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Abstract. In this paper, we introduce a generalization of travelling waves for
evolution equations. We are especially interested in reaction-diffusion equa-

tions and systems in heterogeneous media (with general operators and general
geometry). Our goal is threefold. First we give several definitions, for tran-

sition waves, fronts, pulses, global mean speed of propagation, etc. Next, we

discuss the meaning of these definitions in various contexts. Then, we report
on several results of [4] (of which this is a companion paper) about these no-

tions. We further establish here several new properties. For this definition to

be meaningful we need to show two things. First, that the definition covers
and unifies all classical cases (and does not introduce spurious objects). Sec-

ond, that it allows one to understand propagation fronts in completely new

situations. In particular we report here on a result about travelling fronts
passing an obstacle.

1. Classical notions of travelling fronts

1.1. Planar fronts. Travelling fronts form a specially important class of time-
global solutions of reaction-diffusion equations. They arise and play an important
role in various fields such as biology, population dynamics, ecology, physics, com-
bustion... In many situations, they describe the transition between two different
states.

Let us start with recalling the notion of classical travelling fronts in the homo-
geneous case, for the equation

(1.1) ut = ∆u+ f(u) in RN .

For basic properties of the linear heat equations, which allow one to derive existence
and uniqueness of the Cauchy problem associated with (1.1), we refer to the classical
text of H. Brezis [14].

In the case of (1.1), a planar travelling front connecting the uniform steady
states 0 and 1 (assuming f(0) = f(1) = 0) is a solution which propagates in a given
unit direction e with a speed c, and which can then be written as u(t, x) = φ(x·e−ct)
with φ(−∞) = 1 and φ(+∞) = 0. Two properties characterize such fronts: their
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level sets are parallel hyperplanes which are orthogonal to the direction e, and the
solution is invariant in the moving frame with speed c in the direction e. The
profile φ of a planar front φ(x · e − ct) satisfies the ordinary differential equation
φ′′+cφ′+f(φ) = 0 in R. Existence and possible uniqueness of such fronts, formulæ
for the speed(s) of propagation are well-known [1, 2, 16, 23] and depend upon the
profile of the function f on [0, 1].

1.2. Curved travelling fronts. Before introducing our general definition, let
us recall the known extensions in non homogeneous cases. The first such extension
is still one with classical travelling fronts but which are not planar anymore. Assume
that the domain is a straight infinite cylinder of the type Ω = R× ω, where ω is a
bounded smooth domain of RN−1. Denote x = (x1, y), with y ∈ ω, the variables in
Ω and consider the reaction-diffusion-advection equation

(1.2) ut −∆u+ α(y)
∂u

∂x1
= f(y, u)

with, say, Neumann boundary conditions on ∂Ω. The functions α and f are given
and may depend on the cross variables y. Assume that f(y, 0) = f(y, 1) = 0 for
all y ∈ ω. In this context, a travelling front connecting 0 and 1 and propagating
with speed c in the direction e1 = (1, 0, . . . , 0) is a solution of the type u(t, x1, y) =
φ(x1 − ct, y) such that φ(−∞, y) = 1 and φ(+∞, y) = 0 uniformly in y ∈ ω. These
fronts are still invariant (in the moving frame with speed c in the direction e1) and
have a constant speed, but the profile φ is in general not planar anymore. It is a
function of both variables s = x1 − ct ∈ R and y ∈ ω, and it satisfies the elliptic
partial differential equation

−∆φ+ (α(y)− c)
∂φ

∂s
= f(y, φ) in Ω

with Neumann boundary conditions on ∂Ω. Most of the known results which had
been obtained on planar fronts for the homogeneous equation (1.1) have been ex-
tended, with PDE methods, to the case (1.2), see [2, 9, 10, 11, 27]. The case
when ω is periodic in the variables y can also be treated similarly, see [3].

1.3. Curved fronts for (1.1) in RN . Non-planar fronts which arise in het-
erogeneous problems of the type (1.2) were recently shown to also exist even in the
homogeneous case. Consider for instance the homogeneous equation (1.1) in RN

and call r = (x2
1 + · · · + x2

N−1)
1/2. Assume that f(0) = f(1) = 0. For the main

three classical classes of reaction terms f (combustion, bistable, monostable) and
for any given angle α ∈ (0, π/2) equation (1.1) admits “conical-shaped” non-planar
fronts of the type

u(t, x) = φ(r, xN − ct),

such that φ(r, s) → 1 (resp. 0) uniformly as s − ψ(r) → −∞ (resp. +∞), where
ψ satisfies: ψ(r)/r → cotα as r → +∞ (see [13, 15, 17, 19, 20, 25]). The
profiles are still invariant in a moving frame with constant speed, but the level
sets are not hyperplanes anymore. Conical-shaped fronts are also known to exist
for systems of reaction-diffusion equations and for aperture angles α close to π/2
under some stability assumptions (see [21]). In the case when f is concave and
positive on (0, 1), then, many more non-planar travelling fronts also exist, which
are not conical-shaped, see [20].
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1.4. Pulsating travelling fronts, periodic media. Another important ex-
ample of travelling fronts is for heterogeneous equations of the type

(1.3) ut = ∇ · (A(x)∇u) + q(x) · ∇u+ f(x, u) in RN ,

where the uniformly elliptic matrix field A, the vector field q and the function f
are smooth and periodic in RN . That is, there are L1, . . . , LN > 0 such that

(1.4) A(x+ k) = A(x), q(x+ k) = q(x), f(x+ k, ·) = f(x, ·)

for all x ∈ RN and k = (k1, . . . , kN ) ∈ L1Z× · · · ×LNZ. Unlike all aforementioned
cases, these equations in general are not invariant by translation in any direction.
Assume that, say, f(x, 1) = f(x, 0) = 0 for all x ∈ RN . Given a unit vector
e ∈ SN−1, a pulsating travelling front connecting 0 and 1, and propagating with
speed c 6= 0 in the direction e is a solution u(t, x) of (2.1) such that

(1.5) u

(
t+

k · e
c
, x

)
= u(t, x− k)

for all (t, x) ∈ R × RN and k ∈ L1Z × · · · × LNZ, and u(t, x) → 1 (resp. 0) as
x · e → −∞ (resp. x · e → +∞) uniformly in t and in the variables which are
orthogonal to e (see [3, 30, 31]). These fronts can be written as

u(t, x) = φ(x · e− ct, x)

where the function (s, x) 7→ φ(s, x) is periodic in x in the sense of (1.4), and
φ(−∞, x) = 1, φ(+∞, x) = 0 uniformly in x. The function φ satisfies a degenerate
elliptic equation in the variables s and x. In the moving frame with speed c in the
direction e, the profile of the front is not invariant anymore, but it is in general
quasi-periodic in time. Observe that at each time t, each level set of u is trapped
between two parallel hyperplanes which are orthogonal to e, but in general it is not
planar. Existence results and formulæ for the speeds of propagation are given in
[3, 6, 7, 31]. The case where the domain Ω satisfies

(1.6) ∀ k ∈ L1Z× · · ·LNZ, Ω + k = Ω,

(namely Ω has the same periodicity (L1, . . . , LN ) in the variables (x1, . . . , xN ) as
the coefficients) has also been investigated, see [3]. For reaction-diffusion equations
with time-dependent coefficients, pulsating fronts (which are defined in a similar
way) are also known to exist (see [18, 26]). Moreover, the limiting states p±(t, x)
may also depend on x or on t for space or time-periodic equations (see [8, 22, 28]
for some examples).

1.5. Almost periodic case. Our last case deals with the almost-periodic
framework. Consider the case where all coefficients of (1.3) are almost periodic. To
make notations simpler, assume that (2.1) reduces to

(1.7) ut = uxx + b(x)f(u) in Ω = R.

Assume that the closure H, with respect to the uniform norm on R, of the set of all
translations σyb (with σyb(x) = b(x + y)) of the coefficient b is compact. Assume
moreover that f(1) = f(0) = 0. In this case, a new definition was introduced by
H. Matano. Namely, a travelling wave (as defined in [24]) is a solution u for which
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there exists a continuous map w : H× R → R and a function ξ : R → R such that
ξ(t) → ±∞ as t→ ±∞,

(1.8)
{
u(t, x+ ξ(t)) = w(σξ(t)b, x),
w(z, s) → 1 (resp. 0) as s→ −∞ (resp. s→ +∞) uniformly in z ∈ H.

In Matano’s description, such a solution is a solution u(t, x) such that the “profile”,
that is the function x 7→ u(t, ·) is a continuous function of the “landscape” (i.e. a
shift of b(x)). This definition can also be given for more general equations (2.1)
with spatially almost periodic (and time independent) coefficients in RN . The case
of equations with coefficients which are almost periodic in time and independent of
x has been dealt with in [29].

In all these examples of fronts which have been listed so far, the solutions al-
ways converge to 0 or 1 uniformly far away from their level sets. This simple but
fundamental observation is what leads us to introduce a new fully general definition
in the following section.

