Kishimoto and
Weinberger for reaction-diffusion systems [20].

Proposition 2.4. ([8]) Under the assumptions of Proposition 2.3, let ψ− ≤
ψ+ be two nonconstant solutions of (1.8). If there does not exist any zero of
f between ψ− and ψ+, then ψ− ≡ ψ+ in ω.

3. Proof of Theorem 1.2. We argue by contradiction. Consider the
domains ωε and the functions αε defined in the introduction and suppose
that, for some sequence ε → 0, there exist solutions (cε, uε) of (1.1) in the
cylinders Σε = R × ωε for the choice α = αε. We first establish a priori
bounds for the speeds cε and next pass to the limit in both infinite cylinders
R × D1 and R × D2.
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3.1. Step 1: bounds for the speeds cε’s. In this subsection, we fix
ε > 0 and we call as above (cε, uε) a solution of problem (1.1). Remember
that such a couple (cε, uε) is unique, up to translation in the x1-direction for
uε, and that ∂1uε > 0 in Σε. We may then assume that

max
y∈ωε

uε(0, y) = θ.

From Lemma 2.1, since f ′(0) < 0 and since f is C1,δ near 0, there exist a
real λε > 0 and a function φε > 0 on ωε such that

uε(x1, y) = eλεx1φε(y) + o(eλεx1) as x1 → −∞,

where the function w = eλεx1φε(y) is a solution of ∆w − (cε + αε(y))∂1w +
f ′(0)w = 0 in Σε = R × ωε with Neumann boundary conditions on ∂Σε.
Similarly, the behaviour of uε as x1 → +∞ is given by:

uε(x1, y) = 1 − eµεx1ψε(y) + o(eµεx1) as x1 → +∞

where µε is negative and ψε > 0 is a positive function defined on ωε. The
function w′ = eµεx1ψε(y) is a solution of ∆w′−(cε+αε(y)) ∂1w′+f ′(1)w′ = 0
in Σε with Neumann boundary conditions on ∂Σε.

From theorem 1.1 applied to dimension 1, there exist a unique k ∈ R
and a unique function v defined in R such that

v′′ − kv′ + f(v) = 0, v(−∞) = 0, v(+∞) = 1, v(0) = θ.

Moreover v′ > 0 in R. Let us then set v(x1, y) = v(x1). As above, we can
write the behavior of the function v

{
v(x1, y) = v(x1) = Ceλx1 + o(eλx1) as x1 → −∞
v(x1, y) = v(x1) = 1 − C ′eµx1 + o(eµx1) as x1 → +∞

where the constants C, C ′ > 0 and the eigenvalues λ > 0, µ < 0 are solutions
of λ2 − λk + f ′(0) = 0 and µ2 − µk + f ′(1) = 0.

Lemma 3.1. With the same notations as above, we have k − 1 < cε < k.

Proof. Let us argue by contradiction. Suppose that cε ≤ k − 1. For all y
in ωε, it follows that cε + αε(y) ≤ cε + 1 ≤ k and the inequality is strict
somewhere in ωε (at least in D2). From Lemma 2.1, it follows that 0 < λε <
λ, µε < µ < 0. Therefore, there exists R > 0 such that

uε(x1, y) > v(x1) if |x1| ≥ R, ∀ y ∈ ωε.
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On the other hand, there exist reals 0 < α ≤ β < 1 such that α ≤ v(x1) ≤ β
if |x1| ≤ R. Since uε(x1, y) → 1 as x1 → +∞ uniformly in y ∈ ωε, there
exists a real τ > 0 such that uε(x1 + τ, y) > β ≥ v(x1) for any |x1| ≤ R,
y ∈ ωε. We also have that uε(x1+τ, y) > uε(x1, y) because ∂1uε > 0. Hence,

uε(x1 + τ, y) > v(x1, y) ∀(x1, y) ∈ Σε.

