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Abstract. This paper is devoted to some nonlinear propagation phenomena in periodic and more
general domains, for reaction-diffusion equations with Kolmogorov-Petrovsky-Piskunov (KPP) type
nonlinearities. The case of periodic domains with periodic underlying excitable media is a follow-up
of the article [7]. It is proved that the minimal speed of pulsating fronts is given by a variational
formula involving linear eigenvalue problems. Some consequences concerning the influence of the
geometry of the domain, of the reaction, advection and diffusion coefficients are given. The last
section deals with the notion of asymptotic spreading speed. The main properties of the spreading
speed are given. Some of them are based on some new Liouville type results for nonlinear elliptic
equations in unbounded domains.
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4 Spreading speed 31

Introduction

This paper is the first in a series of two in which we address spreading and propagation prop-
erties attached with reaction-diffusion type equations in a general framework. We consider
reaction-terms of the type associated with Fisher or KPP (for Kolmogorov, Petrovsky and
Piskunov) equations. These properties are well understood in the homogeneous framework
which we recall eblow. Here and in part II we consider heterogeneous problems. Part II will
be devoted to propagation properties in very general domains. The present paper deals with
the periodic case where both the equation and the domain have periodic structures. The
precise setting and assumptions will be given shortly. But before that, let us recall some of
the basic features of the homogeneous equations.

Consider the Fisher-KPP equation :

ut −∆u = f(u) in RN . (0.1)

It has been introduced in the celebrated papers of Fisher (1937) and KPP (1937) originally
motivated by models in biology. Here the main assumption is that f is say a C1 function
satisfying

f(0) = f(1) = 0, f ′(1) < 0, f ′(0) > 0, f > 0 in (0, 1), f < 0 in (1, +∞), (0.2)

f(s) ≤ f ′(0)s, ∀s ∈ [0, 1]. (0.3)

Archetypes of such nonlinearities are f(s) = s(1− s) or f(s) = s(1− s2).
Two fundamental features of this equation account for its success in representing prop-

agation (or invasion) and spreading. First, this equaton has a family of planar travelling
fronts. These are solutions of the form

u(t, x) = U(x · e− ct) (0.4)

where e is a fixed vector of unit norm which is the direction of propagation, and c > 0 is the
speed of the front. Here U : R 7→ R is given by

{ −U ′′ − cU ′ = f(U) in R
U(−∞) = 1, U(+∞) = 0.

(0.5)

In the original paper of Kolmogorov, Petrovsky and Piskunov, it was proved that, under the
above assumptions, there is a threshold value c∗ = 2

√
f ′(0) > 0 for the speed c. Namely,

no fronts exist for c < c∗, and, for each c ≥ c∗, there is a unique front of the type (0.4-0.5).
Uniqueness is up to shift in space or time variables.

Another fundamental property of this equation was established mathematically by Aron-
son and Weinberger (1978). It deals with the asymptotic speed of spreading. Namely, if
u0 is a nonnegative continuous function in RN with compact support and u0 6≡ 0, then the
solution u(t, x) of (0.1) with initial condition u0 at time t = 0 spreads with the speed c∗ in
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all directions for large times : as t → +∞, max|x|≤ct |u(t, x)− 1| → 0 for each c ∈ [0, c∗), and
max|x|≥ct u(t, x) → 0 for each c > c∗.

In this paper, we consider a general heterogeneous periodic framework extending (0.1).
The heterogeneous character arises both in the equation and in the underlying domain. The
types of equations we consider here are :

{
ut −∇ · (A(x)∇u) + q(x) · ∇u = f(x, u) in Ω
ν · A∇u = 0 on ∂Ω,

(0.6)

where ν denotes the outward unit normal on ∂Ω. It will be assumed throughout this paper
that the matrix A(x), the vector q(x) and the reaction term f(x, s) as well as the geometry Ω
are periodic. Precise assumptions will be described shortly. Note that even equation (0.1), if
set in a periodic domain (e.g. the space with a periodic array of holes), acquires the features
of a non-homogeneous equation. That equation will be considered in general (non-periodic)
domains in Part II [10].

Here, in the periodic setting, we address three types of questions.
1) What is the speed of generalized travelling fronts in periodic structures –we recall the

definition of such fronts below– ? A formula which we announced in [7] is proved here.
2) Using a formula of Gärtner and Freidlin [39], we relate the asymptotic speed of spread-

ing in a periodic domain to that of the minimal speed of propagation. Contrarily to the
homogeneous equation, as we will see on an example, these two speeds may not be the same.

3) We then proceed to derive several important consequences on the minimal speed of
propagation and on the asymptotic spreading speed. Effects of stirring, of reaction, and
of geometry will be established here rigorously. These formulas indeed allow us to prove
properties of the following kind. The presence of holes or of an undulating boundary always
hinder the progression or the spreading. On the contrary, any stirring by a flow always
increases that speed.

