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Abstract. This paper is devoted to the study of pulsating travelling fronts for reaction-diffusion-
advection equations in a general class of periodic domains with underlying periodic diffusion and
velocity fields. Such fronts move in some arbitrarily given direction with an unknown effective speed.
The notion of pulsating travelling fronts generalizes that of travelling fronts for planar or shear flows.
Various existence, uniqueness and monotonicity results are proved for two classes of reaction terms.
Firstly, for a combustion-type nonlinearity, it is proved that the pulsating travelling front exists and
that its speed is unique. Moreover, the front is increasing with respect to the time variable and unique
up to translation in time. We also consider one class of monostable nonlinearity which arises either
in combustion or biological models. Then, the set of possible speeds is a semi-infinite interval, closed
and bounded from below. For each possible speed, there exists a pulsating travelling front which is
increasing in time. This result extends the classical Kolmogorov-Petrovsky-Piskunov case. Our study
covers in particular the case of flows in all of space with periodic advections such as periodic shear
flows or a periodic array of vortical cells. These results are also obtained for cylinders with oscillating
boundaries or domains with a periodic array of holes.

Résumé. Cet article concerne 1’étude des solutions du type fronts progressifs pulsatoires pour des
équations d’advection-diffusion-réaction dans une classe générale de domaines périodiques avec des
coefficients d’advection et de diffusion périodiques. Ces fronts se propagent dans une direction ar-
bitraire avec une certaine vitesse effective (inconnue). La notion de fronts progressifs pulsatoires
généralise celle de fronts progressifs dans les flots uniformes le long de la direction de propagation
(écoulements plans ou paralleles). Divers résultats d’existence, d’unicité et de monotonie sont établis
pour deux classes de termes de réaction. La premiere est celle des non-linéarités de type combustion;
on prouve que les fronts progressifs pulsatoires existent, que leur vitesse est unique et que ces fronts
sont strictement croissants par rapport au temps et uniques a translation en temps pres. Nous envis-
ageons également les non-linéarités de type monostable intervenant aussi bien en combustion qu’en
biologie. On prouve que l’ensemble des vitesses solutions est alors une demi-droite fermée bornée
inférieurement et que pour chaque vitesse possible, il existe un front progressif pulsatoire croissant
en temps. Ce dernier résultat étend le cas classique Kolmogorov-Petrovsky-Piskunov. Notre étude
couvre en particulier le cas des flots dans tout I’espace avec des advections périodiques telles que les



flots paralléles ou un réseau périodique de cellules vorticales. Ces résultats sont également obtenus
pour des cylindres a bords périodiques ou des domaines avec trous périodiques.

1 Introduction and main results

This paper is devoted to the analysis of some front propagation phenomena for a class of
reaction-diffusion-advection equations in various periodic domains.

In order to motivate our study, let us first recall in a very simple case the notion of travelling
fronts : for the reaction-diffusion (with no advection) equation dyu — Au = f(u) in all of space
IRY, a (planar) travelling front moving in an arbitrarily given direction —e of the unit sphere
SN~ is a solution of the type u(t,z) = ¢(x - e + ct). For reaction-diffusion equations with
periodic advection, of the type dyu + ¢(x) - Vu — Au = f(u), travelling fronts may not exist in
general. In such periodic domains or media, the notion of travelling fronts has to be replaced
by the more genral notion of pulsating (or periodic) travelling fronts (which we define precisely
later) : a pulsating travelling front propagates in an arbitrarily given direction but its profile
changes periodically with respect to time instead of being invariant as for a travelling front.

Pulsating travelling fronts appear in several physical contexts. As we will see, they may
propagate in a variety of classes of periodic domains and media. These different geometrical
configurations and the models are described in the next subsections. The precise mathematical
results are also stated for each case. These results are all similar and can actually be stated in
the unifying framework of a general class of periodic media and domains, which is described
in section 1.5.

1.1 Pulsating travelling fronts in straight infinite cylinders

Let us first deal with the case of a straight infinite cylinder
Q={(z,y), r€ R, y € w}

where w is a smooth (at least of class C?) bounded and connected subset of IRV ! and let us
consider the solutions u(t, z,y) of the following reaction-diffusion-advection equation

0
8—?—Au+q(z,y)-vm,yu:f(u), te R, (r,y) €Q (1.1)

together with Neumann boundary conditions on 0f2
du=0, (t,z,y)€ R x N (1.2)

where v = v(z,y) = v(y) is the outward unit normal to Q = IR x dw and d,u = 5%. These
Neumann boundary conditions mean that there is no flux of u across the wall of the cylinder.

Such semilinear parabolic equations arise in particular in the modelling of thermodiffusive
premixed flame propagation with unit a Lewis number and a simple chemistry. Then for a
specific reaction term f, u represents an adimensionalized temperature. We refer the reader
o [13], [72], [81], [101], [109] for a derivation and physical discussion of these equations.



The same equations also come from biological models of population dynamics where u
stands for the relative concentration of some substance (see e.g. [2], [34], [84]).

The underlying velocity field ¢(x,y) = (qi(z,y),- -+, qn(z,y)) is given in Q, bounded in
C*%(Q) for some § > 0. It is assumed that

B divg = 0 in Q,
V(r,y) €Q, qz+L,y) = q(z,9),
/ q(z,y) de dy = O,
(0,L) xw
g-v = 0 on 0.

(1.3)

The second assertion in (1.3) means that ¢ is periodic in the z variable with the period L
being some given positive number. Furthermore, we assume that the field ¢ is divergence-free
(which corresponds to an incompressibility assumption for the underlying medium). The flow
g may represent some turbulent fluctuations with respect to a mean field.

One of the goals of this paper is to analyze the influence of periodic advection, and of
other periodic phenomena, on the propagation of flames. Related questions, including the
analysis of flame extinction phenomema, have been treated in [3], [20], [27], [58], [108]. In
dimension N > 2, equation (1.1) can then arise in turbulent combustion models to describe
the propagation of a premixed flame in an array of vortical cells. Generally speaking, equation
(1.1) is a transport equation for a passive quantity u in a periodic ezcitable medium.

We are interested here in particular solutions of (1.1-1.2), namely the pulsating travelling
fronts, which propagate in a given direction, say to the left. There are only two possible
directions of propagation in an infinite cylinder with bounded section : towards negative or
positive .

Definition 1.1 A pulsating travelling front solution u(t,z,y) of (1.1-1.2), propagating to the
left, is a classical solution u defined for all t € IR, (x,y) € Q, such that for some ¢ # 0, the
following holds

L _
u <t + —,x,y) =u(t,x+ L,y) forall te R, (z,y) €, (1.4)
c
and such that
Vte R, u(t,—oo,y)=0, u(t,+oo,y)=1 uniformly with respect to y. (1.5)

The number ¢ is then called the effective speed of the front. Such a solution u is said to
be classical if u is continuous, u is globally bounded in CY*(IR x Q) for all u € [0,1), and
the derivatives of u with respect to the (z,y) variables up to the second order exist and are
continuous in IR X €.

Such pulsating fronts correspond to flames with time-periodic shapes in combustion theory.
Pulsating fronts can also be observed in other frameworks. For instance, some remarquable
experiments carried out by P. Ronney and collaborators (see [90] and references therein) have
shown the propagation of pulsating autocatalytic chemical waves in vertical cylinders with



annular sections. More generally speaking, such fronts are of particular interest since, in
periodic media, they can describe the behavior at large time of the solutions of the related
Cauchy problem with front-like initial conditions. However, the question of the stability of the
pulsating solutions constructed here is not treated in this paper. We hope to consider it in
subsequent works.

Two main types of nonlinear reaction terms f are considered in this paper. The given
function f is assumed to be Lipschitz-continuous in [0,1] and to be of one of the following
types. Either f satisfies

{ 36 € (0,1), f(s) =0 forall s € [0,0], f(s) >0forall s (#,1), f(1)=0, (1.6)

dp € (0,1 —0), f is nonincreasing on [1 — p, 1],

or it satisfies :
f>0 on(0,1), f(0)=f(1)=0,
dp >0, f is nonincreasing on [1 — p, 1], (1.7)
3§ > 0, the restriction of f to [0,1] is C*°([0, 1]).

We refer to the class defined by (1.6) as the combustion type nonlinearity where 6 > 0 is a
threshold (or ignition) temperature at which the reaction starts (see [61]). The nonlinearities
defined by (1.7) are classicaly referred to as “monostable” reaction terms. Case (1.7) can also
be viewed as a combustion nonlinearity with ignition temperature equal to 0 [61], or can also
be thought of as the production rate of a population in biological models [2], [36], [67], in
which case the quantity u represents the density of a population. Furthermore, f is assumed
to be extended by 0 outside [0, 1].

For such reaction-diffusion-advection equations, the first results on travelling fronts, namely
the solutions u of the type u(t, z,y) = ¢(x + ct,y), have been obtained in the one-dimensional
case, with a zero velocity field ¢ = 0, in the celebrated pioneering paper of Kolmogorov,
Petrovsky and Piskunov [67] for nonlinearities f of type (1.7) and later by Kanel’ [61] for
nonlinearities of type (1.6). These results have been generalized in the multidimensional case
of straight infinite cylinders 2 = IR X w with shear flows ¢ = («(y),0,---,0) by Berestycki,
Larrouturou, Lions [14] (existence for (1.6)) and by Berestycki, Nirenberg [18] (monotonicity,
uniqueness for (1.6) and existence for (1.7)). The known results for travelling fronts in shear
flows are the following : if f is of type (1.6), there exists a unique speed ¢ and a unique
travelling front u(t,z,y) = ¢(z + ct,y) (¢ is increasing in s = x + ¢t and unique up to
translation in s) whereas if f is of type (1.7), there exists a speed ¢* such that travelling fronts
u(t,z,y) = ¢(x + ct,y) exist if and only if ¢ > ¢* and, for each given ¢ > ¢*, the front ¢ is
increasing and unique up to translation in s under the additional assumption f'(0) > 0.

In the case of shear flows, the velocity field ¢ is L-periodic in z for all period L and the
equation (1.1) is invariant by translation in the variable x. Thus, travelling fronts solutions,
which satisfy (1.4) for all L € IR, are a particular class of pulsating travelling fronts. Such
fronts move with constant instantaneous speed ¢ to the left and their profile does not change as
time runs (as opposed to the pulsating travelling fronts). Note that the problem for travelling
fronts can then be reduced to a semilinear elliptic equation for the function ¢.

Our first result is to generalize the above results for pulsating travelling fronts in straight
infinite cylinders with periodic velocity fields ¢ :



Theorem 1.2 Let q be a velocity field satisfying (1.3).

1) If f satisfies (1.6), then there exists a unique classical solution (¢,u) of (1.1)-(1.2) and
(1.4)-(1.5). The function u is increasing in t and unique up to translation in t. Moreover,
O0<u<1landc>0.

2) If [ satisfies (1.7), there exists a positive real number c* such that : if ¢ < ¢*, there is
no classical solution (¢,u) of (1.1)-(1.2) and (1.4)-(1.5). For all ¢ > ¢*, there exists a classical
solution (c,u), such that 0 < u < 1 and u is increasing in t; if f'(0) > 0 and ¢ > ¢*, then any
solution w of (1.1)-(1.2) and (1.4)-(1.5) is increasing in t.

Remark 1.3 In the case of a function f satisfying (1.7) and under the additional assumption
f'(0) > 0, we conjecture that, for each speed ¢ > ¢*, the solution v is unique up to translation
in ¢. This question remains open.

Remark 1.4 As is easily seen and observed on computations, contrarily to the case of shear
flows, the function u will not be increasing in general in the variable x.

We refer to [28], [29] and [65] for some recent a priori bounds of the speeds of propagation of
the solutions of the associated Cauchy problem with front-like initial conditions. Constantin,
Kiselev, Oberman and Ryzhik [28] have defined the notion of bulk burning rate as follows :

V(t) = |w|’1/lewut(t,x,y) dxdy where |w| is the Lebesgue-measure of w. By analyzing a

decomposition of the velocity field ¢ into positive and negative parts, they have obtained some
lower bounds for V'(¢) —or for the time-average of V'(¢)— in the case where u is a solution of
the corresponding Cauchy problem with front-like initial conditions [28], [65]. These estimates
lead to lower bounds for the effective speed ¢ (defined here) of any pulsating travelling front

to+T
solving (1.1-1.2) and (1.4-1.5). Indeed, for such a solution u, one has T‘l/ ' V(t)dt = ¢ with
to

T = L/c, for any t, € IR. Kiselev and Ryzhik [66] have also recently proved an upper bound
for the behavior at large time of this bulk burning rate for thermodiffusive systems of two
equations. To be more precise, under some assumptions at the initial time, the burning rate
for a system of two equations is asymptotically smaller than the minimal speed of propagation
of the pulsating travelling fronts for the corresponding single equation.

1.2 Cylinder type domains with periodic boundaries

The periodicity of the velocity field can actually derive directly from the periodicity of the
domain. That is the case when, instead of a straight infinite cylinder, one considers an infinite
cylinder €2 with a smooth and oscillating boundary :

Q={(r,y) e R", v € R, y € w(x)}, (1.8)

where the function z — w(x) is periodic with period L > 0. Straight infinite cylinders
correspond to the case where w = constant. Let now ¢ be a C1(Q) (with § > 0) velocity field



satisfying B
divg = 0 in €,
V(z,y) €, qlz+Ly) = qlz,y),
¢ (z,y) dv dy = 0,
g-v = 0 on 0.

/ (1.9)
{z€(0.L), yew(@)}

Note here that, as soon as x — w(z) is not constant, the usual notion of travelling front is
not sufficient to describe the propagation of a front, even if the velocity field ¢ is equal to 0.
On the other hand, pulsating travelling fronts can be defined in this framework. Namely, the
notion of pulsating travelling fronts is the same as in Definition 1.1.

In the case where f is of the “bistable” type and where ¢ = 0, some conditions for the
existence or non-existence of pulsating travelling fronts have been given by Matano [80].

In the cases where f is of the types (1.6) or (1.7), the same result as Theorem 1.2 holds for
infinite cylinders with periodic boundaries :

Theorem 1.5 Under the assumptions (1.8) and (1.9), the conclusions 1) and 2) of Theorem
1.2 hold.

1.3 Fronts in the whole space with periodic flows

A natural question about pulsating travelling fronts concerns the case where the domain (2 is
the whole space IRY. Let us consider the reaction-diffusion-advection equation

—U—Au+q(x)~vxu:f(u), te R, xR, (1.10)

If the velocity field ¢ in (1.10) is equal to a constant vector go, then planar travelling fronts
of the type u(t,z) = ¢(x - e + ct), propagating in a given direction —e € SN~! exist in both
cases (1.6) or (1.7), and the set of possible speeds is equal to the set of planar speeds for the
equation with ¢ = 0, translated with the shift ¢ - e.

Similarly, consider the case of a shear flow ¢ = «(z)e where e - Va = 0 (i.e. div(q) = 0)
and « is periodic with respect to the variables orthogonal to e. Let P be the orthogonal
projection to the hyperplane orthogonal to e. Wrinkled travelling fronts of the type u(t,z) =
¢(z - e + ct, P(x)), moving in the direction —e, exist. Planar travelling fronts of the type
u(t,z) = ¢o(z - € + cot) also exist for any direction ¢/ € SV -1 such that ¢’ L e; moreover, the
couple (cg, ¢g) does not depend on ¢ and is the unique solution of ¢f — codfy + f(h) = 0 with
bo(—00) = 0, ¢p(+00) = 1.

On the other hand, it can easily be checked in that case that, provided that the shear flow
¢ = a(x)e is not constant, there exists no travelling front, with nonzero speed, propagating
in a direction —e’ which is neither equal to 4e nor perpendicular to e. Indeed, suppose by
contradiction that such a travelling front u exists. Even if it means rotating the frame, one
can assume that e = (1,0, --,0). Therefore, the function u solves u; — Au + a(y)u,, = f(u)
where y = (z3,---,zy). Let P : RN — IRN~! be the orthogonal projection on the hyperplane
perpendicular to e’. Since u is a travelling front in the direction —e’, there exists a function
¢ : RN — IR such that u(t,z) = ¢(x - ¢’ + ct, P(x)) for all (t,z) € IR x IRY and ¢(s,z) — 0



(resp. ¢(s,2) — 1) as s — —oo (resp. s — +0o0) uniformly in z € RN 1. Then, the function
¢ satisfies

co1(x-e +ct,P(x)) — Ap(x - € + ct, P(x))
+a(y) [eipi(x-€ +ct,P(x))+b-Va..nd(x-€ +ct,P(x))] = [flop(x-€ +ct,P(z)))

for all (t,z) € IR x IRYN, where €/ denotes the first component of ¢’ and b € IRV ! denotes
the (constant) vector b = d,, P. Since €' is not parallel to (1,0, ---,0), it follows that, for each
(y,s,2) € RN™!' x IR x RN~ there exists z; € IR and ¢ € IR such that x = (x1,y) satisfies
z-€ 4+ ct =s and P(x) = z. Therefore, the function ¢ = ¢(s, z) satisfies

chs — Ny + a(y)(egs + b+ V,0) = f(¢) for all (s,2) € RY and for all y € RN .

Since « is not constant, one has €| ¢, +b-V,¢ = 0. In other words, u,, = 0. Moreover, since €’
is not orthogonal to (1,0,---,0), ¢} is not zero. Assume first that ¢} > 0. It follows then from
the definition of ¢ that, for each t € IR and y € RN, u(t,z1,y) = ¢(x - € + ct, P(z)) — 0
as r1 — —oo while u(t,z1,y) — 1 as £;7 — +oo. That contradicts the fact that u does not
depend on z;. The case €] < 0 leads to a similar contradiction.

This example shows that, even for shear flows, the notion of travelling fronts is not sufficient
to describe the propagation of fronts in most of the directions of S¥—1,

Let us now consider the case of a divergence-free velocity field g, of class C*°(IRY) (with

d > 0), which is L-periodic with respect to the space variables, in the sense that there exists
an N-uple (L;) € (IR*)" such that

divg = 0 in RV,
N
vk e [[L:izZ, Yre RY, qz+k) = q(2), (1.11)

i=1
q(z) de = 0.
/val((),Ll)
Definition 1.6 Under the above assumption (1.11), a pulsating travelling front solution u(t, x)

of (1.10), propagating in an arbitrarily given direction —e € SN 1, is a solution u defined for
allt € IR and z € IRYN such that, for some ¢ # 0, the following holds :

Vk € [[Li% VoeRY, ult+—",z = ult,x+k),
1 c (1.12)
Vie R, wu(t,zr) — 0, wu(t,z) — 1,
T-e——00 z-e—400

where the above limits hold locally in t and uniformly with respect to the variables orthogonal
to e. The number c is then called the effective speed of the front.

Remark 1.7 If it is just assumed that the first assertion in (1.12) holds and that the limits in
the second assertion are satisfied locally in ¢ and in the variable orthogonal to e, then it still
follows that these limits are actually uniform in the variable orthogonal to e. Note that this
uniformity condition means that the front can be viewed as asymptotically planar far away
from any arbitrary origin in IR™. This uniformity condition is also discussed in Remark 1.9
below.



The questions of the existence and uniqueness of pulsating travelling fronts have been solved
by Xin [102], [104] in the case of a function f satisfying (1.6) (positive ignition temperature 6),
under the additional assumption that f'(1) < 0 : for each given unit vector e € S¥~! there
exists a unique solution u(¢,x) of (1.10) and (1.12), and w is increasing in ¢ and unique up to
translation in ¢. This result, which actually holds for more general equations involving space-
dependent diffusion terms ([104], see also section 1.5) has been proved through a continuation
method based on some invertibility properties of linearized operators around solutions in the
variables (ct + x - e, ).

The method used by Xin does not seem to easily extend to the case of a nonlinearity f
satisfying (1.7), whereas the method used in the present paper allows for the following result,
which is similar to Theorems 1.2 and 1.5 :

Theorem 1.8 Let q be a CY(IRN) (with § > 0) velocity field satisfying (1.11) and let e €
SN=1 be a unit vector of RN. If [ is of the type (1.6), then there exists a unique solution
(c,u) = (c(e),ule)) of (1.10) and (1.12), the function u being increasing in t and unique up
to translation in t. If f is of the type (1.7), then there exists ¢* = c¢*(e) > 0 such that no
solution (c,u) exists if ¢ < ¢*, and a time-increasing solution u exists for each ¢ > ¢*; lastly,
all solutions u are increasing in t if f'(0) > 0.

Remark 1.9 The uniformity of the limits in (1.12) with respect to the variables which are
orthogonal to e is necessary for the uniqueness result in case (1.6) to hold. If this uniformity
condition is not satisfied, then the uniqueness of the speed and of the front (up to translation
in t) may not hold anymore. In order to see that, it is enough to consider the case of the
equation

ou—Au=f(u), teR, ze&RY (1.13)

and to consider the travelling fronts moving in direction —ey = (0,---,0,—1). If f is of the
type (1.6), a planar travelling front uy(t,2) = ¢o(xn + cot) (in the sense of Definition 1.6,
where the k& can be any arbitrary vector in IRY) exists, and the speed ¢, and the profile ¢
are unique. Such a front satisfies ug(¢,2',xy) — 0 as xy — —oo and ug(t,z',xy) — 1 as
xnx — +oo locally in ¢ and uniformly in 2’ € IRV~!. If these uniform limits with respect to
x' are replaced with the simple limits, then there exist many other planar fronts u(¢, x) which
satisfy (1.13) and simple limits as 2’ — 400 : for instance, if e € S¥~! is such that its N-th
component o is positive, the function u(t, ) = @o(z - e+ cot) solves (1.13) and u(t, 2', xx) — 0
(resp. — 1) as xy — —oo (resp. &y — +o00) locally in ¢ and in 2’ € IRY 1. But these limits
are not uniform in z’, unless e = ey. Furthermore, this solution could be viewed as a planar
front moving in direction —ey with speed ¢ = ¢p/o > 0 in the sense that

vte R, Y(«',zy) € RN, Yhe R, u(t+h/c,a',xy)=u(t,z’,zy+h). (1.14)

Note also that even for this homogeneous equation (1.13), nonplanar fronts satisfying (1.14)
and the simple limits u(¢, ', zy) — 0 (resp. — 1) as zy — —o0 (resp. zx — +00) locally in ¢
and z' € RN, exist. Conical-shaped fronts have been built in [22] and [48] in the case where
f satisfies (1.6), and fronts with more general shapes have been given in [49] in the case where
[ satisfies (1.7) and is moreover concave in [0, 1].



1.4 Periodic domains with holes

Another class of periodic domains and media is the case where the domains have periodic holes
with a velocity field having the same periodicity. For instance, consider first the case of the
whole space with periodic holes; namely, let €2 be a domain with a smooth boundary and such
that

N

vk e [[L:Z, Q+k=9Q (1.15)

i=1
for some (L;)1<i<y € (IR%)N. Let v = v(x) be the outward unit normal to . Let g be a
CH*(Q) (with § > 0) velocity field such that

( divg = 0 in Q,
N
Vik e [[L:iZ, VYxeQ, qz+k) = q(z),
=1 (1.16)
dr = 0
/Hjil(o,Li) @) de :
. g-v = 0 on 0.

Definition 1.10 Given any direction e € SN, a pulsating travelling front in the direction
—e is a solution u(t,z) defined for allt € IR and x € 2, and such that, for some ¢ # 0, the
following holds :

%—Au%—q(m)-v@u = flu), teR, €,
o,u = 0, telR, v € 01,
{ N _ ke (1.17)
Vk e [[LiZzZ, VzeQ, wu (t + —,:L’) = u(t, z + k),
i=1 ¢
Vie R, u(t,z) — 0, wu(t,z) — 1,
\ T-e— —00 T-e— 400

where the above limits hold locally in t and uniformly in the directions orthogonal to e. The
speed c 1s then called the effective speed of the front.

For a nonlinearity f satisfying (1.6), the existence of pulsating travelling fronts has been
proved by Heinze [52] in the limit of asymptotically small holes, by using a perturbation
technique around the homogenized equation.

