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Abstract
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1, -+ ,Zn—1. Under some conditions on f, we prove that the solutions only de-
pend on the variable z,,. We also discuss more general elliptic operators. The
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of Ghoussoub and Gui [21] proved for n < 3.
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1 Introduction

This article is devoted to the classification of the functions « which are solu-
tions of the following semilinear elliptic equation

Au+ f(u) =0 in R" (1.1)
and which satisfy |u| < 1 together with the asymptotic conditions

U(iﬂl,iﬂn)xnjoo + 1 uniformly in &' = (21, -+, 2n 1) (1.2)
The given function f = f(u) is Lipschitz-continuous in [—1,1]. Clearly, for
(1.1)-(1.2) to have a solution, f has to be such that f(£1) = 0. Here, we
assume furthermore that there exists 4 > 0 such that

[ is non-increasing on [-1,—1+4¢] and on [1 —6,1]; f(£1)=0. (1.3)

We will prove that any solution u of the multidimensional equation (1.1)
with the limiting conditions (1.2) has one-dimensional symmetry :

Theorem 1 Let u be a solution of (1.1)-(1.2) such that |u| < 1. Then,
u(z', x,) = wo(xy,) where ug is a solution of

{ ug + flug) =0 in IR (1.4)

up(£o0) = =41,

and u is increasing with respect to x,. In particular, the existence of a solu-
tion u of (1.1)-(1.2) such that |u| < 1 implies the existence of a solution
of (1.4). Lastly, this solution u is unique up to translations of the origin.

For the one-dimensional problem, we refer to [5], [11], [18] or [23]. For
the low dimensions case n = 2,3 (assuming also that f is C'), the same
result had been obtained by Ghoussoub and Gui [21]. Their method relies
on spectral properties of some Schrédinger operators and is different from the
one we use in this paper in any dimension n. We have recently learned that a
similar result to Theorem 1 has been proved independently by Barlow, Bass
and Gui [7] using a very different method relying on probabilistic arguments.

Let us point out that Theorem 1 is related to a more difficult question,
known as a conjecture of De Giorgi :



Conjecture (De Giorgi) [20] If u is a solution of Au + u — u® = 0 such
that |u] < 1in B, lim_u(e’,2,) = +1 for all 2’ € B and 2 > 0,

then there exists a vector a € IR"™' and a function u, : IR — IR such that
uw(z',zy,) = ui(a- 2" +x,) in R".

In the particular case where f = u—u3, we see that this conjecture is stronger
than Theorem 1 in the sense that, for the conjecture of De Giorgi, the limits
as I, — Fo00 are only simple in 2’ whereas they are uniform in z’ for Theorem
1.

In fact, for a general nonlinearity f, the conjecture of De Giorgi has
been proved in dimension n = 2 by Ghoussoub and Gui [21] (see also a
presentation of Berestycki, Caffarelli, Nirenberg [10]), and, very recently, it
has been proved in dimension n = 3 by Ambrosio and Cabre [3]. See also
earlier work by Modica and Mortola [24] for dimension 2, and by Caffarelli,
Garofalo and Segala [15] for general inequalities related to this problem.

Recently, some new results in higher dimensions have been obtained by
Farina [17] and Barlow, Bass and Gui [7]. Farina proves one-dimensional
symmetry for the solutions of (1.1) provided that they minimize a certain
energy in a cylinder w X IR included in IR™. Barlow, Bass and Gui, with
probabilistic arguments, derive this symmetry result from a Liouville type
theorem, assuming monotonicity in a cone of directions. We also refer to
the papers of Berestycki, Caffarelli, Nirenberg [10] and Barlow [6] about
the connection between spectral properties of Schrodinger operators and the
conjecture of De Giorgi.

However, the conjecture of De Giorgi, in its general form, remains open
in dimensions greater than 3.

Let us now turn to more general semilinear elliptic equations of the type:
Lu+ g(xp,u) =0 in R" (1.5)

where
Lu = a;j(x)0;;u + b;(x)0;u

(here we have used standard summation conventions). This operator is not
necessarily self-adjoint. We assume that the coefficients a;;(z), b;(z) are
continuous functions and that

3y > ¢ >0, Vo € R", V€ € R", c|€]? < aij(2)&&5 < cplé]*. (1.6)
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Here, it is natural to ask whether the one-dimensional symmetry still
holds for the solutions of (1.5), (1.2) with a general elliptic operator L in-
stead of the Laplace operator. Nothing has been known so far about this
problem, even in low dimensions. The following two Theorems show that
the qualitative results actually depend on the structure of the coefficients a;;
and b;.

In the following results, g(z,,u) is required to be defined and continuous
on IR x [—1,1] and to satisfy the conditions :

g is non-decreasing in z,, (1.7)

Ve, € R, ¢(z,,+1)=0, (1.8)

30 > 0 such that (z,,s) — g(zy, ) is non-increasing in s
on Rx[-1,-1+¢] U Rx[1—4§,1],

ACy > 0, Vx, € R, Vs,5 € [-1,1], |g(zn, ) —g(xn, s)| < Col5—s]|. (1.10)

(1.9)

We first consider the case where the coefficients a;; and b; are constant;
we prove the same symmetry result as in Theorem 1 :

Theorem 2 Assume that L and g satisfy (1.6) and (1.7)-(1.10) and assume

that the coefficients a;;,0;, 1,7 = 1,+--,n are constant. Let u be a solution

of (1.5), (1.2) such that |u| < 1. Then, u(z',x,) = uo(z,) where uy is a
solution of

{ Upnty + byugy + g(Tn,up) =0 in IR

(1.11)

up(£oo) = =+1

and u is increasing with respect to x,. In particular, the existence of a so-

lution u of (1.5), (1.2) such that |u| < 1 implies the existence of a solution

up of (1.11). Furthermore, this solution u is unique up to translations of the
origin and if g is increasing in x,, then u is unique.