In the next section we introduce the general setting with precise assumptions and we
state the main results achieved in this paper. Their proofs take up the remaining sections.

1 The periodic framework and main results

1.1 Speed of propagation of pulsating travelling fronts in periodic
domains

This section deals with pulsating fronts travelling in a given unbounded periodic domain
under the effects of diffusion, reaction and possibly advection by a given underlying flow. One
of the most important issues in this context is the determination of the speed of propagation
of fronts. A variational formula for the minimal speed of propagation is derived.

This notion of propagation of travelling fronts for the homogeneous equation (0.1) can
be extended to that of pulsating travelling fronts in a more general class of periodic domains
and for a more general class of reaction-diffusion-advection equations in periodic excitable
media.
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We now describe the general periodic framework. Let N ≥ 1 be the space dimension and
let d be an integer such that 1 ≤ d ≤ N . Call x = (x1, · · · , xd) and y = (xd+1, · · · , xN). Let
L1, · · · , Ld be d positive numbers and let Ω be a C3 nonempty connected open subset of RN

such that 



∃R ≥ 0, ∀(x, y) ∈ Ω, |y| ≤ R,

∀(k1, · · · , kd) ∈ L1Z× · · · × LdZ, Ω = Ω +
d∑

i=1

kiei,
(1.1)

where (ei)1≤i≤N is the canonical basis of RN . Let C be the set defined by

C = {(x, y) ∈ Ω, x ∈ (0, L1)× · · · × (0, Ld)}.

Since d ≥ 1, Ω is unbounded and C is its periodicity cell. In all what follows, a field w is
said to be L-periodic with respect to x in Ω if w(x1 + k1, · · · , xd + kd, y) = w(x1, · · · , xd, y)
almost everywhere in Ω, for all k = (k1, · · · , kd) ∈ L1Z× · · · × LdZ.

Before going further on, let us point out that this framework includes several types of
simpler geometrical configurations. The case of the whole space RN corresponds to d = N ,
where L1, · · · , LN are any positive numbers. The case of the whole space RN with a periodic
array of holes can also be considered. The case d = 1 corresponds to domains which have only
one unbounded dimension, namely infinite cylinders which may be straight or have oscilatting
periodic boundaries, and which may or not have periodic holes. The case 2 ≤ d ≤ N − 1
corresponds to infinite slabs.

We are interested in propagation phenomena for the following reaction-diffusion-advection
equation, with unknown u, set in the periodic domain Ω :

{
ut = ∇ · (A(x, y)∇u) + q(x, y) · ∇u + f(x, y, u), t ∈ R, (x, y) ∈ Ω,

νA∇u(x, y) = 0, t ∈ R, (x, y) ∈ ∂Ω.
(1.2)

Such equations arise especially in simple combustion models for flame propagation [75], [90],
[95], as well as in models in biology and for population dynamics [30], [69], [81]. The passive
quantity u typically stands for the temperature or a concentration which diffuses and is
transported in a periodic excitable medium.

Let us now detail the assumptions on the coefficients of (1.2). First, the diffusion matrix
A(x, y) = (Aij(x, y))1≤i,j≤N is a symmetric C2,δ(Ω) (with δ > 0)1 matrix field satisfying

{
A is L-periodic with respect to x,
∃ 0 < α1 ≤ α2, ∀(x, y) ∈ Ω, ∀ξ ∈ RN , α1|ξ|2 ≤ Aij(x, y)ξiξj ≤ α2|ξ|2 (1.3)

(we use the usual summation convention with 1 ≤ i, j ≤ N). The boundary condition
νA∇u(x, y) stands for νi(x, y)Aij(x, y)∂xj

u(t, x, y) and ν denotes the unit outward normal

1The smoothness assumptions on A, as well as on q and f below, are made to ensure the applicability
of some a priori gradients estimates for the solutions of some approximated elliptic equations obtained from
(1.2) (see (2.9) in Section 2). These gradient estimates are obtained for smooth (C3) solutions through a
Bernstein-type method, [8]. We however believe that the smoothness assumptions on A, as well as on q and
f , could be relaxed, by approximating A, q and f by smoother coefficients.
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to Ω. When A is the identity matrix, then this boundary condition reduces to the usual
Neumann condition.

The underlying advection q(x, y) = (q1(x, y), · · · , qN(x, y)) is a C1,δ(Ω) (with δ > 0)
vector field satisfying 




q is L-periodic with respect to x,
∇ · q = 0 in Ω,
q · ν = 0 on ∂Ω,

∀1 ≤ i ≤ d,

∫

C

qi dx dy = 0.