We can then shift uε to the right until a position τ such that uε(x1 + τ , y) ≥
v(x1) in Σε with equality somewhere. This necessarily happens because uε

and v have exponential behaviours as x1 → ±∞ with different powers. The
function w(x1, y) := v(x1) − uε(x1 + τ̄ , y) ≤ 0 satisfies






∆w − (cε + αε(y))∂1w + c(x1, y)w = (k − cε − αε(y))v′ ≥ 0 in Σε

∂νw = 0 on ∂Σε

w(−∞, y) = 0 and w(+∞, y) = 0

for some function c ∈ L∞ (because f is Lipschitz-continuous). Moreover,
w ≤ 0 in Σε and w(x1, y) = 0 for some (x1, y) in Σε. The strong maximum
principle and the Hopf lemma yield then that w ≡ 0 in Σε, i.e., uε(x1+τ , y) =
v(x1) in Σε. This is ruled out by the behaviours of uε and v as x1 → ±∞.

Finally, we conclude that cε > k − 1 and similarly we could prove that
cε < k. This completes the proof of Lemma 3.1.

3.2. Step 2: passage to the limit in R×D1. From Lemma 3.1, there
exists a sub-sequence of (cε), which we still name (cε), such that cε → c ∈
[k − 1, k] as ε → 0. In what follows, we only consider sub-sequences of this
sequence.

Since ∂1uε > 0 and uε(−∞, ·) = 0, uε(+∞, ·) = 1, there exists a unique τε
such that maxy∈D1

uε(τε, y) = θ (notice that τε ≥ 0 because max
y∈ωε

uε(0, y) =

θ). Let us set vε(x1, y) = uε(x1+τε, y). Because of the invariance of problem
(1.1) by translation in the x1-direction, the function vε also satisfies (1.1).
Since D1 ⊂ ωε, we can now consider the restriction wε of vε to R × D1. We
have that |wε| ≤ 1, |f(wε)| ≤ M and |cε + αε(y)| ≤ |k| + 1 for all ε. From
the standard a priori elliptic estimates up to the boundary and the Sobolev
injections, the functions wε’s are bounded in W 2,p

loc (R×D1) for all 1 < p < ∞
and there exist a sub-sequence ε′ → 0, which we rename ε, and a function
u such that wε

weak−→u in W 2,p
loc (R × D1) (for all 1 < p < ∞). Remember now
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that αε = 1 on D1. The function u satisfies

∆u − (c + 1)∂1u + f(u) = 0 in R × D1 (3.1)
∂νu = 0 on R × ∂D1 (3.2)

max
y∈D1

u(0, y) = θ (3.3)

∂1u ≥ 0 in R × D1. (3.4)

The Neumann boundary condition (3.2) is immediately fulfilled at any point
on R×(∂D1\{B1}) (because any such point is on R×∂ωε for ε small enough).
Besides, since the functions wε’s and f(wε)’s are uniformly bounded in R ×
D1, it follows from the standard elliptic estimates up to the boundary that
the singularities at the points on R×{B1} are removable (see Omrani [25]).
Hence, the function u is of class C1 in R × D1 and ∂νu = 0 on R × {B1}.

In order to prove that (c + 1, u) is solution of (1.1) in R × D1, we only
have to show the following lemma:

Lemma 3.2. The limits of u as x1 → ±∞ are:

u(−∞, ·) = 0 and u(+∞, ·) = 1 uniformly in y ∈ D1

Proof. From the standard elliptic estimates and since u is increasing in x1,
there exist two continuous functions ψ± defined on D1 such that






u(x1, y) −→
x1→±∞

ψ±(y)

∇yu(x1, y) −→
x1→±∞

∇yψ±(y)

∂1u(x1, y) −→
x1→±∞

0
uniformly in y ∈ D1

and
{
∆ψ± + f(ψ±) = 0 in D1

∂νψ± = 0 on ∂D1
(3.5)

By (3.3) and (3.4), it follows that ψ− ≤ θ since u ≤ θ in R− × D1. On
the other hand, f < 0 in (0, θ) and f(0) = f(θ) = 0. By integration of the
equation (3.5) satisfied by ψ−, we conclude that ψ− is a constant, namely 0
or θ.
Proof of ψ− ≡ 0. Suppose on the contrary that ψ− = θ. As ∂1u ≥ 0 and
maxy∈D1

u(0, y) = θ, the strong maximum principle and the Hopf lemma
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yield that u ≡ θ in R×D1. The sequence (wε) converges then to the constant
θ uniformly on each compact subset of R × D1.