For general operators with non constant coefficients, however, this sym-
metry property does not hold. For example, it is natural to ask if a solution
of the equation

Au+ b(21)0p,u — cOpyu + f(u) =0 in IR? (1.12)

together with the uniform limiting conditions (1.2) actually satisfies u =
u(z2) (and therefore the term b(z1)0,,u drops). This is not the case as the
following counter-example in dimension 2 shows :
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Theorem 3 There exist some real numbers ¢, some functions f(s) fulfilling
the assumptions of Theorem 1 and some continuous functions b(xy) such
that the two-dimensional equation (1.12) together with the uniform limiting
conditions (1.2), admits both a planar solution uy and infinitely many non-
planar solutions (i.e. solutions whose level sets are not parallel lines).

Remark 1.1 It is natural to ask whether the one-dimensional symmetry
holds or not if the coefficients of the operator only depend on z,. Recently,
Alessio, Jeanjean and Montecchiari [2] have actually proved the existence of
solutions, which satisfy (1.2) and which do not depend on x,, only, for some
equations of the type

a(z,)Au+ f(u) =0 in IR".

Lastly, whereas Theorems 1 and 2 state symmetry properties for the
solutions of some elliptic equations in IR", the following Theorem, which can
be proved in the same way as Theorems 1 and 2 (see section 4), deals with
the case of the half space R} = {z, > 0}.

Theorem 4 Let L satisfy (1.6) and let the coefficients a;;,b;, 1,7 =1,---,n
be constant. Assume that the function (z,,s) — g(z,,s) is defined and
continuous on [0,00) x [0, 1] and satisfies :

g is non-decreasing in ,, (1.13)

vajn Z O? g(xn? 1) - O?

30 > 0, such that (zy,s) — g(xn, s) is non-increasing in s
on [0,+00) x [1 —6,1],

ACy, > 0, Vx, € [0,400), V5,5 € [0,1], |g9(xn,5) — g(zn, )| < Cyl§ — 5],
4(0,0) > 0. (1.14)
Let u € C(IR™) be a solution of

Lu+ g(xn,u) =0 in R" (1.15)

satisfying 0 < u < 1 together with the following boundary and limiting con-
ditions

lggrl w(2',z,) =1 wniformly in o' = (zy,-++,7,_1) € IR" L. (1.16)



Then, u(z', x,) = uo(x,) where uy is a solution of

" / — )
{ nntly + bty + g(Tn, uo) =0 in (0, +00) (1.17)

up(0) =0, ug(+o0) =1

and u s increasing in x,. In particular, the existence of a solution u of
(1.15)-(1.16) such that 0 < u < 1 implies the existence of a solution uy of
(1.17). Lastly, this solution u is unique.

This Theorem extends to more general operators and equations a result
of Clément and Sweers ([16]) who also considered the case of uniform limits
as Ty, — +00 :

Theorem (Clément-Sweers) [16] Let f € C'7 for some v € (0,1) satisfy :

dp; < 1 such that f(p1) = f(1) =0 and f >0 in (p1,1),

1
vpel0,1), [ J(s)ds >0,
p
36 > 0 such that f' <0 in (1 —46,1).
Let u € C*(IR}) N C(IRY) be a solution of

Au+ f(u) =0 in IR}

which satisfies 0 < u < 1 in IR" together with (1.16). Then u(z',x,) =
uo(z,) where ugy is a solution of

ug + flug) =0 in (0,+00)
u(0) =0, ug(+o0) =1

and u 18 monotonic in x,,.

The method to prove this Theorem is different from the one we use in this
paper. It relies on comparisons with suitable one-dimensional sub- and super-
solutions and on shooting type arguments.

Other problems in half spaces have been considered by Angenent [4] and
Berestycki, Caffarelli and Nirenberg [8], [10] where no assumption is imposed
on the limiting behaviour of u as z,, — +00. These symmetry results can also
be thought of as extensions of the Gidas, Ni and Nirenberg [19] symmetry
result for spheres.



The main device to prove Theorems 1 and 2 (and also Theorem 4) is the
sliding method, which has been developed by Berestycki and Nirenberg [12]
and has been used in various works of Berestycki, Caffarelli and Nirenberg
[8], [9], [10]. For another semilinear elliptic equation of the type (1.5) in
IR™ with conical limiting conditions, Bonnet, Hamel and Monneau have also

applied this method to state some monotonicity and uniqueness results (see
[14], [22]).

2 Proof of Theorem 1

The proof uses a sliding method and a version of the maximum principle in
unbounded domains.

Let us start by stating the following comparison result which directly
follows from Lemma 1 in [9] (based on the maximum principle) :

Lemma 2.1 ([9]) Let f be a Lipschitz-continuous function, non-increasing
on [—1,—=14 9] and on [1 — §,1] for some § > 0. Assume that uy, uy are
solutions of

Au; + f(u;)) =0 in Q

and are such that |u;| <1 (1 =1,2). Assume furthermore that
Uy > u; on 052

and that either
s >1—0 in

or u < =149 in Q.

If Q C IR™ is an open connected set such that IR"\Q contains an infinite
open connected cone, then us > uy in Q.

Here this result will be applied for domains which are half spaces.