With the method used in this paper, the same result as in the case of the whole space can
be obtained for the case of the space with periodic holes :

Theorem 1.11 Let Q be a domain satisfying (1.15) and let q satisfy (1.16). Then the same
results as in Theorem 1.8 hold as far as the pulsating travelling fronts solving (1.17) are
concerned.



1.5 General periodic domains and periodic excitable media

The results presented in the previous subsections can all be written in a more general framework
which we whall describe below.

Let Q be a connected unbounded open set, with a smooth boundary (at least of class C?),
and such that

d d
d1<d<N, dL{,---,Ls >0, Vk = (ki)lgigd S HLZZ, Q+ Zk,e, =Q
i=1 1=1
and 2 is bounded with respect to the variables x4, -+, 2N,

(1.18)

where (e;)1<i<n is the canonical basis of RY. Let us denote by x = (z1,---,2,4) the first d
coordinates and by y = (z4:1,- -, zxn) the last N — d ones. Let v = v(z,y) be the outward
unit normal to 2. Let C be the period cell defined by

C={(z,y) €Q, x€(0,Ly) x---x(0,Lg)}.
We say that a field v(z, y) defined in Q is L-periodic with respect to the variable x if v(z+k, y) =

d
v(z,y) for all k € [[L;Z and for all (z,y) € €.

Before going azn)} further, let us observe that that class of domains contains all domains
described above : the infinite cylinders with straight or oscillating boundaries, the whole space
with or without periodic holes. Domains of the class (1.18) also include infinite cylinders or
slabs with periodic holes.

From now on and throughout the paper, ¢ = (qi,---,qy) denotes a globally C° vector
field defined in Q, where § > 0.

In some results below, one will assume that

divg = 0in Q,
q is L-periodic w.r.t. x,

Vi<i<d, / g dedy = 0, (1.19)
c
g-v = 0 on 09,
or that ¢ satisfies the following weaker assumption :
divg = 0in Q,
V1 <1 <d, gq;is L-periodic w.r.t. z,
(1.20)

V1 <i<d, / g dody = 0,
C
g-v = 0 on 0f.

In (1.20), only the first d components of ¢ are L-periodic with respect to x.
Furthermore, throughout the paper, A(z,y) = (A;(z,y))1<ij<n denotes a globally C?
matrix field defined in Q, and such that

0<e <o, VEERY, V(z,y)€Q, «léf’ < > Az, y)&& < ol €), (1.21)

1<i,j<N
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where, for any &€ = (&,---,&y) € RY, |€]? = & + -+ - + £%. In some results below, one will
assume that
A is symmetric and L-periodic w.r.t. x, (1.22)

or that A satisfies the following weaker assumption :
V1<i<d, V1<j<N, A;is L-periodic w.r.t. z. (1.23)
Lastly, let f(z,y,u) be a function defined in Q x IR such that

f is globally Lipschitz-continuous in Q x IR,
V(z,y) €Q, Vs€ (-00,0]U[L,+00), [(z,y,5) =0, (1.24)
dp e (0,1), V(z,y)€Q, Vli—p<s<s <1, Fflr,y,5) > f(z,y,5).

One assumes that
f is L-periodic w.r.t. x. (1.25)

The function f is assumed to be of one of the following two types : either
[0’ 0]? f(x, y, S) = 0?

s) € Q x
€Q, f(z,y,s) >0, (1.26)
y)€Q, Vi-p<s<s <1, f(z,y,5) > f(z,ys) >0,

30 € (0,1), V(z,y,s
Vs e (0,1), 3F(z,y)
Ipe(0,1—0), Yz,

or

Vs e (0,1), I(z,y)€Q, f(z,y,5) >0, (1.27)
3§ > 0, the restriction of f to Q x [0, 1] is C1 with respect to u. '

Nonlinear source terms of the types (1.26) or (1.27) generalize those of the types (1.6) or
(1.7). Typical examples of functions f(z,y,u) satisfying (1.24-1.25) and either (1.26) or (1.27)
are the functions of the type f(z,y,u) = h(z, y)f(u), where h is a globally Lipschitz-continuous,
positive, bounded and L-periodic w.r.t. z function defined in Q, and f is a Lipschitz-continuous
function satisfying (1.6) or (1.7).

Throughout the paper, if z and 2’ are two vectors in IRY and B is an N x N-matrix, then

2Bz denotes the number 2Bz := 2iBjiz".
)75t
1<4,j<N

Definition 1.12 Let e be an arbitrarily given unit vector in IR®. We are interested in the
functions u(t,z,y), which we call pulsating travelling fronts propagating in direction —e with
a so-called effective speed c # 0, and which are classical solutions of

0
8_7: —div(AVu) + ¢ - Vu = flz,y,u), t€ R, (x,y) € Q,
vAVu = 0, te R, (x,y) € 09,
k.e _ (1.28)
VkEHLZ ult+—,z,y = uw(t,z + k,y) for all (t,z,y) € R x Q,
=1
u(t, y)x.e_)—zoo(), (t,x,y) eon 1 for each (t,vy),

\

where the above limits hold locally int and uniformly in y and in the directions of IR® orthogonal
to e.
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That framework for the propagation of pulsating travelling fronts contains all situations
described in the previous subsections. Note here that the Laplace operator has been replaced
with a general nonhomogenous diffusion operator div(AVwu). Such diffusion operators have also
been considered in several papers in the onedimensional case or in the case of the whole space
(see [87], [103], [104], [105], [107]), and also in similar problems modelling the propagation of
fronts in periodic solid media (see [24], [86]).

For that general framework, we have the following results, which generalize the results of
Theorems 1.2, 1.5, 1.8 and 1.11 :

Theorem 1.13 Let Q be a domain satisfying (1.18), let e be a unit vector in IR® and let f be
a nonlinearity satisfying (1.24-1.25) and (1.26). Let q (resp. A) be a globally C*°(2) (resp.
C3(Q) ) vector field (resp. matriz field), where § > 0, and assume that A satisfies (1.21). Then,

a) if ¢ and A satisfy (1.19) and (1.22), there exists a classical solution (c,u) = (c(e), u(e))
of (1.28) such that c(e) > 0,

b) without any additional assumption, for any classical solution (c,u) of (1.28), the speed
¢ 1s unique, the function cu 1s increasing in t and the function u is unique up to translation in
the variable t,

c) if ¢ and A satisfy (1.20) and (1.23), then, for any classical solution (¢,u) of (1.28), the
speed ¢ 18 positive and the function u is increasing in t.

Theorem 1.14 Let Q be a domain satisfying (1.18), let e be a unit vector in IR? and let f be
a nonlinearity satisfying (1.24-1.25) and (1.27). Let q (resp. A) be a globally C*°(2) (resp.
C3(Q) ) vector field (resp. matriz field), where § > 0, and assume that (1.19), (1.21) and (1.22)
are satisfied. Then,

a) there exists ¢*(e) > 0 such that problem (1.28) has no solution (c,u) if ¢ < ¢*(e) while,
for each ¢ > ¢*(e), it has a solution (¢,u) such that u is increasing in t,

b) if £ (x,y,0) :=lim, o+ f(x,y,u)/u > 0 for all (x,y) € Q, then any solution u of (1.28)
18 tncreasing in t.

Remark 1.15 Theorems 1.2, 1.5, 1.8 and 1.11 hold in the general case where the Laplace
operator is replaced with a divergence type operator div(AVu) together with Neumann type
boundary conditions vAVu = 0 on 992. These theorems also hold when the source term f(u)
is replaced with a function f(x,y,u) satisfying (1.24-1.25) and either (1.26) or (1.27).

At this stage, the question of the uniqueness of the pulsating travelling fronts for each
speed ¢ > ¢*, in the case where f satisfies (1.27), remains open, even under the assumption
fi (z,y,0) > 0.

Another related open problem concerns the case where the function f is of the bistable
type, namely, there exists # € (0,1) such that f(0) = f(8) = f(1), f < 0on (0,6), f >0 on
(0,1) and f is nonincreasing in a right neighborhood of 0 and in a left neighborhood of 1. Some
conditions for the existence or nonexistence of pulsating travelling fronts in infinite cylinders
with periodic boundary have been given by Matano [80]. Other existence, nonexistence or
stability results have been obtained by Xin [103], [105] and Papanicolaou and Xin [87] in the
case of the whole space with almost uniform diffusion and advection coefficients.
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Lastly, let us mention here that the methods used in sections 3 and 4 of this paper to prove
the uniqueness and monotonicity properties of the pulsating travelling fronts in the case of a
nonlinearity f with positive ignition temperature (1.26) actually work and lead to the same
uniqueness and monotonicity results in the case of a bistable nonlinearity f, or for more general
bistable-like nonlinearities f(x,y,u) which are nonincreasing in u in a right neighbourhood of
0 and in a left neighbourhood of 1, uniformly with respect to (z,y) € Q.

1.6 Further results

In a forthcoming paper [12] written in collaboration with N. Nadirashvili, the question of the
propagation of pulsating travelling waves solving (1.28) in a domain of the class (1.18) is con-
sidered under the additional assumption that the function f satisfies the following assumption,
which is a particular case of (1.27) :

,

f is globally Lipschitz-continuous in Q x IR and L-periodic with respect to z,
V(z,y) €Q, Vsé€ (—o00,00U[l,+0), f(z,y,5)=0,
3§ > 0, the restriction of f to Q x [0, 1] is of class C with respect to u,
V(x,y,s) € Ax (0,1), 0< f(z,y,s) < fF(x,y,0)s

where f.F(z,y,0) :=lim, o+ f(z,y,u)/u,
L e (0,1), VY(z,y)€Q, VI-p<s<s <1, f(z,y,8) > f(z,y,5).

—

(1.29)

The simplest case of a function f(z,y,u) satisfying (1.29) is when f(z,y,u) = f(u) and the
Lipschitz-continuous function f satisfies : f = 0 outside (0,1), f(0) = lim,_,o+ f(u)/u > 0,
0 < f(s) < f(0)s in (0,1) and f is nonincreasing in a left neighbourhood of 1. This last case
corresponds to the nonlinearity considered in the classical paper of Kolmogorov, Petrovsky
and Piskunov [67] and it arises especially in biological models [2], [36], [84] (the quantity u
then represents the density of a population).

From Theorem 1.14, under the assumptions (1.19), (1.21) and (1.22), for each given unit
direction e of IR, there exists a minimal speed c*(e) for the pulsating travelling fronts in the
sense of Definition 1.12. One of the goals of the paper [12] is to find an explicit formula for
the minimal speed ¢*(e).

We have obtained the following three equivalent variational formulas for ¢*(e) :

c*(e) = min {¢, IA >0, pc(A) =0} (1.30)
where ((z,y) := f,7(z,y,0) and p.(A) is the principal eigenvalue of the elliptic operator
—Lep ot i= —div(AVY) — A[div(A4€ ¢) + EAVY] + q - Vi + (A\g- € + Ae — N?6Aé — ()¢

acting on the set F of L-periodic with respect to x functions ¢(z,y) such that vA(éEXY +
Vi) = 0 on 09. Here, € denotes the vector € = (e, --,€e4,0,---,0). Thus, under the KPP
assumption (1.29), the minimal speed ¢*(e) can be explicitely given in terms of e, the domain
2, the coefficients ¢ and A and of f,F(-,-,0). In the general case where f satisfies (1.27) and
fE(-,-,0) > 0, it actually follows from section 6.4 (see Lemma 5.5) that the minimal speed
c*(e) is always greater than or equal to the right hand side of (1.30). Note also that the
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formula (1.30) is similar to that of Berestycki and Nirenberg [18] for travelling waves in infinite
cylinders with shear flows and nonlinear source terms f(u) which do not depend on (z,y).

As observed by Xin in [107] for pulsating fronts in IR", the above formula (1.30) is equiv-
alent to the following one :

c*(e) = min k()

nin — (1.31)

where k¢()) is the principal eigenvalue of the operator
— Ly i= —div(AV) — A[div(Aé ¥) + EAVY] + ¢ - Vi + (Mg - € — N2eAé — O

on the same set E of functions ¢ as above. Note that the formula (1.31) is similar to those of
Gértner and Freidlin [41] or Majda and Souganidis [75] for the asymptotic speed of propagation
of solutions of Cauchy problem in IRY with periodic coefficients and compactly supported initial
conditions (see [12] for a further study of the asymptotic speeds of propagation). Note also
that when Q = RN, A=1,q=0and f = f(u) (with f(u) < f/(0)u in [0,1]), this formula
(1.31) gives the well-known KPP formula ¢*(e) = 2,/f’(0) for the minimal speed of planar
fronts. Let us also mention here that a formula similar to (1.31) for a nonlinear source term
f(u) of the KPP type (1.29) has recently been obtained by Schwetlick for a similar hyperbolic
transport equation [94].
Lastly, the following equivalent formula also holds

L
c*(e) = min min max Lt

1.32
S0 YEF (zy)eq AU (132)

where F' = {4y € E,¢ € C*(Q), ¢ > 0 in Q}. This formula is obtained from (1.31) and from
some characterizations of principal eigenvalues of elliptic operators [19], [88].

Remark 1.16 Formula (1.32) for the minimal speed of multidimensional pulsating fronts
is similar to that of Hudson and Zinner [55] for the minimal speed of pulsating travelling
fronts in the case of one-dimensional equations of the type u; = ., + f(x,u), where f is
I-periodic in z, f(z,u) > 0 for u € (0,u(z)), f(z,0) = f(z,u(z)) =0 and p(z) = f.(z,0) =
SUDye(0.(z)) J (%, u)/u. Namely, Hudson and Zinner have obtained the following formula for
the minimal speed ¢* of pulsating travelling fronts moving to the left :

¢’ = min min max Y 2ryt o (7 M(JU))w (1.33)

>0 fy=y(z)eC2(R), v>0, ¢ 1-periodic} =€[0,1] r

1.7 Organization of the paper

The next sections are organized as follows : in section 2, a short overview of related results
on travelling fronts for reaction-diffusion-advection equations is done. Sections 3, 4 and 5 are
respectively devoted to the proof of the monotonicity properties, of the uniqueness properties
and of the existence result of Theorem 1.13 in the case where the function f satisfies (1.26).
The monotonicity and uniqueness results are based on a sliding method in another set of
variables (s,z,y) = (z - € + ct,z,y), where the equation is elliptic degenerate, and on the
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parabolic maximum principle in the original variables (¢, z,y) (remember that for travelling
fronts with constant speed ¢, the equation of the profile of the front is elliptic in some variables,
say (x + ct,y) in the case of an infinite straight cylinder). The existence of a solution (¢, u) in
Theorem 1.13 is obtained as a limit of solutions of regularized elliptic equations in approximated
bounded domains. The main difficulty is to deal with the degeneracy of the equations and to
prove that the solution obtained at the limit is not trivial. We especially use some exponentially
decaying upper solutions in some semi-infinite domains and solve some eigenvalue problems in
the cell of periodicity. We also use some Bernstein-type gradient estimates independent of the
regularization parameter. These estimates are proved in section 7.

Section 6 is devoted to the proof of Theorem 1.14, in the case where the function f satisfies
(1.27). The existence of a solution for the minimal speed ¢*(e) is obtained as a limit of solutions
for nonlinearities fy of the type (1.26) and approximating f (with small ignition temperatures
6). The existence of solutions for any speed ¢ > ¢*(e) is obtained through a method using sub-
and super-solutions, and the non-existence of solutions with speeds ¢ < ¢*(e) follows from a
sliding method and from a comparison with suitable sub-solutions.

Although parts of some proofs of the present paper follow the lines of some cited papers,
especially [18], they are both more technical because of the generality of the framework which
is considered here and more delicate because, roughly speaking, we will have to deal with
degenerate elliptic equations, instead of elliptic equations in [18].

2 A brief overview of the related literature

Since this is the first in a series of papers, we indicate here most of the relevant references of
works which are related to our program.

2.1 One-dimensional results

The first analyses of the propagation phenomena for reaction-diffusion-advection equations
like (1.1) dealt with the study of planar travelling fronts, for one-dimensional equations with
zero velocity field. In 1937, Kolmogorov, Petrovsky and Piskunov [67] proved that, for a
nonlinearity f of the type (1.7) and such that f(s) < f'(0)s for all s € [0, 1], travelling waves
of the type u(t,x) = ¢(x + ct) for the equation u; = uy, + f(u) exist whenever ¢ > ¢ =
2,/ f'(0). Since this celebrated pioneering paper, there has been a great amount of work on the
questions of existence, uniqueness or stability properties of planar travelling fronts for different
types of reaction terms f(u) arising in combustion or biological models, see e.g. Aronson and
Weinberger [2], Fife and McLeod [35], Johnson and Nachbar [57], Kanel’ [61].

Many papers have also been devoted to the study of planar travelling fronts for systems of
one-dimensional diffusion-reaction equations [9], [16], [21], [30], [33], [39], [62], [79], [83], [89],
[99]. The results have shown either some differences from the case of single equations or some
analogies. For instance, for some systems of diffusion-reaction equations, the set of possible
speeds of propagation may be the same size (a singleton or a semi-infinite interval bounded
from below, depending on the nonlinearities) as for single equations.
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As far as pulsating one-dimensional travelling fronts are concerned, and as already men-
tionned in Remark 1.16, Hudson and Zinner [55] have proved the existence of a semi-infinite
interval [¢*, +00) of possible speeds of pulsating travelling fronts for one-dimensional KPP type
diffusion-reaction (with no advection) equation u; = g, + f(x,u). The variational formula
(1.33, similar to (1.32) has also been obtained for the minimal speed ¢*.

2.2 Shear-like flows

The works on wrinkled travelling fronts for multidimensional reaction-diffusion-advection equa-
tions with heterogeneous coefficients have first been devoted to the case of shear flows in infinite
straight cylinders with Neumann boundary conditions (see Berestycki, Larrouturou and Lions
[14], Berestycki and Nirenberg [18]). Some existence, uniqueness, monotonicity properties
similar to the case of planar fronts have been obtained. These results for multidimensional
travelling fronts have generalized those for onedimensional fronts and Theorem 1.2 generalizes
for the most part these results to the case of periodic plows instead of shear flows.

Similar existence or uniqueness results for travelling fronts in straight infinite cylinders
with Dirichlet boundary conditions have been obtained by Gardner [40] and Vega [98].

Papanicolaou and Xin [87] have considered the case of almost uniform velocity fields and
they have derived asymptotic expansions (with respect to uniform advection) for the unique
speed of propagation, or for the minimal speed in the case of KPP type nonlinearities.

Asymptotic formulas for the speeds in the case of shear flows with large amplitude have
been derived by Audoly, Berestycki and Pomeau [4]. Lower bounds for the speeds have been
obtained by Constantin, Kiselev, Oberman and Ryzhik [28], and Kiselev and Ryzhik [65] for
a more general class of shear-like percolating flows.

Lastly, the cases of monotone shear flows along the main direction z of the cylinder, and
of almost shear flows with more general reaction terms have been considered by Hamel [45],
[46]. For instance, in the case of a monotone advection, with a nonlinear source term of the
type (1.6), the speed of propagation is not unique and the set of possible speeds is in general
an interval with nonempty interior.

2.3 Flows with an array of vortical cells and more general flows -
cylinders and whole space

As mentionned earlier, several works have been devoted to the study of pulsating travelling
fronts in all of space IR" with periodic velocity fields (1.10), either with nonlinearities of the
type (1.6) with positive ignition temperature (Xin [102], [104], [107]) or with bistable nonlin-
earities (Xin [103], [105], see also Nakamura [85] for the one-dimensional case with periodic
diffusion coefficient and Alikakos, Bates and Chen [1] for the case of a bistable time-periodic
source term). Similar existence results have been obtained for other classes of equations arising
in different models [24], [32], [106].

As for shear flows, bounds for the effective speeds of propagation have been derived in the
case of flows with vortical cells in straight infinite cylinders or in all of space IR™ (see [4], [28],
[65]).
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In the present paper, the width of the front is of the same scale as the advection and the
diffusion. This is not the case for velocity fields ¢(z/¢) or diffusion matrices A(z/¢) involving
very small scales £. The homogenization limit € — 0 has been carried out by Freidlin [37],
[38], Heinze [51] and Xin [107].

On the other hand, the cases of slowly varying flows ¢(z) or diffusion matrices A(ez), for
which the width of the front is very small compared to the convecting and diffusing lengths,
have been studied by Freidlin [37], Majda and Souganidis [75] and Xin [107]. As the parameter
e goes to 0, such problems lead to Hamilton-Jacobi equations which describe the large-scale
and large-time front propagation. Similar Hamilton-Jacobi equations have been obtained from
more general turbulent reaction-diffusion-advection equations with Gaussian random velocity
fields [76].

The question of front propagation in general random media has also been considered by
Freidlin [37], [38] and Xin [107].

Lastly, we refer to the papers of Avellaneda and Majda [5], [6], [7] and Majda and McLaugh-
lin [74] for a study of turbulent advection-diffusion equations (with no reaction) involving sta-
tistical velocity fields with arbitrary many spatial and temporal scales. Renormalized equations
for averaged passive quantities at large spatio-temporal scales and bounds for the effective dif-
fusivities have been derived. Fannjiang and Papanicolaou [31] have also studied the influence
of advection on the effective diffusivity for advection-diffusion equations.

2.4 Stability analysis

Many works have been devoted to the behavior at large time of solutions of Cauchy problems
for reaction-diffusion-advection equations like (1.1) under a large class of initial conditions.
Many results have especially dealt with the convergence to travelling fronts. These works have
been initiated by Kolmogorov, Petrovsky and Piskunov [67] in the one-dimensional case with
no advection (see also [2], [23], [35], [59], [60], [70], [82], [93], [96]) and followed by the study of
the asymptotic and global stability of travelling waves in infinite cylinders with shear flows, by
Berestycki, Larrouturou and Roquejoffre [15], Mallordy and Roquejoffre [78] and Roquejoffre
[91], [92].

So far, few papers (see [71], [86], [103]) have dealt with the question of the stability of
pulsating travelling fronts in periodic media like the real line or the whole space.

2.5 Discrete diffusion

Similar existence results or propagation failure phenomena for the propagation of fronts have
also been obtained for nonlinear evolution equations with shear-like flows, for which the Laplace
operator is replaced with a discrete diffusion operator. Such equations arise for instance in
models of cellular networks. Let us mention the papers of Cahn, Mallet-Paret and Van Vleck
[25], Chow, Mallet-Paret and Shen [26], Keener [64], Mallet-Paret [77], Zinner [110] on discrete
equations or systems with bistable-type nonlinearities, and that of Harris, Hudson and Zinner
[50], [54] for KPP-type positive nonlinearities in the one- or two-dimensional cases.

Let us also mention the work of Weinberger [100] on a general framework including es-
pecially the above continuous equations and the time or space discrete equations which are
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invariant by translation with respect to the space variables. Weinberger has obtained the
existence of planar fronts in this general framework as well as a characterization of the asymp-
totic speed of propagation for initially compactly supported solutions in the case of KPP-type
nonlinearities.

2.6 Formulas for the speeds

One of the most important questions related to the front propagation phenomena is the de-
termination of the speed of propagation of the travelling fronts, or of the pulsating travelling
fronts in the periodic framework. In the theory of combustion for instance, the determination
of the burning velocity of a deflagration flame is a fundamental question.

Many works have been devoted to finding some formulas for the speeds of propagation of
travelling waves for reaction-diffusion-advection equations, more general than those arising in
combustion models. The first formula comes back to the paper of Kolmogorov, Petrovsky and
Piskunov [67] and concerns the minimal speed ¢* = 2,/f(0) of planar travelling fronts for the
equation u; = ug,, + f(u) with nonlinearities f(u) satisfying (1.29).

Other formulas of the variational type have been derived for such one-dimensional equa-
tions. Let us for instance mention the formula

f(u)

¢t = min ' sup (n'(u) + —)
n:[0,1]=IR, n(0)=0, n'(0)>0, n>0 1N (0,1] u€(0,1] T](U)

of Hadeler and Rothe [44] for nonlinearities of the type (1.7). The latter implies 2,/ f’(0) <

< 2\/sup(0’1] f(u)/u and gives ¢* = 2,/ f'(0) in the case (1.29). Integral formulations have
been given by Benguria and Depassier [8]. Variational formulas have also been obtained for
systems of one-dimensional equations (see Kan-On [63], Mischaikow and Hutson [83], Takase
and Sleeman [95], Volpert, Volpert and Volpert [99]), or for equations with discrete diffusion
(Harris, Hudson and Zinner [50]).