On the other hand, there exists τ ′ε > 0 such that max
y∈D1

wε(−τ ′ε, y) =

θ/2. Let us set zε(x1, y) := wε(x1 − τ ′ε, y). After the extraction of a sub-
sequence ε′, that we rename ε, there exists a function z such that zε

weak−→z in
W 2,p

loc (R × D1) (for all 1 < p < ∞). The function z satisfies






∆z − (c + 1) ∂1z + f(z) = 0 in R × D1

∂νz = 0 on R × ∂D1

max
y∈D1

z(0, y) = θ/2

∂1z ≥ 0 in R × D1.

(3.6)

By using the same arguments as above, we get that z(−∞, ·) = 0 and that
z(x1, y) → ψ′

+(y) as x1 → +∞ uniformly in y ∈ D1 where ψ′
+ is a solution

of (3.5). As τ ′ε ≥ 0 and ∂1wε ≥ 0, we have that zε ≤ wε everywhere in Σε

whence z ≤ θ and ψ′
+ ≤ θ. Since f < 0 on (0, θ), by integration over D1 of

the equation (3.5) satisfied by ψ′
+, we conclude this time that ψ′

+ ≡ θ. If we
sum up, we have that

z(−∞, ·) = 0 and z(+∞, ·) = θ. (3.7)

Similarly, we can translate the functions wε (defined on R × D1) to the left
and introduce τ ε > 0 such that maxy∈D1

wε(τ ε, y) = (1 + θ)/2. Let us
set z̃ε(x1, y) := wε(x1 + τ ε, y). As above, for some sub-sequence that we
still rename z̃ε, there exists a function z̃ such that z̃εweak−→ z̃ in W 2,p

loc (R ×D1)
(∀ 1 < p < ∞). The function z̃ satisfies






∆z̃ − (c + 1) ∂1z̃ + f(z̃) = 0 in R × D1

∂ν z̃ = 0 on R × ∂D1

max
y∈D1

z̃(0, y) = (1 + θ)/2.
(3.8)

For all (x1, y) in R×D1, we have that zε(x1, y) = wε(x1 + τ ε, y) ≥ wε(x1, y)
because τ ε > 0 and ∂1wε ≥ 0. By passing to the limit ε → 0, it then follows
that z̃(x1, y) ≥ θ. Since f > 0 on (θ, 1), we conclude as above that

z̃(−∞, ·) = θ and z̃(+∞, ·) = 1. (3.9)
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Next, with the same notations as in [8], we define two functions f and f on
[0, 1] by

f =
{

0 in [0, θ]
f in [θ, 1]

, f =
{

f in [0, θ]
0 in [θ, 1]

.

Let α be such that 0 < α < min (θ, 1−θ). Since the function f is of ignition
temperature type on [θ − α, 1], there exists then a couple (cα, uα) fulfilling
θ − α < uα < 1, ∂1uα > 0 in R × D1 and which is a solution of






∆uα − (cα + 1) ∂1uα + f(uα) = 0 in R × D1

∂νuα = 0 on R × ∂D1

uα(−∞, ·) = θ − α and uα(+∞, ·) = 1.