Let us now consider a solution u of (1.1)-(1.2) such that |u| <1 and let f
satisfy (1.3). We are first going to prove that u is increasing in any direction
v = (vy,---,vy,) such that v, > 0.

In order to do so, for any ¢ € IR, we define the function v’ by : u(z) =
u(x + tv).



From (1.2), there exists a real a > 0 such that u(z',z,) > 1 — ¢ for all
7€ R""and x, > a and u(z',z,) < -1+ forallz’ € R" ' and x,, < —a.
For any t > 3—:, the functions v and u' are such that

ul(x',x,) >1-96 for all 2/ € IR™ ' and for all z,,
u(r', x,) < —1+96 for all 2/ € IR™ ' and for all z,,
ul(2',—a) >wu(a’,—a) forall 2’ € R"!

> —a
< —a (2.1)

Consequently, u and u! fulfill the assumptions of Lemma 2.1 in both Q =
IR x (—o00,—a) and Q = IR"™' x (—a,+0o0). Therefore, it follows that
ut > in IR™.

Let us now decrease t. We claim that u* > u for all ¢+ > 0. Indeed, define
7 =inf {t > 0, v’ > u in IR"}. By continuity, we see that v > u in IR".
Let us now argue by contradiction and suppose that 7 > 0. Two cases may
occur :

case 1 : suppose that

: T
R"*}E{—a,a](u —u) > 0. (2.2)

From standard elliptic estimates, u is globally Lipschitz-continuous. Hence,
there exists a real 1y small enough, which can be chosen smaller than 7, such
that for all 7 > ¢ > 7 — 1, one has

ul (', x,) —u(a',z,) >0 forallz’ € R" ' and z,, € [—a,al. (2.3)
Since u > 1 —§ in IR"™! x [a, +00), it follows that
u'(2',2,) > 1 -6 forall 2’ € R, z, > a and for all t > 0.

We may now apply Lemma 2.1 in the two half spaces QT = {z,, > a} and

Q= {x, < —a}. We then infer that, for all n € [0,n0], u™ (', x,) >

u(x',x,) for all ' € R"! and for all z,, € (—00, —a) U (a, +o0) and so for

all z,, € IR owing to (2.3). This is in contradiction with the minimality of 7.
Hence, (2.2) is ruled out.
case 2 : suppose that

inf T—u)=0. 2.4

lR"*}E[—a,a] (U U) ( )

Then there exists a sequence (z¥)gey € IR"™! X [—a, a] such that u™(z*) —

u(z*) — 0 as k — oo. Set uy(x) = u(z* + x). By standard elliptic estimates
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and the Sobolev injections, up to extraction of a subsequence, the functions
uy, approach locally a solution u, of (1.1) as k — co. We have u7_(0) = u(0)
and ul, > uy because ujp > uy for any £ € IN. The function z = ul, — uy
satisfies :
Az+c(x)z=0 in R"
z2>0 in R" (2.5)
2(0)=0

for some bounded function ¢(z) defined by

f(ulo(2)) = f(uso(x))

uZe () = tioo ()

c(x) =

if ul () # ux(x) and, say, ¢(x) = 0if u_(z) = us(x). The strong maximum
principle yields that z = 0. This means that u(z) = ue(r + 7). Letting
¢ = 1v, we see that u., is periodic with respect to the vector £&. Recalling
that —a < xfl < a, we see that the function u., also satisfies the uniform
limiting conditions (1.2). Hence, since &, > 0, the function u. cannot be
&-periodic. So case 2 with (2.4) is ruled out too.

Therefore, we have proved that 7 = 0. The function u is then increasing
in any direction v = (vy,- -, v,) such that v, > 0. From the continuity of
Vu, we deduce that 0,u > 0 for any v such that v, = 0. If v, = 0, by taking
v and —v, we find that 0,u = 0. Since this is true for all v with v, = 0, this
implies that u(z) = u(z,).

Since the solutions of (1.4) are unique up to translations, it then follows
that the solutions u of (1.1)-(1.2) such that |u| < 1 are unique up to trans-
lations of the origin. The proof of Theorem 1 is complete. 3

3 More general elliptic operators
In this section, we consider solutions u with |u| < 1 of more general equations
Lu+ g(xp,u) =0

where L is a general linear elliptic second-order operator with no zero-order
term :
Lu= aijaz-ju —+ bjaju.



We treat separately the case of constant coefficients where symmetry holds
(Theorem 2) and the case of non-constant coefficients where the symmetry
may be lost (Theorem 3).

3.1 Constant coefficients

Proof of Theorem 2. Assume that L and g satisfy (1.6) and (1.7)-(1.10)
and assume that the coefficients a;;, b;, 7,7 = 1,---,n, are constant. Let us
consider a solution u of (1.5), (1.2) such that |u] < 1. As in Theorem 1, we
shall prove that the function v depends on x,, only.

The scheme of the proof will be similar to that of Theorem 1, apart from
the fact that, instead of the maximum principle stated in Lemma 2.1 for the
Laplace operator, we shall use an extended version of the maximum principle
for general second-order elliptic operators in infinite slab type domains.

We are going to prove that u is increasing in any direction v = (vy,-- -, 1)
such that v, > 0. For any t € IR, let u' be the function : u'(z) = u(z + tv).

We first observe that, for all t > 0, the function u! is a super-solution for
(1.5). Indeed, for all £ > 0 and for all z € IR™, one has :

Lut + g(zp,ut) = Lu(z + tv) + g(z,, u(z + tv))
< Lu(z +tv) + g(xn + tvp,u(x + tv)) by (1.7)  (3.1)
<0.