Some of those formulas have been generalized in the multidimensional case with shear
flows (see Hamel [47], Heinze, Papanicolaou and Stevens [53], and Hudson and Zinner [54] for
discrete diffusion operators). For instance, in the case (1.6), the unique speed ¢ of travelling
fronts ¢(z + ct, y) solving (1.1) in a cylinder 2 = IR x w with a shear flow ¢ = (a(y),0,---,0),
is given by

¢—min sup (M _ a(y)) — max inf (M _ a(y))

WEE (g1,y)ER Opw WEE (x1,y)eR) Opw

where £ = {w € W2P(Q), Aw € C(Q), 0 < w < 1, duw > 0 in Q, d,w = 0 on 99,
w(—o00,-) = 0, w(+00,-) = 1} and p > N (see [47]). In the case (1.7) with f’(0) > 0, the
minimal speed ¢* for travelling fronts is equal to

¢ =min sup (M - a(y)> .

WEE (1 e Opw
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Explicit formulas for the speeds of propagation of travelling waves have been obtained in
some asymptotic cases, for instance in the limit of high activation energies (see Berestycki,
Nicolaenko and Scheurer [16], Giovangigli [42] in the one-dimensional case, and Berestycki,
Caffarelli and Nirenberg [10] in the multi-dimensional case). Formal asymptotics in the case
of shear flows with large amplitude have been derived by Audoly, Berestycki and Pomeau [4].

As already underlined at the end of section 1.1, we also refer to the papers of Constantin,
Kiselev, Oberman and Ryzhik [28], [29], [65] and [66] for some a priori bounds of the speeds of
propagation of the solutions of the Cauchy problem associated to (1.1) with front-like initial
conditions. The estimates they have obtained especially lead to some bounds for the effective
speeds of propagation of any pulsating travelling fronts solving (1.1-1.2) and (1.4-1.5) in the
case of periodic advection.

For pulsating travelling fronts in periodic media, as already said, the only formula -(1.33)-
derived by Hudson and Zinner [55], concerns the minimal speed of propagation in the one-
dimensional case u; = ug, + f(x,u) with KPP-type nonlinearities.

Lastly, let us mention the formulas of the type (1.31) obtained by Gértner and Freidlin
[41] for the asymptotic speed of propagation of solutions of Cauchy problems with compactly
supported initial conditions, for equations of the type (1.10) in the whole space with periodic
coefficients. These formulas have been used by Papanicolaou and Xin [87] in some perturbating
cases. A further study of the asymptotic speeds of propagation is done in [12].

3 Case with ignition temperature : monotonicity pro-
perties

This section is devoted to the proof of Theorem 1.13, part c), about monotonicity properties
of any solution w of (1.28) in the case where f satisfies (1.24-1.25) and (1.26). The proof is
based on a sliding method in a new system of coordinates.

Throughout the paper, Q is a smooth domain satisfying (1.18).

3.1 Change of variables and proof of the positivity of the speed ¢

In this subsection, f(z,y,u) denotes a globally Lipschitz-continuous function defined in Q x IR
and satisfying (1.25), namely, f is L-periodic with respect to z. In this subsection, the fields
q(z,y) and A(z,y) satisfy (1.20) and (1.23). We recall that throughout the paper ¢ and A
are assumed to be respectively globally C1?(Q) and C*(Q) (with § > 0), and that A satisfies
(1.21).

Let (¢, u) be a bounded classical solution of (1.28). Remember that ¢ is assumed to be not
zero and that e is a unit vector in IR?. Let € be the vector in IR" defined by

é:(ela"'aedaoa'“ao)'

Let us now make the same change of variables as Xin [102], [104]; namely, let ¢(s, z,y) be
the function defined by :

(s, z,y) =u (w,x,y> for all s € IR and (1,y) € Q. (3.1)
c
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The function ¢, which is globally bounded in C**(IR x Q) for each u € [0,1), satisfies the
following degenerate elliptic equation

divey (AVay @) + (€AE)dys + divy, (Aéds) + 05(EAV, 4 0)

Vg g8+ bt fayd) =0 mnDy(RxT) 2

in the sense that, for all ¢» € D(IR x Q) L-periodic with respect to ,

—/RXC(VI,y@D)A(VI,yd)) - /mxc(éAé)qSS%
- / - (Vaog)A0)0, / o (EA(Tay0)) s (3.3)
_/mxc(q Vey@)Y - /ﬂzxc(q e+ /Rfo(x’ u ) =0,

together with boundary and periodicity conditions

{ vA(Eds + Viyd) =0 on R x 9Q

¢ is L-periodic with respect to x. (3-4)

Note that in the case where € is a straight infinite cylinder 2 = IR x w with e = 1 and A is
the identity matrix, then the boundary condition for ¢ on IR x 0f) reduces to d,¢ = 0.

On the other hand, in the general case, since u(t,z,y) — 0 as z-e — —oo and u(t,z,y) — 1
as 7+e — +00 locally in ¢ and uniformly in y and in the directions of IR¢ which are orthogonal
to e, and since ¢ is L-periodic with respect to x, the change of variables s = ct+x-e guarantees
that

¢(—00,-,+) =0, ¢(+00,-,-) =1 uniformly in (z,y) € Q. (3.5)
Notice that the latter holds whatever the sign of ¢ is.
The following lemma answers the question of the sign of ¢ :

Lemma 3.1 Assume that q and A satisfy (1.20) and (1.23). Assume that f is globally
Lipschitz-continuous in Q x IR, L-periodic with respect to x, nonnegative and not identically
equal to 0. If (c,u) is a classical solution of (1.28), then ¢ > 0.

Proof. Choose any a > 0 and take in (3.3) a sequence of functions 1, (s,z,y) = ¥u(s) €
D(IR x Q) such that 0 < ), <1, ¢, =1 for |s| < a and ¢, = 0 for |s| > a+ 1/n. The passage
to the limit n — +oo leads to

[ eaeotm e+ [ Vot [ 0 Vaye "
[ Jaeraltmltat [ fwnd) =0, |

where [p(-)]? = p(8) — ¢(a) for any function ¢ on the interval [a, 3].

From standard parabolic estimates, the partial derivatives of the function u with respect
to (t,z,y) approach 0 as x - e — +o0, locally in (¢,y). Because of the L-periodicity of ¢
with respect to z, it follows in particular that ¢ and V,,¢ — 0 as s — £oo, uniformly
in (z,y) € Q. Therefore, the first and second terms in (3.6) approach 0 as a — +oo. By

20



integration by parts and because of (1.20), the third term / q V¢ is actually equal
(—a,a)xC
to 0 for all @ > 0. Lastly, since the first d components of ¢ have zero ensemble mean, one gets

[ (a-e+alot. .y, = clC]

as a — +00, where |C| is the Lebesgue measure of the period cell C.
Eventually, one concludes that the function f(x,y, ¢(s,z,y)) is integrable over IR x C' and
that

lCl= [ flay.0(s.2,y) ds da dy. (3.7)

Since the functions f and ¢ are L-periodic with respect to x and since ¢(—o0,z,y) = 0,
¢(+00,z,y) = 1 uniformly in (z,y) € €, it easily follows from the assumptions of Lemma 3.1
that the function f(z,vy, ¢(s,x,y)) is continuous, L-periodic with respect to z, nonnegative
and not identically equal to 0 in IR x C. Therefore, ¢ > 0. J

3.2 Maximum principles

The proofs of the monotonicity and uniqueness properties for ¢ and u use some versions of the
maximum principle in unbounded domains for some problems related to (3.2)-(3.5). In this
subsection, we state these maximum principles under a slightly more general framework.

Lemma 3.2 Let g(x,y,u) be a globally bounded and globally Lipschitz-continuous function
defined in Q2 X IR and assume that g is nonincreasing with respect to u in Q x (—o0, §] for some
§>0. Let h € R and 3, := (—00,h) x Q. Let ¢ # 0 and ¢'(s,x,y), ¢*(s,x,y) be two globally

CH(S,) functions (for some p > 0) such that

L¢'+g(z,y,¢") > 0 inD(Z),
L¢*+g(z,y,¢*) < 0 inD'(%}),
VA[E(p! — ¢2) + Vauy(d' — 6] < 0 on (—oc,h] x 0%, (3.8)
Jm osup ¢, ay) = ¢%(s, )] <0,

{SS'sO: (:L‘,y)GQ}

where

L ¢:= divy (AV,,0) + (EAE)pss + divyy, (EAQs) + 05(EAV, 4 0)
—q-Vayd—(q-€+c)ps.

If ¢ <6 in S5, and ¢'(h,x,y) < ¢*(h, z,y) for all (z,y) € Q, then
o' < ¢? in ;.

Remark 3.3 Note here that ¢', ¢?, ¢, A and ¢ are not assumed to be L-periodic with respect
to x and that ¢ is not assumed to satisfy (1.19) or (1.20).

Proof. We use here a method similar to that of Li [73] or Vega [97] for strictly elliptic problems
(see other applications of this method in [48]).
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Since ¢! and ¢? are globally bounded, one has ¢' — ¢ < ¢? in &, for & > 0 large enough.
Let us set L
e =inf {£¢>0, ¢! —e<¢? inX,} >0,

By continuity, one has ¢' — ¢* < ¢? in &, . In order to complete the proof of Lemma 3.2, one
then only has to prove that £* = 0. o

Assume £* > 0. Take a sequence £,—>=*. There exists a sequence of points (Sny Ty Yn) € Xp,
such that

d)l(sna Ty Yn) = En > d)z(sna Ty Yn)-
Since limy,s o SUP i<y (1.4)c0) (¢'(s,z,y) — &*(s,1,y)) < 0, the sequence (s,) is bounded
from below. Since it is also bounded from above (s, < h), one can assume, up to extraction
of some subsequence, that s, — 5 € (—o0,h| as n — +o00. On the other hand, let Z, be in
le L; 7 such that (z, — Zn,yn) € C. Up to extraction of some subsequence, one can also

assume that (z, — Z,,y,) — (T,7) € C as n — +oo.

Set o

o, (s,z,y) = ¢'(s,x + Tp,y) forall (s,z,y) €X,, i=1,2.

The above functions are defined in the same set E—,: = (=00, h] x Q because of the choice
of &, and the L-periodicity of Q with respect to . From the regularity assumptions for ¢!

and ¢? and up to extraction of some subsequence, the functions ¢‘ converge in C}  to two

functions ¢., € CH#(X; ). Similarly, since ¢ and A are globally C1(2) (¢ and A are even in
C19(Q2) and C3(Q2) respectively), one can assume that the fields ¢,(z,y) = q(z + Z,,y) and
An(z,y) = A(x + T, y) converge locally in Q to two globally bounded and Lipschitz fields ¢,
and Ay as n — +oo. The matrix field A (z,y) satisfies the same ellipticity condition (1.21)
as A.

The functions ¢ satisfy
Lu¢n = Lty > —9(x + n, y, 64 (5, 2,9)) + (2 + T, y, (s, 2,y))  in D'(S)
where
Ly, ¢ = divy y(An Vi d) + (6A4,8) s +divy y (EARps) + 05 (A 1.y B) — @i Vi y® — (¢ - €4 €) bs.
Since ¢! < § in E—g and g(x,y,u) is nonincreasing with respect to u in  x (—oo, §], one gets
Lu¢y = Ln@y > —g(x + T, y, $n (5,2, y) — %) + g(x + T, y, ¢ (5,2, 9))  in D'(Zy). (3.10)

From the assumptions of Lemma 3.2, one can also assume, up to extraction of some subse-
quence, that the functions

Rn(S,l',y) = —g(x + inaya QS}L(Saxay) - 5*) + g(x + inaya ¢i(saxay))

converge to a function Ry (s, z,y) locally in T, Since |R,| < |lgllziplol — &* — ¢2] for all n,
one gets |Roo| < ||gllzipldl, — e* — ¢ | at the limit. In other words, there exists a globally
bounded function B(s,z,y) defined in ¥, such that

Roo(s,2,y) = B(s,2,9) [0 (s,2,9) =" — 2 (s, ,y)] forall (s,2,) € .
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By passage to the limit in (3.10), it follows that the functions ¢.  and ¢2, satisfy

Loos, — Loo®% > B(s,2,Y) (¢s, — " — ¢2,) in D'(%;)
where

Loo ¢ 1= divyy(AsVay) + (EAxct)bss + dive (EAsds) + 0s(6As Vo, 0)
(o Vm,y¢ - (QOo e+ C)¢s-

Moreover, the inequalities ¢!, < & in &, and ¢! (h,-,-) < ¢2 (h,-,-) in Q hold as well. Fur-
thermore, ¢L, — ¢* < ¢% in &, and ¢L (5,7,7) — e* > ¢ (5,7,7) by passage to the limit.
Therefore,
050 (5,T.7) — " = 65, (5,7.7),
whence 5 < h.
Coming back to the variables (¢, z,y), let us define

Ey={(t,z,y) e RxQ, ct+x-e < h}
and set _ _ o
u'(t,z,y) = oo (ct +x-e,x,y) forall (t,z,y) € By, i =1,2.
The function z := u' — £* — u?, which is defined and globally C' in E}, satisfies

divy (Ao Vay?) — @oo(®,y) - Viyz — 0z > b(t, 2, y)z in D'(E})
where the function b(t, z,y) := B(ct + x - e, x,y) is globally bounded in Ej,. Moreover,
VAVay2 <0 on{ct+z-e<h, (z,y) € 00Q}.

On the other hand, the function z is nonpositive and it vanishes at the point (¢,7,7) =
(5Z<,7,7), which is such that ¢t + T -e (=5) < h. Therefore, it follows from the maximum
pr1nc1ple that z = 0 in B, N {t < 7}. In other words, u! — ¢* = v? in E, N {t < 7}.
particular, one has ¢ —&* = ¢2 in &, N {*=%¢ < t}. Since the set {z - e} is not bounded
from above or below, there exists a point (h, zg, yo) € E—,:ﬂ {*=%¢ < }. At that point, one has
oL (h,xo,y0) — €* = ¢% (h,x0,y0). But the latter is impossible because ¢. < ¢? for s = h.
Hence, the assumption £* > 0 is ruled out and the proof of Lemma 3.2 is complete. 7

Changing s into —s in Lemma 3.2 leads to the following

Lemma 3.4 Let g(z,y,u) be a globally bounded and globally Lipschitz-continuous function
defined in Q x IR and assume that g is nonincreasing with respect to u in Q x [1 — §,00) for
some § > 0. Let h € IR and &} := (h,+00) x Q. Let ¢ # 0 and ¢*(s,x,y), ¢*(s,z,y) be two
bounded and globally CV*(}) functions (for some > 0) such that

L' +g(x,y,¢") > 0 inD(Z)),
L ¢*+g(z,y,¢%) < 0 inD(Z)),
vAle(pl — ) +V ,y(d)l $#*)] < 0 on [h,+o0) x 09,
lim sup [0 (s,2,) — ¢*(s, y)] < 0,

07H0 5550, (2)EN)
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where L is the same operator as in Lemma 3.2. B
If > > 1 =46 in = and ¢'(h, z,y) < ¢*(h, z,y) for all (x,y) € Q, then

ot < ¢ in %,

3.3 Monotonicity in the variable s

This subsection is devoted to the proof of the monotonicity result stated in part ¢) of Theorem
1.13. We shall use the maximum principles of the previous section (Lemmas 3.2 and 3.4). We
also use the sliding method in infinite cylinders developped by Berestycki and Nirenberg [18].

Lemma 3.5 Let f be a function satisfying (1.24) and (1.26). Let (c,u) be a classical solution
of (1.28). Then the function ¢ defined by (3.1) is increasing in s.

Proof. Remember that ¢ is defined by ¢(s,z,y) = u((s—z-€)/c,x,y). As already underlined,
the function ¢ is of class CV*(IR x Q) for each u € [0,1). Furthermore, ¢ solves Lo+ f(¢) =0
in D'(IR x ), where L is defined in (3.9), together with boundary, periodicity and limiting
conditions (3.4)-(3.5). For any 7 € IR, one sets ¢ (s, x,y) = ¢(s + 7, 2, y).

Assume that one has proved that ¢ > ¢ for all 7 > 0, and consider first the case ¢ > 0.
Then, for any h > 0, the function z(t, z,y) = u(t+h, x,y) — u(t, x, y) is nonnegative and, since
q and A depend on the variables (z,y) only, z is a classical solution of the following linear
parabolic equation

Oz —div(AVz) +¢-Vz+bz=0 in R x Q

for some globally bounded function b, together with boundary conditions vAVz = 0 on IR x0f2.
From the strong parabolic maximum principle and the uniqueness of the corresponding Cauchy
problem, the function z is either identically 0, or positive everywhere in IR x Q. If z = 0, then
P(s+ch,z,y) = ¢(s,z,y) for all (s,z,y) € IR x . The latter is impossible because ch # 0 and
because of the limiting conditions (3.5) as s — +o0o. Therefore, z > 0 for any A > 0. Hence,
the function ¢ is increasing in s. The case ¢ < 0 can be treated similarly.

As a consequence, one only has to prove that ¢ > ¢ for all 7 > 0. Let 6 and p be given
as in (1.26). From (3.5), there exists a real B > 0 such that ¢(s,z,y) < 0 for all s < —B and
(z,y) € Qand ¢(s,x,y) > 1—pforall s > B and (z,y) € Q. For all 7 > 2B, the functions ¢
and ¢7 satisfy

b(s,x,y) <6 for all s < —B, (z,y)
O (s,x,y) >1—p for all s > —B, (z,y)
qﬁ(—B,x,y) < ¢T(—B,$,y) for all (a:,y) € Q.

€ Q,
€ Q,

Morover, because problem (3.2)-(3.5) is invariant by translation with respect to the variable
s, the function ¢7 solves (3.2)-(3.5). Consequently, ¢' := ¢ and ¢? := ¢7 fall within the
framework of Lemma 3.2 (resp. Lemma 3.4) in £~ (resp. X7 ). Therefore, it follows that

P(s,z,y) < ¢ (s,z,y) forall (s,2,y) € IR x Q.
Let us now decrease 7 and define

™= inf {r>0, V' >71, ¢$<¢" in IR x Q}.
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In order to complete the proof of Lemma 3.5, we only have to show that 7" = 0. Let us argue
by contradiction and assume 7* > 0. By continuity, we see that ¢ < ¢” in IR x Q. Two cases
may OCCUr :

case 1 : suppose that

sup (¢ —¢" ) <0, (3.11)
[-B,B]xQ
Since the function ¢ is globally Lipschitz-continuous (as the function w is), there exists a real
number 7 € (0,7*) such that for all 7* —n < 7 < 7%, one has

P(s,2,y) < ¢"(s,z,y) forall s € [-B,B|, (z,y) € Q. (3.12)

Choose any 7 € [t* — n,7*]. The above formula (3.12) especially yields ¢(+B,z,y) <
¢"(£B, z,y) for all (z,y) € Q. On the other hand, since ¢ > 1 — p in [B,+00) x  and
since 7 > 7 — 1 > 0, it follows that

¢ (s,x,y) >1—p forall s > B, (z,y) € Q.

We may now apply Lemma 3.4 in ¥}, and also Lemma 3.2 in ¥~ , for the functions ¢ and ¢7.
We then infer that ¢(s,z,y) < ¢7(s,z,y) for all |s| > B and (z,y) € Q. Together with (3.12),
that yields ¢ < ¢ in IR x Q. This is in contradiction with the minimality of 7*. Hence, (3.11)
is ruled out.
case 2 : suppose that
sup (¢ —¢" ) =0. (3.13)

[-B,B]xQ

Then there exists a sequence (Sp, Zn, Yn) € [~ B, B] x Q such that
D (Sns Ty UYn) — & (Sn, Ty Yn) — 0 as n — 4-o0.

Since ¢ (and ¢"") are L-periodic with respect to the variable z, one can assume that (z,,,y,) €
C. Up to extraction of some subsequence, one can then assume that (s,,z,,y,) — (5,7,7) €
[-B, B] x C) as n — +o00. By continuity of ¢, one gets ¢(5,7,7) = ¢” (35,7, 7).

Coming back to the variables (¢, z,y), the function 2(¢,z,y) = ¢(ct +z - e, x,y) — p(ct + x -
e+ 71, x,y) is a classical solution of the following linear parabolic equation

Oz = div(AVz) —q(z,y) - Vyuz +b(t,z,y)z  in IR X €,
vAVz =0 on IR x 002
for some bounded function b. Furthermore, z is nonpositive and z vanishes at the point
((3—7)/c¢, 7, 7). From the strong parabolic maximum principle and the Hopf lemma, it follows
that z = 0.

In other words, ¢(s,z,y) = ¢(s + 7%, z,y) for all (s,z,y) € R x Q. But because of the
limiting conditions (3.5) and because 7" > 0, the function ¢ cannot be 7*-periodic in the
direction s. So case 2 is ruled out too.

Therefore, one has proved that 7% = 0 and ¢ < ¢7 for all 7 > 0. As already underlined in
the beginning of the proof of Lemma 3.5, it follows then that ¢ is increasing in s. 7
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Corollary 3.6 Let f be a function satisfying (1.24-1.25) and (1.26). Let (¢,u) be a classical
solution of (1.28). Then the function cu is increasing in t. Furthermore, if ¢ and A satisfy
(1.20) and (1.23), then the function u is increasing in t.

Proof. It immediately follows from Lemmas 3.1 and 3.5 and from the definition of ¢. 7

4 Case with ignition temperature : uniqueness of the
speed and of the profile of u

This section is devoted to the proof of the uniqueness results stated in part b) of Theorem
1.13. We prove the following

Lemma 4.1 Let [ be a function satisfying (1.24) and (1.26). If (¢',u') and (¢*,u?) are
two classical solutions of (1.28), then ¢! = ¢® and there exists a real number h such that
ut(t,z,y) = u?(t + h,x,y) for all (t,z,y) € IR x Q.

Proof. The proof of this lemma uses the sliding method with respect to the variable s and it
is similar to that of Lemma 3.5. However, it is done here for the sake of completeness.

Let (c',u') and (¢?,u?) be two classical solutions of (1.28). Even if it means changing the
superscripts 1 and 2, one can assume that ¢! > ¢2. By assumption, the real numbers ¢!, ¢? are
not zero. One can then define the functions ¢! and ¢? in IR x Q by :

sS—1T-e

S—xT-€
¢1(Sa$ay) = ul ( ol a$ay>a ¢2(Sa$ay) = U2< 2 a$ay> .

The functions ¢' and ¢* satisfy the boundary, periodicity and limiting conditions (3.4)-
(3.5), and they are globally CY*(IR x Q) for each p € [0,1). The function ¢' is a solution
of

div, ,(AV,,0") + (eAé)PL, + div, ,(Aépl) + O5(eAV ., Pt)

—q- Vot —(g- e+t + f(z,y,¢") =0in D'(R x Q). (4.1)
On the other hand, from Lemma 3.5, the function ¢? is increasing in s and it satisfies
divy , (AV4,0%) + (€A€) P2, + divy , (Ap?) + 05(EAV, 4 0?)
—-q- V:):,yd)2 - (q ce+ Cl)ﬁb? + f(ZE, Y, ¢2) Cl) Qﬁ (42)

— (2~
<0 in D'(IR x Q).

Notice that the latter holds for each function of the type ¢>7 (s, z,y) := ¢*(s+ 7, x,y) because
of the invariance of (4.2) by translation with respect to s and because the velocity field ¢ and
the diffusion matrix A depend on the variables (x,y) only.