Notice that this couple is unique, up to translation in x1-direction for uα

and that uα actually depends only on x1 by theorem 1.1. Similarly, there
exists a unique couple (cα, uα) fulfilling 0 < uα < θ+α, ∂1uα > 0 in R×D1

and which is a solution of





∆uα − (cα + 1)∂1uα + f(uα) = 0 in R × D1

∂νuα = 0 on R × ∂D1

uα(−∞, ·) = 0 and uα(+∞, ·) = θ + α.

We now claim that

cα < cα (3.10)

Indeed, if we suppose that cα ≥ cα, then, by using a sliding method and the
maximum principle as in section 3.1, we would reach a contradiction.

Similarly, since z(−∞, ·) = uα(−∞, ·) = 0, z(+∞, ·) = θ < θ + α =
uα(+∞, ·) and since f = f on [0, θ], it follows that c < cα. By comparing z̃
and uα, we would also get that cα < c. Finally, this implies that cα < cα.
This is in contradiction with (3.10).

This assumption ψ− ≡ θ was impossible. Hence, one concludes that
ψ− = u(−∞, ·) = 0.
Proof of ψ+ ≡ 1. The function u is a solution of






∆u − (c + 1)∂1u + f(u) = 0 in R × D1

∂νu = 0 on R × ∂D1

u(−∞, ·) = 0, u(+∞, y) = ψ+(y)
∂1u ≥ 0 in R × D1

max
D1

u(0, ·) = θ
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and the function ψ+ is a solution of (3.5). From the maximum principle and
the Hopf lemma, we infer that either ψ+ ≡ 1 or ψ+ < 1. If ψ+ ≡ 1, Lemma
3.2 is proved.

Suppose that ψ+ < 1. The strong maximum principle implies that θ <
max ψ+ (otherwise, u ≡ θ in R×D1) and next that min ψ+ < θ (otherwise,
ψ+ ≡ 1 by integration of (3.5) over D1). Let d be such that θ < max ψ+ <
d < 1. There exists a unique shift τ̃ε > 0 such that minD1

wε(τ̃ε, ·) = d. Up
to extraction of some subsequence, the functions w̃ε(x1, y) = wε(x1 + τ̃ε, y)
defined in R × D1 converge to a function ũ which is a solution of






∆ũ − (c + 1)∂1ũ + f(ũ) = 0 in R × D1

∂ν ũ = 0 on R × ∂D1

ũ(−∞, y) = ψ̃−(y), ũ(+∞, ·) = 1
∂1ũ ≥ 0 in R × D1

min
D1

ũ(0, ·) = d

where ψ̃− is a solution of (3.5). Since u ≤ u(+∞, y) = ψ+(y) < d in R×D1,
we deduce that τ̃ε → +∞ as ε → 0. For any (x1, y) ∈ R × D1 and any
A > 0, we have that ũε(x1, y) = uε(x1 + τ̃ε, y) ≥ uε(x1 + A, y) for ε small
enough. By successively passing to the limits ε → 0 and A → +∞, we find
that ũ(x1, y) ≥ ψ+(y) in R × D1. Hence, ψ+ ≤ ψ̃− in D1. In particular, the
inequality θ < max ψ+ implies that ψ̃− cannot be identically equal to the
constant θ. Furthermore, ψ̃− cannot be identically equal to the constant 1
since min ψ̃− ≤ d < 1. Eventually, ψ̃− is not constant, as well as ψ+, and
there cannot be any zero of f between ψ+ and ψ̃−. Proposition 2.4 yields
then that ψ+ ≡ ψ̃−.

By analyzing the asymptotic behaviour of the function u as x1 → +∞
and of the function ũ as x1 → −∞, we are going to reach a contradiction.
First of all, since the function ψ+ ≡ ψ̃− is a non-constant solution of (3.5),
proposition (2.3) states that the first eigenvalue µ1(ψ+) of the linearized
problem of (3.5) is negative (we use here the convexity of D1).