The paper is organized as follows. In the next section, we give the new gen-
eral definitions of transition waves, fronts, pulses, invasions, global mean speeds
of propagation, etc, and we explain why these definitions unify all abovementioned
examples. In Sections 3 and 4, we report on some general results of [4] of which this
article is a companion paper. Furthermore, we derive additional properties which
are not in [4]. We especially show that under some assumptions the generalized
fronts can reduce to the usual notions. In the remaining sections, we show that
our new definitions can also take into account more general situations which are
not covered by the classical notions, and we give some explicit examples of fronts
which are not travelling fronts in the usual sense. We will see in particular that
this definition accounts for fronts passing an obstacle.

2. Generalized fronts for heterogeneous media

In this section, we give a general single definition of transition waves which uni-
fies all the classical examples of travelling fronts. We will see that some properties
are intrinsiquely associated to the waves, and we also introduce additional specific
notions.

2.1. The main definitions. The notion of travelling fronts or waves can be
extended for very general heterogeneous reaction-diffusion-advection equations, or
systems of equations, of the type

(2.1)
{
ut = ∇x · (A(t, x)∇xu) + q(t, x) · ∇xu+ f(t, x, u) in Ω,
B(t, x)[u] = 0 on ∂Ω.

Throughout the paper, Ω is a connected open subset of RN which is locally uni-
formly smooth. Denote ν(x) its outward unit normal at a point x ∈ ∂Ω. The un-
known function u, defined in R×Ω, is in general a vector field u = (u1, · · · , um) ∈
Rm. The boundary conditions B(t, x)[u] = 0 on ∂Ω may for instance be of the
Dirichlet, Neumann or Robin types, or may be nonlinear as well. The diffusion ma-
trix field (t, x) 7→ A(t, x) = (aij(t, x))1≤i,j≤N is assumed to be of class C1,β(R×Ω)
(with β > 0) and there exist 0 < α1 ≤ α2 such that

α1|ξ|2 ≤ aij(t, x)ξiξj ≤ α2|ξ|2 for all (t, x) ∈ R× Ω and ξ = (ξ1, . . . , ξN ) ∈ RN ,
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under the usual summation convention of repeated indices. We denote by · and
| | the scalar product and Euclidean norm in Rk. The vector field (t, x) 7→ q(t, x)
ranges in RN and is of class C0,β(R × Ω). Lastly, the map (t, x, s) 7→ f(t, x, s)
is assumed to be of class C0,β in (t, x) locally in s ∈ R, and locally Lipschitz-
continuous in s, uniformly in (t, x) ∈ R× Ω.

Let dΩ be the geodesic distance in Ω. For any two subsets A and B of Ω, denote

dΩ(A,B) = inf {dΩ(x, y); (x, y) ∈ A×B}.

For x ∈ Ω and r > 0, we set

B(x, r) = {y ∈ Ω, dΩ(x, y) ≤ r} and S(x, r) = {y ∈ Ω, dΩ(x, y) = r}.

We assume that we are given two classical solutions p± of (2.1), which are
defined for all (t, x) ∈ R× Ω, as well as two families (Ω−t )t∈R and (Ω+

t )t∈R of open
disjoint nonempty subsets of Ω such that, for all t ∈ R,

(2.2)
{
∂Ω−t ∩ Ω = ∂Ω+

t ∩ Ω =: Γt, Ω−t ∪ Γt ∪ Ω+
t = Ω

sup {dΩ(x,Γt); t ∈ R, x ∈ Ω±t } = +∞.

The first two properties mean somehow that Γt splits Ω into two parts, namely Ω−t
and Ω+

t . The last property especially implies that, for any given t ∈ R, there is no
r > 0 and x ∈ Ω such that Ω−t or Ω+

t are included in B(x, r).

Definition 2.1. (Transition wave) For problem (2.1), a (generalized) transition
wave between p− and p+ is a time-global classical solution u such that u 6≡ p± and
there exist some sets Ω±t as above with

u(t, x)− p±(t, x) → 0 uniformly in t ∈ R and x ∈ Ω±t as dΩ(x,Γt) → +∞.

Notice that in the above definition, a central role is played by the uniformity
of the limits u(t, x)− p±(t, x) → 0.

Our second main definition and natural notion is that of global mean speed.

Definition 2.2. (Global mean speed of propagation) We say that the transi-
tion wave u has global mean speed c (≥ 0) if

dΩ(Γt,Γs)
|t− s|

→ c as |t− s| → +∞.

We say that the transition wave u is almost-stationary if it has global mean speed
c = 0, quasi-stationary if

sup {dΩ(Γt,Γs); (t, s) ∈ R2} < +∞,

and stationary if it does not depend on t.

2.2. Intrinsic properties. In the above general definitions, the sets Ω±t are
not uniquely determined. Nevertheless, in the scalar case, under some assumptions
on p± and Ω±t , the sets Γt somewhat reflect the location of the level sets of u:

Proposition 2.3. Assume that m = 1, that p− < p+ are constant solutions of
(2.1) and let u be a time-global classical solution of (2.1) such that {u(t, x), (t, x) ∈
R×Ω} = (p−, p+) and B(t, x)[u] = µ(t, x) ·∇xu(t, x) = 0 on R×∂Ω, for some unit
vector field µ ∈ C0,β(R× ∂Ω) (with β > 0) such that

inf {µ(t, x) · ν(x); (t, x) ∈ R× ∂Ω} > 0.
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1. Assume that u is a transition wave between p− and p+, that there is τ > 0
such that

(2.3) sup {dΩ(x,Γt−τ ); t ∈ R, x ∈ Γt} < +∞,

and that

(2.4) sup {dΩ(y,Γt); y ∈ Ω±t ∩ S(x, r)} −→
r→+∞

+∞ unif. in t ∈ R, x ∈ Γt.

Then, for all λ ∈ (p−, p+),

(2.5) sup {dΩ(x,Γt); u(t, x) = λ} < +∞,

and, for all C ≥ 0,

(2.6) p− < inf {u(t, x); dΩ(x,Γt) ≤ C} ≤ sup {u(t, x); dΩ(x,Γt) ≤ C} < p+.

2. Conversely, if (2.5) and (2.6) hold for some choices of sets (Ω±t ,Γt)t∈R
satisfying (2.2) and if there is d0 > 0 such that the sets

{(t, x) ∈ R× Ω, x ∈ Ω±t , dΩ(x,Γt) ≥ d}

are connected for all d ≥ d0, then u is a transition wave between p− and p+, or p+

and p−.

Roughly speaking the assumption (2.3) means that Γt and Γt−τ are not too far
from each other. For instance, if all Γt are parallel hyperplanes in Ω = RN , then the
assumption means that the distance between Γt and Γt−τ is bounded independently
of t, for some τ > 0. The property (2.4) means that the sets Ω±t are in some sense
wide enough, uniformly with respect to t.

Proposition 2.3 means that, under some assumptions, the boundedness of the
distance between the sets Γt and the level sets of a transition wave is thus an
intrinsic notion. It turns out that the global mean speed, if any, is also intrinsic.

Proposition 2.4. Let p± be two limiting states solving (2.1) and satisfying

inf {|p−(t, x)− p+(t, x)|; (t, x) ∈ R× Ω} > 0.

Let u be a transition wave between p− and p+ with a choice of sets Ω±t satisfying
(2.2) and (2.4). If u has global mean speed c, then, for any other choice of sets Ω̃±t
satisfying (2.2) and (2.4), u has a global mean speed and this global mean speed is
equal to c.

2.3. Further specifications. More specific notions of fronts, pulses, inva-
sions (or travelling waves), almost planar waves can now be defined. These notions
are related to some properties of the limiting states p± or of the sets Ω±t , and are
listed in the following definitions. Here u denotes a transition wave between p− and
p+ in the sense of Definition 2.1.

Definition 2.5. (Fronts and spatially extended pulses) Let p± = (p±1 , · · · , p±m).
We say that the transition wave u is a front if either p−i (t, x) < p+

i (t, x) for all
(t, x) ∈ R × Ω and 1 ≤ i ≤ m, or p−i (t, x) > p+

i (t, x) for all (t, x) ∈ R × Ω and
1 ≤ i ≤ m. The transition wave u is a spatially extended pulse if p−(t, x) = p+(t, x)
for all (t, x) ∈ R× Ω.
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Definition 2.6. (Invasions, or travelling waves) We say that p+ invades p−

(resp. p− invades p+) if Ω+
t ⊃ Ω+

s (resp. Ω−t ⊃ Ω−s ) for all t ≥ s and dΩ(Γt,Γs) →
+∞ as |t−s| → +∞. Therefore, u(t, x)−p±(t, x) → 0 as t→ ±∞ (resp. t→ ∓∞)
locally uniformly in Ω with respect to the distance dΩ.

Remark 2.7. A transition wave can thus be viewed as a spatial transition
between the two limiting states p− and p+. The particular case of an invasion can
also be viewed as a temporal connection between p− and p+.

Definition 2.8. (Almost planar waves in the direction e) We say that the
transition wave u is almost planar in the direction e ∈ SN−1 if, for all t ∈ R, Ω±t
can be chosen so that

Γt = {x ∈ Ω, x · e = ξt}
for some ξt ∈ R.