Next, as in section 2, there exists a real a such that for any ¢ > 3—:,

u' (', x,) >1-0 forall ' € R* ! and z,, > —a
uw(@',x,) <-1+6 forallz’ € R 'and z, < —a (3.2)
ul(x',—a) >u(a’,—a) forall 2’ € R"!

We now want to say that u! > u in IR". To this end, we use the following
version of the maximum principle in infinite slab type domains for general
second-order elliptic operators :

Lemma 3.1 Let w be a function satisfying
Lw <0 inQ=IR""x(bec)
where b, c € IR and where
Lu = o;j(x)0i;u + Bj(x)0ju + v(x)u.
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Assume that the coefficients c;j(z), B;(z) are uniformly continuous in Q and
that the cuj; satisfy (1.6). Assume furthermore that

—C <7y(zx) <0 forallz e

for some positive real number C'. The function w is required to be continuous

in Q and to satisfy
Lw € L>(Q)

and m<w<M in

for some m, M € IR.
If w >0 on 092, then w > 0 in €.

Postponing the proof of the above Lemma, let us conclude the proof of
Theorem 2.

Let us first prove that v’ > u in IR* ' x (—a,+o0) for all + > 22 Set
z = u' — u. Owing to (3.2), we already know that z > 0 on IR" ! x { a}.
We are now going to show that z > 0 in IR"! x (—a, +00).

Owing to (3.1) and (1.10), the function z satisfies

Lz+c(r)z <0 in R"' x (—a, +00)
for some bounded function ¢(z) defined by

_ g(xn, ut(‘r)) — g(xn, u(x))

o(w) = ut(z) — u(z)

if u'(x) # u(r) and, say, ¢(x) = 0 if u'(z) = u(z).

Set y(z) = min (¢(x),0). If z € R"™" X (—a, +00) is such that z(x) <0,
then 1 — § < u'(z) < u(z), whence, owing to (1.9), one has c¢(z) < 0 and
v(z) = c(z). If z(xz) > 0, then

Lz+~y(x)z < Lz +c¢(x)z <0.
Therefore, it follows that
Lz+v(z)z <0 in R"™' x (—a, +o0) (3.3)

where the function v(z) is bounded and non-negative in R"™' x (—a, +00).
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We are now going to apply Lemma 3.1 in slabs of the type
Qp=R""' x (—a,h)

with h > —a.
Owing to (1.2), there exists a function e(h) > 0 such that z(z', h) > —=(h)
for all 2’ € IR"! and £(h) — 0 as h — +o00. Choose any h > —a and set

w=z+¢e(h).

The function w is bounded and, from standard elliptic estimates, it is con-
tinuous in . Setting £ = L + y(x), one has

Lw = Lz+y(x)z+y(x)e(h) in
< 7(x)e(h) by (3.3)
<0

since 7 < 0 and £(h) > 0. Furthermore, owing to the definition of w,
Lw = —g(z, + tvy,u(z +tv)) + g(z,, u(z)) +y(x)w € L>(Q)

because g, v and w are bounded (the boundedness of g resorts to (1.8) and
(1.10)).

Lemma 3.1 can then be applied to the function w and the operator £ in
Q. One has w > 0 on 0€2,. Therefore, it follows that w > 0 in Q. By
passing to the limit A — +oo and recalling that w = u’ — u + £(h), one
concludes that

u' (', x,) > u(a’,z,) forall 2’ € R" ! and z, > —a.
Similarly, one could show that
u' (', x,) > u(a’,z,) forall 2’ € R" ! and z, < —a,
whence u! > v in IR".
Define 7 = inf {¢ > 0, v’ > w in IR"}. By arguing as in the proof of
Theorem 1, it then follows that 7 = 0. More precisely, if we suppose that

7 > 0, then, under the same notations as in the proof of Theorem 1, case 1
is ruled out. Moreover, case 2 is ruled out too. Indeed, if case 2 occurs, one
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can then assume that, up to extraction of a subsequence, ¥ — 7, € [—a, d]
and the functions uy(x) = u(x + 2¥) approach a function u., solving

Lo + g(2p + Ty to) = 0 in IR™.

As we did in (3.1), the function u7, satisfies Lul + g(z, + T,,ul,) < 0.
Eventually, 2 = ul — u verifies

Lz+c(z)z <0 in R"
z >0 in IR"
2(0) =0

for some bounded function c¢. The impossibility of case 2 follows then, as in
the proof of Theorem 1, from the strong maximum principle and from the
uniform limiting conditions (1.2).

Hence, u is increasing in any direction v such that v, > 0. This implies
that u = u(z,) and that u is a solution of (1.11). The same sliding method
also allows us to conclude that, if u(x,) and v(z,) are two solutions of (1.11),
then there exists a real number 7 such that u(z, +7) = v(z,) for all z,, € IR.
The function v(x,) then satisfies

V" + byt + gy, ) =0
V" + bpv" + g(x, + 7,0) =0.

Therefore, if g is increasing in x,, it follows that 7 = 0 whence u = v. |

Let us now turn to the
Proof of Lemma 3.1. Let £ and w fulfill the assumptions of Lemma 3.1.
Suppose that
igf w=—\<0.