Let us now emphasize the behaviour of u as x1 → +∞. The function
w(x1, y) = ψ+(y)−u(−x1, y) is positive, goes to 0 as x1 → −∞ and satisfies
the equation

∆w + (c + 1)∂1w + g(y, w) = 0 in Σ

where g(y, w) = f(ψ+(y)) − f(ψ+(y) − w). We have g(y, 0) = 0, gw(y, 0) =
f ′(ψ+(y)) and the first eigenvalue of −∆y−gw(y, 0) with Neumann boundary
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conditions, namely µ1(ψ+), is negative. From Lemma 2.1, there exist a
positive principal eigenvalue λ > 0 and an eigenfunction φ(y) > 0 in D1,
which are solutions of the eigenvalue problem

{
−∆yφ− f ′(ψ+)φ = (λ2 + λ(c + 1))φ in D1

∂νφ = 0 on ∂D1.
(3.11)

The behaviour of u as x1 → +∞ is given by u(x1, y) = ψ+(y)−αe−λx1φ(y)+
o(e−λx1) as x1 → +∞ or by u(x1, y) = ψ+(y) − αe−λx1(x1φ(y) + φ0(y)) +
o(e−λx1) as x1 → +∞ where α and λ are positive and φ is a positive function
in D1 satisfying (3.11).

Let us now study the behaviour of ũ as x1 → −∞. By applying again
Lemma 2.1, it follows that ũ(x1, y) = ψ+(y)+α′eλ′x1φ′(y)+o(eλ′x1) as x1 →
−∞ or ũ(x1, y) = ψ+(y)+α′eλ′x1(−x1φ′(y)+φ′0(y))+o(eλ′x1) as x1 → −∞,
where α′, λ′ are positive and φ′ is a positive function defined in D1 and
solving

{
−∆yφ′ − f ′(ψ+)φ′ = (λ′2 − λ′(c + 1))φ in D1

∂νφ′ = 0 on ∂D1.

Therefore, the same eigenvalue problem (3.11) admits one positive principal
eigenvalue, λ, and one negative principal eigenvalue, −λ′. Since µ1(ψ+) < 0,
Lemma 2.1 asserts that the principal eigenvalues of (3.11) necessarily have
the same sign. We have then reached a contradiction. This proves that
ψ+ ≡ 1 and completes the proof of Lemma 3.2.

We can summarize the previous results as follows: there exists a solution
u of 





∆u − (c + 1) ∂1u + f(u) = 0 in R × D1

∂νu = 0 on R × ∂D1

u(−∞, ·) = 0 and u(+∞, ·) = 1.

Since this problem does not depend on the transversal coordinate y, theorem
1.1 yields that u does not depend on y and that (c + 1, u) = (c∗, ϕ), up to a
translation in the x1-direction for u, where ϕ is the unique profile solving

ϕ′′ − c∗ϕ′ + f(ϕ) = 0 in R, ϕ(−∞) = 0, ϕ(+∞) = 1. (3.12)

3.3. Step 3: passage to the limit in R × D2 and completion of
the proof of theorem 1.2. Consider the same sub-sequence cε → c and
normalize this time the functions uε’s in D2. More precisely, there exists
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τ ′ε ≥ 0 such that maxy∈D2
uε(τ ′ε, y) = θ. Let v′ε(x1, y) := uε(x1 + τ ′ε, y) and

w′
ε be the restriction of v′ε in R × D2.

As in the previous subsection, there exists a sub-sequence, which we
rename ε → 0 and a function u′ defined in R × D2 such that w′

ε
weak−→ u′ in

W 2,p
loc (R × D2) (∀ 1 < p < ∞). The function u′ is a solution of






∆u′ − c ∂1u′ + f(u′) = 0 in R × D2

∂νu′ = 0 on R × ∂D2

u′(−∞, ·) = 0 and u′(+∞, ·) = 1

(indeed, αε = 0 in D2). Thus, up to a translation in the x1-direction for u′,
it is the case that (c, u′) = (c∗, ϕ). Finally, we get that c∗ = c = c + 1. This
is impossible.