We are now going to slide the function ¢? with respect to ¢!. From the limiting conditions
(3.5) satisfied by ¢' and ¢?, there exists a real number B > 0 such that

{ (s, z,y) < 0 for all s < —B, (z,y)

€ Q,
P*(s,z,y) >1—p forall s> B, (x,y) €,
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and
¢*(B,x,y) > 1—p for all (z,y) € Q, (4.3)

where 6 and p are given in (1.26). As we did in the proof of Lemma 3.5, by using Lemmas 3.2
and 3.4 in ¥~ 5 and X7 5, it is found that ¢* < ¢?7 in IR x Q for all 7 > 2B.
Let us now decrease 7 and set

™ = inf {7 € R, ¢' < ¢>" in IR x Q}.

This real number 7* is finite because ¢?(—o0,,+) = 0 and @' (400, -, ) = 1. By continuity, one
has ¢! < ¢>™ . Two cases may occur :
case 1 : suppose that

sup (¢! —¢*™) <0,
[-B,B]xQ
Since the functions ¢! and ¢? are globally Lipschitz-continuous, there exists a positive real
number 7 such that the above inequality holds good for all 7 € [t* — n,7*]. Choose any
7 € [t* — 1, 7*]. Lemma 3.2 applied to ¢' and ¢>7 in ¥~ 5 yields

(s, 1,y) < ¢*"(s,z,y) forall s < —B, (z,y) € Q.

On the other hand, because of (4.3) and since ¢'(s,z,y) < ¢*7(s,z,y) if |s| < B, it follows
that
o> (B, z,y) >1—p forall (z,y) € Q.

Since ¢? is increasing in s, one gets that ¢>™ > 1 — p in ¥}. Lemma 3.4 applied to ¢' and ¢>"
in ¥} yields
¢'(s,,y) < 6™ (s,2,y) foralls > B, (z,y) € Q.

Eventually, ¢' < ¢*>7 in IR x ), contradicting the minimality of 7*. Therefore, case 1 is ruled
out.
case 2 : suppose that

sup (6" — ¢*7) = 0.
[-B,B]xQ
There exists then a sequence of points (s, Zn,y,) € [—B, B] x Q such that ¢'(s,, Zn, yn) —
¢*" (Sn, TnyYn) — 0 as n — +oo. Since both ¢' and ¢* are L-periodic with respect to
x, one can assume that (z,,y,) € C. Up to extraction of some subsequence, one can also
assume that (s,,%,,y,) — (5,7,7) € [-B,B] x C as n — +oo. By continuity, one gets
015, 7,7) = 6*7 (5,7, 7). _
Coming back to the variables (¢, z,y), consider the function z defined in IR x € by

Z(tx,y) =9 (t+z-e,xy) —P*(ct+a-e 475 2,y)
=ul(t,x,y) — ¢* (Mt +z- e+ 7 1,Y)

(note that the function ¢?(c't + x - e+ 7*,,y) is not in general equal to the function u? up
to translation). This function z is globally of class C' in IR x Q and of class C* with respect
to the (z,y) variables in IR x €). The function z is nonpositive and it vanishes at the point
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(5—7-¢)/c",T,7y). Tt satisfies the Neumann boundary condition vAVz = 0 on IR x 99.
Furthermore, because of (4.1) and (4.2), it follows that

Oz — div, 4 (AV2) +q(x,y) - Vz < [(z,y, 9 ('t +x-e,2,9) — [(z,y,6° ('t +x-e+ 7%, 2,y)).

Since f is globally Lipschitz-continuous in £ x IR, there exists then a bounded function b(¢, z, y)
such that

Oz — div(AVz) + q(z,y) - Vyyz + bz <0, forall (t,z,y) € R x Q.

The strong parabolic maximum principle and the Hopf lemma yield 2(t,z,y) = 0 for all
t < (5—T-¢)/c" and for all (z,y) € Q. By definition of z and since both ¢' and ¢* are
L-periodic with respect to z, it follows then that z(t,z,y) = 0 for all (t,z,y) € IR x Q, i.e.

o' (s,7,y) = ¢*(s + 7%, 2,5) forall (s,z,y) € IR x Q.

Putting that into (4.1) and (4.2) gives (¢ — c') ¢* = 0. If ¢; # ¢y, then ¢? = 0, which is ruled
out by Lemma 3.5. Therefore, ¢! = ¢? =: ¢. By definition of ¢' and ¢?, it follows that

*

u'(t,z,y) = u? (t + T—,x,y) for all (t,z,y) € IR x Q.
c

That completes the proofs of Lemma 4.1 and part b) of Theorem 1.13. J

5 Case with ignition temperature : existence of a solu-
tion (c,u) of (1.28)

This section is devoted to the proof of part a) of Theorem 1.13. Throughout this section,
one assumes that f satisfies (1.24-1.25) and (1.26), and that ¢ and A are respectively globally
C*(Q) and C3(Q) (with § > 0) and that they satisfy (1.19), (1.21) and (1.22).

To do the proof of part a) of Theorem 1.13, we actually prove the existence of a weak
solution (c, @) of (3.2)-(3.5) such that ¢ > 0 and 0 < ¢(s,z,y) < 1 for all (s,z,y) € R x Q.
Once this has been proved, since f vanishes at 0 and 1, parabolic regularity and the strong
parabolic maximum principle applied to the function u given by (3.1) yields that u is a classical
solution of (1.28) and that 0 < u(t,z,y) < 1 for all t € IR and (z,y) € €.

We divide the proof of the existence of a solution (¢, ¢) of (3.2)-(3.5) into several steps.
We first work with elliptic regularizations of (3.2)-(3.5) in finite cylinders of the type [—a, a] x
Q (section 5.1). Next, we show the existence of exponential solutions of the corresponding
linearized problem around 0 (section 5.2). Lastly, we pass to the limit a — 400 and make the
regularization parameter converge to 0 (sections 5.3 and 5.4), by proving especially that the
speeds of the approximated problems are positive and bounded away from 0.

5.1 Elliptic regularization of (3.2)-(3.5) in finite cylinders

Let a and € be two positive real numbers. Let

Yo =(—a,a) xQ
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and

T\ ({Za) x 99).
2)-

In order to build a solution (c, qﬁ) ( (3.5), one first works with elliptic regularizations of

the type
LE¢+f(I7y7¢) = 0 in X,
vA(eps + Vyyp) = 0 on (—a,a) x 09, (5.1)
¢ is L-periodic w.r.t. z,
¢(_a"") =0, ¢(aa'a') = 1
where L. is the elliptic operator defined by
Lep = e¢ys + divey (AV, ,0) + (EAE)dyy + div, ,(AE ¢y) + D4(EAV,0) (5.2)

—q - Vayd—(q-€+c)ps.

Note that this operator L. is elliptic because of the term e¢,s, which plays the role of a
regularizing term.

Following the scheme of the proof of Berestycki and Nirenberg [18] for the existence of
solutions of similar problems in finite cylinders of the type (—a, a) X w wich Neumann boundary
conditions on (—a,a) X Ow, this section is divided into several lemmas (Lemmas 5.1, 5.2 and
5.3 below) dealing with the properties of the solutions of (5.1). These lemmas eventually lead
to an existence and uniqueness result which is stated in Proposition 5.6.

One first proves the following

Lemma 5.1 For each ¢ € IR, there exists a solution ¢¢ € C(X,) N C*(%,) of (5.1).

s+ a

Proof. Let ¢ be the function defined by ¢(s) = . Setting ¢ = v + ¢, problem (5.1) is
a

equivalent to

1
—Lov = f(x,y,v+1)— 2—[q €+ ¢ — div,,(A€)] in X,
a
1
vA(évs + Vy,v) = —Q—Z/Aé on (—a,a) x 09, (5.3)
a
v is L-periodic w.r.t. z,

v(£a,-,-) = 0.

\

For all a > 0, let R, = ¥, N{|z| < a} and let L and H, be the Banach spaces

d
L = {v;Ya>0, veL*R,), VkEHLZ v(s,x +k,y) —v(s,z,y) =0 in L*(%,) },
Hy = {velL, Ya>0veH (R,), U|s ia—OlnHl/Q({j:a}xQ)}

1/2
IVu|? + 1)2) :
c

1/2
|Vv|2> . Lastly, let C

1/2
embedded with the norms ||v||, = (/ v2> and ||v||g, = (/
(—a,a)xC (

—a,a)X

From Poincaré’s inequality, the norm ||v||g, is equivalent to < /
(—a,a)xC

be the set
C={v € Hy, ||v|ln, < Co} (5.4)
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where (Y is a positive constant to be chosen later. This set C is convex and compactly included
in L.

Since equation (5.3) is L-periodic with respect to x, solving it in the weak sense in H} is
the same as finding a solution v € Hy of

1
B(v,2) = [ / ——vAé)z, VzeH 5.5
(U Z) (—a,a)xC g(v)z+ (—a,a)x0Q ﬁC( QCZU e)z ‘ 0 ( )

where g(v) is the function defined by

9(v)(s,z,y) = fz,y,v(s, 7, y) + (s)) - %[Q(l‘, y) - e+ c—divgy (A(z, y)e)],

and

B(v,z) = / (EAE+e)vszs + Vyyz AV, v+ (Veyz A €)us + (EAV,,0) 2

(—a,a)xC
+(q-Vayv)z+ (q- €+ c)vsz.

For each v € C, the function g(v) is in L C (Hy)'. Moreover, since f and ¢ are globally
bounded and since A is globally C! (it is even C*3()), one has

1 .
lg(@)lloe < My 2= [ flloo + 5 (llalloo + lef + [ldiv(A) o).

Therefore, Cauchy-Schwarz inequality yields

‘/(a,a)XC g(v)z

1
Similarly, the map z — / (——wA€)z is continuous on Hy and
(—a,a)x0Q NC 2a

< My (2alC)) 2] .

1
M, > 0, Vz € Hy, (——vAé)z| < Ms||2||m,-

/(—a,a)XBQ nc 2a

On the other hand, the bilinear form B is clearly continuous on Hj,. Let us now check that it
is coercive. For any w € Hy, one has

B(w,w) = /(a e (Aé+e)w? + Vyw AV w+ (Veyw A €)ws + (EAV, ,w)ws

+(q - Vyw)w + (q - €+ c)w,w.
Since ¢ is positive and A is uniformly elliptic from (1.22), one has
V(z,y) € Q, (Aé+e)w? + V,w A Vyw+ (Vew A €)ws + (EAV, ,w)ws

= (Vayw + éws) A (Vyyw + éwg) + ew?
>0 |Vs,:v,yw|2
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for some positive constant § = §(¢) which does not depend on w or (x,y) € Q. Integrating by

parts the term /( : (¢ Vy,w) w and denoting by n to outward unit normal to C' leads to
—a,a)xC

y) - Vs - / n)w? /2 — / di 2 /9
/(—a,a)xC(Q(x y) ’yw) v (—a,a)XBC(q n)w / (—a,a)XC( v Q) v /
=0

because of (1.19) and by L-periodicity of w with respect to z. Furthermore,
/( )Xc(q(af,y) ce+ cJw,w = /C[ (q(z,y) - €+ ) (w(-,z,y))* /2]%, =0

because w|s—i, = 0 in H'/2({£a} x Q). Therefore, because of Poincaré’s inequality, it follows

that B(w,w) > 5/ Vseyw]® > v|lw||3, for some v > 0 and for all w € H,.
(—a,a)xC
From Lax-Milgram theorem, there exists then, for each v € C, a unique solution w =

T(U) S HO of

1
B(w, :/ / —~VA®)z Y zeH,
('UJ Z) (—a,a)XCg(U)Z+ (—a,a)xaQ ﬂC( 2aV €)Z : 0

Since f is globally Lipschitz-continuous, it easily follows that the map 7" is continuous. Taking
2z = w as test function and applying the Cauchy-Schwarz inequality, one gets

Ywlig, < [Mi(2a|C)'? + Mo]|lwlly < [M:i(2a|C)'? + Mo]||w]| -

As a consequence, by choosing Cy := [M(2a|C|)"/? + My]y~" in the definition of the set C (see
(5.4)), it follows that w € C.

From Schauder fixed point theorem, there exists then a fixed point v € C for the map T,
namely, a solution v € C of (5.5). Since both v and ¢ are L-periodic with respect to z, the
first equation in (5.3) is then satisfied in the distribution sense in %,. Furthermore, from the
regularity theory up to the boundary, the function v is of class C?(%,) and it satisfies (5.3) in
the classical sense in 3.

Let us now prove that the function v can be extended by continuity in the “corners”
{+a} x 002 of 3,. To do it, we build a supersolution h(s) for (5.3). We define it as in [18] :
let b = ||q||oo + |c] + ||div(A)||oo + 1, and let
Clb_: e G %(S +a) forall s € [—a,0],
where ¢ is a positive number given in (1.22), and let us extend h by symmetry on [0, a]. This
function h(s) is of class C? on [—a,a], it is nonnegative, concave, it vanishes on 4a and it
satisfies

h(s) =

L.h < (6Aé + e)hgs + blhg| < (¢1 + €)hss + blhs] = —1 in X,,.

From the maximum principle, it follows then that |v| < Mjh in ¥,. As a consequence, the
function v can be continuously extended by 0 on the corners {£a} x 02 of the closed cylinder
Y.

Eventually, the function ¢¢ = v+ € C(Z,) NC?(%,) is a classical solution of (5.1). That
completes the proof of Lemma 5.1. 3
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Lemma 5.2 Under the notations_of Lemma 5.1, the function ¢° is increasing in s and it is
the unique solution of (5.1) in C(3,) N C*(Z,).

Proof. We use the sliding method of Berestycki and Nirenberg [17].

Let us first show that any solution ¢ € C(Z,) N C%(%,) of (5.1) is increasing in s. Since
f=0inQ x (—o00,0] U[l,+00), the elliptic maximum principle and the Hopf lemma yield
that 0 < ¢ < 1in (—a,a) x Q.

For any \ € (0,2a), let ¢* be the function defined by

¢/\(Sa Z, y) = ¢(S + 2a — )‘a Z, y) in E_éa 22 = (_aa —a+ )‘) x €.
In order to show that ¢ is increasing in s in %, it suffices to prove that
¢ < ¢ in XA (5.6)

for all A € (0,2a). Since ¢ is continuous and L-periodic in z and since ¢(—a,-,-) = 0,
é(a,-, ) =1, it follows that (5.6) is true for small A.
Let us now increase A and set

M\ =sup {\ €(0,2a), ¢ < ¢ in X} for all € (0,\)} > 0.

To complete the proof, one has to show that \* = 2a. Assume A\* < 2a. By continuity, one
has ¢ < ¢ in ﬂ On the other hand, there exists a sequence \,=\* and some points
(Sn> Tp, Yn) € S such that ¢(sn, Tn, Yn) = 6™ (S, Zn, yn). Since ¢ is L-periodic in x, one can
assume that (z,,y,) € C and also that (s,,z,,y,) — (5,7,7) € ¥)". Passing to the limit
n — +00, one gets ¢(3,Z,7) = ¢ (3,7, 7).

The function z(s, z,y) = é(s, x,y) — ¢ (s, 2, y) defined in X" is nonpositive and it vanishes
at the point (3,7,7). Since the equation (5.1) is invariant by translation with respect to s and
since the function f is Lipschitz-continuous, the function z satisfies

(EAE+ e)zgs + div(AV,y2) + divy (A€ z4)

+05(6AV,y2) —q-Vaeyz— (g e+ )z +bz =0 in XY, (5.7)
vAVz =0 on (—a,—a+ \*) x 09

for some bounded function b(s, z,y). Furthermore,
z2(—a,z,y) = —pla— A", z,y) <0 forall (z,y) e Rxw
because \* < 2a and because ¢ is positive in (—a, a) x € and continuous. Similarly, one has
z(—a+ N, z,y) = d(—a+ N, z,y) — 1 <0 forall (x,y) € Q.

As a consequence, the point (3,7Z,7) where z vanishes lies in (—a, —a + \*) x Q. But that is
ruled out by (5.7) from the strong maximum principle together with Hopf lemma.

Thus, \* = 2a and ¢ is increasing in the variable s in 3,.

Let us now turn to the proof of the uniqueness of the solution ¢ € C(%,)NC?(%,) of (5.1).
Consider two solutions ¢ and ¢’. By arguing as above and sliding ¢’ with respect to ¢, it is
found that ¢(s,z,y) < ¢'(s + 2a — X, z,7) for all X\ € (0,2a) and for all (s,z,y) € L. Passing
to the limit A\ — 2a, one gets ¢ < ¢’ in 3,. On the other hand, by sliding ¢ with respect to
@', it also follows that ¢’ < ¢ in ¥,. Eventually, ¢ = ¢’ and the proof is done. -
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Lemma 5.3 The functions ¢¢ are decreasing and continuous with respect to c in the following
sense : if ¢ > ¢, then ¢¢ < qﬁcl_in (—a,a) x Q and if ¢, — ¢ € R, then ¢ — ¢ in C’fo’f‘(Ea)
(for all0 < o < 1) and in C(X,).

Proof. Choose ¢ > ¢ and set ¢ = ¢¢ and ¢’ = ¢¢. Since ¢’ is increasing in s, it satisfies

(Aé + e)@, + divyy (AV, @) + divy (A€ @) + 0,(€AV, @)
—q- vx,y¢, - (q €+ C)d)ls + f(:E, Y, d)l) = (Cl - C)¢; <0 in Ea-

Furthermore, ¢ verifies the same boundary and periodicity conditions as ¢. As a consequence,
¢ is a super-solution for the problem (5.1) which ¢ is a solution of. Using a sliding method as
in Lemma 5.2 leads to

¢(s,2,y) < ¢'(s+2a — A, x,y) forall (s,z,y) € ¥)

for all A € (0,2a). The passage to the limit A — 2a leads to ¢ < ¢’ in X,. From the strong
maximum principle and the Hopf lemma, it follows that either ¢ < ¢’ in (—a,a) x Q or ¢ = ¢'.
The latter would imply that c¢¢, = '@}, whence ¢, = 0 in 3,. This is clearly impossible
because ¢' is increasing in s. As a consequence, ¢ < ¢' in (—a,a) x Q.

Let us now turn to the proof of the continuity of the functions ¢° with respect to c. Choose
a sequence ¢, — ¢ € IR. From standard elliptic estimates up to the boundary, the functions
¢ converge (up to extraction of some subsequence) in C12%(%,) (for all 0 < a < 1) to a
function ¢ solving (5.1).

To prove the convergence in C(X,), choose first ng such that |c, —¢| < 1 for n > ng. As it

was done at the end of the proof of Lemma 5.1, the maximum principle yields
Vn > ny, 6% (s, 2, y) — ¥(s)| < M'h(s) in 3,

where

b(s) = ~—(s+a),

2a
1 .
M= ([ flloo + 5 (lalloo + lel + ldiv(A) o + 1),
N 7 ] 1
% h(s) = 01;;6 earte |1 — ¢ ar(to| _ y(s +a) forall s € [—a,0],

h(s) = h(—s) forall s € [0,a],
b = [lallso + le] + [[div(A)[[oc + 2.

Therefore, the function ¢ can be extended by continuity on the corners {+a} x 9 of ¥, and
the functions ¢ converge to ¢ uniformly in ¥,. By uniqueness of the solution of (5.1) in
C2(%,) N C(Z,), the function ¢ is nothing else but the function ¢¢. Lastly, by uniqueness
of the limit, one concludes that the whole sequence (¢“) approaches ¢° as n — +o00. That
completes the proof of Lemma 5.3. 3

In the remaining part of this subsection, for any ¢,a > 0 and ¢ € IR, we call ¢¢ , the unique
solution of (5.1) in C(Z,) N C?(L,).
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Lemma 5.4 There exist a; > 0 and Ky such that, for all a > a; and € € (0, 1],

(c>K,) = < max_ ¢, (0,z,y) = max ¢f,(0,2,y) < 0) )
(zy)e (zy)eC

Proof. First of all, let 1(z,y) be a C%(Q) function such that
vA(Vi +€) =0 on 02

and 1 is L-periodic with respect to x. A function ¢ satisfying these properties can be found
as a minimizer of the integral

VoAve+ [ vAZ
/C ¥ 1 acn{(z,y), xE(O,Ll)X“'X(O,Ld)}( )90

d
over all functions ¢ € H} (Q) such that ¢(- + k,+) — ¢ = 0 in L*(Q) for all k € [[L; Z
i=1
Of course, such a minimizer satisfies the additional equation div(AVy) = 0 in 2, but this
property is not needed here.
Next, from (1.24-1.25) and (1.26), there exists a C' function g defined in [0, 2] such that

g(u) =0 for all uw € [0,0/2] U {2}, g(u) > 0 for all u € (6/2,2), ¢'(2) <0 and
f(z,y,u) < g(u) for all (z,y) € Q and u € [0,2].
Let then (k,v) be the unique solution of the one-dimensional problem

v" — kv +g(v) =0 in IR,

{ v(—00) = 0 < () < v(+00) = 2 for all £ € R and v(0) = 0. (58)

Furthermore, k is positive and the function v is increasing in IR. Since the positive and bounded
function v’ satisfies the linear equation

()" = k(") 4+ ¢'(v)v' =0 in R

and since the function ¢'(v) is itself globally bounded, it follows from standard elliptic estimates
and elliptic Harnack inequality that there exists a constant Cj such that

VEe R, (£ < Cov'(§).
Therefore, (5.8) implies that
VEe R, 0<g(v(§)) < Cv(), (5.9)

where C' = C, + k.
By continuity and L-periodicity with respect to x, the function ¢ defined above is globally
bounded in €. Let us now consider the function

6(87I7y) = U(S + @/)(x,y) - mﬁaX@Z))
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defined in IR x €. Let us now check that for ¢ and a large enough, this function ¥ is a
supersolution for problem (5.1). Firstly, since v(400) = 2, there exists a; > 0 such that

Va > a;, Y(z,y)€Q, o(a,z,y) > 1.
Secondly, owing to the definition of the function v, the function ¢ satisfies
vA(V,, 0+ €0s) =0 on IR x 0€.
Take any € € (0,1], @ > a; and

c¢> Ky := max {k[l+ (e+ Vy)A(e+ V)| +div(A(e+ V) —q- (e+ V) } +C.

(z,y)€R
One has
L.vo+ f(:L’, Y, 77) = (8 +eAe + V@/)AV@/) + éAV¢ + V@/)Aé) U”(g)

+[div(A(e + V¢)) —q- Vi —q-é =] V' (&) + f(z,y,v(E))
(where £ = s + ¢(z,y) — mﬁaxz/))

= [e+(e+Vy)A(e+ V)] v"(§)
+[div(A(e + V) —q- (€ + V) — ] v'(§) + f(z,y,v(E))

= {kle+ (E+V)A(e+ V)] +div(A(e+ Vi) —q- (€ + Vi) — c} ' (€)
+f(z,y,v(8)) — [e + (€ + VY)A(e + V)] g(v(€))

from (5.8). Hence,

Lo+ f(x,y,0) < {k[l1+ (e+ Vu)A(e+ V)] +div(A(e+ V) —q- (€ + V) — c}v'(§)
+g(v(€))

sincee <1,k>0,v">0and 0 < f(x,y,u) < g(u) for all (z,y,u) € Q x [0,2]. Eventually,
Lo+ f(x,y,7) <0 in X,

from (5.9) and from the choice of c.

By sliding the function v with respect to the variable s and comparing it to ¢¢ , (as for
¢ and ¢’ in the proof of Lemma 5.3) and by using the monotonicity of v and the fact that
o(—a,r,y) > 0 and ¥(a,z,y) > 1 for all (z,y) € Q, it follows that

Cals,m,y) <o(s,x,y) forall (s,z,y) € I,

Therefore,
max_¢;,(0,z,y) = max_¢;,(0,2,y) < max_5(0,z,y) < v(0)
(@) (@y)eC (z,y)€Q
since v is increasing. Since v(0) = @, the proof of Lemma 5.4 is complete. |

Lemma 5.5 There exist ay > 0 and Ky such that, for all a > ay and € € (0, 1],

(c< k) — (max_qbg,a(o,z,y): max_qsz,a(o,x,y)w).