Then there exists a sequence (z¥)yen € R™ ' x (b, ¢) such that w(z¥) — —X
as k — oo. From standard elliptic estimates, the function w is globally
Lipschitz-continuous in Q. Recalling that w > 0 on 052, there exists then
e > 0 such that, up to extraction of a sub-sequence,

aF 5T, €bt+e,c—¢] ask — oo (3.4)

Set
k

wh (2!, 2,) = w(z + 2", 2,)

13



and af(z', z,) = az;(z’' + " x,), Bi(a!,zn) = B;(a + " ), VR xn) =
v(a' 4 2%, 2,) for all (2/,x,) € Q. The functions w* satisfy

afj@ijwk + ﬁfajwk < —yFw”  in Q
< —yFwk —4F)\ since ¥ <0and A >0
< C (wh+N).

since w* + XA > 0 and —* < C. Up to extraction of sub-sequences, from
Ascoli’s Theorem, the functions «;;, 3; locally converge to some functions @;;,
Bj and from standard elliptic estimates, the functions w* locally approach
a function w as k — 4o0o0. By passing to the limit & — oo, the function
2 =W + A satisfies

Mz—Cz<0 in Q

where M = aijaij + Bjaj.

Owing to the definition of A, one has z > 0 in §2. Furthermore, from (3.4),
it follows that z(0,%,) = 0 with T, € [b+ &,¢ — ¢]. The strong maximum
principle then yields that

z=wW+A=0 in Q. (3.5)

On the other hand, since w is globally Lipschitz-continuous, there exists
a real number § > 0 such that, say, w(z',z,) > —A\/2 for all 2’ € R"™! and
b<wx, <b+d. As a consequence, z > A\/2 > 0 in IR"™' x [b,b+ 6]. This is
ruled out by (3.5) and the proof of the Lemma is complete. 4

Let us now observe that Theorem 2 does not hold in general if, instead
of the uniform limiting conditions (1.2), we only assume that u(z', z,) — £1
as ¢, — oo for each 2’ € R™ .

Consider the equation

Au — cOpu+ f(u) =0 in R? (3.6)
with
u(x1,x9) — +1 as xy — +o00, pointwise, for all z; € IR (3.7)

Let us further assume that

9
8—;2 >0 in R? (3.8)
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Here, c is a constant parameter and f is some C'! function. The limits in
(3.7) are only pointwise and are not required to be uniform. When ¢ = 0, it
follows from the result of Ghoussoub and Gui [21] that u is a function of one
variable only.

This does not hold for (3.6)-(3.8) as soon as ¢ # 0. Indeed, Bonnet and
Hamel [14] have constructed for some particular function f and for some
¢ > 0 a solution u such that

u(A\k) —  —1 for all k = (cos ¢, sin ¢) with —g—a<gp<—g+a

A—+400 3
uw(\k) — 41 for all k = (cos ¢, sin @) with — Ttra< o < T o
A—+00 2 2
for each angle o € (0,7/2]. Such a solution cannot have one-dimensional
symmetry (with level sets being parallel lines). This problem arises in the
modelling of Bunsen burner flames (see [14] and [22] for details).
Therefore, from this example we learn that, for some functions f(u), the
De Giorgi’s conjecture cannot be extended to elliptic operators with nonzero
first-order terms, even in dimension 2.

3.2 Non-constant coefficients

Our goal in this section is to prove Theorem 3. More precisely, we are going
to prove that for an equation of the type (1.12) :

Au+ b(x1)0p,u — cOpyu+ f(u) =0 in R?

together with the limiting conditions (1.2), there exist both a solution de-
pending on x5 only and infinitely many non-planar solutions, i.e. solutions
whose level sets are not parallel lines.

The construction is somewhat involved and technical. It first relies on the
choice of special types of functions b(x;) and f. Next, we construct a family
of non-planar solutions of (1.12), (1.2) that are between suitably chosen sub-
and super-solutions.

Let us first state the type of b and f we consider. We choose a continuous
function x; — b(x;) such that, for some £ € IR and xo > 0, the function

o Y b(s)d
x(z1) = / e~ Jo b *dy verifies x(+o00) = +xo. (3.9)
3
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A constant function b(x;) = by does not fulfill this condition. In contrast, all
the functions of the type b(z,) = atanhz, + 8 (with a > |3]) or of the type
b(z1) = axy + f (with « > 0 and g € IR) fulfill this condition.

The function f will be chosen as to satisfy the following conditions :

I e Ol([_la 1])? f(:l:l) =0, (310)
36 € (—1,1) such that f<0in[-1,60], f>0in [6,1], (3.11)
and either
1
F<0in[-1,6, f>0in(0,1), / f(s)ds > 0, (3.12)
-1
or
1
f<0in(=1,8), f>0in0,1], / f(s)ds < 0, (3.13)
-1
or
f<0in (=1,0), f>0in (0,1). (3.14)
Assume furthermore that if f is positive somewhere in [—1,1], then
inf f'(v)=f'(1) <0 3.15
g, ) =7 (3.15)

and that if f is negative somewhere in [—1, 1], then

: / /
{f(lzggo}f (v) = f'(—-1) <0. (3.16)
On the one hand, the condition (3.12) includes the case where f has an
ignition temperature profile (f = 0 in [—1,6] and f > 0 in (#,1)). On the
other hand, the case (3.14) corresponds to the so-called bistable profile.
From [18], [23], there exist a unique real ¢, whose sign is that of [, f(s)ds,
and a function z(z5) solving the one-dimensional problem :

(3.17)

2 —c2+ f(z) =0 in R
z(£o0) ==+1

The solution z of (3.17) is unique up to translations and is increasing. Fur-
thermore, it has the following asymptotic behaviour as xo — +oo (see [5],

[13], [18]) :
{ z(x2)
2 (x2)

—1 + Cer + o(e™?)
CAe* + o(e™?)

as Ty — —00 (3.18)
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{ z(xa) 1 — Ce 12 4 o(e Ho2)