Hence, the existence of the solutions (cε, uε) of problem (1.1) for the
choice ω = ωε and α = αε cannot be valid if ε > 0 is small enough. This
completes the proof of Theorem 1.2.

4. Two other types of nonlinearities f .

4.1. Ignition temperature case. In section 3, we showed that, for a
bistable nonlinearity f and for the choice ω = ωε and α = αε, two passages
to the limit in two cylinders lead to two solutions of the same problem, but
with two different speeds. It is natural to investigate what the same process
can lead to if the source term f(u) is of “ignition temperature type”. Namely,
let us assume that there exists θ ∈ (0, 1) such that

f ≡ 0 on [0, θ], f > 0 on (θ, 1) and f(1) = 0

(see [19] for the derivation of this model). The function f is assumed to be
lipschitz-continuous, C1,δ in the neighbourhood of 1 (for some 0 < δ < 1)
and such that f ′(1) < 0. We again consider the same cylinders Σε with the
sections ωε and the same functions αε as defined in the introduction.

From theorems 1.1 and 1.1’ in [8], there exist a unique real cε and a
unique profile 0 < uε < 1 solution of






∆uε − (cε + αε(y))∂1uε + f(uε) = 0 in R × ωε

∂νuε = 0 on R × ∂ωε

uε(−∞, ·) = 0, uε(+∞, ·) = 1.

In the one-dimensional case, there exists a unique pair (k, v) solving
{

v′′ − kv′ + f(v) = 0 in R
v(−∞) = 0 and v(+∞) = 1.
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As in section 3.1, we find that k − 1 < cε < k. We can then extract a
subsequence (cε′), that we rename (cε), such that cε → c ∈ [k − 1, k]. For
any γ ∈ [0, θ), let (K(γ), vγ) be the unique pair solving

{
v′′γ − K(γ)v′γ + f(vγ) = 0 in R
vγ(−∞) = γ < vγ < vγ(+∞) = 1.

(4.1)

We also have that v′γ > 0 and we can see that K(0) = k.
On the other hand, from Theorem 1.4 of [8] (see also [2], [15], [21], [30],

[31] for the similar problem in dimension 1), there exists a “minimal speed”
c∗ which satisfies the following property: there exist solutions (c′, v) of






∆v − c′∂1v + f(v) = 0 in R × D2

∂νv = 0 on R × ∂D2

v(−∞, ·) = θ and v(+∞, ·) = 1
(4.2)

if and only if c′ ≥ c∗.
By the device of a sliding method as in Section 3.1, it immediately follows

that K(γ) ≤ c∗ for all γ ∈ [0, θ[. Further properties of the function γ .→
K(γ), defined on [0, θ[, are given in the following lemma:

Lemma 4.1. (i) the function γ .→ K(γ) is continuous. (ii) This function
is strictly increasing. (iii) lim

γ↗θ
K(γ) = c∗.

Proof. Assertion (i) was proved in [8] (Proposition 7.1) and follows from a
uniform exponential decay of the functions vγ ’s near −∞ if γ belongs to a
small enough neighborhood of a given point γ0 ∈ [0, θ[.

The fact that the function K is nondecreasing can be proved by reductio
ad absurdum as in Section 3.1 (by using a sliding method and the exponential
decay of the solutions vγ ’s). The strict growth of the function K follows from
Lemma 2.2 given in Section 2.

In order to prove (iii), remember first that the vγ ’s are solutions of (4.1).
Set vγ(x1, y) := vγ(x1) in R × D2 and shift these functions vγ ’s if necessary
so that maxD2

vγ(0, ·) = (θ + 1)/2. Let us now pass to the limit γ ↗ θ.
Since the function K is increasing and K(γ) ≤ c∗ for all γ < θ, there exists

lim
γ↗θ

K(γ) := c′ ≤ c∗.