Definition 2.9. (Thin waves) In dimension N = 1, we say that the transition
wave u is thin if Γt can be reduced to a singleton for each t. In dimensions N ≥ 2,
we say that the transition wave u is thin if there is an integer k ≥ 1 such that, for
each t ∈ R, there are k open sets Ωi,t ⊂ RN−1, k continuous maps ψi,t : Ωi,t → R
and k rotations Ri,t of RN (for 1 ≤ i ≤ k), such that

Γt ⊂
⋃

1≤i≤k

Ri,t ({xN = ψi,t(x1, . . . , xN−1), (x1, . . . , xN−1) ∈ Ωi,t}) .

Notice in particular that any almost planar wave is thin.

2.4. The classical examples. Let us now come back to the usual notions
which were listed in Section 1. We shall see that they are all covered by the general
definitions of transition waves and that they may correspond to some of the specific
cases mentioned above.

For instance, for the homogeneous equation (1.1) in RN , if f(0) = f(1) = 0, the
solutions u(t, x) = φ(x·e−ct), with φ(−∞) = 1 and φ(+∞) = 0 are (almost) planar
fronts connecting 1 and 0, with (global mean) speed |c|. The uniform stationary
state p− = 1 (resp. p+ = 0) invades the uniform stationary state p+ = 0 (resp.
p− = 1) if c > 0 (resp. c < 0). The sets Ω±t can for instance be defined as

(2.7) Ω±t = {x ∈ RN , ±(x · e− ct) > 0}

For equation (1.2) in an infinite cylinder Ω = R× ω, the solutions u(t, x1, y) =
φ(x1 − ct, y) such that φ(−∞, y) = 1 and φ(+∞, y) = 0 uniformly in y ∈ ω
are almost planar fronts connecting 1 and 0, and the sets Ω±t can be chosen as
Ω±t = {(x1, y) ∈ R× ω, ±(x1 − ct) > 0}.

The curved fronts u(t, x) = φ(r, xN − ct) exhibited in Section 1.3 for equation
(1.1) can also be covered by Definition 2.1 with p− = 1, p+ = 0 and, say,

Ω±t = {x ∈ RN , ±(xN − ct− ψ(r)) > 0}.

They are not almost planar as soon as ψ(r)/r 6→ 0 as r =
√
x2

1 + · · ·+ x2
N−1 → +∞.

The pulsating fronts which were mentioned in Section 1.4 also fall within the
general definition of travelling fronts with (p−, p+) = (1, 0) and, say, Ω±t given by
(2.7) if Ω = RN . But, in a general periodic domain satisfying (1.6), the global
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mean speed (as defined in Definition 2.2) of a pulsating front solving (1.5) is equal
to γ|c|, where γ = γ(e) ≥ 1 is such that

(2.8)
dΩ(x, y)
|x− y|

→ γ(e) as |x− y| → +∞, (x, y) ∈ Ω×Ω and x− y is parallel to e.

The constant γ(e) is by definition larger than or equal to 1. It measures the as-
ymptotic ratio of the geodesic and Euclidean distances along the direction e. If the
domain Ω is invariant in the direction e, that is Ω = Ω + se for all s ∈ R, then
γ(e) = 1.

Lastly, the almost-periodic case described in Section 1.5 is also a particular
case of the general definitions. For instance, in the one-dimensional case (1.7) with
f(0) = f(1) = 0, the solutions u(t, x) satisfying (1.8) are transition waves with
(p−, p+) = (1, 0), Ω−t = (−∞, ξ(t)) and Ω+

t = (ξ(t),+∞).

To sum up, we have just seen that the general definitions given in this section
generalize all the usual notions. Furthermore, what is also very important is that
the new notions are both strong and wide. Indeed, first, we show in the following
two sections that there is no abusive generalization since, under some assumptions,
the transition waves can be reduced to the usual notions in some particular cases.
Second, we will see that the transition waves can take into account other cases
which cannot be covered by the classical definitions.

3. Applications of the definitions to the classical cases

In this section, we see how the general definitions can reduce to the usual no-
tions in some particular cases. As an example of such results, we start in Section 3.1
with the proof of a one-dimensional symmetry property for almost planar bistable-
type fronts in RN . A more general result is given in [4]. But we include the proof
here because it is simple and explains clearly why this result is true. In Sections 3.2
to 3.4 we report on some results of [4] for generalized bistable-type fronts. Finally,
we prove in Section 3.5 a new classification result for generalized monostable-type
fronts which are trapped between two planar fronts.

3.1. Almost planar bistable transition waves. We consider classical time-
global bounded real-valued solutions of

(3.1) ut = ∆u+ f(u), x ∈ RN .

We assume here that the function f : R → R is locally Lipschitz-continuous and

(3.2)
{
f(0) = f(1) = 0,
∃ δ > 0, f is non-increasing in (−∞, δ] and in [1− δ,+∞).

An example of such a function is the cubic nonlinearity f(s) = s− s3 which arises
in scalar Ginzburg-Landau equations (see [12]).

Theorem 3.1. Let u be a bounded almost planar transition wave solving (3.1),
between p− = 0 to p+ = 1, and assume that there exist e ∈ SN−1, c ≥ 0, M ≥ 0
and a map R 3 t 7→ ξt such that{

∀ t ∈ R, Ω±t = {x ∈ RN , ±(x · e− ξt) < 0},
∀ (t, s) ∈ R2, −M ≤ |ξt − ξs| − c|t− s| ≤M.
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Then there exist ε ∈ {−1, 1} and a decreasing function φ : R → (0, 1) such that

∀ (t, x) ∈ R× RN , u(t, x) = φ(x · e− cεt).

Roughly speaking, this result means that any almost planar transition wave is
actually planar and invariant in the moving frame which propagates with speed c
in the direction εe (actually, if c = 0, then u is stationary).

Proof. Up to rotation of the frame, one can assume that e = (1, 0, . . . , 0).
Denote x′ = (x2, . . . , xN ) and x = (x1, x

′). The assumption made on ξt provides
the existence of ε ∈ {−1, 1} such that the map

t 7→ ζt := ξt − cεt

is bounded. Call

v(t, x) = u(t, x+ cεte) = u(t, x1 + cεt, x′)

for all (t, x) ∈ R×RN . Our goal is to prove that v depends on x1 only and that it
is decreasing in x1. The function v is a generalized transition wave between p− = 0
and p+ = 1, for the equation

(3.3) vt = ∆v + cεe · ∇v + f(v),

and Ω̃±t = {x ∈ RN , ±(x1 − ζt) < 0}. Since t 7→ ζt is bounded, it follows that

(3.4) v(t, x) → 1 (resp. 0) as x1 → −∞ (resp. +∞) unif. in (t, x′) ∈ R× RN−1.

Thus, there exists A > 0 such that

(3.5)
{
v(t, x) ≥ 1− δ for all x1 ≤ −A and (t, x′) ∈ R× RN−1,
v(t, x) ≤ δ for all x1 ≥ A and (t, x′) ∈ R× RN−1.

Notice that one can assume without loss of generality that δ ∈ (0, 1/2].
Choose now any T ∈ R and ρ ∈ RN−1. For all s ∈ R and (t, x) ∈ R × RN ,

denote
ws(t, x) = v(t+ T, x1 + s, x′ + ρ),

and call E = {(t, x) ∈ R × RN , x1 < −A}. Fix any σ ≥ 2A. Since v and w are
globally bounded (because u is), one has v + ε ≥ wσ in E for all ε large enough.
Define

ε∗ = inf {ε > 0, v + ε ≥ wσ in E}.
The real number ε∗ is nonnegative and v + ε∗ ≥ wσ in E. Assume ε∗ > 0. Since
v, wσ → 1 as x1 → −∞ uniformly in (t, x′) and since the Lipschitz-continuous
functions v and wσ satisfy v ≥ 1 − δ ≥ δ ≥ wσ on ∂E = {x1 = −A} (because
σ ≥ 2A), there exist x1,∞ ∈ (−∞,−A) and a sequence (tn, x1,n, x

′
n)n∈N in E such

that

v(tn, x1,n, x
′
n) + ε∗ − wσ(tn, x1,n, x

′
n) → 0 and x1,n → x1,∞ as n→ +∞.

From standard parabolic estimates, the functions vn(t, x1, x
′) = v(t+tn, x1, x

′+x′n)
converge locally uniformly, up to extraction of a subsequence, to a solution v∞ of
(3.3) such that

z(t, x1, x
′) := v∞(t, x1, x

′) + ε∗ − v∞(t+ T, x1 + σ, x′ + ρ) ≥ 0 for all (t, x1, x
′) ∈ E
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and z(0, x1,∞, 0) = 0. Since v∞ ≥ 1−δ in E and f is non-increasing in [1−δ,+∞),
it follows that

zt −∆z − cεe · ∇z = f(v∞(t, x))− f(v∞(t+ T, x1 + σ, x′ + ρ))
≥ f(v∞(t, x) + ε∗)− f(v∞(t+ T, x1 + σ, x′ + ρ))
≥ −Bz in E,

for some constant B (remember that f is Locally Lipschitz-continuous and that
v∞ is bounded. The strong parabolic maximum principle implies that z(t, x) = 0
for all t ≤ 0, x1 ≤ −A and x′ ∈ RN−1. But z ≥ ε∗ > 0 on ∂E, which leads to a
contradiction.

Thus, ε∗ = 0, whence v ≥ wσ in E. On the other hand, since wσ ≤ δ for
x1 ≥ −A, wσ ≤ v for x1 = −A and since f is non-increasing in (−∞, δ], one can
prove similarly that wσ ≤ v in the set {x1 ≥ −A}.