~ 1
() Cie 2 + ofe—#e2) as Ty — 400 (3.19)

where

2 M 2
and C,C are two positive constants. Under the assumptions (3.12)-(3.16),
one can see that \ and p are always positive.
Theorem 3 will be a consequence of the following

o Ve —4f(0)+¢ e —ArQ) —c (3.20)

Proposition 3.2 Under the previous assumptions, for any a € (—1,1),
there exist functions " (x1) and ¥~ (x1) such that
(i) Y~ <7,
(ii) the function
Ug (21, 0) = 2(m9 + T (21))

is a super-solution of (1.12) and the function

Uo (21, 72) = (29 + U7 (21))

is a sub-solution of (1.12),

(11i) Yt and Y~ are increasing if a > 0 and decreasing if a < 0; if a =0,
then v+t =4~ =0,

(iv) ¥ (—o0) =¢7(—00) € R and " (+00) = ¢~ (+0) € IR,

(v) I_ = I_(a) := *(—00) is decreasing with respect to a and ly =
I, (a) := ¢*(+00) is increasing.

Remark 3.3 Since the function z is increasing, the assertion (i) implies that
Uy (71, 79) < (w1, 72) for all (z1,35) € IR?.

Remark 3.4 In the case where f is positive somewhere, one can show that
this last Proposition is still true if the assumption (3.15) is replaced with
f'(1) < 0. To this end, we approximate f in L*°([—1, 1]) norm by a sequence
of functions satisfying (3.15). In the case where f is negative somewhere,
Proposition 3.2 is also true if (3.16) is replaced with f'(—1) < 0.

Postponing the proof of this Proposition, let us first state two preliminary
Lemmas and conclude the proof of Theorem 3.
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Lemma 3.5 If a function u(xy,xs) is such that u, < u < U, with a # 0,
then u is not a function of xo only. Moreover, it is not a planar function
(i.e. a function whose level sets are parallel lines).

Proof. Assume first that there exists a function zs — wv(x3) such that
u(ry,x2) = v(xy) for all (z1,79) € R?. Owing to the definitions of u, and
U, one has

2(zo + 97 (21)) < v(we) < 2(2 + 0T (21)) for all (zy,25) € IR?.

Choose z2 = 0 and take the limits ; — +o00. By the assertion (iv) of Propo-
sition 3.2, it then follows that v(0) = z(I_) = z(I;). Since z is increasing,
one finds that [ = [,. This is ruled out by (iii).

Assume now that there exist a function ¢ — v(¢) and two reals o and
such that u(zy, 2) = v(ax; + Bxy) for all (x1,29) € IR%. Then

2(wy + 7 (11)) < v(axy + Bas) < 2(wy + T (21)) for all (21, 12) € IR

From what precedes, only the case a # 0 remains to be treated. Choose now
1 = yT9 where v = —g. One has

2(wg + 1 (y22)) < 0(0) < z(m2 + YT (y22)) for all zo € R.

Since the functions % are bounded and z(+oc) = £1, the limits as z, —
+o00 imply that v(0) = —1 and v(0) = 1. This is impossible. |

Lemma 3.6 If two functions u(zy,x2) and v(zy,xe) are such that u, < u
and U, > v with a # b, then u # v.

Proof. Assume that u = v and write u, and wu, as U, (21, x2) = 2(za+1} (1))
and wy, (21, x2) = z(x2 + 1, (21)). One then has

2(@at1y (1)) < wlay, x) = v(wy,22) < 2(ve41p) (1)) for all (z1,2,) € R*.
Therefore, since z is increasing, it follows that
Yy (z1) < h(x,) forall z; € IR.

By taking the limit as ;1 — —oo, one finds that [ (b) < [ (a). By (v
>

),
this implies that a < b. Similarly, the limit as x; — 400 yields that a > b.
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Eventually, @ = b. This is in contradiction with the assumption a # b and
the proof of the Lemma is complete. !
Proof of Theorem 3. Choose any a € (—1,1) and, under the notations of
Proposition 3.2, consider the functions ¢)*, )~ and @,, u,. By Remark 3.3, we
know that u, < w,. Since u, and %@, are respectively sub- and super-solutions
for (1.12), there exists then a solution u, of (1.12) such that u, < u, < T,
i.e.

2(my + 7 (21)) < ug(w1,12) < 2(z9 + 10" (21)) for all (w1, 25) € IR

Owing to (iv), the functions )™ and ¢~ are bounded. As a consequence, the
function u, still satisfies the uniform limiting conditions (1.2). Therefore,
for each a € (—1,1), there exists a solution u, of (1.12), (1.2). If a = 0, we
simply have ug = z.

By Lemma 3.5, the function u, is not planar if a # 0. By Lemma 3.6,
one has u, # uy if a # b. Hence, equation (1.12) together with the limiting
conditions (1.2) has a family of solutions u, parametrized by a € (—1,1)
which are different one another and which are not planar for a # 0. 7

Let us now turn to the proof of Proposition 3.2.
Proof of Proposition 3.2. Choose a real a € (—1,1). By definition, the

function y(z1) is increasing and it then satisfies |x(z1)| < xo for all x; € IR.
We can then consider the functions

b= =) =—Sm( - X0
" X(l?f())
vt =t () :Xln(l—a " )+

where the positive real numbers A and p have been defined in (3.20) and
where

a =, = tanh (—é tanh_l(a)> €(—-1,1)
[

B = == Mn(l+0) = $In(l +a),

Proof of (iii). If a = 0, the conclusion is obvious. Take now a > 0. One
has

(V™) (z1) = a_ _X(z) >0 forallz; € R

- _ o x(@)
UXo 1 —a "
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since a, pu and g are positive and the function y is increasing. As far as the
function " is concerned, one has

+\/ _ « X,(Il)
T) = — for all z; € IR.
) = 5 T oat :

Like a, 1 and xjq, the real number A is positive. Therefore, « is negative and
YT is increasing.
The case a < 0 can be treated similarly.