Moreover, from the classical a priori elliptic estimates and the Sobolev in-
jections, there exists a function v, limit of a sub-sequence (vγ), such that
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∂1v ≥ 0 and





∆v − c′ ∂1v + f(v) = 0 in R × D2

∂νv = 0 on R × ∂D2

θ ≤ v ≤ 1
max
D2

v(0, ·) = (θ + 1)/2.

As usual, v(−∞, ·) and v(+∞, ·) are constants and zeros of f . Since f > 0
in (θ, 1) and from the normalization condition on {0} × D2, it follows that
v(−∞, ·) = θ and v(+∞, ·) = 1. Hence, owing to the definition of c∗, we
deduce that c′ ≥ c∗ and finally we conclude that c′ = c∗. This completes the
proof of Lemma 4.1.

Let us now proceed as in section 3 and study the limit of the pairs (cε, uε)
in R × D2 as ε → 0. Remember first that cε → c ∈ [k − 1, k] as ε → 0.

For any h ∈ (0, 1), let us call uε
h the shifted function of uε such that

maxD2
uε

h(0, ·) = h. Next, pass to the limit ε → 0. As in Section 3.2, the
restrictions of the functions uε

h to R × D2 converge to a solution uh of





∆uh − c ∂1uh + f(uh) = 0 in R × D2

∂νuh = 0 on R × ∂D2

max
D2

uh(0, ·) = h

such that ∂1uh ≥ 0. Besides, as f ≥ 0 on [0, 1], we find that uh(−∞, ·) = γ−
and uh(+∞, ·) = γ+ where the γ± are two zeros of f such that γ− ≤ h ≤ γ+.

If h > θ, uh is then a connection between a constant γ− ≤ θ and 1. Two
cases can occur: 1) 0 ≤ γ− < θ, whence c = K(γ−) and then uh(x1, y) =
vγ−(x1) up to translation, or 2) γ− = θ and then c ≥ c∗. From Lemma
4.1 and since K(0) = k, we necessarily have that c ≥ k in both cases 1)
and 2). But we have shown that c ∈ [k − 1, k]. Thus c = k and that the
whole sequence (cε) has only one accumulation point, namely k, and then
converges to k as ε → 0.

Furthermore, if γ+ ≤ θ, then uh is a solution of
{
∆uh − c ∂1uh = 0 in R × D2

∂νuh = 0 on R × ∂D2.

By taking the derivative of this equation with respect to x1, we get from
the strong maximum principle and the Hopf lemma that ∂1uh ≡ 0. Hence
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∆yuh = 0 in R×D2, ∂νu = 0 on R×∂D2 and we conclude that uh ≡ cte = h
in R × D2.

If h > θ, we have seen that uh is a connection between a constant less
than or equal to θ and 1, with the speed k. From Lemma 4.1, part (ii),
and since K(0) = k, we necessarily have that uh(−∞, ·) = 0. Moreover,
since the functions uh are nondecreasing with h (because the functions uε

are increasing in x1), it follows that, for any h ∈]0, θ], the function uh is not
constant and thus goes to 1 as x1 → +∞. In other words, for any h ∈ (0, 1),
the function uh is equal to a translation of the function v0.

We can now do the same passages to the limit in R×D1 and call vh the
limit functions. These functions vh’s are solutions of






∆vh − (k + 1) ∂1vh + f(vh) = 0 in R × D1

∂νvh = 0 on R × ∂D1

max
D1

vh(0, ·) = h

such that vh(±∞, ·) = γ′± (both constants). Let E be the set E = {γ ∈ [0, θ[
such that K(γ) = k +1}. From Lemma 4.1, E is either empty or reduced to
a single point.

If E = {γ0} (where γ0 ∈ [0, θ[), then each function vh which is not
constant must be equal to some translation of the function vγ0 . Since the
functions vh’s are nondecreasing with respect to h, it follows that, for any
h > γ0, vh is not constant and goes to 1 as x1 → +∞, whence vh is a
translation of the function vγ0 . Besides, for any h ≤ γ0, vh ≡ h.