To sum up, wσ ≤ v in R× RN for all σ ≥ 2A. Call now

σ∗ = inf {σ ∈ R, wσ′ ≤ v in R× RN for all σ′ ≥ σ}.

One has σ∗ ≤ 2A and σ∗ > −∞ because v(t,−∞, x′) = 1 > 0 = v(t,+∞, x′).
Moreover, wσ∗ ≤ v in R×RN . Assume σ∗ > 0, and call S = {(t, x) ∈ R×RN , −A ≤
x1 ≤ A}. If infS(v − wσ∗) > 0, then there exists η0 ∈ (0, σ∗) such that v ≥ wσ∗−η

in S for all η ∈ [0, η0]. As above, one can then prove that v ≥ wσ∗−η in E for all
η ∈ [0, η0]. Similarly, wσ∗−η ≤ δ in {x1 ≥ A} for all η ∈ [0, η0] (because of (3.5)
and σ∗−η0 ≥ 0), whence wσ∗−η ≤ v in {x1 ≥ A}. Therefore, wσ∗−η ≤ v in R×RN

for all η ∈ [0, η0]. This contradicts the minimality of σ∗. It follows then that

inf
S

(v − wσ∗) = 0.

As a consequence, there exist x1,∞ ∈ [−A,A] and a sequence (tn, x1,n, x
′
n)n∈N such

that

x1,n → x1,∞ and v(tn, x1,n, x
′
n)− wσ∗(tn, x1,n, x

′
n) → 0 as n→ +∞.

Call vn(t, x1, x
′) = v(t + tn, x1, x

′ + x′n). Up to extraction of a subsequence, the
functions vn converge locally uniformly to a solution v∞ of (3.3) such that

z(t, x) = v∞(t, x)− v∞(t+ T, x1 + σ∗, x′ + ρ) ≥ 0 in R× RN

and z(0, x1,∞, 0) = 0. From the strong parabolic maximum principle, it resorts as
above that z(t, x) = 0 for all t ≤ 0, and then z ≡ 0 in R×RN by uniqueness of the
solutions of the Cauchy problem for (3.3). Thus, v∞(0, 0, 0) = v∞(kT, kσ∗, kρ) for
all k ∈ Z. But v∞(kT, kσ∗, kρ) → 1 (resp. → 0) as k → −∞ (resp. k → +∞) since
σ∗ > 0 and v∞ still satisfies (3.4). One has then reached a contradiction.

Thus, σ∗ ≤ 0, whence

v(t, x) ≥ w0(t, x) = v(t+ T, x1, x
′ + ρ) in R× RN .

Since T ∈ R and ρ ∈ RN−1 were arbitrary, one concludes that v depends on x1

only, namely v(t, x) = φ(x1). Furthermore, the arguments above actually imply
that φ(x1) ≥ φ(x + σ) for all σ ≥ 0, and the strong (elliptic) maximum principle
yields φ(x1) > φ(x1 + σ) for all x1 ∈ R and σ > 0. In particular, φ(x1) ∈ (0, 1) for
all x1 ∈ R. That completes the proof of Theorem 3.1.
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3.2. Periodic framework. Our second result is concerned with periodic me-
dia. We assume here that Ω is a smooth periodic domain satisfying (1.6). Let u be
a generalized transition wave between p− and p+ for equation (2.1), with boundary
condition

(3.6) µ(x) · ∇xu(t, x) = µ(x) · ∇xp
±(x) = 0 on R× ∂Ω,

where µ is a uniformly locally C0,β(∂Ω) (with β > 0) unit vector field such that

(3.7) inf {µ(x) · ν(x); x ∈ ∂Ω} > 0.

Assume that u and p± are globally bounded in R × Ω, that A, q, f , µ, p± do not
depend on t, are periodic in x in the sense of (1.4), and there is δ > 0 such that

(3.8) s 7→ f(x, s) is nonincreasing in (−∞, p−(x) + δ] and [p+(x)− δ,+∞)

for all x ∈ Ω.

Theorem 3.2. [4] If u is an invasion of p− by p+ with

(3.9) κ := inf {p+(x)− p−(x); x ∈ Ω} > 0,

and if there exist e ∈ SN−1, c ≥ 0 and a map R 3 t 7→ ξt such that

(3.10) sup { | dΩ(Γt,Γs)− c|t− s| | ; (t, s) ∈ R2} < +∞,

where

(3.11) Γt = {x ∈ Ω, x · e− ξt = 0} and Ω±t = {x ∈ Ω, ±(x · e− ξt) < 0},

then u is a pulsating front. That is

u

(
t+

γ k · e
c

, x

)
= u(t, x− k) for all (t, x) ∈ R× Ω and k ∈ L1Z× · · · × LNZ,

where γ = γ(e) ≥ 1 is given in (2.8). Furthermore, u is unique up to shifts in t.

Remember that γ(e) measures the asymptotic ratio of the geodesic distance
and the Euclidean distance in the direction e, and γ(e) is then automatically larger
than or equal to 1. The speed c/γ(e) is the “Euclidean” speed in the direction e,
as if there were no obstacles, whereas c is the intrinsic geodesic speed which takes
into account the geometry of the domain. Notice that γ(e) = 1 if Ω = RN , or if Ω
is invariant in the direction e.

Theorem 3.2 says that, under the above assumptions, our general definitions
do not introduce new objects in the periodic framework : almost planar travelling
fronts reduce to pulsating travelling fronts in the sense of Section 1.4.

3.3. Invariance in a moving frame. In Section 1.2, we mentioned several
explicit examples of usual travelling fronts which are invariant in their direction
of propagation. We gave in the previous subsections some conditions under which
almost planar fronts are truly planar or pulsating in homogeneous or periodic frame-
works. We here give a general characterization of fronts which are invariant in their
moving frame, without assuming any periodicity in the medium.

We assume here that Ω is invariant in a direction e ∈ SN−1, that u is a gen-
eralized transition wave between p− and p+ for equation (2.1), that u and p± are
globally bounded, that A, q, µ and p± depend only on the variables x′ which are
orthogonal to e, that f = f(x′, u) and that (3.8) and (3.9) hold.
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Proposition 3.3. [4] If there exist e ∈ SN−1, c ≥ 0 and a map R 3 t 7→ ξt
satisfying (3.10) and (3.11), then there exists ε ∈ {−1, 1} such that

u(t, x) = φ(x · e− cεt, x′)

for some function φ. Moreover, φ is decreasing in its first variable. If one further
assumes that c = 0, then the conclusion holds good even if f and p± also depend
on x · e, provided that they are nonincreasing in x · e. In particular, if u is quasi-
stationary in the sense of Definition 2.2, then u is stationary.

As a consequence of Theorem 3.2 and Proposition 3.3, it follows that, if Ω = RN

and if A, q, f , p± are independent of t and x, then u is a truly planar travelling
front, that is :

u(t, x) = φ(x · e− ct),
where φ : R → (p−, p+) is decreasing and φ(∓∞) = p±. This result corresponds
an immediate generalization of Theorem 3.1.

3.4. Invariance in the cross-directions. In the previous subsections, we
gave some conditions under which the fronts reduce to planar, pulsating or usual
travelling fronts. The fronts were assumed to have a global mean speed. The
following result is concerned with the case of almost planar fronts which may not
have any global mean speed and which may not be invasion fronts. It gives some
conditions under which almost planar fronts actually reduce to one-dimensional
fronts.

We assume here that Ω = RN , that u is a generalized transition wave between
p− and p+ for equation (2.1), that u and p± are globally bounded, that A and
q depend only on t, that the limiting states p± depend only on t and x · e and
are nonincreasing in x · e, that f = f(t, x · e, u) is nonincreasing in x · e, and that
inf (p+−p−) > 0. Assume also that there is δ > 0 such that, for all (t, x) ∈ R×RN ,

s 7→ f(t, x · e, s) is nonincreasing in (−∞, p−(t, x · e) + δ] and [p+(t, x · e)− δ,+∞).

Theorem 3.4. [4] If u is almost planar in the direction e ∈ SN−1 with some
sets Γt and Ω±t satisfying (3.11) and such that

∀ σ ∈ R, sup {|ξt+σ − ξt|; t ∈ R} < +∞,

then u is planar, that is u only depends on t and x · e :

u(t, x) = φ(t, x · e)
for some function φ : R2 → R. Furthermore,

(3.12) ∀ (t, x) ∈ R× RN , p−(t, x · e) < u(t, x) < p+(t, x · e)
and u is decreasing in x · e.

Notice that the assumption that sup {|ξt+σ−ξt|; t ∈ R} < +∞ for every σ ∈ R
is clearly stronger than the property (2.3). But the map t 7→ ξt is not needed to be
monotone and u may not be an invasion front.

Actually, if the inequalities (3.12) are assumed to hold a priori and if f is
assumed to be nonincreasing in s for s in [p−(t, x · e), p−(t, x · e) + δ] and [p+(t, x ·
e)− δ, p+(t, x · e)] only, instead of (−∞, p−(t, x · e) + δ] and [p+(t, x · e)− δ,+∞),
then the strict monotonicity of u in the variable x · e holds good.