(1.4)

The divergence-free assumption means that the underlying flow is incompressible. The vector
field q is tangent on ∂Ω and its first d components have been normalized. The flow q may
represent some turbulent fluctuations with respect to a mean field.

Lastly, let f(x, y, u) be a nonnegative2 function defined in Ω× [0, 1], such that





f ≥ 0, f is L-periodic with respect to x and of class C1,δ(Ω× [0, 1]),
∀(x, y) ∈ Ω, f(x, y, 0) = f(x, y, 1) = 0,
∃ρ ∈ (0, 1), ∀(x, y) ∈ Ω, ∀ 1− ρ ≤ s ≤ s′ ≤ 1, f(x, y, s) ≥ f(x, y, s′),
∀s ∈ (0, 1), ∃(x, y) ∈ Ω, f(x, y, s) > 0,
∀(x, y) ∈ Ω, f ′u(x, y, 0) := limu→0+ f(x, y, u)/u > 0.

(1.5)

The simplest case of such a monostable function f(x, y, u) satisfying (1.5) is when f(x, y, u) =
g(u) and the C1,δ function g satisfies : g(0) = g(1) = 0, g > 0 on (0, 1), g′(0) > 0 and
g′(1) < 0. Such nonlinearities arise in combustion and biological models (see Fisher [30],
Kolmogorov, Petrovsky, Piskunov [57], Aronson, Weinberger [1]). Another example of such
a function f is f(x, y, u) = h(x, y)f̃(u) where f̃ is as before and h is L-periodic with respect
to x, Lipschitz-continuous and positive in Ω.

This section is concerned with special solutions, which are called pulsating travelling
fronts (or periodic travelling fronts, see [82]), and which are classical time-global solutions u
of (1.2) satisfying 0 ≤ u ≤ 1 and




∀k ∈

d∏
i=1

LiZ, ∀(t, x, y) ∈ R× Ω, u

(
t− k · e

c
, x, y

)
= u(t, x + k, y),

u(t, x, y) −→
x·e→+∞

0, u(t, x, y) −→
x·e→−∞

1,

(1.6)

where the above limits hold locally in t and uniformly in y and in the directions of Rd which
are orthogonal to e. Here, e = (e1, · · · , ed) is a given unit vector in Rd. Such a solution
satisfying (1.6) is then called a pulsating travelling front propagating in direction e. We say
that c is the effective unknown speed c 6= 0. Let us mention here that, without the uniformity
of the limits in (1.6), many other fronts may exist, whose level sets may for instance have
conical shapes (see e.g. [19], [42], [43]).

2In [7], this assumption of f being nonnegative was explicit in formula (1.7) for a function f = f(u)
depending only on u. However, although this assumption was obviously also used for the general periodic
nonlinearity f(x, y, u) described in [7], it was not mentioned there explicitely. An extension for divergence-
type equations with a function f which may change sign is proved in [11].
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Under the above assumptions, the first two authors proved in [7] that there exists c∗(e) >
0 such that pulsating travelling fronts u in the direction e with the speed c exist if and only if
c ≥ c∗(e) ; furthermore, all such pulsating fronts are increasing in time t (other results with
more general nonlinearities f were proved in [7], see below). The following Theorem gives a
variational characterization of this minimal speed c∗(e) under an additional assumption on
the nonlinearity f .

Assume that Ω, A and q satisfy (1.1), (1.3) and (1.4), and that f satisfies (1.5) and

∀(x, y, s) ∈ Ω× (0, 1), 0 < f(x, y, s) ≤ f ′u(x, y, 0)s. (1.7)

Call ζ(x, y) := f ′u(x, y, 0) and denote ẽ the vector defined by ẽ = (e1, · · · , ed, 0, · · · , 0) ∈ RN .

Theorem 1.1 Under the above assumptions, let c∗(e) be the minimal speed of pulsating
travelling fronts propagating in the direction e and solving (1.2) and (1.6). Then

c∗(e) = min
λ>0

k(λ)

λ
(1.8)

where k(λ) is the principal eigenvalue of the operator

Lλψ := ∇ · (A∇ψ)− 2λẽA∇ψ + q · ∇ψ + [−λ∇ · (Aẽ)− λq · ẽ + λ2ẽAẽ + ζ]ψ (1.9)

acting on the set E = {ψ ∈ C2(Ω), ψ is L-periodic with respect to x and νA∇ψ = λ(νAẽ)ψ
on ∂Ω}.

Before studying the consequences of Theorem 1.1, let us briefly explain the formula for
the minimal speed c∗ and mention some earlier results about front propagation, starting
from the simplest case of planar fronts in homogeneous media.