(z,y)€Q (z,y)eC
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Proof. First of all, as in Lemma 5.4, let ¢(z,y) be a C?(Q) function such that
vA(Viy +€) =0 on 02
and 1 is L-periodic with respect to . Let M, be such that
(€ + V(z,y)) Alz,y) (6 + Vi(z,y)) < M, forall (z,y) € Q. (5.10)

Next, remembering the definition of p in (1.26), let x be a smooth function defined in IR
such that 0 < x < 1in IR, x(u) =0 for all u <1 —pand x(u) =1 for all u > 1— p/2. Let
h(u) be the function defined in IR by

L () min_ f(x,y,u).

Yu€e IR, h(u)=
“ ’ () 1+ MOX (z,y)eQ

From (1.24-1.25) and (1.26), the function h is globally Lipschitz-continuous, h(u) = 0 for all
u € (—o00,1—p|U[L,+00), h(u) > 0 for all u € (1 —p,1) and h is nonincreasing in [1 — p/2, 1].
Therefore, there exists a unique solution (x,w) of the one-dimensional problem

w" — kw' + h(w) =0 in R,

{ w(—00) = =1 < w(f) < w(+oo) =1forall ¢ € R and w(0) = 6. (5.11)

Furthermore, « is positive and the function w is increasing in IR.
Let us now consider the function

(s, ,y) = w(s+¢(r,y) — miny)
)
defined in IR x Q. Let us now check that for —c and a large enough, this function @ is a
subsolution for problem (5.1). Firstly, since w(—oo) = —1, there exists ay > 0 such that
Va > ay, Y(z,y) €Q, w(—a,z,y)<O0.

Secondly, owing to the definition of the function v, the function w satisfies the same boundary
condition as the function v in the proof of Lemma 5.4, namely :

VA(V 0 + ég) =0 on IR x 0.
Take any € € (0,1], a > ay and

¢ < Ky:= min [k (6+ Vy)A(e+ V) +div(A(e+ Vi) —q- (Vi +€é)].

(z,y)EN

As in Lemma 5.4, one has

Lo+ f(z,y,w) = {kle+(6+ VY)A(e+ V)] +div(A(e+ V7)) —q- (VY +é) —cluw'(€)
+f(z,y,w(§)) — [e + (€ + VY)A(e + V)] h(w(E))

where £ = s + ¢(z,y) — ming ¢. From (5.10), from the definition and the nonnegativity of A,
from the positivity of x and w’ and from the choice of ¢, it follows then that

L.w+ f(z,y,w) >0 in X,.
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By sliding the function @ with respect to the variable s and comparing it to ¢¢, (as for
¢ and ¢’ in the proof of Lemma 5.3) and by using the monotonicity of w and the fact that
w(—a,z,y) <0 and @(a,z,y) <1 for all (x,y) € Q, one gets that

Cals,xy) > (s, x,y) forall (s,2,y) € S,

Therefore,
max_¢¢,(0,2,y) = max ¢f,(0,2,y) > max w(0,z,y) = w(0)
(@y)e (@y)eC (w,y)eQ
since w is increasing. Since w(0) = 6, the proof of Lemma 5.4 is complete. B

We complete this section by proving, for a large enough, the existence of a real number
¢ and of a function ¢** satisfying (5.1) together with an additional normalization condition,
namely (5.12) below :

Proposition 5.6 There exist ag > 0 and K > 0 such that, for all a > ag and for all e € (0,_1],
there ezists a unique real number ¢ = ¢ such that the solution ¢** := ¢gf;j € C*(3,)NC(3,)
of (5.1) satisfies the normalization condition

max ¢*(0, -, -) = max ¢*(0,-,-) = 6. (5.12)
Q c

Furthermore,
V0<e<1, Va>ag [ <K. (5.13)

Proof. Under the notations of Lemmas 5.4 and 5.5, let us define
ap = max(ay, ag) and K = max(|K;|, |Ks|) > 0.
Fix any ¢ > ap and € € (0,1]. From Lemmas 5.4 and 5.5, it follows that

Ve > K, max_ ¢¢ ,(0,7,y) = max_¢Z (0,z,y) <0,

(:L‘,y)GQ ’ (I7y)ec
Ve < —K, max ¢¢,(0,z,y) = max ¢°,(0,x,y) > 0.
(zy)eQ (zy)eC

On the other hand, Lemma 5.3 yields that the function

E(C) ‘= max ¢ga(0’ i) ) = max ¢ga(0’ ) )
Q ’ C ’

is decreasing and continuous with respect to ¢. Therefore, the conclusion of Proposition 5.6
follows. a
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5.2 Exponential decay for s <0

In this section, one finds upper bounds independent of a for the functions ¢=® in the left

half-cylinder [—a, 0] x Q. Since ¢** is increasing with respect to the variable s and satisfies

max ¢*%(0,,+) = 0, and since f(x,y,u) =0 on Q x [0,0], it follows that ¢* is a positive and
Q

L-periodic (with respect to x) solution of

{ L.¢g>* = 0 in (—a,0) x Q, (5.14)
VAP + Vyy0o®) = 0 on (—a,0) x 09, '
where L.v = (€Aé + ¢)vgs + divy , (AV,,v) + divy (A€ vg) 4+ 05(EAV, yv) — q(x,y) - Vv —
(q-e+ &")vs.

Our goal in this section is to build some positive and L-periodic (with respect to x) solutions
of (5.14) of the exponential type w.(s,z,y) = e**.(x,y) for some positive real numbers ..
In other words, we look for a positive real number A, and for a positive function . (z,y),
defined in Q, such that

—div(AV,) — A\ [div(A€ ¢.) + eAV Y] + q(z,y) - V.
+Ae(q - €4 ) h. — N2(Aé)p. = €)X, in Q,
vA(eEXe + V,) 0 on 012,
Y. is L-periodic w.r.t. z.

The existence of such exponential solutions w.(s,z,y) = e**).(x,y) is a consequence of
the following proposition :

Proposition 5.7 1) Let ((x,y) be a C% (Q) (for some &' > 0) and assume that ¢ is L-periodic
with respect to x. For all v and A\ € IR, there exists a unique p = 1, ¢(A) € IR (principal
eigenvalue) and a positive function ¥ = b, (\) € C*(Q), unique up to multiplication, such

that _
—Lyac = wp in Q,
vA(eANYp +Vy) = 0  on 09, (5.15)
v is L—periodic w.r.t. z,
where

Loacth = div(AVY) + A[div(Aé ) + EAVY] — q- Vb — Mg - € + 7)1 + N2 (EAE)Y + (.

2) For all v, A € IR and ¢ as in 1), the principal eigenvalue piy ¢(N) is equal to

I _L 7)‘3490
Ho(A) = max inf ”T (5.16)

where
Ex={p e C*Q), o> 01inQ, ¢ is L-periodic w.r.t. x, vAE p + V) =0 on 00Q}.

Furthermore, . ¢(\) is nonincreasing with respect to ¢ in the sense that, if ¢i(x,y) < ((z,y)
for all (z,y) € Q, then e, (N) > py e, (A) for all v and X € IR.
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8) Let v € IR and ¢ = ( be constant in Q. There exists a concave function h : IR — IR
such that h(0) = h'(0) =0 and piy ¢ (N) = —Co + YA+ h(A) for all X € RR.

4) Assume that ((x,y) = 0 for all (z,y) € Q. For each v > 0 and o > 0, there exists a
unique positive X = \*7 such that p,o(N) = aX?. Lastly, \*7 is decreasing with respect to
a > 0 and increasing with respect to v > 0.

Proof. It is divided into four steps.

Step 1 : Solving the eigenvalue problem (5.15). This cell-problem is not completely standard
because of the periodicity and boundary conditions. We do its proof here for the sake of
completeness. Let v and A be two given real numbers and let ¢ be a continuous function in €,
which is L-periodic with respect to z. For all n > 0, set ©,, = QN {|z| < n}. Let # and E be
the Banach spaces

d
H = {v; V>0, ve HY(Q,) and Vk € [[L:Z, v(z + k,y) —v(z,y) =0 in L*(Q)},
_ i=1
F = {veC®(Q),vis L-periodic w.r.t. x}

(with the same ¢’ as for (), embedded with the norms

1/2
o]l = (/C|W|2+u2> and [|v]|r = [|[v]lcos @)-

Set M = M, () := |N(|lqlloo + [7]) + ANe2 + [|]]oo + 1, where ¢, is given in (1.21). Let ¢
be any function in F' (C H'). Since ¢ and A are L-periodic with respect to x, solving

—div(AVv) — A[div(Aé v) + AV + ¢ - Vo +[Ag-é+7) — N?éAé -+ Mv =g

in the weak sense in H’', together with the boundary conditions vA(eAv + Vv) = 0 on 052, is
the same as finding a solution v € H of

VzeH, Bv,z)= /ng,

where
B(v,z) = /Vv AVz+ NVzAé)v — A(eAVv)z
c
+(q-Vv)z + [Mg- €+ 7) — NeAé — ( + M.
The bilinear form B is clearly continuous on H. Let us now check that it is coercive. Choose
any v € H. One has
B(v,v) = /VU A Vv + ANVvAé — eAVv)v
c
+(q- Vv)v+ [A(g- €+ 7) — Nedé — ¢+ M2

As in section 5.1, by integrating by parts the term [.(¢ - Vv)v and using (1.19), it is found
that this term is zero. Since A is symmetric, it follows then that

B(v,v) = /CVU AVo+[Mg-é+7) — N2eAé — ( + M
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Thus, our choice of M implies
Yo € H, B(v,v) > min(c,1)|v|3,

where ¢; is given in (1.21). Lax-Milgram theorem yields then the existence of a unique v € H
such that B(v, z) = /gz for all z € H.
c

Elliptic regularity theory up to the boundary implies that v is a classical C%? () solution
of
—div(AVv) — A[div(4é v) + eAV]
+q-Vo+[Mg-é+v)—NeAée—(+ My = g inQ,
vA(elv+Vv) = 0 on 09,
v is L-periodic w.r.t. x.

(5.17)

The map T : g€ F+ v="Tg € F is linear, and, from standard elliptic estimates, it is
compact.

Let now K be the cone K = {v € F, v > 0}. Its interior K° is equal to K° ={v € F, v >
0in Q} # 0 and K N (—K) = {0}. For each g € K°, the solution v = Tg of (5.17) is globally
bounded in Q and L-periodic with respect to the variable . We claim that this function v
is positive in Q. Indeed, multiply equation (5.17) by v~ = max(—w,0) and integrate by parts
over C'. It follows that

—/ Vo~ AVo™ + Mg+ €+ 7) — N?éAé — ¢+ M](v™)? = / gu~.
c c

Our choice of M yields v~ = 0, that is to say that v is nonnegative. From Hopf lemma and
the strong maximum principle, one concludes that v is positive in 2. Therefore, T(K°) C K°.
From Krein-Rutman theory, there exists a unique positive real number ji = fi,((\) and
a unique (up to multiplication by positive constants) function ¢ = 1, (\) € K° such that

@I =1, e, _

—Loypa¥ + My Ny = jup in €,

vA(eXY) + V1) 0 on 02,
Y is L-periodic w.r.t. z.

The principal eigenvalue fi depends both on v and . Set p = f1,c(A) = finc(A) — M, (N).
The function A — g, (A) is defined on IR and, for each A € IR, the function 1, () := ¢ is
the unique (up to multiplication by positive constants) positive solution of

—L, Y = —div(AVY) — A[div(A€ o) + eEAVY]
+q¢- VY +[Mg-e+9) = NeAe (v = pp inQ,
vA(ENY + V1Y) = 0 on 09,
v is L-periodic w.r.t. x.

(5.18)

Step 2 : Proof of the formula (5.16). Since the function ¢ = 1, ¢()) is in E), it follows
that

~L
foc(N) € max inf —ZEAE
{v€EN} Q ¥
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Let us now assume that there exists ¢ € E) such that p,(\) < infg _—L%’Qf. In other
words, one has —Ly x ¢ — piy,¢(A)p > 1 in Q for some n > 0. Since both functions ¢ and ¢
are continuous, positive and L-periodic with respect to x in €2, there exists 7 > 0 such that
¢ > 1) in Q with equality somewhere. Let w = /1. A straightforward calculation leads to

\Y \Y
—div(AVw) — % AVw—-Vw A %
—ANVw A é+éAVw)+q-Vw >nw>0 in(,
vAVw =0 on 0f).

Since w > 7 in  with equality somewhere, the strong maximum principle together with Hopf
lemma yields that w = 7 in Q, i.e. ¢ = 7¢. Putting that into the inequation —L. ¢ —
tyc(A)e > ne leads to 0 > ny in Q. The latter is impossible because both n and ¢ are
positive. Therefore, formula (5.16) is proved and the maximum in (5.16) is reached by the
function 1, ¢ ().

Because of the definition of the operators L, ) ¢, formula (5.16) immediately implies that,
if ¢4 < in Q, then gy, (A) > iy, (A) for all v and X € IR.

Step 3 : Properties of the function A — i, ¢()). Let ¢ = (y be constant in Q. Let us make
the change of functions ¢ = e~} in formula (5.16). After a straightforward calculation, it
is found that

Lypgy  —div(AVE) +¢-Vp
@ @

Therefore, piy ¢, (A) = —Co + yA + h(A) where

+ YA = Co-

—div(AVQ) +¢q- V@
GEE, O @

h(\) = max inf

and
E\={pecC*Q), $>0in Q, e is L-periodic with respect to 2, vAVH = 0 on 90Q}.

By definition, the function h only depends on A (and not on 7 or (p). Let us now prove
that it is concave. Let Ay, Ay € IR, t € [0,1] and set A = tA; + (1 —¢)A2. One has to check that
h(A) > th(A) + (1 —t)h(A2). Let ¢y and H, be arbitrarily chosen in E\, and E} respectively.
Define z; = In(@1), 20 = In(P2), 2 = tz; + (1 — )2, and @ = e®. It is easy to see that ¢ € EX.
Therefore, it follows from the definition of h that

B > inf —VAV

Q

ASY

)+q-Vo

ASY!

On the other hand, it is found that

—d1v(AV<,;) +q-Vo _ —div(AVz) = Vz AVz+q-Vz
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and

S t V,Zl A VZl + ( ) VZZA VZZ
since (1 — ¢) > 0. Hence,

—div(AV@) 4 ¢- V@

> t[—le(AVZl) — V,Zl A VZl +q- VZl]

P
. <—d1V(AV(,0~1) +q- ng) S (—le(AVgONQ) +q- V<p2> '
Y1 P2
Eventually,
B > inf —le(AV(,(i) +q-Vo
. L . . N N
> finf —d1v(AV<p~1) +q-V +(1—1) inf —d1v(AV<p~2) +q- thg'
Q Y1 Q P2

Since ¢; and @, were arbitrary in E and E}, respectively, one concludes, by definition of A,
that hA(A) > th(\) + (1 — t)h(A2). That shows that h is concave.

An immediate consequence of the concavity of the function A is its continuity. Hence, for
any v € IR, the function p., is continuous.

Let us now turn to the proof of the other properties of the function p, ¢ (A). First, by
uniqueness of the solutions of (5.18), one has fi,¢,(0) = —(p and 1, ¢, (0) = 1 (up to multipli-
cation by positive constants). As a consequence, h(0) = 0.

Let us now check that y . (0) = 7 (which implies that A'(0) = 0). Take an arbitrary
sequence A, — 0 as n — +oo. Let ¢, = 1, (\,) be the unique positive solution of (5.18)
with A = \,,, ( = (o and p = piy¢,(As). Up to normalization, one can assume that maxg ¢, =
maxg ¥, = 1. Since, the sequence (fi1,¢,(An)) is bounded (actually, fiy¢,(An) = 11y, (0) =
—(p), standard elliptic estimates and Sobolev injections imply that the functions v, converge
locally (and then uniformly in © by periodicity) in C?# (for all 0 < u < 1) to a nonnegative
function 1 such that maxz ¢ = 1 and solving

—div(AVY)+¢-Vyy = 0 inQ
vAVYy = 0 on 0f)
Y is L-periodic w.r.t. z.

The strong maximum principle and Hopf lemma imply that 1) is positive in 2 and by uniqueness
(up to multiplication) of the positive solutions of (5.18), one gets that ¢ = 1, (0) = 1. On
the other hand, integrating by parts over C' the equation (5.18) satisfied by v, with A, and
P = fhy,co(An) leads to

—\, /eAVl/)n—f—/ n(q-E47) — NeeAé — Gl un/@bn
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In other words,

o ) AV [ (@i = Aiad,

An [

— |C|_1/C(q -é+7) asn — +oo (since ¥, — 1in C*(Q))
= v (from (1.19)).

Thus, the function u, ¢, is differentiable at 0 and 4, . (0) = ~, which implies that A’(0) = 0.

Step 4 : Solving p,o(N) = aX?. Assume ¢ = 0 and let v and « be two given positive
numbers. From Step 3, it immediately follows that the equation p,o()\) = @A? has two and
only two solutions : 0 and a positive real number denoted by A*7. Furthermore, p,0(\) > a)?
for all A € (0, A7) and g, 0(A\) < a\? for all A € (—o0,0) U (A7, +00).

Let now v > 0 and 0 < oy < az be given. One has p,o(A*?7) = az(A*27)? > ay (A\*27)2.
Therefore, A*?7 < \*%7, In other words, for each v > 0, A*7 is decreasing with respect to
a> 0.

Let now 0 < 7 < 7 and a > 0 be given. From the formula z1,9(\) = yA + h(A), it follows
that fi,,0(A) = f13,0(A) + (72 — 71)A. In particular, fi,, o(A*7) > fiy, o(A*7) = a(A*")?,
whence A" < A*72_ That means that, for each o > 0, A*7 is increasing with respect to
v > 0.

That completes the proof of Proposition 5.7. n

5.3 Passage to the limit in the infinite cylinder

In this section, making use of the results of Propositions 5.6 and 5.7 in the previous two
sections, we pass to the limit @ — +oo in the infinite cylinder IR x Q for the solutions ¢*® of
(5.1), (5.12).

Proposition 5.8 Under the notations of Proposition 5.6, one has

Ve >0, 0<c® := liminf > <K.
a—+00, a>ap
Proof. From Proposition 5.6, one knows that |¢°| < K. Take a sequence a™ — +o00 such that
&% — ¢f as n — +oo.
Let ¢ := ¢ be the solution of (5.1) satisfying the normalization conditon (5.12). From
Lemma 5.2, each function ¢ is continuous in ¥,» and increasing with respect to s. Therefore,
there exists a unique real number s € (0,a") such that

1+86
max d)n(sn, *y ) = max d)n(sn, ) ) = i
C Q 2

(5.19)

Let now V™ be the function defined by

V™(s,z,y) = ¢"(s+ s, x,y) forall s € [—a" —s" a" —s"], (z,y) € Q.
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Let us pass to the limit n — +o00. Up to extraction of some subsequence, two cases may
occur :

case 1 : a™ — s™ — 400 as n — +o00. From standard elliptic estimates and Sobolev’s
injections, the functions V" converge (up to extraction of some subsequence) in Cp% (IR x Q),
for 0 < a < 1, to a function V satisfying

n n

( (€A +¢)Vys +divyy (AV,, V) + div, (A€ V)
+05(€AV V) —q- Vi,V —(q- e+ )V + f(z,y,V) = 0 in RxQ,
vAEV;+V,,V) = 0 on IR x 09,
V' is L-periodic w.r.t. x, (5.20)

140
max V(0,-,-) = max V(0,-,-) = 1t ,
] 9) 2

{ V' is nondecreasing w.r.t. s.

From standard elliptic estimates and from the monotonicity of V, it follows that
Vs, z,y) = +(r,y) in C**(Q) as s — Fo0,

where the functions ¢4 (z,y) satisfy

div(AVeyts) —q- Ve + f(2,y,95) = 0 inQ,
VAV, 0 on 09, (5.21)
Yy is L-periodic w.r.t. z.

Integrating by parts these equations over the period cell C' leads to / flz,y,¥e(z,y)) dedy =
c
0. Since f > 0, it follows that f(z,y,v+(x,y)) = 0. By multiplying the equations (5.21) by
1+ and by integrating by parts over C', it is found that / Vi AV = 0. As a consequence,
c

both 1. are constant and satisfy f(x,y,¢+) = 0 for all (z,y) € Q. Because of (1.26) and
because of the choice of the normalization for V on {0} x Q, one gets ¢)_ € [0,0] and ¢, = 1.

As it was done in the course of the proof of Lemma 3.1, one can now integrate by parts,
over [—B, B] x C, the equation (5.20) satisfied by V. One obtains

L1 EAe+ eV, +eAV,,V — (g e+ WV )2, + | F(x,y,V) = 0. (5.22)
c B,B]xC

Since V' converges to two constants ¢y as s — 4oo in CZ,(IR x Q), it follows that V; — 0 and
VzyV — 0 as s — £oo, uniformly in (2,y). The passage to the limit B — 400 in equality
(5.22) yields that the function (s, x,y) — f(z,y, V(s,x,y)) is integrable over the whole cylinder
IR x C' and that

—°|C)(1 = —|—/ (z,y,V(s,z,y)) ds dx dy = 0.

On the other hand, the continuous function (s,z,y) — f(x,y,V(s,z,y)) is nonnegative, L-
periodic with respect to x and it is not identically equal to 0 because of the normalization for

V. Therefore, / flz,y,V(s,z,y)) dsdxdy > 0 and ¢& > 0.
IRxC
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case 2 : a" — s" — b € [0,+00). One just has to slightly modify the above arguments of
case 1. Up to extraction of some subsequence, the functions V" converge in C72%((—00,b) x Q)
to a function V solving (5.20) in the set (—oo,b) x €. Furthermore, the functions ¢" are
equi-Lipschitz-continuous in any set of the type [a™ — 1, a™] x K for any compact subset K C €.
Therefore, for all n > 0, there exists x > 0 such that

VTL, Vs € [an -k, an]) 1 - n < max ¢n(87 * ) <1
(&

Because of (5.19), it follows then that s < a™ — 0 for some § > 0, whence b > 0 and
maxg V(0,-,-) = maxgV(0,-,-) = (1 + 6)/2. Furthermore, the same arguments as above
imply that V' can be extended by continuity on {b} x Q with V(b,,+) = 1 and from standard
elliptic estimates up to the boundary, the function V' is actually C'((—o0,b] x Q).

As it was done in case 1, one can easily prove that V(—oo,-,-) is equal to a constant
Y € 1]0,0]. Integrating the equation satisfied by V over [—B,b] x C and passing to the limit
B — +00 leads to

[z + et = 00—+ [ S ) =0

Since Vi > 0 in (—o00,b) x € and the continuous function (s,z,y) — f(z,y,V (s, ,y)) is non-
negative and not identically equal to 0 on (—o0, b) x C', one concludes as in case 1 that ¢® > 0.7

As above, consider now a sequence a” — +00 such that ¢ — ¢*(> 0) and let ¢" := ¢=".
The following proposition deals with the passage to the limit n — +oco for the functions ¢".

Proposition 5.9 Up to extraction of some subsequence, the functions ¢" converge in C’l?(;f‘(]Rx
Q) (for 0 < a < 1) to a function ¢° such that

(€Ae +2)¢e, + divy , (AV,,¢°) + div,, (A€ ¢F)
+as(éAvx,y¢8) —q- Vm,yqsg - (q €+ CE)¢§ + f(xa Y, ¢5) = 0 inRx Qa
vAE@; +V,,0°) = 0 on IR x 09,
¢° is L—periodic w.r.t. z,
maax #°(0,-,-) = mﬁax »°(0,-,-) = 8,

(5.23)

{ ¢° is increasing with respect to s.

Furthermore, ¢*(—00,-,-) =0 and ¢ (+00,-,-) = 1.

Proof. The convergence of the functions ¢" to a function ¢¢ in C*(IR x Q) follows from
standard elliptic estimates. Furthermore, the function ¢° is nondecreasing with respect to the
variable s since each function ¢" is increasing in s.