As a consequence of Proposition 3.3 (with c = 0), the following property holds :
in Theorem 3.4, if one further assumes that the function t 7→ ξt is bounded and
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that A, q, f and p± do not depend on t, then u depends on x · e only, that is
u is a stationary one-dimensional front. Roughly speaking, this means that any
quasi-stationary front is truly stationary. This last result also corresponds to a
generalization of Theorem 3.1 with c = 0.

3.5. Monostable transition waves which are trapped between two
fronts. Subsections 3.1 to 3.4 were concerned with “bistable-type” transition waves,
in the sense that the reaction term f was assumed to be nonincreasing in some
neighbourhoods of the limiting states p±(t, x). Here, we give a clasification result
for monostable fronts which are trapped between two given planar fronts. Namely,
we assume that the function f : [0, 1] → R is of class C1 and that

(3.13) f(0) = f(1) = 0, f > 0 on (0, 1), f ′(0) > 0, f ′(1) < 0.

It is known that the equation

(3.14) ut = ∆u+ f(u), x ∈ RN

admits planar travelling fronts of the type u(t, x) = ϕc(x · e − ct), such that ϕc :
R → (0, 1) with ϕc(−∞) = 1 and ϕc(+∞) = 0, for all e ∈ SN−1 and for all c ≥ c∗,
where the minimal speed c∗ is positive and does not depend on e (it is known
that c∗ ≥ 2

√
f ′(0)). Therefore, for a prescribed direction e, we cannot expect

any uniqueness up to shifts. However, uniqueness (up to shifts) still holds for the
transition waves which are trapped between two shifts of the same planar front.

Theorem 3.5. Assume that f satisfies (3.13). Let u be a bounded almost planar
transition wave solving (3.14), between p− = 0 and p+ = 1, and satisfying

(3.15) ∀ (t, x) ∈ R× RN , ϕc(x · e− ct) ≤ u(t, x) ≤ ϕc(x · e− ct− a),

for some c ≥ c∗, e ∈ SN−1 and a ≥ 0, where ϕc : R → (0, 1) solves ϕ′′c +ϕ′c+f(ϕc) =
0 in R with ϕc(−∞) = 1 and ϕc(+∞) = 0. Then there exists b ∈ [0, a] such that

∀ (t, x) ∈ R× RN , u(t, x) = ϕc(x · e− ct− b).

Proof. As in the proof of Theorem 3.1, one can assume that e = (1, 0, . . . , 0).
Call

v(t, x) = u(t, x+ cte) = u(t, x1 + ct, x′)
for all (t, x) ∈ R× RN . The function v solves

(3.16) vt = ∆v + ce · ∇v + f(v)

and

(3.17) ϕc(x1) ≤ v(t, x) ≤ ϕc(x1 − a) for all (t, x) ∈ R× RN .

Our goal is to prove that v is a shift of the planar front ϕc(x1).
First, remember that ϕc is decreasing in R. It is also well-known that

(3.18)
{
ϕc(s) ∼ αe−λcs as s→ −∞ if c > c∗,
ϕc(s) ∼ (αs+ β)e−λcs as s→ −∞ if c = c∗,

where α > 0 and λc = (c −
√
c2 − 4f ′(0))/2 if c > c∗. If c = c∗, then α > 0, or

α = 0 and β > 0; furthermore, λc∗ = (c∗ +
√

(c∗)2 − 4f ′(0))/2.
Choose δ ∈ (0, 1) such that f is decreasing in [1− δ, 1], and let A > 0 such that

ϕc(x1) ≥ 1− δ for all x1 ≤ −A. Call

F = {(t, x) ∈ R× RN , x1 > −A}.
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Fix any T ∈ R∗ and ρ ∈ RN−1. For all σ ∈ R and (t, x) ∈ R × RN , denote
wσ(t, x) = v(t + T, x1 + σ, x′ + ρ). Since ϕc is decreasing, (3.17) yields wσ ≤ v in
R× RN for all σ ≥ a. Call now

σ∗ = inf {σ ∈ R, wσ′ ≤ v in R× RN for all σ′ ≥ σ}.

The real number σ∗ is well-defined because ϕc(−∞) = 1 > 0 = ϕc(+∞), and one
has

wσ∗ ≤ v in R× RN .

Assume that σ∗ > 0. Notice first that there exists no η0 > 0 such that wσ∗−η ≤ v
in F for all η ∈ [0, η0] : otherwise, if such a η0 exists, there would also hold that
wσ∗−η ≤ v in {x1 ≤ −A} (as in the proof of Theorem 3.1, using that v ≥ ϕc(x1) ≥
1 − δ for all x1 ≤ −A), whence wσ∗−η ≤ v in R × RN for all η ∈ [0, η0]. This
contradicts the minimality of σ∗. Therefore, there exist two sequences (σn)n∈N in
(σ∗ − 1, σ∗) and (tn, xn)n∈N = (tn, x1,n, x

′
n)n∈N in F such that

σn → σ∗ as n→ +∞ and wσn(tn, xn) ≥ v(tn, xn) for all n ∈ N.

Since x1,n ≥ −A for all n ∈ N, two cases may occur, up to extraction of a sub-
sequence : either x1,n → +∞, or x1,n → x1,∞ ∈ [−A,+∞) as n → +∞. Let us
first deal with the case when x1,n → +∞ as n → +∞. From standard parabolic
estimates and Harnack inequality, there are two positive constants C1 and C2 such
that, for all n ∈ N,

0 ≤ v(tn, x1,n, x
′
n)− v(tn + T, x1,n + σ∗, x′n + ρ)

≤ wσn(tn, x1,n, x
′
n)− wσ∗(tn, x1,n, x

′
n)

≤ C1 × (σ∗ − σn)× max
tn−1≤t≤tn, |x−xn|≤2

wσ∗(t, x)

≤ C1C2 × (σ∗ − σn)× wσ∗(tn + 1, x1,n, x
′
n)

≤ C1C2 × (σ∗ − σn)× ϕc(x1,n − a+ σ∗).

Let us first assume here that T > 0. Then there also exists a constant C3 > 0 such
that (v −wσ∗)(t− T, x1 − σ∗, x′ − ρ) ≤ C3 × (v −wσ∗)(t, x1, x

′) for all (t, x1, x
′) ∈

R× RN . Thus,

v(tn − kT, x1,n − kσ∗, x′n − kρ)− v(tn − (k − 1)T, x1,n − (k − 1)σ∗, x′n − (k − 1)ρ)
≤ C1C2C

k
3 × (σ∗ − σn)× ϕc(x1,n − a+ σ∗)

for all k ∈ N and n ∈ N, whence

v(tn − kT, x1,n − kσ∗, x′n − kρ)− v(tn + T, x1,n + σ∗, x′n + ρ)
≤ C1C2(1 + C3 + · · ·+ Ck

3 )(σ∗ − σn)ϕc(x1,n − a+ σ∗).

From (3.17), it follows that

(3.19) ϕc(x1,n−kσ∗) ≤
[
1 + C1C2(1 + C3 + · · ·+ Ck

3 )(σ∗ − σn)
]
ϕc(x1,n−a+σ∗)

for all k and n in N. Fix now k ∈ N such that −kσ∗ < −a+σ∗ (this is possible since
σ∗ > 0). Because of (3.18), there is ε > 0 such that ϕc(s−kσ∗) ≥ (1+ε)ϕc(s−a+σ∗)
for all s large enough. Since ϕc > 0 and x1,n → +∞, σn → σ∗ as n → +∞, the
inequalities (3.19) are impossible for n large enough. In the case T < 0, similarly,
there exist two positive constants C ′2 and C ′3 such that

ϕc(x1,n)− ϕc(x1,n − a+ kσ∗)
≤ v(tn, x1,n, x

′
n)− v(tn + kT, x1,n + kσ∗, x′ + kρ)

≤ C1C
′
2(1 + C ′3 + · · ·+ (C ′3)

k−1)(σ∗ − σn)ϕc(x1,n)
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for all n ∈ N and k ∈ N, k ≥ 1. Choose k such that −a+ kσ∗ > 0 and, from (3.18),
ε > 0 such that (1 + ε)ϕc(s− a+ kσ∗) ≤ ϕc(s) for s large enough. Once again, one
gets a contradiction as n→ +∞ in the above inequalities.

Therefore, the sequence (x1,n)n∈N has to be bounded. Up to extraction of a
subsequence, one can assume that x1,n → x1,∞ ∈ [−A,+∞) as n→ +∞, and that
the functions vn(t, x) = v(t+ tn, x1, x

′ + x′n) converge locally uniformly in R×RN

to a solution v∞ of (3.3) such that

z(t, x) = v∞(t, x)− v∞(t+ T, x1 + σ∗, x′ + ρ) ≥ 0 in R× RN ,

with equality at (0, x1,∞, 0). The strong maximum principle and the uniqueness
of the Cauchy problem for (3.3) imply that z ≡ 0 in R × RN , that is v∞(t, x) =
v∞(t+T, x1 +σ∗, x′+ ρ) for all (t, x) ∈ R×RN . But v∞ still satisfies (3.17). Since
σ∗ > 0 and ϕc(−∞) = 1 > 0 = ϕc(+∞), one has reached a contradiction.