Proof of (iv). Tt is straightforward owing to the definitions of 1)* and to
the fact that x(d+o00) = +xo-

Proof of (v). We have [_(a) = —iln(l +a) and [y (a) = —iln(l —a).
Since p is positive, this yields (v).

Proof of (i). The case a = 0 is obvious. Choose now a # 0 and define

v(z1) =T (z1) — Y~ (21)

Part (iv) says that v(£oo) = 0. To prove that v is non-negative in IR, it
is then sufficient to show that v'(z;) is positive in an interval of the type
(—o0,v) and negative in (7, 4+00). A straightforward calculation leads to

v'(z1) = A(z1)B(zy) forall z; € R

where
! 1 1
Axy) = X(@1) >0 forallz; € R
Axo 1 — X&) 1 ox2)
X0 X0
and where
B(z1) = —(aA + ap) + aa(A + M)M for all z; € IR.
Xo

The product aa is always negative whatever the sign of a may be. Moreover,
remember that A and p are positive and that y is increasing. Hence, the
function B is (strictly) decreasing. If B did not change sign, then v would
be monotone and then identically 0. That would yield v = 0 and B = 0.
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The latter is impossible since B is decreasing. Hence, the function B changes
sign. Since it is decreasing, there exists then a real v such that B(z;) > 0 in
(—00,7) and B(z;) < 0 in (v, +00). The conclusion follows.

Proof of (ii). Choose a € (—1,1) and consider the function

o (21, 72) = 2(22 + Y7 (11)).

Owing to its definition, it is easy to check that the function ¢ = ¢~
solution of the following ordinary differential equation

> — " — bay )y = 0. (3.21)
Set I(u) := Au+ b(x1)0s,u — cOp,u + f(u). We have
Hug) = (L+9%)2" + (—c+ 4" + b)) + f(z)
= (L+¢?) (e’ = f(2))

+(—c+ )" + f(z) by (3.17) and (3.21)
wlZ ( )+( )le ! .

_ ( (Z)+ /S)>¢'2' since 1° + cp+ f'(1) =

2

We now claim that

+ <0 for all y € IR. 3.22
2 (y) Iz (322)
. _ S :
Indeed, first, the function v(y) = W) satisfies
=y

v =v? —cv+ f(2).

If the supremum of v were reached at a point b € IR, then

f(z(0) _ o(b) = cE e - 4f’(2(b))'
2

Owing to (3.10) and (3.11), one always has f’(1) < 0. Therefore, if
f(z(b)) <0, then v(y) < wv(b) <0 for all y € IR and the claim (3.22) follows.
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Let us now consider the case where f(z(b)) > 0. By the definition of pu
and by (3.15), it follows that

oy < VEZH P

= 5 "

Moreover limsup v(y) < 0 owing to (3.11) and z(—o0) = —1. On the other

Yy——00
!/
—f'(1
hand, v(+o00) = /) > 0 by (3.19). Consequently, we have sup v <
U

R
!
—f(1
il ) This yields (3.22).
This implies that I(u,) > 0 in IR?, that is to say that u, is a sub-solution

of (1.12).
Similarly, we can show that the function 7, is a super-solution of (1.12).
The proof of Proposition 3.2 is complete. 7

Remark 3.7 This counter-example shows that there are infinitely many
non-planar solutions u, to the equation (1.12). We can see that for any
a # 0 these solutions are not symmetric with respect to any vertical axis
{z1 = b}. In fact, we conjecture that uy = z is the unique solution which is
symmetric with respect to a vertical axis.

For an equation of the type (1.12) :
Au + b(21)0p,u — cOp,u + f(u) =0 in IR?

and for some functions f, as we said earlier, there are non-planar solutions
with b = 0 and ¢ # 0 satisfying w(2/,z,) — +1 as x, — +oo for each
¥ e R" L

If uniform limits (1.2) are satisfied, then one knows from Theorem 2
that any solution u has one-dimensional symmetry whenever b is constant.
Nevertheless, Theorem 3 shows that this symmetry property does not hold
for some non-constant and yet bounded functions b and some functions f.
More precisely, the non-planar solutions wu, of (1.12) we have constructed are
such that, say for a > 0,

2z (x9) = 2z(wa + 1) < wul(xy, 22) < 24 (w9) := 2(x2 + 1)
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and

w(zy,x9) —>  +1 uniformly in z;
u(xl,a:Q)mjoo 24 (22)

where [_ < [, and zy are solutions of (3.17). The profile of a function
safisfying these properties is drawn in Figure 1.

Figure 1: Profile of a function u(xy, z3) satisfying (3.23)

Recently, similar results have been proved for different equations by Alessio,
Jeanjean and Montecchiari [2] and Alama, Bronsard and Gui [1]. Alessio,
Jeanjean and Montecchiari, with methods based on hamiltonian systems,
have proved the existence of non-planar functions u(xy,z2) satisfying the
same kind of limits as in (3.23) and solving the equation

—Au+ a(z)W'(u) =0 in R?

for some functions a(x) which are positive and periodic. Here TV is a multiple
well potential. Alama, Bronsard and Gui [1], with energy methods, have
proved the existence of non-planar solutions U = (uy, ug) for a system of two
equations of the type

—AU +VW (U) =0, x = (z1,19) € IR?
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satisfying asymptotic limiting conditions as 1, xs — £o00 similar to (3.23).
There, W : IR? — IR is also a multiple well potential.