The only thing that remains to be proved is that ¢°(—o0,-,-) = 0 and ¢°(4o0,-, ) = 1.
Assume temporarily that has been proved. For any h > 0, the function ¢°(s + h,z,y) —
®°(s,z,y) is a nonnegative solution of a linear elliptic equation with bounded coefficients.
It follows then from the strong maximum principle and Hopf lemma that ¢°(s + h,z,y) —

¢*(s,z,y) > 0 for all (s,z,y) € IR x Q, which proves that the function ¢° is increasing in s.
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Let us now prove that ¢°(—oo,-,-) = 0. Observe first that since each ¢" is increasing with
respect to s and max ¢"(0,-,-) = 6, one has ¢"(s,z,y) < 0 for all s € [—a™,0] and (z,y) € Q.
Q

In (—a",0) x Q, the function ¢" satisfies

(€Aé + &)t + divy , (AV,,0") + div(Ae ¢7) B
+05(6AV . yby) — q - Viuyd" — (- €+ )g? = 0 in (—a",0) x Q2 (5.24)
A(épr +V,,0") = 0 on (—a",0) x 0.

On the other hand, from Proposition 5.8 and since ¢©*" — ¢ > 0 as a” — +00, one has
%ca > & > écg > 0 for n large enough. In the sequel, choose n large enough such that
the latter holds. Proposition 5.7, part 4), apphed toa=¢ec>0and y=c" >0 y1elds the
existence of a positive real number \, = A\* ™ and a positive function v, = 1> <* solving
(5.18) with (v,\, ¢, 1) = (57", \,,0,M2). In other words, the function e**i,(z,y) solves
(5.24) in IR x Q. Since A*7 is increasing with respect to v > 0, it follows that

0 < \5 /2 < )\n < A& 3c€/2.

Up to extraction of some subsequence, one can then assume that A\, — \. € [\* /2 )\ 3C5/2].
On the other hand, one can assume, up to multiplication, that

max ¢, = max ¢, = 1.
Q C

One now claims that there exists a constant o, > 0 such that
Vn, V(z,y) € Q, 0<a. <y(z,y) <1 (5.25)

Indeed, if that were not true, then, since the functions 1), are L-periodic with respect to
x, there would exist, at least for some subsequence, some points (z,,y,) € C such that
U (T, yn) — 0 as n — +00. On the other hand, the functions 1, are bounded between 0 and
1 and solve the elliptic equations (5.18) with v = 5" € [-K, K], A = A, € [A\® /2 )\ 3¢/2],
¢ =0 and u = e)l2. Therefore, up to extraction of some subsequence, the positive functions v,
converge in C7% (Q) to a nonnegative function v solving (5.18) with (v, A, {, ) = (¢£, A¢, 0,2)2).
Furthermore, 0 < 1) < 1 in  and one can also assume that

3 (z,y), (7,9) €Q, ¢(z,y) =0and H(7,7) = 1.

The strong maximum principle implies that (z,y) € € and the Hopf lemma then yields that
¢ = 0, which is impossible. Therefore, the proof of the claim (5.25) is complete.
Let now v, be the function ¢, = 3,1, such that

min ¢, = min ¢, = 0.
9 c
It follows from (5.25) that 6 < 3, < 6/a., whence z;ﬂ(x,y) < f/a. for all (z,y) € Q and
for all n. Furthermore, as done above, the functions v, converge, up to extraction of some

subsequence, to a positive function @/}5 solving (5.18) with (v,\,(,p) = (¢, A\, 0,eA%). One
can also say that ming ¢° = ming ° = 0 and maxg ¢*° < 0/a..
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Since ¢" and wy,(s,x,y) = e""szﬁn(:v,y) are both classical solutions of the same elliptic
equation (5.24), with no zero-order term, in (—a™,0) x Q with the same L-periodicity with
respect to x and the same boundary condition vA(V, ,¢" + €¢7) = vA[V, w, + é(w,),] on
(—a™,0) x 09, and since ¢" < 0 < w, for s =0 and ¢" = 0 < w, for s = —a", one concludes
from the maximum principle and Hopf lemma that

¢"(s,2,y) < *Pn(,y) forall s € [~a",0], (,y) € Q.
The passage to the limit n — 400 leads to
Vs <0, V(z,y) € Q, ¢°(s,z,y) < ¢ (z, ), (5.26)

where A\, € [A\> /2 )% 3°/2] and ming ¢° = 0, maxz ¢ < 0/a.. Hence, ¢°(—o0,-,-) = 0.
Lastly, as done in Proposition 5.8, there exists a function 1, such that ¢°(s,z,y) —
YT (z,y) as s — +o0o. Moreover, 1, is constant and f(z,y,1,) = 0 for all (z,y) € Q. Since
maxg ¢°(0,-,-) = € and ¢° is nondecreasing with respect to s, it follows from (1.26) that
Yy =0or Y, =1. If Yy, =0, then the strong mamimum principle implies that ¢* = 6 for
all (s,z,y), which is impossible because ¢*(—o0,-,-) = 0. As a consequence, )y = 1 and the
proof of Proposition 5.9 is complete. 3

5.4 Passage to the limit ¢ — 0

The last step in the proof of Theorem 1.13 consists in passing to the limit ¢ — 0 for the
functions ¢°. The two key points are to prove that the real numbers ¢ are bounded from below
by a positive constant and that the solution ¢ obtained at the limit is not trivial. The latter
follows from the comparison with exponentially decaying functions, from the monotonicity with
respect to s and from uniform (independent of ) L a priori estimates of the (x,y)-gradient
of ¢°.

The positiveness of the limit of ¢ is the purpose of the following

Proposition 5.10 Under the notations of Proposition 5.8, one has
0 < liminf ¢ < K.
e—=0
Before doing the proof of this proposition, let us first state an auxiliary lemma :

Lemma 5.11 Let u(t,z,y) be the function defined for allt € IR and (x,y) € Q by u®(t,x,y) =
¢ (x-e+ct,x,y), where ¢F is given in Proposition 5.9. For any compact subset K of 0, there
exists a constant C(K), only depending on K, such that

Ve >0, () + |Vayuf ] dtdudy < C(K) (

1+ Nlql?
L+ Mgl +2 max F(z,y, 1)) (5.27)
IRxIC

2¢; (z,y)€Q

t
where F(z,y,t) = / f(z,y,7)dT and ¢, is given in (1.21).
0
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Proof. For each £, under the notation of Proposition 5.9, the function ¢°(s, z,y) is a classical
solution of (5.23). First, as it was done in Lemma 3.1, the equality (3.7) holds, that is to say
that the nonnegative function (s,z,y) — f(x,y, #°(s,z,y)) is integrable over IR x C' and that

101 = [ Iy 6 (s,2.0)) ds da dy. (5.28)

Next, multiply the equation (5.23) by ¢° and integrate by parts over (— B, B) x C, where B
is an arbitrary positive number. By using the periodicity and boundary conditions in (1.19),
(1.22) and (5.23), it follows that

-/ oy FALTEN (B + Vi@ AV 6" + (V" A8 + EAV 1 6) 9
| 1 B

+ [ @A+ eoie+ @aVa,000 - S0 e+ 6]

[ @) = 0

From standard elliptic estimates, one knows that V,,,¢° — 0 as s — Foo uniformly in
B

_ 1
(z,y) € Q. Moreover, the term / [5((] e+ CE)(QSE)Q} converges to (1/2)c°|C| as B — +00
C -B
since the first d components of ¢ have zero mean value on C'. On the other hand,

(EAE +2)(¢7)" + Vay ¢ AVay ¢ + (Vay ¢° A6 + EAV, %)
= (Voy" + 607) A(Vayd© +€07) +2(4)" 2 0
and the integral / f(z,y,¢°)p° converges since 0 < f(z,y,¢%)¢° < f(z,y,¢°) and
IRxC

/ f(z,y,¢°) converges. Therefore, one concludes that / (Vay0° + €0)A(V, 0" +
IRxC IRxC
€¢°) + (¢°)? converges and that

1
SEICI+ [ (Vo + 86D AV " + 267) + £(67)°

= [ @y <[ faye) =l
IRxC IRxC
Because of (1.21), it follows in particular that
1
/ V.y@° + €657 ds dz dy < —cF|C|. (5.29)
RxC 2¢y

Let us now multiply the equation (5.23) by ¢¢ and integrate by parts over (—B, B) x C.
One obtains

SAS £\2 B € c
R [CARE R B SR A
-V, EAe 5 A . e\ 4E .V, c c .
Ff e AT eAV )6 — [ (0 Vay6) 6 (5.30)

—/(B,B)Xc(q ce+ ) (¢5)” + /C[F(z,y, &) = 0.
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As already underlined, since ¢ — 0 as s — fo00 uniformly in (z,y), the first integral in (5.30)
approaches 0 as B — +o00. On the other hand, since A is symmetric, the third integral in
(5.30) is zero; moreover, the second integral can be rewritten as

1
s\aqg Ve : A T :
/(_B,B)xca (2V b0 AV ’yd))

B

1
— / {—VI y0° AV, yqﬁg] — 0 as B — +o0.
C 2 ’ 9 _B

Vaiu®: A Vg, 0°
/(—B,B)xc ne w9

Therefore, it follows from (5.30) that

£ € _ e\1B _ B € s € €
c / (_B’B)XC(QSS)Z - / M@y, ) / e (Veod™ +860) 67 + ]7\77(8)
< [run+ [ M (9,0 e+ Te?) +aB)

where n(B) — 0 as B — 400 and « denotes any positive real number. If ||¢|| = 0, it follows
that ¢ / (¢9)% < / (x,y,1) (actually, the equality holds in this case). In the general
Rx

case where ||q||oo > 0, then the choice & = N||¢||s/c¢® > 0 leads to

¢ 2 Nllqll3 2
- £)2 < F 1 0 V:L‘ € €
st [ Fay+ [ SR, +

by passing to the limit B — 4+o00. Combining that together with (5.29) gives :

CE

N
S o< [ Fyn) + el (5.31)
2 Jmrxc c 4cy

Note that the latter also holds in the case ||| = 0.

Now, multiply (5.31) by 2¢° > 0 and add (5.29). By using the fact that each function ¢°
is L-periodic with respect to z, it follows that, for any compact subset IC of €, there exists a
constant C'(K) (depending only on K) such that, for all € > 0,

1+ Nl|ql?
L+ Nl +2 max_ F(z,v, 1)) :
2¢1 (zy)€Q

By making the change of variables (s, z,y) = (¢°t+z-e, z,y) and coming back to the functions
us(t,z,y) = ¢°(c°t+x-e,z,y), one eventually gets the estimates (5.27) and the proof of Lemma
5.11 is complete. J

/ (P92 + | Vay o + 66| ds da dy < C(K) (
IRXIK

Let us now turn to
Proof of Proposition 5.10. For each £ > 0, one has 0 < ¢¢ < K from Proposition 5.8.
Assume the conclusion of Proposition 5.10 does not hold. There exists then a sequence &,, — 0%
such that ¢ — 0" as n — +o00. In the sequel, for the sake of simplicity, we drop the index n.
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For each ¢, under the notation of Proposition 5.9, the function ¢°(s,z,y) is a solution of
(5.23). The function u®(t,z,y) = ¢°(x - e + ¢°t, z,y) is a classical solution of

—(Cf)Qaﬁuﬁ +div(AVu®) — 0w’ —q - Vu' + f(x,y,u°) = 0in R x Q,
vAVus = 0Oon IR x 09,
d _ ke (5.32)
VkEHMZ,Wh%wéﬂxﬁ,usﬁ%a,%Q =  u(tz+ky),
=1 C

us(t, z, y)x~f3—>——>ooo’ u (t,z,y) — 1.

\ T-e— 400

Moreover, 0 < u® < 1 and u® is increasing with respect to ¢ in IR x €. Note that the
convergences of u®(t,z,y) to 1 and 0 as x - e — £00 are local in ¢ and uniform in y and in the
directions of IR¢ which orthogonal to e. Furthermore, it follows from the definition of u° that
u®(t,z,y) — 0 (resp. 1) as t — —oo (resp. t — +o0) locally in (z,y).

Up to extraction of some subsequence, three cases may occur : £/(c)? — xk € (0, +00),
e/(cf)* = +oo or /(cF)? — 0.

Let us first begin with :

Case 1 : Assume that ¢/(c°)? — k € (0,+00). From assumption (1.18), there exists a
point (ko,yo) € Q such that ky-e > 0 and ky € [I%, L;Z. Since u®(t, ko, o) — 0 (resp.
1) as t — —oo (resp. t — +00), one can assume, up to translation with respect ot ¢, that
u®(0, ko, y0) = (1 + 6)/2.

Since £/(c)? — k € (0,+00), standard elliptic estimates imply that, up to extraction of
some subsequence, the functions u° converge, in C.% (IR x Q) (for 0 < a < 1), to a function u
satisfying

KO + divy y(AV,u) — Ou — q-Veu+ f(z,y,u) = 0 in RxQ,
vAV,,u = 0 on IR x 09,
0<u<l, du > 0inRxQ

and u(0, ko,y0) = (1 + #)/2. Furthermore, for any B € IR, one has u®(B,0,y9) < u®((ko -
e)/c,0,yp) for £ small enough since ¢¢ — 07, ky-e > 0 and u° is increasing in t. But
u®((ko-€)/c®,0,y0) = u®(0, ko, yo) = (1 + 0)/2. Passing to the limit € — 0 gives

1+6
u(B,0,yy) < %, for all B € IR. (5.33)

On the other hand, it follows from Lemma 5.11 and Fatou’s lemma that

1+ Nl|q|?
LNl |y oy F(a,y, 1)) (5.34)
2¢ (z,y)€Q

P+ | Vegul?) dt do dy < C(K
(64 9 dt sy < 00

for all compact subset K of Q, where the constant C'(K) only depends on K. Let u®(z,y) be
the functions defined in Q by

ut(z,y) = tlgcnoo u(t, z,y).
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These functions can be defined since u is bounded and nondecreasing in ¢. From standard
elliptic estimates, the convergence u(t,z,y) — u®(x,y) as t — oo holds in C2¥(Q). From
(5.34), it follows then that u* are constant. But since u* solve

div(AVu®) — ¢ - Vu* + f(z,y,4*) =0 in Q,

one concludes that f(z,y,u*) =0 in Q.

From our choice of (kg, o) and since u is nondecreasing in ¢, one has ut > (1 + 6)/2 while
(5.33) yields ut < (1+0)/2. Finally, u* = (1+0)/2 and f(z,y, (14+0)/2) = 0 for all (z,y) € Q.
The latter contradicts (1.26). Case 1 is then ruled out.

Case 2 : Assume that £/(c°)> — +o00. Make the change of variables 7 = (¢°/\/2) t. The
NG

function v* (7,7, y) = u* (¥, 2,y) satisfies

&
07,0° + divy 4 (AV,,0°) — —=
) ) \/g

aTUE_Q'Vx,yUE+f($,y,UE) =0 ianxﬁ,
vAV,,v° = 0 on IR x 052

and it is globally bounded and nondecreasing with respect to 7. Since ¢¢/\/z — 0T by as-
sumption, the functions v¢ converge in Ci% (IR x ), up to extraction of some subsequence, to

a globally bounded and nondecreasing in 7 function v solving

Orrv 4+ divy y (AV,v) — ¢ Vv + f(z,y,v) = 0 in R xQ,

VAV,,0 = 0 on IR x Q. (5.35)
Furthermore, it follows from Lemma 5.11 that
£)2 1 N 2
/ [Q(vi)Q + |Vx,yvg|2] Ve dr dz dy < C(K) (% +2 max_ F(x,y, 1)>
RxK | € c 20 (zy)€Q

for all compact subset K of Q and for all € > 0. The passage to the limit ¢ — 0 together with

Fatou’s lemma leads to / |V,,v[?> = 0 for all compact subset K of Q. Hence, the function
xIC

R
v only depends on 7. By defining v* := lim, .+, v(7) and passing to the limit 7 — +oo in

(5.35), one gets that f(z,y,v") =0 for all (z,y) € Q.

On the other hand, as in case 1, up to translation in 7, one can have assumed that
ve(0, ko, yo) = (1 + 0)/2 for some (ko,yo) € Q such that ky € [[%, L;Z and ko - e > 0.
Since kg - €/1/e — +00, it easily follows that, for all B € IR,

ko - 146
UE(BaoayO) < v° (0766707y0> = UE(OakﬂayO) = %7
for € small enough. Hence, v(B,0,y9) < (1 + #)/2 for all B € IR. Therefore, vt =
lim, 0o v(7,0,50) < (1 + 6)/2 while v* = lim, o v(7,ko,v0) > (1 + 6)/2. Finally,
vt = (1 4 6)/2 and one is led to a contradiction as in case 1. Case 2 is then ruled out
too.
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Case 3 : Suppose that /(c°)? — 0. The elliptic operators (e/(¢%)?*)9y + div,(AV,,) in
(5.32) become degenerate at the limit and the arguments used in cases 1 and 2 do not work
anymore as such. Nevertheless, one can still reach a contradiction by slightly modifying the
proof in case 1.

Since 0 < u® < 1 and since (5.27) holds for all £ > 0, there exists a function v € H. (IR %)
such that, up to extraction of some subsequence, u° — u almost everywhere in IR x €2 and

(u®, ug, Vg yu) weak (u, u, Vi yu) in L (IR x K)

for all compact subset I C €. Moreover, the function w is such that 0 <« < 1, u; > 0 and

1+ Nlql?
L+ Viglloe +2 max F(z,y,1)

o (64 9 dt sy < 00 )
RxK 2¢; (z,y)EQ

(5.36)
for all compact set K C Q. B

Take now any compactly supported function ¢ € C?*(IR x ). By multiplying the first
equation in (5.32) by ¢, integrating by parts and passing to the limit £ — 0, it follows that

/]RXQ _Vm,y(p A V:L‘,yu - ut(p - (q : Vz,yu)‘P + f(Z', Y, U)(P - 0

From parabolic regularity, the function u is then a classical solution of

uy — divy y (AV,u) + ¢ Veyu— f(r,y,u) = 0 in IR x Q,
vAV,,u = 0 on IR x 09, (5.37)
0<u<l1, Qu > 0 in IR x Q.

On the other hand, one can assume, up to translation in ¢, that

1+0

Ve >0, u(t,x,y) dt de dy = |C|T (5.38)

/(U,I)X{CJr(ko,O)}
for some ko € [[%, L;Z such that ko - e > 0. Here, C + (ko,0) = {(x + ko,¥), (v,y) € C}.
Since ¢ — 07 and uf is increasing in t, it follows that, for all B € IR, there exists o > 0 such
that, for all 0 < £ < &g,

k0€

V(t,z,y) € (0,1) x C, w*(B+tz,y) < u° (t—l— c; LT, Y
= u(t,x + ko,y) (from (5.32)).

Integrate over (0,1) x C' and pass to the limit ¢ — 0. By using (5.38), it follows that

140
VBER, [ u(B+tay)dtdsdy< o] —2. (5.39)
(0,1)xC 2

From (5.36) and (5.37), it follows as in case 1 that u(t,z,y) — u™ as t — 400 where u™
is a constant function such that f(x,y,u") = 0 for all (x,y) € Q. Formula (5.39) implies that
ut < (1+6)/2 while formula (5.38), after passing to the limit & — 0 and to the limit ¢ — 400,
leads to ut > (1+6)/2.

Eventually, u™ = (1 + 6)/2, which leads to a contradiciton as in case 1. Case 3 is then
ruled out too and the proof of Proposition 5.10 is complete. 3
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Remark 5.12 A result similar to Proposition 5.10 was proved by Heinze [51] for pulsating
travelling fronts in straight infinite cylinders in the homogenization limit. Heinze did a short
proof based on gradients estimates similar to (5.27). Unfortunately, his technique does not
work in general in our framework because of the (x,y) dependance of the nonlinear source
term f.

Completion of the proof of part a) of Theorem 1.13. Choose a subsequence ¢ — 0
such that ¢ — ¢ :=lim ionf ¢ > 0 and remember that each function u® is defined in IR x Q by
e—
u(t,z,y) = ¢°(c°t+x - e, x,y).
As in case 3) in the proof of Proposition 5.10 (one has £/(¢f)* — 0 as ¢ — 0 since
¢ — ¢ > 0), the functions u® converge, up to extraction of some subsequence, in H. (IR x Q)

and almost everywhere, to a classical solution u of (5.37) satisfying the gradient estimates
(5.36), namely

2

1+ Nlq|?
L+ Nl +2 max F(z,y,1)

P+ | Vegul?) dt do dy < C(K
J o (Ve dt der dy < O(K) ( —5 max

(5.40)

for any compact subset K C Q.

The functions u® are such that u®(t + (k- e)/c*,x,y) = us(t,x + k,y) for all k € [IL, L, Z
and (x,y) € Q. Let us now prove that u(t+ (k-e)/c,z,y) = u(t, v+k,y) for all (t,z,y) € RxQ
and for all £ € Hf-l:l L; Z. Take k € H;izl L;Z. For all B > 0 and all compact set C C 2, one

has
k-e ’
R
(~B,B)xK ¢
[5( k-e ) a( k-e )]2
(~-B,B)xK ¢ ¢
k-e k-e g
< _ £\2
— ( c C‘E) /IRXIC(Ut)
ke kee)’ 1+ Nllq|l3
< ( e 6) C(K) <w+2 maX_F(ﬂf,yal)>

c c 2¢, (,9)€0

from (5.27). Therefore, one concludes by passage to the limit ¢ — 0 that u(t+ (k-e)/c,z,y) =
u(t, z + k,y) almost everywhere in IR x €, and then this equality holds for all (¢, z,y) € IR x Q
since u is continuous.

At this stage, in order to complete the proof of part a) of Theorem 1.13, we only have to
prove that u satisfies the limits u(¢,z,y) — 0 as z-e — —oo and u(t,z,y) — 1 as z-e — +00,
locally in ¢ and uniformly in y and in the directions of IR¢ which are orthogonal to e. Since u
is periodic in (z,t), namely u satisfies u(t + (k-e)/c,z,y) = u(t,z + k,y) forall k € [[4, L, Z
and for all (¢,z,y) € IR x Q, and since c is positive, it is sufficient to prove that u(t,z,y) — 0
as t — —oo and u(t,x,y) — 1 as t — +oo locally in (x,y).

The functions ¢°(s,z,y) are L-periodic with respect to = and satisfy mﬁax &°(0,z,y) =

max ¢°(0,z,y) = 6. Therefore,
C

max_ u° (—E,x,y> = max_ u° (—E,az,y) =0. (5.41)
(z,y)€Q c® (z,9)eC e
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One would like to pass to the limit in this last equality. One especially would like to be sure
that there is at least a point (Z,7) € C such that u(—7 - e/c,T,7) = #. The uniform L?
estimates for the gradient of u® with respect to the variables (¢, z,y) (see Lemma 5.11) are not
sufficient here to pass to the limit.

Nevertheless, we will use uniform estimates for the gradient of u* with respect to the space
variables (z,y). These estimates, which are independent of ¢ are stated in the following

Lemma 5.13 Assume that the restriction of the function f : (z,y,u) — f(z,y,u) to Qx[0,1]
is globally CY" with respect to u, for some &' > 0. Assume also that 1/ ler@xpo,): llaller@ys
|Allca@y < b. Then there ezists a constant C, which only depends on Q and b, such that the
functions u® solving (5.32) satisfy

||Vw,yug||Loo(sz§) <C

for € small enough.

This lemma is stated in a more general framework in Theorem 7.1 of Section 7.

Let us now turn to the completion of the proof of part a) of Theorem 1.13.

Step 1 : let us now assume temporarily that the restriction of f to Qx [0,1] is globally o
with respect to u, for some §' > 0.