If E = ∅ (this happens by keeping αε = 0 in D2 and αε = α large enough
in D1 so that K +α ≥ c∗), then it follows that vh ≡ h for any h ≤ θ and that
vh is a connection between θ and 1 with speed k + 1 ≥ c∗ for any h > θ. As
a conclusion, the passages to the limit in R×D1 and in R×D2 do not lead
to any contradiction if the function f is of the ignition temperature type.

4.2. The “KPP” case: f > 0 on (0, 1). Assume that f is lipschitz-
continuous, f(0) = f(1) = 0, f ′(1) < 0 and that f > 0 in (0, 1). The
question of the existence of travelling waves for this kind of nonlinearity has
been widely treated in the literature in the one-dimensional case since the
pioneering paper of Kolmogorov, Petrovsky, Piskunov [21]. In the multidi-
mensional case, Berestycki and Nirenberg proved in [8] that for any ε > 0,
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there exists a minimal speed c∗ε and there are solutions 0 < uε < 1 of





∆uε − (c + αε(y)) ∂1uε + f(uε) = 0 in R × ωε

∂νuε = 0 on R × ∂ωε

uε(−∞, ·) = 0, uε(+∞, ·) = 1
(4.3)

if and only if c ≥ c∗ε. Let us now try to get a priori estimates for the speeds
c∗ε. First of all, let us call c∗ the minimal speed solution of the same problem
as (4.3), but set in R × D2 with α(y) ≡ 0.

Let θ > 0 be small enough. As in [8], let χθ be a smooth and nondecreas-
ing function defined in [0, 1], equal to 0 in [0, θ] and equal to 1 in [2θ, 1]. Set
fθ = fχθ. Thus fθ = 0 in [0, θ] and fθ is of the ignition temperature type
on [0, 1]. Call cε

θ the unique speed for which there exists a solution uε
θ of the

above problem (4.3) with the nonlinearity fθ instead of f . It has been shown
in [8] that cε

θ ↗ c∗ε as θ ↘ 0. Similarly, we have cθ ↗ c∗ as θ ↘ 0. Lastly,
from the arguments used in section 3.1, it follows that cθ − 1 < cε

θ < cθ and
the passage to the limit θ → 0 gives that c∗ − 1 ≤ c∗ε ≤ c∗. Let us argue now
as in Section 3.2. Let c∗ε be a subsequence such that c∗ε → c ∈ [c∗ − 1, c∗] as
ε → 0. For any ε > 0, there exists a function 0 < uε < 1, increasing in x1,
and which is a solution of






∆uε − (c∗ε + αε(y)) ∂1uε + f(uε) = 0 in R × ωε

∂νuε = 0 on R × ∂ωε

uε(−∞, ·) = 0 and uε(+∞, ·) = 1

and we may suppose that maxD2
uε(0, ·) = 1/2. If we pass to the limit ε → 0

in R × D2, we get a solution 0 ≤ u ≤ 1 of





∆u − c ∂1u + f(u) = 0 in R × D2

∂νu = 0 on R × ∂D2

max
D2

u(0, ·) = 1/2

Furthermore, ∂1u ≥ 0. As f ≥ 0 in [0, 1], it is the case that u(±∞, ·) = γ±,
where γ± are constants and zeros of f . Since γ− ≤ 1/2 ≤ γ+, we have
γ− = 0 and γ+ = 1. It then follows that c ≥ c∗. From the inequalities
c∗ − 1 ≤ c ≤ c∗, we conclude that c = c∗.

If we resort to the same limiting process as in section 3, namely if we
consider a sequence of solutions (cε, uε) of (4.3) such that cε (≥ c∗ε) →
c (≥ c∗) and if we fix the value of maxuε(0, ·) in D2 or D1, we would get
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two solutions (c, u) or (c + 1, v) of two equivalent problems set in the same
cylinders R × D2 and R × D1. But this does not lead to any contradiction
because the set of the admissible speeds is the half-line [c∗, +∞[.
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