Let us now consider the De Giorgi’s non-linearity f(u) = u — u3. It
satisfies the conditions (3.10)-(3.11), (3.14) and (3.15)-(3.16). Furthermore,
[', f(s)ds = 0. The unique speed c that is a solution of (3.17) is then equal
to 0. Now choose a function b(x;) satisfying (3.9). As a consequence of the
preceding results, the bi-dimensional equation

Au+ b(z1)0p,u + f(u) =0 in IR?, (3.24)

together with the uniform limiting conditions (1.2), admits both a planar
solution and infinitely many non-planar solutions. The same result obviously
holds in any dimension n > 2 by considering the same equation (3.24) in IR™
and choosing special solutions of the type v(zy,---,x,) = u(zy,22). As a
conclusion, in any dimension n > 2 and even if uniform limits (1.2) are
required, the De Giorgi’s conjecture cannot be extended, for a class of non-
constant functions b(x;) (including some bounded functions), to equations of
the type (3.24) involving the additional first-order term b(z1)0,, u.

4 Half space case

Let L and g satisfy the assumptions of Theorem 4 and let u € C(IR%) be
a solution of (1.15)-(1.16). As in the proofs of Theorems 1 and 2, we are
going to prove that u is increasing in any direction v = (v4,---,1,) such
that v, > 0. For any ¢t > 0, we define the function «' in {z, > —tv,} by
ut(z) = u(z + tv).

As we did in (3.1), one has, for any ¢ > 0 :

Lu' + g(an,ut) <0 in {z, > —tr,} O R (4.1)

Owing to (1.16), there exists a real a > 0 such that u(a',z,) > 1 — 0 for
all z/ € R™ ! and z,, > a. For all t > -, the function u! is then such that

) forall 2/ € R™ " and z,, > 0
u

>1-
>0=u(z',0) forallz’ € R" .

As we did in the proof of Theorem 2, using especially Lemma 3.1, it then
follows that v’ > w in IR".
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Let us now decrease t. We claim that ! > u in IR" for all t > 0. Define
7 =inf {t > 0, w' > win IR}}. By continuity, we see that v” > u in
R = {x, > 0}. Let us now argue by contradiction and suppose that 7 > 0.
Two cases may occur :

case 1 : suppose that

inf  (u" —u)>0.
R"—1x]0,a]

In this case, as in the proof of Theorem 1, there would exist a real ng € (0, 7)
such that u* > w in IR" for all t € [T — o, 7]. This would be in contradiction
with the minimality of 7.

case 2 : suppose that

inf  (u" —u)=0.
R"—1x]0,a]

Then there exists a sequence (z¥)rey € IR™' x [0,a] such that u”(z*) —
u(z¥) — 0 as k — oo. Up to extraction of a subsequence, two sub-cases may
occur :

sub-case 2-1 : suppose that z¥ — 7, € (0,a] as k — oo. This sub-case
shall be ruled out as case 2 in the proof of Theorem 2.

More precisely, the functions uy (2, z,) = u(z' + 2'*, z,) would then ap-
proach locally in IR! a function us, solving

Ltiog + g(%n, tsg) = 0 in IRY.

The function u] satisfies Lul +g(z,, ul,) < 0in IR}. Furthermore, ul, > uy
in R} and ul (0,T,) = ux(0,Ty,). From the strong maximum principle, it
then follows that ul, = uy in IR}. The function us is then periodic with
respect to the vector £ = 7v.

From elliptic regularity theory, the function u is globally Lipschitz-continuous
in IR". Since u satisfies (1.16) and since the uy, are obtained from u by shift-
ing it with respect to the z’-variables, it follows that the function u., satisfies
(1.16) too. Hence, since &, > 0, it cannot be &-periodic.

sub-case 2-2 : suppose that 2% — 0 as k — oo. Since u = 0 on {z, = 0}
and wu is globally Lipschitz-continuous in {x, > 0}, it then follows that

u(z" +7v) = 0 as k — oo.

Set ug(x) = u(x + 2*¥). This function is defined in {z, > —zf} > {z, > 0}.
By standard elliptic estimates, up to extraction of a subsequence, the (non-
negative) functions uy approach locally in {z, > 0} a function uy > 0 as
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k — 0o. We have uy(7v) = 0. Furthermore, as we did in (3.1) or (4.1) and
since zF > 0, one has

Lug(z) 4 g(x,, up(z)) <0 forall 2’ € R"* and z,, > —zF.

k

As a consequence, one has, for all 2’ € R"™! and z, > —x%,

Lug(z) + g(xn, ug(x)) — g(x,,0) < —g(xy,0)
<0 by (1.13) and (1.14).

Finally, there exists then a bounded function ¢(x) such that
Lug + cuse <0 in R} = {x, > 0}.

Since uy is non-negative and vanishes at the interior point 7v € IR, the
strong maximum principle implies that u,, = 0 in JR?}. Recalling that 0 <
zF < a, we see that the function uy, is such that ue(2', z,) — 1 as x, — +0o0
(uniformly in 2’ € IR""1). So sub-case 2-2 is ruled out too.

Consequently, 7 = 0 and, as in the proof of Theorem 1, the function u
then depends on z;,, only and solves (1.17).

Lastly, if u(z,) and v(x,) are two solutions of (1.17), then the previous
proof implies that we simultaneously have v > v and v > u. As a conclu-
sion, the solution u of (1.15)-(1.16) is unique and the proof of Theorem 4 is
complete.
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