As a conclusion, one has proved that σ∗ ≤ 0. Thus,

v(t, x) ≥ wσ(t, x) = v(t+ T, x1 + σ, x′ + ρ) for all σ ≥ 0 and (t, x) ∈ R× RN .

Since T 6= 0 and ρ ∈ RN−1 were arbitrary, it follows that v can be written as a
nonincreasing function φ(x1) which depends on x1 only. Because of (3.17), 0 =
φ(+∞) < φ(s) < φ(−∞) = 1 for all s ∈ R and φ is decreasing from the strong
maximum principle. Furthermore, the function φ satisfies φ′′ + cφ′ + f(φ) = 0 in
R. Thus, by uniqueness, φ = ϕ(· − b) for some b ∈ R. Lastly, 0 ≤ b ≤ a because of
(3.17) and ϕc is decreasing. This completes the proof of Theorem 3.5.

Remark 3.6. 1. It is immediate to see that the conclusion of Theorem 3.5 still
holds if, instead of f > 0 on (0, 1) and f ′(0) > 0 in (3.13), it is only assumed that all
solutions φ : R → (0, 1) of φ′′+cφ′+f(φ) = 0 in R with φ(−∞) = 1, φ(+∞) = 0 are
equal to ϕc up to shifts, and that ϕc is decreasing and lim infs→+∞ ϕc(s−τ)/ϕc(s) >
1 for some τ > 0.

2. The assumptions (3.15) imply that

(3.20) 0 < u < 1 and u(t, x) → 1 (resp. 0) unif. as x · e− ct→ −∞ (resp. +∞),

that is u is an almost planar invasion front. Actually, if f is concave in [0, 1] and
if c > c∗ (c∗ = 2

√
f ′(0) in this case), then the assumptions (3.20) are sufficient to

ensure that u is of the type u(t, x) = ϕc(x · e − ct − b) for some b ∈ R (see [20]).
However, this last result is open for general monostable nonlinearities f .

4. Further qualitative properties

We now proceed to further general qualitative properties of the generalized
transition waves. Throughout this section, m = 1 and u denotes transition wave
between p− and p+, for equation (2.1). We assume that u and p± are globally
bounded in R× Ω and that properties (2.3), (2.4), (3.6) and (3.7) are satisfied.

First, the following general monotonicity property holds.

Theorem 4.1. [4] Assume that A and q do not depend on t, that f and p± are
nondecreasing in t and that there is δ > 0 such that, for all (t, x) ∈ R× Ω,

s 7→ f(t, x, s) is nonincreasing in (−∞, p−(t, x) + δ] and [p+(t, x)− δ,+∞).

If u is an invasion of p− by p+ with infR×Ω (p+ − p−) > 0, then

(4.1) ∀ (t, x) ∈ R× Ω, p−(t, x) < u(t, x) < p+(t, x).

and u is increasing in time t.
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Notice that if (4.1) holds a priori and if f is assumed to be nonincreasing in s for
s in [p−(t, x), p−(t, x)+δ] and [p+(t, x)−δ, p+(t, x)] only, instead of (−∞, p−(t, x)+δ]
and [p+(t, x)− δ,+∞), then the strict monotonicity of u in t holds good.

Actually, Theorem 4.1 plays a crucial role in the uniqueness results of Sec-
tions 3.2 to 3.4. It says that the “bistable-type” invasion fronts are monotone in
time. In the case of almost planar fronts, one can be more precise, that is one can
compare any two fronts up to shifts in time.

Theorem 4.2. [4] Under the same conditions as in Theorem 4.1, assume fur-
thermore that f and p± are independent of t, and that there exist e ∈ SN−1, c ≥ 0
and a map R 3 t 7→ ξt such that (3.10) and (3.11) are satisfied. Let ũ be another
globally bounded invasion front of p− by p+ for equation (2.1) with the boundary
condition (3.6), associated with

Γ̃t = {x ∈ Ω, x · e− ξ̃t = 0} and Ω̃±t = {x ∈ Ω, ±(x · e− ξ̃t) < 0}

and having global mean speed c̃ ≥ 0 such that

sup { | dΩ(Γ̃t, Γ̃s)− c̃|t− s| |; (t, s) ∈ R2} < +∞.

Then c = c̃ and there is (the smallest) T ∈ R such that

ũ(t+ T, x) ≥ u(t, x) for all (t, x) ∈ R× Ω.

Furthermore, there exists a sequence (tn, xn)n∈N in R× Ω such that

(dΩ(xn,Γtn
))n∈N is bounded and ũ(tn + T, xn)− u(tn, xn) → 0 as n→ +∞.

Lastly, either ũ(t+ T, x) > u(t, x) for all (t, x) ∈ R×Ω or ũ(t+ T, x) = u(t, x) for
all (t, x) ∈ R× Ω.

This result is related to a uniqueness property. In many instances, uniqueness
holds up to shifts but it is an open question to know under which general condition
uniqueness holds. The proofs of Theorems 4.1 and 4.2 are rather lenghty and
technical. We refer to [4] for more details.

5. Planar fronts which have no global mean speed

In Section 2, new general notions of transition waves were given. The examples
in this section and in the following ones show how the new definitions include wave
solutions which are not covered by the usual notions.

In this section, travelling fronts which have no global mean speed are con-
structed. This situation may happen even for very simple reaction-diffusion mod-
els. Namely, we consider here the homogeneous one-dimensional reaction-diffusion
equation

(5.1) ut = uxx + f(u), x ∈ R,

where the function f : [0, 1] → R is assumed to be of class C2 and

(5.2) f(0) = f(1) = 0, 0 < f(s) ≤ f ′(0)s for all s ∈ (0, 1) and f is concave.

We recall that (5.1) admits usual travelling fronts solutions ϕc(x − ct), for each
speed c ≥ 2

√
f ′(0), such that 0 < ϕc < 1 in R and ϕc(−∞) = 1, ϕc(+∞) = 0.

Furthermore, each function ϕc is decreasing and unique up to shifts.
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Proposition 5.1. Under assumption (5.2), equation (5.1) admits invasion
fronts connecting 1 and 0, which have no global mean speed. More precisely, given
2
√
f ′(0) ≤ c− < c+, equation (5.1) admits generalized transition waves u such that

(p−, p+) = (1, 0), Ω−t = (−∞, xt), Ω+
t = (xt,+∞), u(t, ·) is decreasing in R for

each t ∈ R and xt/t→ c± as t→ ±∞, where, for each t ∈ R, xt is the unique real
number such that, say, u(t, xt) = 1/2.

Proof. For each n ∈ N, call un the solution of the Cauchy problem

(5.3)
{

(un)t = (un)xx + f(un), t > −n, x ∈ R,
un(−n, x) = un,0(x) := max

(
ϕc−(x+ c−n), ϕc+(x+ c+n)

)
.

From the maximum principle, it follows that

max
(
ϕc−(x− c−t), ϕc+(x− c+t)

)
≤ un(t, x) < 1

for all n ∈ N, t ≥ −n and x ∈ R. These estimates imply that un(−m, ·) ≥
um(−m, ·) in R as soon as n ≥ m. Thus, the maximum principle implies that each
sequence (un(t, x))n≥|t| is nondecreasing. On the other hand, since un,0 is a subso-
lution of the associated elliptic equation, one gets that un(t, x) is nondecreasing in
t (≥ −n) for each n and x.

Furthermore, since un,0 is decreasing in x, so is each function un(t, ·) for t ≥ −n.
Lastly, since f(a + b) ≤ f(a) + f(b) for all (a, b) ∈ [0, 1] × [0, 1] with a + b ≤ 1 by
(5.2), the function

min
(
ϕc−(x− c−t) + ϕc+(x− c+t), 1

)
is a super-solution of (5.3), whence

un(t, x) ≤ min
(
ϕc−(x− c−t) + ϕc+(x− c+t), 1

)
for each n ∈ N, t ≥ −n and x ∈ R.

From standard parabolic estimates, one concludes that the functions un con-
cerge locally uniformly in (t, x) to a classical solution u of (5.1) such that

(5.4)
0 < max

(
ϕc−(x− c−t), ϕc+(x− c+t)

)
≤ u(t, x) ≤ min

(
ϕc−(x− c−t) + ϕc+(x− c+t), 1

)
for all (t, x) ∈ R2. Thus, u(t,−∞) = 1 and u(t,+∞) = 0 for each t ∈ R and
each function u(t, ·) is decreasing in R from the strong maximum principle applied
to ux. By continuity, there exists then a unique real number xt ∈ R such that
u(t, xt) = 1/2, for each t ∈ R. One also gets immediately by passing to the limit
that u is nondecreasing in t, and actually u is increasing in t from the strong
maximum principle applied to ut.

Let us now check that u satisfies all the conclusions of Proposition 5.1. Notice
first that the map t 7→ xt is continuous and increasing. Moreover, since c− < c+,
the estimates (5.4) imply immediately that

(5.5)
{
u(t, x)− ϕc−(x− c−t) → 0 as t→ −∞, uniformly in x ∈ R,
u(t, x)− ϕc+(x− c+t) → 0 as t→ +∞, uniformly in x ∈ R.