First of all, it follows from (5.41) and the monotonicity of u® with respect to ¢ that
uf(t,z,y) < 0 whenever ¢t + x - ¢ < 0. Therefore, for every (to,zo,10) € IR x € such
that cty+xo-e < 0, there exists 7 > 0 such that for £ small enough and for all (t,z,y) € IR x Q
satisfying [t —to| +|(z, y) — (w0, y0)| < 7, one has v (¢, z,y) < 0. Since u® converges to u almost
everywhere and since u is continuous, one concludes that wu(ty, g, ys) < 6. By continuity, it
also follows that

V(t,z,y) € R x Q, ct+z-e<0 = u(t,z,y) <6. (5.42)

On the other hand, (5.41) yields the existence of a point (z¢,%°) € C such that u®(—2° -
e/, 2%, y°) = 0. Up to extraction of some subsequence, one can assume that (z°,y°) —
(7,7) € C. Fix any positive real number 7. It follows from Lemma 5.13 that there exist 7 > 0
and g9 > 0 such that

Ve € (0,20), VY(z,y) € B.(Z,7)NQ, u° (—%,x,y) >0 —n,

where B,.(T,7)NQ = {(z,y) € Q, |(z,y)— (Z,7)| < r} and the Lebesgue-measure of B, (T, )N
is positive. Since uf is increasing in ¢, u® (¢, z,y) > 0 —n for all (¢,x,y) € [— (2 -€)/c°, +00) X
(B.(Z,7) N Q) and for all € € (0,2¢). Since u® converges almost everywhere in IR X € to the
continuous function u, and since (2° - e)/c® — (T - e)/c, one then gets that u(t,z,y) > 0 —n
for all t > —7 - e¢/c and for all (z,y) € B,(Z,y) N Q. Since n was an arbitrary positive real
number, it follows that u(—= - e/c, T, 7) > 6.

Together with (5.42), that yields u(—= - /¢, T,7) = 6, whence

max_ u (—E, x, y> = max_ u (—ﬁ,x, y) =6. (5.43)
(z,y)EQ C c



Let us now prove that u(t,z,y) — 0 as t — —oo, locally in (z,y) € Q. From (5.26), one
has

V(t,z,y) E RxQ, ct+z-e<0 = u(t,z,y) < e HFTIE(z ), (5.44)

where, under the notations of Proposition 5.7-4), A. € [A*¢/2,A*3¢*/2] and ¢* is L-periodic
with respect to x and satisfies ming w = ming wa =60. Furthermore for each £ > 0, the
function ¢° solves (5.18) with (v, A, , 1) = (&, A, 0,eA2). Since the positive real numbers A\*?
are decreasing with respect to @ > 0 and increasing with respect to v > 0 (from Proposition
5.7), one has A>°/2 > AlL¢/* > 0 for £ small enough.

Assume now by contradiction that, up to extraction of some subsequence, A\, — +o0.
Take a sequence of points (z.,7.) € C such that @E(xg,yg) = 6. Up to extraction of some
subsequence, one can assume that (2.,y.) — (z,y) € C ase — 0. Define t = (-1 —z-¢)/c.
From (5.44), one has

'U/E(i, xs, yE) S ee—As(é(—l—g.e)ﬁ-xs.e).

Since ¢ — ¢ > 0 and x. — z, one gets u°(t,z.,y.) — 0 as ¢ — 0. Fix now any positive
number 1. From Lemma 5.13, there exist r > 0 and g5 > 0 such that

Ve € (0,20), Y(z,y) € Bo(z,y) NQ, w(t,x,y) <.

Since u® is increasing in ¢, this last estimate holds for all ¢ < t. Since u® converges to u
almost everywhere in IR x 2 and since v is continuous, it follows then that u(¢, z,y) < n for all
(t,z,y) € (—o0,t] x (B,(z,y) N Q). Since n > 0 was arbitrary, one concludes that u(t,z,y) = 0
for all ¢ < t. The strong maximum principle implies that u(¢,z,y) = 0 for all t < ¢ and
(z,y) € Q. Eventually, u is identically equal to 0 in IR x Q. The latter is in contradiction with
(5.43).

Therefore, the numbers . are bounded from above, and from below by A\“¢/* for ¢ small
enough. Up to extraction of some subsequence, there exists then a real number X such that

A = A> A4 > 0ase — 0. (5.45)

Remember now that the functions 1)¢ satisfy ming U = ming Y° = 0. One claims that

3C >0, Ve >0, max ¢ < C. (5.46)
Q

Indeed, if that were not true, then maxg 1;5 — 400 up to extraction of some subsequence.
The L-periodic with respect to = functions

— e
v max 1)°
D)

solve (5. 18) with (7, MG ) = (¢, A, 0,e)02), and are such that maxg ¢)° = maxg ¢° = 1 and
ming P = ming @/} — 0 as ¢ — 0. Therefore, as done in the proof of Proposition 5.9, the
positive functions 1)~ converge in C>*(Q) (for all 0 < o < 1) to a nonnegative solution 1 of
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(5.18) with (v, A, ¢, 1) = (¢, A,0,0). Furthermore, there are some points (Z,%) and (z,y) € C
such that ¢(z,y) = 0 and ¢(7,y) = 1. The strong maximum principle and Hopf lemma imply
that ¢ = 0, which is impossible.

Therefore, (5.46) holds. As a consequence, the bounded sequence of functions e converges,
up to extraction of some subsequence, to a solution ¢ of (5.18) with (7, A\, ¢, 1) = (¢, A, 0,0).
Furthermore, ming ¢ = ming ¢ = 0 and ¢(x,y) < C for all (z,y) € Q. The passage to the
limit € — 0 in (5.44) provides

Vit,z,)) ERxQ, c+z-e<0 = ut,z,y) < TNz y). (5.47)

As a consequence, u(t,x,y) converges locally to 0 as z - e — —o0 or t — —o0.

Furthermore, as already underlined, the function u satisfies the gradient estimates (5.40).
Since u is nondecreasing with respect to the variable ¢, one finally gets, by using the same
arguments as in cases 1 or 3 of Proposition 5.10, that u(t,z,y) approaches a constant u* as
t — 400, and that f(z,y,u™) =0 for all (z,y) € Q. From the normalization condition (5.43),
it follows then that u* > 6, whence, due to the profile of f, ut = 0 or u™ = 1. The first
case would imply, thanks to the maximum pinciple, that v = #. That is impossible because
u(—o0,z,y) = 0. Eventually, ut =1 and u(t,x,y) — 1 as t = +oo.

Lastly, from the strong maximum principle, one has 0 < u(¢,z,y) < 1 for all (¢,z,y) €
IR x Q. That completes the proof of part a) of Theorem 1.13 in the case where f is of class
C" with respect to u in Q x [0, 1].

Step 2 : consider now the case where the function [ satisfies (1.24-1.26) and is just globally
Lipschitz-continuous in Q x IR, instead of being C™ with respect to u in Q X 0, 1].

Remember that the fields ¢ and A are respectively of class C?(Q) and C3(Q), where § > 0.
Since f satisfies (1.24-1.26), there exists a sequence of functions f, satisfying (1.24-1.26) and
such that sup, Lip(f,) < 400, f, — f uniformly in © x IR and, for each n, the restriction f,
of f, to Q x [0,1] is of class C'*° with respect to u.

From step 1, for each n, there exists a classical solution (¢, u,) of (1.28) with the nonlinear
source term f,,. Furthermore, ¢, > 0,0 < u, < 1in IRxQ, u, is increasing with respect to ¢t and
one can assume that maxg u,(—z-e/c,, x,y) = maxg u,(—z - e/c,,x,y) = 0. Lastly, the func-
tions wu, satisfy the gradient estimate (5.40) with the nonlinearity F,(z,y,t) = I fu(x,y, 7)dT.
Namely, for any compact subset K C €, there exists a constant C(K) only depending on K
such that

1+ Nl|gl|?
Vn, / ’C(atui + |V:v,yun|2) dt dx dy < C(K) <7+ lall5 + 2 max F,(z,y, 1)> )
IRXx

2¢1 (z.y)€0

From standard parabolic estimates, there exists a constant C' such that ||, c:(gyg < C
for all n. Therefore, up to extraction of some subsequence, the functions u, converge locally
uniformly to a function u which, from parabolic regularity, is a classical solution of

%—div(AVu)—l—q-Vu = f(z,y,u) in R x Q,

ot
vAVu = 0 on IR x 01,
0<u<l, % > 0in IR x Q.
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Furthermore, the function u satisfies the gradient estimates (5.40).
In order to pass to the limit n — 400 for the speeds ¢,, one proves the following

Lemma 5.14 There exist 0 < ¢ < € < 4+00 such that
Vn, 0<c<c¢,<¢<+o00. (5.48)

Proof. Since the functions f, satisfy (1.24-1.26) and are uniformly Lipschitz-continuous, there
exists a C19([0,1]) function f such that f(s) = 0 for all s € [0,0/2] U {1}, f(s) > 0 for all
se(0/2,1), F(1) <0, and

VTL, V(Iayas) < Q x [07 1]? fn(x,y,s) < 7(8)

From the results of step 1, there exists a classical solution (¢,@) of problem (1.28) with the
nonlinear source term f. Furthermore, ¢ > 0 and @, > 0.

By using a sliding method as in the proof of Lemma 4.1, one is going to prove that ¢, < ¢
for all n. Choose any arbitrary n and let ¢, and ¢ be the functions defined by ¢, (s, z,y) =
Un((s —x-€)/cn,z,y) and @(s, x,y) = u((s —z-e) /¢, z,y). The functions ¢, and ¢ are of class
CH(IR x Q) (for each p € [0,1)). Assume now by contradiction that ¢, > €. Since f, < f
and 0,0 > 0, it follows that the function ¢ is a supersolution for the equation satisfied (3.2)
satisfied by ¢, (with ¢ = ¢, and f = f,), in the sense that

div, , (AV,, @) + (EAE)d,, + div, y( 5_)
+05(6AV 44 0) — ¢ - Viyo

(et edBh ha5) (5.49)

= (E - Cn)as + fn(_xa yaa) - 7(5)
< 0 inD(Rx9Q).

As in the proof of Lemma 4.1, by sliding ¢ with respect to ¢, and by using the fact that the
function f,(z,y, u) is nonincreasing with respect to the variable u in a right neighborhood of 0
as well as in a left neighborhood of 1, uniformly in (x,y), one gets then the existence of a real
number 7* such that ¢(s + 7%, z,y) > ¢,(s,2,y) for all (s,z,y) € IR x Q, with equality at a
point (3, 7,7). Therefore, the function z(t,x,y) := ¢p(cat+x-€,2,y) — Plcpt +x e+ 7, 2,9) =
un(t, x,y) — u((c,/€)t, x,y) is nonpositive, it vanishes at (¢,Z,7) = (§—T - €)/c,, T,7), and it
is a classical subsolution of

01z — divy 4 (AV,2) + q - V2
+fn(xaya$(cnt +r-e+ T*,l',y)) - fn(xaya ¢n(cnt +xT- 6,1‘,?})) < 0 in IR x Q.

Since the function f;, is globally Lipschitz-continuous, there exists a bounded function C'(¢, z, y)
such that
Oz — divy 4 (AVy2) +q - Vayz +C(t,z,y)z <0 in R x €.

On the other hand, one has VAV, ,z = 0 on IR x 0§2. The strong parabolic maximum principle
implies that z(t,z,y) = 0 for all t < ¥ and for all (z,y) € Q. By definition of z, and since
both ¢ and ¢, are L-periodic with respect to z, one concludes that z = 0 in IR x £, that is
bn(s,2,y) = ¢(s+7%, z,y). Coming back to (5.49), that means that ¢, = 0 which is impossible.
As a conclusion, the assumption ¢ < ¢, cannot hold, which shows the right-hand side of (5.48).
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Let us now prove the existence of a positive real number ¢ such that ¢ < ¢, for all n. Firstly,
under the notation in (1.26), fix two real numbers a,b such that 1 — p < a < b < 1. From
(1.24-1.25) and (1.26), the function f(z,y,u) is uniformly bounded from below by a positive
constant in QX [a, b]. Therefore, there exists a function f of class C1*([0, b]) such that f(s) =0
for all s € [0,a] U {b}, f(s) >0 for all s € (a,b), f'(b) <0 and

Vo, V(z,y,s) € Xx[0,b], [f(s)< fulz,y,s).

One also extends f by 0 outside the interval [0,b]. From step 1, there exists then a classical
solution (¢, u) of (1.28) with the nonlinear source term f, and where the limit of u(t, z,y) as
x-e — 400 is equal to b (instead of 1 in (1.28)). Furthermore, ¢ > 0 and u, > 0. As above,
by using a sliding method, it easily follows then that ¢ < ¢, for all n.

That completes the proof of Lemma 5.14. 3

Lemma 5.14 yields immediately that, up to extraction of some subsequence, one can assume
that ¢, — ¢ € [¢,¢] asn — +o0. Furthermore, since the functions u,, are globally and uniformly
C(IR x Q) and locally converge to u, the function u satisfies the periodicity condition

d k- _
Vk e [[LiZ, w (t + %,x,y) =u(t,x + k,y) for all (t,z,y) € R x {2 (5.50)
i=1

and the normalization condition

max u (—E,x,y> = max u (—B,x,y> =0. (5.51)
Q & c c

Since the eigenvalue problem (5.18), with ¢ = 0, does not depend on the nonlinear source
term f,, it follows then from (5.45) and (5.47) that, for each n, there exists a real number
Xp > Aben/t > 0 and there exists a C2(Q) function ¢, (z,y) solving (5.18) with (v, \, ¢, u) =
(¢ny An, 0,0), and such that ming Un = ming Un = 0 and

V(t,z,y) ERXQ, cpt+z-e<0 = u,(t,z,y) < eX"(C"t”'e)@/N)n(:z:, Y).

Furthermore, it follows from Lemma 5.14 and from the fact that the numbers A*" are increasing
with respect to v > 0, that A, > AM</* > 0 for all n.

Let now (2, y,) € C be such that ¢, (2, y,) = 0. Up to extraction of some subsequence,
one can assume that (2,,y,) = (T, Yso) € C. For all n and for all t < —x,, - €/c,, one has

l,c/4 .
Un (ta Tn, yn) < e (enttan e)'

Since the functions u, are globally and uniformly C' and converge locally to the continuous
function u, one finally gets that

Vt S TP 6/6’ U(t, Loy ?Joo) S 06/\1,2/4(@5—'_9:00.6).

In particular, u(t, oo, Yoo) — 0 as t = —oo.
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On the other hand, as already underlined, the function u is nondecreasing with respect to
t, and it satisfies the gradient estimates (5.40). It follows then that u(t,z,y) converges to two
constants u® locally in (z,y) as t — Fo00. Moreover, u* are such that f(z,y,u*) = 0 for all
(z,y) € Q. From the previous paragraph, one has u~ = 0. The normalization condition (5.51),
the monotonicity of « in ¢ and the profile of the nonlinearity f imply that either u™ = 6 or
uT = 1. The case ut = § would mean that u(t,z,y) < 6 for all (t,z,y) € IR x Q. Because
of (5.51), the strong maximum principle would imply that wu(t,z,y) = 0. That is impossible
because v~ = 0. Therefore, u* = 1.

Eventually, u(t,z,y) — 0 (resp. — 1) as t — —oo (resp. ¢t — +00) locally in (z,y) € Q.
As already observed, the periodicity condition (5.50) and the positivity of ¢ imply then that
u(t,z,y) — 0 (resp. — 1) as - e — —oo (resp. - e — +00) locally in ¢ and uniformly in y
and in the directions of IR¢ which are orthogonal to e. Lastly, the strong maximum principle
implies that 0 < u < 1 in IR x Q and the proof of part a) of Theorem 1.13 is complete. \

6 Nonlinearity f without ignition temperature

This section is devoted to the proof Theorem 1.14. Throughout this section, f denotes a
function satisfying (1.24-1.25) and (1.27). One assumes that ¢ and A are respectively globally
C*(Q) and C3(Q) (with § > 0) and that they satisfy (1.19) and (1.21-1.22).

This section is divided into four main subsections : firstly, we prove of the existence of
a solution (¢*,u*) of (1.28) for a “minimal” speed c¢*; secondly, we prove the existence of a
solution (¢, u) for each ¢ > ¢*; thirdly we show that there is no solution (¢, u) as soon as ¢ < ¢*;
lastly, under the additional assumption f.f(z,y,0) > 0 for all (z,y) € Q, we prove that any
solution u of (1.28) is increasing with respect to time t.

6.1 Existence of a solution (c¢*,u*) of (1.28)

Following the notations of Berestycki and Nirenberg [18], let x be a C''(IR) function such that
0<x<1linRR, x(uy=0forallu <1,0< x(u) <1forall ue(1,2) and x(u) =1 for
all u > 2. Assume moreover that y is nondecreasing in IR. For all # € (0,1/2), let xy be the
function defined by

Vu € R, xo(u) = x(u/0).

This function xy is such that 0 < xy < 1, xp = 0in (—00,6],0 < xy < 1in (#,26) and xp = 1 in
[20, +00). Furthermore, the functions y, are nonincreasing with respect to 6, namely, xs, > X,
Lastly, set
fo(z,y,u) = f(x,y,u)xo(u) forall (x,y,u) € Q x IR.

In other words, one cuts off the source term f near u = 0.

For each # € (0,1/2), the function fy satisfies (1.24-1.25) and (1.26) with the ignition
temperature . Therefore, Theorem 1.13 yields the existence of a classical solution (¢g, ug) of
(1.28) with the nonlinearity fp. Furthermore, the function wy is increasing in ¢ and unique up
to translation in ¢ and the speed ¢y is unique and positive.

One has then the following lemma :
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Lemma 6.1 The speeds ¢y are nonincreasing with respect to 6.

Proof. The proof is omitted since it is identical to the proof of the estimates ¢ < ¢, < € in

Lemma 5.14. -
Lemma 6.2 There exists a constant K* such that ¢y < K* for all 6 € (0,1/2).

Proof. Let g be a C*(]0,1]) function such that g(0) = g(1) =0, g > 0in (0, 1), ¢’(1) < 0 and
V(z,y,u) € A x[0,1], f(z,y,u) < g(u).

Let us define gy(u) = xo(u)
(

satisfies (1.6). For each 0 €
problem

g(u) for all @ € (0,1/2) and for all v € [0,1]. Each function gy
0,1/2), there exists then a solution (ky, vy) of the one-dimensional

{ vg — kovy + go(vp) =0 in IR, (6.1)

vp(—00) = 0 < vy(§) < vp(+00) =1 forall € € IR.
The speed kjy is unique and positive and the function vy is increasing and unique up to transla-
tion. Furthermore, it follows from a result in §8 in [18] that there exists a real number & such
that 0 < ky <k forall 0 <0 <1/2.
On the other hand, for each 6 € (0,1/2), the positive function vj satisfies the linear elliptic
equation
(vp)" — ko(vy)" + gy(ve)vy =0 in IR.

The function gj is defined in [0, 1] by

Vue 0,11, ghw) = 51 (3 ) o) + xo(w)g'(w).

The term x'(u/f) vanishes outisde the interval [0, 26] and,

L, (u L . / .
vue 8,261 |5 () 9| < 5Nl 26Lip(g) < 20Xl Liblo).

Since |xg(u)g'(v)] < ||¢'l|oo for all @ € (0,1/2) and u € [0, 1], it follows then that the functions
gp are globally bounded in [0, 1], uniformly with respect to 8 € (0,1/2). Since the coefficients
k¢ are also bounded independently of #, one concludes from standard elliptic estimates and
from the elliptic Harnack inequality that there exists a constant C' such that

Vo € (0,1/2), VEe R, |vj(&)| < Cup(E).

From (6.1) and the boundedness of the speeds kg, one gets then the existence of a constant C
such that X
V0 € (0,1/2), VEE IR, 0<gy(vg(§)) < Cup(8). (6:2)

Next, as in Lemmas 5.4 and 5.5, let ¢ € C?(Q2) be an L-periodic with respect to x function
such that vA(Vy + €) = 0 on 0S.
Take any 6 € (0,1/2) and consider the function @y defined by

V(s z,y) € RxQ,  y(s, z,y) = vo(s + P(x,y)).
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As in the proof of Lemma 5.4, it is straighforward to check that the function ¥y satisfies
vA(V 4,09 + €0599) =0 on IR x 0f)

and
Loy + fg(l‘, Y, @9) = diVI’y(Avm,y’ﬁg) + (éAé)ass’ﬁg + diV(Aéas’ﬁg) + O (éAVI’y@Q)
—-q- V:v,yﬂﬂ - (q e+ 00)85770 + f@(za Y, 770)
= [ko(€ + VY)A(€ + V) + divyy (A(e + Vi) — q - (€ + V) — vy (§)
+fo(z,y,v9(§)) — (€+ VY)A(E + Vi))go(ve(£)) in IR x Q,

where £ = s+ 1(z,y). Remember that fy(z,y,u) < go(u) for all (z,y) € Q and u € [0, 1].
From (6.2) and the nonnegativity of gy, one gets

Lty + fo(w,y, Bg) < [ko(€+ V) A@ + V) + divyy (A + V) = g+ (€ + V) = c5 + Clug(€).
Assume now by contradiction that ¢y > maxg [ke(e + V) A(e + V) + div,, (A(é + V) —
q - (6 + Vip) 4+ C]. Since function v} is positive, the function 7, satisfies

Lvg + fo(z,y,09) <0 in IR x Q.

In other words, @y is a supersolution for the equation (3.2) satisfied by the function ¢y(s, x,y) =
up((s —x - e)/cy, z,y). By sliding vy with respect to ¢y -as in Lemmas 4.1 or 5.14- one is then
led to a contradiction.

Therefore,

¢o < max k(€ + V) A(E + V) + divy, (A6 + Vb)) — ¢ - (64 Vi) + C1.

Since the real numbers ky are bounded independently of 6 (and since C' in (6.2) does not
depend on 0), the conclusion of Lemma 6.2 follows. 3

Lemmas 6.1 and 6.2 yield the existence of a positive real number ¢* such that
co /¢t >0 as 6\ 0.

Consider a sequence 6, ~\, 0. Up to translation in time ¢, one can assume that
ug, (0,19, y0) = 1/2, where (¢, yo) is an arbitrarily chosen point in Q. From standard parabolic
regularity theory, the functions ug, converge locally uniformly, up to extraction of some sub-
sequence, to a function u*, which is a classical solution of

ow* — div(AVu*) + ¢ - Vu* — f(z,y,u*) = 0 in IR x Q,
vAVu* = 0 on IR x 012,
d B bee (6.3)
Vk e [[LiZ, Y(t zy) € RxQ, <t+ el y> = u*(t,x + k,y).
i=1
Furthermore, by passage to the limit, u* is such that 0 < u* < 1, u*(0, ¢, yp) = 1/2, and u*

is nondecreasing with respect to the variable ¢. Lastly, since each function uy, satisfies the
inequality (5.40) with

max Fy (z,y,1) = max / fo, (xz,y, 7)dr (< max F(z,y,1))
(z,y)en 2,Y)EQ (zy)€Q
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instead of max, )5 F(z,y,1), it easily follows from Fatou’s lemma that the function u* itself
satisfies (5.40). One concludes then as in the proof of part a) of Theorem 1.13 that the
function u*(t,x,y) converges locally in (z,y) as t — 400 to two numbers u* € [0, 1] such that
f(z,y,u*) =0 for all (z,y) € Q. Since u*(0, zg,yo) = 1/2 and Jyu* > 0, and since f is positive
in Qx (0,1), one concludes that u*(¢, z,y) — 0 (resp. 1) as t — —oo (resp. t — +00) locally in
(x,y). From the (¢, z)-periodicity of u* (see the first assertion in (6.3)) and from the positivity
of ¢*, it follows that u*(¢,x,y) — 0 (resp. 1) as x - e — —o0 (resp. x - e — +00), locally in ¢
and uniformly in 3 and in the directions of JR? which are orthogonal to e.

Eventually, the couple (¢*,u*) is a classical solution of (1.28) with the nonlinearity f.
Furthermore, the strong maximum principle applied to any function of the type u*(t+h, x,y)—
u*(t,z,y) for any h > 0 implies that u* is increasing with respect to ¢ in IR x Q.

6.2 Existence of a solution (c,u) for all ¢ > ¢*

This subsection is devoted to the proof of the following

Proposition 6.3 For each ¢ > c*, there exists a solution u of (1.28), with the speed ¢, and
such that u is increasing with respect to t.