Therefore, xt/t→ c± as t→ ±∞. One can even say that lim supt→±∞ |xt− c±t| <
+∞. It also follows that

u(t, x) → 1 uniformly as x− xt → −∞
and

u(t, x) → 0 uniformly as x− xt → +∞.
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As a conclusion, the function u is a generalized transition wave for (5.1), and
it is an invasion front of 0 by 1 which has no global mean speed. This completes
the proof of Proposition 5.1.

Remark 5.2. The idea of the proof of Proposition 5.1 is inspired from [20].
Actually, given 2

√
f ′(0) ≤ c− < c+, there exists an infinite-dimensional manifold

of solutions satisfying (5.5) and the conclusions of Proposition 5.1.

With the same scheme as in the proof of Proposition 5.1, we can also prove the
following

Proposition 5.3. Let c− ≥ 2
√
f ′(0) be given, and let ζ(t) : R → (0, 1) be a

solution of ζ̇(t) = f(ζ(t)) for all t ∈ R. Under assumption (5.2), equation (5.1) ad-
mits invasion fronts for which (p−, p+) = (1, ζ(t)), Ω−t = (−∞, xt), Ω+

t = (xt,+∞),
u(t, ·) is decreasing in R for each t ∈ R and xt/t→ c− as t→ −∞ and xt/t→ +∞
as t→ +∞.

Proof. Notice first that the function ζ is increasing, ζ(−∞) = 0, ζ(+∞) = 1
and there exists h ∈ R such that ζ(t) ∼ ef ′(0)(t+h) as t → −∞. For each n ∈ N,
call un the solution of the Cauchy problem{

(un)t = (un)xx + f(un), t > −n, x ∈ R,
un(−n, x) = un,0(x) := max

(
ϕc−(x+ c−n), ζ(−n)

)
.

As in Proposition 5.1, the maximum principle and standard parabolic estimates
imply that the functions un converge locally uniformly in (t, x) ∈ R2 to a classical
solution u of (5.1) such that

0 < max
(
ϕc−(x− c−t), ζ(t)

)
≤ u(t, x) ≤ min

(
ϕc−(x− c−t) + ζ(t), 1

)
for all (t, x) ∈ R2, and u is decreasing in x and increasing in t. The above estimates
imply that{

u(t, x)− ϕc−(x− c−t) → 0 as t→ −∞, uniformly in x ∈ R,
u(t, x) → 1 as t→ +∞, uniformly in x ∈ R.

Furthermore, u(t,−∞) = 1 and u(t,+∞) = ζ(t) for each t ∈ R.
Let t0 ∈ R be such that ζ(t) ≤ 1/4 for all t ≤ t0. Therefore, for each

t ≤ t0, there exists a unique xt ∈ R such that u(t, xt) = 1/2, and the map
(−∞, t0] 3 t 7→ xt is continuous, increasing, and xt/t → c− as t → −∞. Extend
the map t 7→ xt in R such that it is continuous and increasing in R, and xt/t→ +∞
as t→ +∞. The above observations yield u(t, x) → 1 uniformly as x− xt → −∞,
and u(t, x) − ζ(t) → 0 uniformly as x − xt → +∞. Define Ω−t = (−∞, xt) and
Ω+

t = (xt,+∞) for each t ∈ R. The function u is an invasion front which satisfies
all conclusions of Proposition 5.3.

The conclusion of this section is that, even for the simple homogeneous one-
dimensional equation (5.1), there are generalized transition waves which are not
covered by the usual definitions. For instance, because of (5.5), the solutions which
are constructed in Proposition 5.1 are not invariant or periodic in time in any
moving frame. Neither can these solutions be written in the form (1.8). Roughly
speaking, we could say that the instantaneous speed of these solutions is increasing
in time.
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6. Multidimensional invasion fronts whose directions of propagation
change in time

In this section, we construct special solutions of the equation

(6.1) ut = ∆u+ f(u), x ∈ RN ,

in dimension N ≥ 2, under the assumption (5.2). In Section 1.2, we recalled the
existence of travelling fronts for various types of nonlinearities f . The level sets of
the fronts were not planar in general, but the profile of each solution was invariant in
time in a certain frame moving with constant speed in the direction of propagation.
The aim of this section is to show that, roughly speaking, there are generalized
travelling fronts for which the direction of propagation is not constant in time. For
simplicity, we fix N = 2, but the same construction would hold in any dimension
N ≥ 2.

Proposition 6.1. Let N = 2 and 2
√
f ′(0) ≤ c−1 < c+1 , 2

√
f ′(0) ≤ c−2 < c+2

be such that c+1 /c
−
1 6= c+2 /c

−
2 . Choose any unit vectors ν1 and ν2 in S1 such that

ν1 6= ±ν2. Call c± > 2
√
f ′(0) and ν± ∈ S1 the speeds and unit vectors such that

c±ν± · νi = c±i for i = 1, 2. Then ν− 6= ±ν+ and equation (6.1) admits invasion
fronts u connecting 1 and 0 (0 is invaded by 1) such that

u(t, x+ c±ν±t) → U±(x) as t→ ±∞, uniformly in x ∈ R2,

where 0 < U± < 1 solve ∆U± + c±ν± · ∇U± + f(U±) = 0 in R2 and U± are not
equal up to shifts and rotations.

Proof. Notice first that the existence and uniqueness of c± and ν± are imme-
diate since ν1 6= ±ν2. Furthermore, ν− ·ν+ > 0 and ν− 6= ν+ since c+1 /c

−
1 6= c+2 /c

−
2 .

Call

u±i (t, x) = ϕc±i
(x · νi − c±i t)

for i = 1, 2, where ϕc±i
: R → (0, 1) denotes any solution of ϕ′′

c±i
+c±i ϕ

′
c±i

+f(ϕc±i
) = 0

in R with ϕc±i
(−∞) = 1 and ϕc±i

(+∞) = 0. Each function u±i is a solution of (6.1).
For each σ ∈ R, call u±σ and uσ the solutions of the Cauchy problem associated

to (6.1) for t > −σ with initial data at time −σ defined by
u−σ (−σ, x) = u−σ,0(x) = max

(
u−1 (−σ, x), u−2 (−σ, x)

)
u+

σ (−σ, x) = u+
σ,0(x) = max

(
u+

1 (−σ, x), u+
2 (−σ, x)

)
uσ(−σ, x) = uσ,0(x) = max

(
u−1 (−σ, x), u−2 (−σ, x), u+

1 (−σ, x), u+
2 (−σ, x)

)
.

As in the proof of Proposition 5.1, the functions u±σ and uσ are nondecreasing in
σ and they converge, as σ → +∞, locally uniformly in (t, x) ∈ R × R2 to three
solutions u± and u of (6.1) such that

(6.2)

 max
(
u−1 (t, x), u−2 (t, x)

)
≤ u−(t, x) ≤ min

(
u−1 (t, x) + u−2 (t, x), 1

)
max

(
u+

1 (t, x), u+
2 (t, x)

)
≤ u+(t, x) ≤ min

(
u+

1 (t, x) + u+
2 (t, x), 1

)
max (u−(t, x), u+(t, x)) ≤ u(t, x) ≤ min (u−(t, x) + u+(t, x), 1)

for all (t, x) ∈ R × R2. One also has 0 < u±(t, x) < 1 and 0 < u(t, x) < 1 for
all (t, x) ∈ R × R2 (the strict upper inequalities follow from the strong maximum
principle).
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On the other hand, for every t0 ∈ R and σ ∈ R, the function (t, x) 7→ v(t, x) =
u−σ (t + t0, x + c−ν−t0) is a solution of (6.1) with initial datum at time −(t0 + σ)
given by

v(−(t0 + σ), x) = u−σ (−σ, x+ c−ν−t0)
= max

(
ϕc−1

(x · ν1 + c−ν− · ν1t0 + c−1 σ), ϕc−2
(x · ν2 + c−ν− · ν2t0 + c−2 σ)

)
= max

(
ϕc−1

(x · ν1 + c−1 (t0 + σ)), ϕc−2
(x · ν2 + c−2 (t0 + σ))

)
= u−t0+σ(−(t0 + σ), x)

due to the definitions of c− and ν−. Thus, u−σ (t + t0, x + c−ν−t0) = u−t0+σ(t, x)
for all t ≥ −(t0 + σ) and x ∈ R2. For a fixed t0 ∈ R, the passage to the limit as
σ → +∞ yields

u−(t+ t0, x+ c−ν−t0) = u−(t, x) for all (t, x) ∈ R× R2.

The same property holds similarly after changing the minus sign into a plus sign.
In other words, there exist two functions U± : R2 → (0, 1) such that

u±(t, x) = U±(x− c±ν±t) for all (t, x) ∈ R× R2.

The functions U± are classical solutions of

∆U± + c±ν± · ∇U± + f(U±) = 0 in R2.

Furthermore, the inequalities (6.2) imply that

0 < max
(
ϕc±1

(x · ν1), ϕc±2
(x · ν2)

)
≤ U±(x) ≤ min

(
ϕc±1

(x · ν1) + ϕc±2
(x · ν2), 1

)
for all x ∈ R2. Call τ1 and τ2 the unique unit vectors such that τ1 ⊥ ν1, τ2 ⊥ ν2,
τ1 · ν2 > 0 and τ2 · ν1 > 0. The above estimates for U± imply that

U±(x+ rτ1) → ϕc±1
(x · ν1) and U±(x+ rτ2) → ϕc±2

(x · ν2) as r → +∞,

locally uniformly in x ∈ R2. Since c−1 < c+1 and c−2 < c+2 , the limiting profiles of
U± is the directions τ1 and τ2 are different, and the functions U± are not equal up
to shifts and rotations.