Proof. The case ¢ = ¢* has been done above in section 6.1. Let us now fix a real number
¢ > ¢*. One shall construct a solution u of (1.28) for the speed c¢. The way of doing that
consists, as in section 5, in solving a regularized problem in finite cylinders with respect to the
variables (s,z,y), and then in passing to the limit in the whole cylinder and in making the
regularization parameter converge to 0.

Since the restriction of the function f to € x [0, 1] is of class C1?(Q2 x [0, 1]) (where ¢ > 0)
with respect to the variable u, the function v = d;u* is bounded in C*(IR x Q) and of class C?
with respect to the variables (z,y) in IR x €. Furthermore, it is a nonnegative solution of the
linear parabolic equation

O — div(AVv) + ¢ - Vo — fu(z,y,u")v =0 in IR x

with Neumann boundary conditions vAVy = 0 on IR x 0€). From the strong maximum
principle and Hopf lemma, it follows that v is positive everywhere in IR x €2. From Schauder
interior estimates [69], one has

v(thanyO) € IR x Qa |'Ut(t0ax05y0)| S Ol max ’U(t,l‘,y)
{tO_IStSt07 (x,y)EQ, |(x,y)—(x0,y0)|§1}

for some constant C independent of (¢, z¢,%o). Choose now a given vector ko € [[%, L; Z
such that ko - e > 0. It follows then from Krylov-Safonov-Harnack-type inequalities (see e.g.
[43], [56], [68]) that

_ ko - e
V(to, To, yo) € IRXSY, max v(t,z,y) < Cyv (t + 0* , To — kanO>
{to—1<i<to, (z,y)€Q, |(z,9)—(z0,y0)|<1} ¢
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for some constant Cy independent of (to,xg,_yo). Therefore, |vi(to, zo,y0)| < C1C0(t + (ko -
e)/c*, xo — ko, yo) for all (to,x9,y0) € IR x . But the function v = Jyu* satisfies the same
periodicity condition in the variables (¢, z,y) as u*. As a consequence,

V(to, o, y0) € R x Q,  |vy(to, w0, yo)| < C1Cou(to, To, Yo)-

In other words, the function ¢*(s,z,y) = u*((s — x - €)/c*, x,y) satisfies |0ss0* (s, z,y)| <
(C1Cy/c*) 050" (s, z,y) for all (s,z,y) € IR x Q.

For any € > 0, let L. be the elliptic operator defined as in (5.2) by L.¢ = (€Aé + €)pss +
divy y(AV,,0) + divy ,(Aéps) + 05(EAV, y¢) — q - Vi yd — (¢ - €+ c)ps. From the definition of
¢*, one has L.¢* + f(z,y,0*) = ¢t + (¢* — ¢)¢i. Hence,

4 C:
L5¢*+f($,y,¢*)<<6 1*2+c*—c)¢:<0 in IR x Q (6.4)
c
for € small enough.
Choose ¢ small enough so that (6.4) holds. Let a be any positive real number. For any
7 € IR, let h, := min ¢*(—a + 7,-,-) = min ¢*(—a + 7,-,-) (remember that the function ¢*
9 c

is L-periodic with respect to z). Under the notations of section 5.1 and by using Schauder
fixed point theorem as in Lemma 5.1, it follows that there exists a solution o-(s,2,y) €
C(X,) NC%*(%,) of

LE¢T + f(x, y, ¢T) - 0 in Ea’
VA(Vyy0r +€05¢0;) = 0 on (—a,a) x 09,
¢, is L-periodic w.r.t. z,
o (—a,z,y) =h,, é.(a,z,y) = ¢*(a+T1,2,y) forall (z,y) € Q.

(6.5)

This can be done by writting ¢, = v + [h, + ££2(¢*(a + 7,2,y) — h,)] and solving a problem
with unknown v.

The function f being nonnegative, one has L.¢, < 0. Since ¢, is not constant in 3, because
br(—a, ) =h, < ¢*(—a+rT,--) < p*(a+T,-,-) = ¢:(a,-, ), the maximum principle and the
Hopf lemma yield that

V(s,z,y) € (—a,a] xQ, h, < ¢.(s,2,y). (6.6)

Similarly, since f(x,y,u) = 0 for all (z,y) € Q and for all u > 1, one gets ¢, < 1 in 3.
Therefore, the limit ¢*(+o0,-,-) = 1 implies that ¢*(s + 7 + k,2,y) > ¢,(s,2,y) in X, for
k large enough. Let k be the smallest nonnegative k such that the latter holds and assume
that k > 0. Since ¥, is compact, it necessarily follows that ¢*(s + 7 + k,2,y) > ¢.(s,z,y) in
¥, with equality somewhere at a point (5,Z,%). Since ¢* is increasing in s, it is found that
¢*(_Q+T+E’ ) ) > ¢*(_a+’r’ ) ) > h, = ¢T(_a” ) ) and ¢*(a+T+Ea i) ) > ¢*(a+T, i) ) =
¢, (a,-,-). Therefore, (3,7,7) € (—a,a) x Q. But, from (6.4), the function ¢*(s + 7 +k, x,y) is
a supersolution for the elliptic equation which ¢, is a solution of, and both ¢*(s + 7 + k, z,y)
and ¢, satisfy the same boundary conditions on (—a, a) x 9. Therefore, the strong maximum
principle and Hopf lemma imply that ¢*(s + 7 + k,z,y) = ¢,(s,z,y) for all (s,2,y) € %,
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which is impossible because of the different boundary conditions at s = +a. As a conclusion,
k=0 and

V(S,,I',y) € iaa (]ﬁT(s,x,y) < ¢*(S +7_axay)' (67)

Note in particular that, since ¢* is increasing in s, one has ¢, (s, z,y) < ¢*(a+7,z,y) if s < a.
Putting that together with (6.6) leads to

V(s,z,y) € (—a,a) X Q, h, < ¢,(s,2,y) < ¢*(a+7,2,y).

Then, by using the same sliding method as in Lemma 5.2, it follows that ¢, is increasing
with respect to the variable s and that ¢, is the unique solution of (6.5) in C'(X,) N C%(%,).
Furthermore, since the boundary conditions for ¢, at s = +a are continuous and increasing
with respect to 7, one can prove, by using similar arguments as in Lemma 5.3, that the functions
¢, depend continuously on 7 in C(X,) N C?%(%,), and are also increasing with respect to 7,
in the sense that if 7 < 75, then ¢,, < ¢,, in ¥,. On the other hand, since ¢*(—o0,-,+) =0
and ¢*(+00,-,-) = 1, it follows from (6.6) and (6.7) that ¢, — 0 (resp. 1) as 7 — —oo (resp.
T — +00), uniformly in ¥,. Therefore, there exists a unique 7(a) € IR such that ¢= := ¢, (4
solves (6.5) and satisfies, say for a > 1,

1
ds do dy = =|C).
/(O,I)chﬁ (5,2,y) ds dz dy 2| |

Choose a sequence a,, — +00. From standard elliptic estimates, the functions ¢***» converge

in C2*(IR x Q) (for 0 < o < 1), up to extraction of some subsequence, to a function ¢¢ solving

L5¢6+f(xaya¢a) = OinRXQa
VAV, 0% +é¢5) = 0on IR x 09Q, (6.8)
¢° is L-periodic w.r.t. z.

Furthermore, the function ¢° is nonincreasing with respect to s and it satisfies 0 < ¢° < 1 in
IR x Q and

1
/(0 e O°(s,x,y) ds dx dy = §|C’| (6.9)

Standard elliptic estimates together with the monotonicity of ¢° with respect to the variable

s imply that ¢°(s,x,y) — ¢°%(x,y) as s — oo in CZZOCO‘(Q), where the functions ¢ range in
[0, 1], are L-periodic with respect to x and satisfy

vAV¢S. = 0 on 09. '

By integrating (6.10) on a cell C, one gets / f(z,y,¢5) =0, whence f(z,y,¢%) = 0 since the
c
function f is nonnegative. By multiplying (6.10) by ¢% are integrating over C, one concludes
that / V¢ AV ¢S = 0. Eventually, both functions ¢ are constant and such that f(z,y, ¢%) =
c

0 in Q. Since [ satisfies (1.27), the normalization condition (6.9) implies then that ¢° = 0
and ¢ = 1.
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Let us now come back to the variables (¢,x,y). As it was done in the proof of Lemma
5.11, it follows from (6.8) and from the limiting behaviour of ¢*(s,x,y) as s — oo, that the
functions u®(t, z,y) := ¢°(x - € + ct, x,y) satisfy the gradient estimates (5.27), independently
of €. As done in section 5.4, there exists then a function v € H} (IR x Q) such that, up to
extraction of some subsequence, u® — u weakly in H. (IR x ). From parabolic regularity,
the function u is then a classical solution of

uw — div(AV,yu) +q- Vyu— f(z,y,u) = 0 in R x Q,
vAV,,u = 0 on IR x 09,
0<u<1 wu > 0inRxQ.
Furthermore, for all k € [IL, L; Z, the equality u®(t + (k-e)/c,x,y) = v (t,v + k,y) in IR x Q
carries over for u at the limit & — 0, almost everywhere and then everywhere in IR x Q by
continuity of u. Lastly, the function u satisfies

1
u(t,z,y) dt de dy = —|C 6.11
/0<x-e+ct<1, (z,y)eC ( y) J 26| | ( )

and the gradients estimates (5.40).

Next, let us prove that the function u satisfies the limiting conditions u(¢, z,y) — 0 (resp.
1) as t — —oo (resp. t — 400). As done in section 5.4, there exist two reals numbers
u® € [0,1] such that u(t,z,y) — u* locally in (z,y) as t — 4oo, and f(z,y,u*) = 0 for all
(z,y) € Q. From (1.27) and (6.11) and from the monotonicity of u with respect to ¢, one
concludes that v~ = 0 and u™ = 1. Eventually, the (x,¢)-periodicity of u and the positivity of
¢ imply that u(t,z,y) — 0 as v - e — —oo and u(t,z,y) — 1 as x - e — 400, locally in ¢ and
uniformly in 3 and in the directions of JR? which are orthogonal to e.

Hence, the couple (c,u) is a classical solution of (1.28). Furthermore, for any h > 0, the
nonnegative function u(t + h,x,y) — u(t, x,y) is actually positive everywhere in IR x Q from
the strong parabolic maximum principle. That means that u is increasing with respect to time
t. That completes the proof of Proposition 6.3. n

6.3 Nonexistence of solutions (c,u) if ¢ < ¢*

Under the notation of the beginning of section 6.1, for each # € (0,1/2), let (cg,ug) be the
unique (up to translation in ¢ for ug) solution of (1.28) with the nonlinearity fy. One knows
that uyg is increasing with respect to the variable t. Remember that each function fy is extended
by 0 outside the interval [0, 1].

In order to complete the proof of Theorem 1.14, part a), let us prove the following

Lemma 6.4 Let ¢ < ¢*. Then there is no solution (c,u) of (1.28).

Proof. Assume by contradiction that there exists a solution (¢, u) of (1.28) for a speed ¢ < ¢*.
From Lemma 6.1, there exists a positive real number # small enough so that ¢ < ¢y.

Lemma 3.1 implies that ¢ > 0. The function ¢p(s, z,y) := ug((s — z - €)/cp, x,y) is of class
CYH(IR x Q) (for each p € [0,1)) and it is a subsolution for the equation (3.2) satisfied by
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(s, z,y) :==u((s —z-e)/c,x,y), in the sense that

(€A€)Dsspg + divy y (AV 4, d0)
+div,,, (A€ Os¢9) + 05 (EAV 4 4 d0)
—q - Vayo — (q-€+¢)0shg + f(2,y,09) = (co— ) Isp (6.12)
+f(xa Y, ¢9) - fi('%‘a Y, ¢9)
> 0 inD(RxQ)

since 0,09 > 0in IR X Q, ¢ < ¢g and fy < f. On the other hand, ¢y(—00, -, ) = ¢p(—o00,-,:) =0,
bp(+00,-,-) = ¢(400,-,-) = 1 and the function fp is nonincreasing in a left neighborhood of
0 (in fact, fo(z,y,u) = 0 in O x [0,0]) as well as in a right neighborhood of 1. Furthermore,
both functions ¢y and ¢ are L-periodic with respect to  and satisfy the same Neumann-type
boundary conditions on IR x 0€). Therefore, with the same sliding method as in Lemmas 4.1
and 6.1, it is found that there exists a real number 7* such that ¢g(s+7*, z,y) = ¢(s, x, y) for all
(s,z,y) € Rx Q. Putting that into (6.12) implies that (cp—c) 009+ f (1, y, dg) — fo(, y, o) =
0, whence ds¢9 = 0. One has then reached a contradiction.

That completes the proof of Lemma 6.4 as well as that of Theorem 1.14, part a). J

6.4 Monotonicity of « with respect to ¢ in the case f(z,y,0) > 0

In this subsection, one proves that every solution u of (1.28) is increasing in ¢ provided that
f satisfies the additional assumption that f(z,y,0) := lim,_,o+ f(z,y,u)/u is positive in .
Let us first state the following

Lemma 6.5 Let f be a function satisfying (1.24-1.25) and (1.27) and assume that the function
(z,y) = C(z,y) :== fF(2,y,0) is positive for all (x,y) € Q. Let (c,u) be a classical solution of
(1.28). Then ¢ > 0,

0<A:= liminf 7%(75’% y)

< 400,
o0, (zy)eC u(t,z,y)

and, under the notations of Proposition 5.7, one has pi.c(A/c) = 0.

Proof. The positivity of ¢ follows from part a) of Theorem 1.14 (that can also be obtained
directly by integrating the equation satisfied by ¢(s,z,y) = u((s — x - €)/¢,z,y) over IR x C
as in Lemma 3.1).

Next, as it was done for the function u; in the course of Proposition 6.3, it follows from
standard interior estimates, from Harnack type inequalities and from the (¢, x)-periodicity of
u, that both fields u;/u and V, ,u/u are globally bounded. Let now A be defined as in Lemma
6.5. One has A € IR.

Take a sequence (t,, Ty, y,) such that (z,,y,) € C, t, — —oo and

Uty Ty Yn) /U (tn, Ty Yn) — A as n — +oc.

Up to extraction of some subsequence, one can assume that (T,,%,) — (Too,¥so) € C as
n — +oo. From the (¢, z)-periodicity of u and from the limiting behavior of u as z - e — —o0,
one has u(t,z,y) — 0 as t — —oo locally in (x,y). Consider now the positive functions

u(t +tn, 7, y)

wn(t,x,y): u(t . y)
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Since u;/u and V,,u/u are globally bounded, the functions w, are locally bounded. They
satisfy the equations

flz,y,u(t+ty, 2, y)

w, =0 in RxQ
u(t +ty, ,y)

Oywy, — div(AVw,) + q - Vw, —

together with boundary conditions vAVw, = 0 on IRx0S2. From standard parabolic estimates,
the positive functions w, converge in C,.(IR x Q), up to extraction of some subsequence, to a
nonnegative C!'(IR x Q) solution wu(t,x,y) of

Do — div(AVwe) + ¢ - Ve — ((2,Y)ws = 0in IR x Q,
vAVws, = 0on IR x 09).

Furthermore, wy (0, T, Yoo) = 1, whence wy, is positive from the strong maximum principle
and Hopf lemma. The function wy, is also such that we (t + (k- €)/c, x,y) = woo(t, x + k, y)
for all k € [1%_, L;Z and for all (t,z,y) € IR x Q.

On the other hand, one has

uy(t + ty, 2, 9)

o(t,z,y) forall (¢,z,y) € R x €.
Wttt y) wy(t,x,y) for all (t,z,y) X

Oywy, (ta Z, y) =
It follows then from the definition of A and from the choice of (¢, Z,, Yn) that Owe (0, Teo, Yoo) =
A = Awo(0,Z00, Yoo) and that dyweo(t,x,y) > Aws for all ¢t € IR and for all (z,y) €
C. Together with the (t,z)-periodicity of ws, one gets yweo(t, z,y) > Aws(t,z,y) for
all (t,z,y) € R x Q. Since dywy/w, = w(t + tn, x,y)/u(tn, Tn,yn) and Vg w,/w, =
Vayt(t+tn, ,y)/u(ty, Tn, yn), and since u; /u and V, yu/u are globally bounded, it follows that
O Weo /Woo and VW /we are globally bounded. Consider now the function z = 0w/ Weo.
It is actually a claissical solution of the following linear parabolic equation

zt—div(AVz)—2%-Vz+q-Vz = 0in R x Q,

> VAV2 = 0on IR x dQ,

and z > A with equality somewhere. From the strong maximum principle and Hopf lemma,
together with uniqueness of the corresponding Cauchy problem, it follows that z(¢,z,y) = A
for all (¢,z,y) € IR x Q. Therefore, the function wy (¢, z,y)e~*" does not depend on t.

Let us now define the function ¥(z,y) = we(0,x,y)e * @€/¢. This function is positive
and it is straighforward to check that, under the notations of Proposition 5.7, ¢ is a C?(Q)
solution of the following eigenvalue problem

_LC,A/C,CT/) = 0 in Q,
A
VA@Ew+v@ — 0 onoQ,

Y is L-periodic w.r.t. z,

where the function ¢(z,y) = f;(z,y,0) is L-periodic with respect to x and of class C%?(Q)
from assumption (1.27). In other words, . (A/c) = 0.
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Since this function ( is continuous, L-periodic w.r.t.  and positive everywhere, it_follows
then that there exists a real number {; > 0 such that ((z,y) > {, > 0 for all (z,y) € Q. Parts
2) and 3) of Proposition 5.7 yield then that

0= pec(A)0) < poco(Afe) = Gy + A+ h(A/e).

Therefore, A > (o — h(A/c) > 0 since {, > 0 and h is a concave function such that
h(0) = B'(0) = 0. n

Let us now complete this section with the following

Proposition 6.6 Let f be a function satisfying (1.24-1.25), (1.27) and such that f[(x,y,0) >
0 for all (z,y) € Q. Let (c,u) be a classical solution of (1.28). Then the function u is increasing
with respect to the variable t.

Proof. Let ¢ be the function defined as in the previous sections by ¢(s,z,y) = u((s — = -
e)/c,x,y). Since u(t, z,y)/u(t,z,y) = chs(ct+x-e,x,y)/p(ct+x-e,x,y) and ¢ > 0, it follows
from Lemma 6.5 that liminf, ,_ . 5 ¢s(s,2,y)/¢(s,2,y) > 0. Since ¢ is L-periodic with
respect to , there exists then s € IR such that ¢,(s,z,y) > 0 for all s < s and for all (z,y) € Q.
On the other hand, inf, (, 5 d(s,z,y) > 0 and ¢(—o0,z,y) = 0 uniformly in (z,y) € Q.
Therefore, there exists B € IR such that —B < s and

V7 >0, Vs < =B, V(z,y) € Q, ¢(s,2,y) < ¢(s+7,2,y). (6.13)

Next, even if it means increasing B, one can assume that B > 0 and ¢(s,z,y) > 1 — p for
all s > B, (z,y) € Q, where p > 0 is given as in (1.27). It follows then from (6.13) and
from Lemma 3.4 applied in X% that é(s,z,y) < é(s + 7,2,y) for all 7 > 2B and for all
(s,7,y) € R x Q.

Let now define

™ =inf {7 >0, ¢(s,1,y) < d(s+ 7, 2,y) for all 7 > 7 and for all (s,z,y) € R x Q}.

By using (6.13) and adapting the proof of Lemma 3.5, one concludes that 7* = 0. In other
words, the function ¢ is nondecreasing in s. Hence, the function u is nondecreasing in time
t. As already underlined, it follows from the strong maximum principle and Hopf lemma that
u(t + h,z,y) > u(t,z,y) for all h > 0 and for all (t,2,y) € IR x Q, which means that u
is increasing with respect to t. Since the restriction of the function (z,y,7) — f(z,y,7) to
Q x [0,1] is of class C' with respect to 7, one can even say, by differentiating the equation
satisfied by u, that w,(¢,z,y) > 0 for all (¢,z,y) € IR x Q. 4

7 Appendix : uniform pointwise gradient estimates for
a general class of elliptic equations; proof of Lemma
5.13

The uniform gradients estimates stated in Lemma 5.13 are a consequence of the following more
general result :
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Theorem 7.1 Let w C IR x IRN be an open set and let
X = (ta$) - (taxla"'awN)

be the generic notation for the points in R x RN . Let (a'7),<; j<n be a C*(W) matriz field such
that
Jo>0, VXew, VeeRY, Y o"(X)&& > olél
1<i,j<N

Let (8")1<i<n be a C* (@) vector field. Let M > 0 and let (X,u) — f(X,u) be a C*(wx [M, M))
function. Let b > 0 be such that ||a/||ciz) < b for all 1 < i,j5 < N, [|f'|cr@) < b for all
1 S ? S N and ||f||01(w><[—M,M]) S b.

1) There exists a constant Cy = C1(M,b, N, o), which only depends on M, b, N and o such
that, for any 0 < e < 1 and for any function u € C*(w) such that |u| < M and

Ely — Ug + Z aij(X)Uij‘*' Z B X)u; + f(X,u) =0 inw,

1<ij<N 1<i<N
then

VX €w,  |Vou(X)| < O (d(X,0w) " +1) (7.1)
where uy = Opu, u; = O, U, Ujj = Op,p;u and d(X,0w) denotes the euclidian distance in RN+

of X to Ow, under the convention that d(X,0w) = 400 if dw is empty.

2) Let X be a smooth (at least globally of class C?) subset of dw and assume that ¥ is
open relatively to Ow, in the sense that for each X € X, there exists rx > 0 such that Y € X
whenever Y € 0w N By, (X), where B, (X) is the open ball with radius rx and center X. Let
v = v(X) be the unit outward normal to w on 3. Assume that the t-component of v(X) is
zero for all X € ¥. Assume moreover that there exists n > 0 such that, for oll X € ¥, the
connected component of B,(X)\I' containing X —rv(X) for r > 0 small enough is included in
w, where T is the connected component of dw N B,(X) containing X. Let p be a C*(X) unit
vector field whose t-component is zero, whose C*(X) norm is finite, and assume there exists
v > 0 such that w(X) - v(X) >~y >0 forall X € X.

Then there exists a constant Co = Cy(M,b, N,o,n,7,%, i), which only depends on M, b,
N, o, n, v, on the bounds of the derivatives up to the third order of the functions representing
Y, and on the C*(X) norm of u, such that, for any 0 < & < 1 and for any function u €
C*(wUX)NC3*w) such that |u| < M and

EUy — Uy + Z aij(X)Uij + Z B X)u; + f(X,u) = 0 inw,
1<ij<N 1<i<N
w-Vxu = 0 on

then
VX €wUY, [Vou(X)| <G (d(X,00\8) ' +1), (7.2)

under the convention that d(X,0w\X) = +00 if dw\X = ().

Remark 7.2 Part 2) is clearly stronger than part 1), which corresponds to the case where
¥ = (). But for the sake of clarity we chose to write two different results for the interior
estimates and for the estimates up to the boundary.
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As far as we know, for this type of regularizing problems, estimates of the type (7.1) or (7.2)
up to the boundary have not been yet obtained in this full generality, with explicit dependance
on the distance to dw\X. Theorem 7.1 is of independent interest and it is the purpose of the
paper [11]. Tts proof is based on the maximum principle applied to Bernstein-type functions
involving |V,ul? and u?.

Let us complete this paper with the
Proof of Lemma 5.13. Remember that each function u® solves (5.32) and that, under
the assumptions of Lemma 5.13, £/(cf)> — 0T as ¢ — 07 since ¢ — ¢ > 0. Therefore,
0 < e/(cf)? <1 for € small enough.

From the regularity assumptions on A, g and f, each u° is of class C3(IR x Q) NC?(IR x ().
On the other hand, the domain € is of class C® and it is L-periodic with respect to x. Therefore,
the domain IR x € is globally C® and its boundary IR x 9 satisfies the assumptions of part
2) of Theorem 7.1. Furthermore, the vector fields v and Av are also globally C3(IR x 9).

Since the condition ¥AV, ,u® = 0 is satisfied on the whole straight boundary IR x €2 and
since the functions u® are globally bounded, the conclusion of Lemma 5.13 follows. |
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