For each t ∈ (−∞, 0], call{
Ω−t =

{
x ∈ R2, x · ν1 < c−1 t

}
∪

{
x ∈ R2, x · ν2 < c−2 t

}
,

Ω+
t =

{
x ∈ R2, x · ν1 > c−1 t

}
∩

{
x ∈ R2, x · ν2 > c−2 t

}
,

and, for each t ∈ [0,+∞), call{
Ω−t =

{
x ∈ R2, x · ν1 < c+1 t

}
∪

{
x ∈ R2, x · ν2 < c+2 t

}
,

Ω+
t =

{
x ∈ R2, x · ν1 > c+1 t

}
∩

{
x ∈ R2, x · ν2 > c+2 t

}
.

With these choices of Ω±t , it follows immediately from (6.2) that u is a generalized
transition wave between 1 and 0, and that 1 invades 0.

Lastly, it is straightforward to check from the estimates (6.2) that u(t, x) −
u−(t, x) → 0 as t → −∞, and u(t, x) − u+(t, x) → 0 as t → +∞, uniformly in
x ∈ R2. In other words,

u(t, x+ c±ν±t) → U±(x) as t→ ±∞, uniformly in x ∈ R2.

This means that the solution u converges uniformly in R2 to two different pro-
files U± as t → ±∞ in two different moving frames, which propagate with two
different speeds c± into two different directions ν±. This completes the proof of
Proposition 6.1.
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7. Exterior domains and other examples

In this section, we describe another application of the general notions of tran-
sition waves. We deal here with propagation around an obstacle. More precisely,
we assume that the domain Ω is a connected smooth open subset of RN such that

Ω = RN\K,
where the obstacle K is non-empty and compact. We consider the following ques-
tions : given a planar front which is travelling in the direction of the obstable, can it
propagate around the obstacle and, if the answer is positive, is its shape perturbed
behind the obstacle, and is its profile shifted ?

We give answers to these questions for the reaction-diffusion problem

(7.1)
{
ut −∆u = f(u) in Ω,
ν · ∇u = 0 on ∂Ω,

where ν = ν(x) denotes the outward unit normal to Ω at a point x ∈ ∂Ω. We
assume that the nonlinearity f is of the bistable type on [0, 1], that is f is of class
C1([0, 1]), f(0) = f(1) = f(θ) = 0, f ′(0) < 0, f ′(1) < 0, f < 0 on (0, θ), f > 0 on
(θ, 1), where θ ∈ (0, 1) is given. We also assume that

∫ 1

0
f > 0. It is well-known

that equation (7.1) admits a unique planar front profile when Ω = RN : there
exist a unique speed c and a unique (up to shifts) function φ : R → (0, 1) such
that φ(−∞) = 1, φ(+∞) = 0 and φ(x · e − ct) solves (7.1) when Ω = RN , for any
direction e ∈ SN−1. Furthermore, c > 0.

When Ω 6= RN , these planar fronts φ(x · e − ct) do not solve (7.1) anymore,
because of the Neumann boundary conditions on ∂Ω. This framework cannot be
covered by the usual definitions of travelling waves. However, using our general
definitions of transition waves, we can prove that propagation around the obstacle
is still possible, under an additional geometrical condition on K.

Theorem 7.1. [5] Assume that K is strictly star-shaped. Given any direction
e ∈ SN−1, there exists a solution u(t, x) of (7.1) defined for all (t, x) ∈ R× Ω, and
such that

u(t, x)− φ(x · e− ct) → 0 as t→ ±∞, uniformly in x ∈ Ω

and
u(t, x)− φ(x · e− ct) → 0 as |x| → +∞, uniformly in t ∈ R.

The proof of this theorem can be divided into three main steps, which cor-
respond to the behavior of the front at very negative times, when it reaches the
obstacle, and lastly when it recovers its shape at large times after passing the
obstacle. Let us give a few words about each main step :

• firstly, the existence of a non trivial time-global solution u(t, x) being close
to the front φ(x · e− ct) when t→ −∞ is obtained as a limit as n→ +∞
of a sequence of Cauchy problems starting at times −n;

• secondly, it is proved that u(t, x) → 1 locally in x as t → +∞. Here, we
use the fact that the obstacle K is strictly star-shaped, that is there exists
x0 ∈ K such that [x0, x] ∈ K and ν(x) · (x0−x) > 0 for all x ∈ ∂K = ∂Ω.
We prove a useful result of independant interest, which says that any
solution 0 ≤ U(x) ≤ 1 of the stationary problem associated to (7.1) such
that U(x) → 1 as |x| → +∞, has to be identically equal to 1 if K is
strictly star-shaped;
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• lastly, we prove that the local deformations of the level sets of the front
which are induced by the obstacle become negligible at large times. We
use sub- and super-solutions with strong or weak diffusion in the directions
which are orthogonal to e.

In equation (7.1), the obstacle K can then be viewed as a local perturbation
of the uniform homogeneous medium. Other problems which are similar in nature
can also be investigated. For instance, in equation (2.1), some coefficients may
be locally perturbed. This is the case for instance in (1.7) when b(x) − b∞ has
a compact support, or b(x) → b∞ as |x| → +∞, for some constant b∞, with
b(x) 6≡ b∞. This situation is not almost periodic. These problems are the purpose
of current research.

Lastly, we mention that the generalized transition waves are the good tools to
describe propagation in more complex geometrical situations, like spirals, curved
cylinders with two different unbounded axes...

8. Further extensions

In the previous sections, the waves were defined as spatial transitions between
two limiting states p− and p+. More generally speaking, waves with multiple tran-
sitions can be defined as follows:

Definition 8.1. (Multiple transition waves) Let k ≥ 1 be a given integer and
let p1, . . . , pk be k time-global solutions of (2.1). A generalized transition wave
between p1, . . . , pk is a time-global classical solution u of (2.1) such that u 6≡ pj

for all 1 ≤ j ≤ k, and there exist k families (Ωj
t )t∈R (1 ≤ j ≤ k) of open pairwise

disjoint nonempty subsets of Ω and a family (Γt)t∈R of nonempty subsets of Ω, such
that  ∀ t ∈ R,

⋃
1≤j≤k

(∂Ωj
t ∩ Ω) = Γt, Γt ∪

⋃
1≤j≤k

Ωj
t = Ω,

∀ 1 ≤ j ≤ k, sup {dΩ(x,Γt); t ∈ R, x ∈ Ωj
t} = +∞

and

u(t, x)− pj(t, x) → 0 uniformly in t ∈ R and x ∈ Ωj
t as dΩ(x,Γt) → +∞

for all 1 ≤ j ≤ p.

For instance, triple or more general multiple transition waves with constant
limiting states pj are known to exist in some reaction-diffusion problems. The
above definition also covers the case of multiple wave trains.

Notice that the spatially extended pulses, as defined in Definition 2.5 with
p− ≡ p+, correspond to the special case k = 1, p1 = p± and Ω1

t = Ω−t ∪ Ω+
t in the

above definition. We say that they are extended since, for each time t, the set Γt

is unbounded in general. The usual notion of localized pulses can now be specified
as a particular case of Definition 8.1:

Definition 8.2. (Localized pulses) In the particular case where k = 1 and Γt

is a singleton in Definition 8.1, then we say that u is a localized pulse.

We conclude this section with two important remarks.

Remark 8.3. In all definitions of this paper, the time interval R can be replaced
by any interval I ⊂ R. The particular case I = [0, T ) with 0 < T ≤ +∞ is of great
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importance to describe the formation of waves and fronts for the solutions of Cauchy
problems.

Remark 8.4. All the general definitions of this paper can be still given for
other types of evolution equations which are not of the parabolic type.

9. Open problems

There are natural questions that arise from this new notion of waves in several
contexts. In each of these, the types of questions are: existence and uniqueness
of fronts, range of front velocities –is there an interval of global mean speeds in
KPP-type equations and a unique speed for bistable problems?–, stability of the
fronts, etc. We mention here a non-exhaustive list of specific or more general open
problems:

• For an equation like (1.7) where b is equal to the sum of a constant b∞
and a compactly supported function, are there bistable or KPP generalized
invasion fronts ? If the answer is positive, what is the possible phase shift
which is induced by the local perturbation in the medium ? More general
equations with locally perturbed coefficients can also be considered.

• The same questions can be asked when, say in dimension 1, the function
b has two different limits when x→ ±∞ ? Obviously, all these questions
can be extended to general parabolic operators, higher dimensions and
more general geometries.

• The study of fronts for equations with time and space-dependent coeffi-
cients has just started and many fundamental questions about existence
and dynamical properties of transition waves in this context remain open.

• Time-dependent domains can also be considered. The general definitions
can indeed be easily extended to this framework.

• In Section 7, we reported on the existence of bistable almost-planar fronts
passing an obstacle. Can the geometrical condition on the obstacle be
removed ?
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Université Paul Cézanne Aix-Marseille III, LATP, Faculté des Sciences et Tech-
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