Assumption (1.7) is often called the Fisher-KPP assumption (see Fisher [32] and Kol-
mogorov, Petrovsky and Piskunov [57]). It is especially satisfied for the canonical example
f(u) = u(1−u), or more generally when f = f(u) is a C2 concave function on [0, 1], positive
on (0, 1). Thus, under the KPP assumption (1.7), the minimal speed c∗(e) can be explicitely
given in terms of e, the domain Ω, the coefficients q and A and of f ′u(·, ·, 0). We point out
that the dependance of c∗(e) on the function f is only through the derivative of f with
respect to u at u = 0. When Ω = RN , A = I, q = 0 and f = f(u) (with f(u) ≤ f ′(0)u in
[0, 1]), formula (1.8) then reduces to the well-known KPP formula c∗(e) = 2

√
f ′(0) for the

minimal speed of planar fronts for the reaction-diffusion equation ut = ∆u + f(u) in RN .
A planar front is a solution of the type φ(x · e − ct), where the planar profile φ solves

φ′′ + cφ′ + f(φ) = 0 in R with the limiting conditions φ(−∞) = 1 and φ(+∞) = 0. Such
a solution propagates with constant speed c in the direction e and its shape is invariant in
the frame moving with speed c in the direction e. Many papers were devoted to such planar
fronts, as well as for other classes of nonlinear functions f(u) (see e.g. [1], [15], [30], [31],
[52]). For a detailed study of planar fronts for systems of reaction-diffusion equations, we
refer to the book of Volpert, Volpert and Volpert [87] and to the references therein.

Equations with periodic nonlinearities f(x, u) in space dimension 1, without advection,
were first considered by Shigesada, Kawasaki and Teramoto [82], and by Hudson and Zinner
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[50]. The notion of travelling fronts propagating with constant speed c no longer holds in
general and has to be replaced with the more general one of pulsating travelling fronts, as
defined in (1.6) (see [82]). The profile of such a front is not invariant anymore, but, in
one space dimension, the profile is periodic in time in the frame moving with speed c along
the direction of propagation. In [50], a formula similar to the right-hand side of (1.14) in
dimension 1 was given and it was proved that for any speed not smaller than the right-hand
side of (1.14), then pulsating travelling fronts exist. The case of a periodic nonlinearity
f(x, u) changing sign with respect to x, based on a patch invasion model in ecology was
considered in [81] and [82], and recently revisited from a rigorous mathematical and more
general point of view in [11] and [12] in dimensions 1 and higher, and for more general
reaction terms. Lastly, the case of periodic diffusion with bistable type nonlinearity (see
(1.11) below) was investigated by Nakamura [71] in dimension 1.

The case of shear flows q = (α(y), 0, · · · , 0) in straight infinite cylinders Ω = R× ω was
dealt with by Berestycki, Larrouturou, Lions [13], and Berestycki and Nirenberg [17]. Under
the assumption that all coefficients of equation (1.2) do not depend on the x1 variable, the
period L1 can be any arbitrary positive number and pulsating travelling fronts reduce in this
case to travelling fronts φ(x1 − ct, y) which move with constant instantaneous speed c and
keep a constant shape. Formula (1.13) was derived in this framework in [17] for the minimal
speed of travelling fronts with a nonlinearity f = f(u) satisfying (1.5) and (1.7). Other
nonlinearities f(u) were treated in [17] : for a combustion-type nonlinearity f such that

∃θ ∈ (0, 1) (called ignition temperature),
f = 0 on [0, θ] ∪ {1}, f > 0 on (θ, 1), f ′(1) < 0

(1.10)

(see [52]), there exists a unique speed c and a unique (up to shift in time, or equivalently in
x1) travelling front φ(x1 − ct, y) ; for a bistable nonlinearity f such that

∃θ ∈ (0, 1), f(0) = f(θ) = f(1) = 0,
f < 0 on (0, θ), f > 0 on (θ, 1), f ′(0) < 0, f ′(1) < 0,

(1.11)

there still exists a unique speed c and a unique (up to shift) travelling front, under the
additional assumption that the section ω of the cylinder is convex. Min-max type variational
formulas –involving the values of f(u) for all u ∈ (0, 1)– for the unique or minimal speeds of
propagation of these travelling fronts were obtained by Hamel [41] and Heinze, Papanicolaou
and Stevens [49], generalizing some results for equations [40] or systems [54], [87] in dimension
1 (see also Benguria, Depassier [5] for integral formulations in dimension 1, and Coutinho,
Fernandez [26], Harris, Hudson and Zinner [45] for similar problems with discrete diffusion).
Several lower and upper bounds for the speeds of travelling fronts in infinite cylinders, as
well as some asymptotics for large advection and for other regimes, were derived by Audoly,
Berestycki and Pomeau [3], Berestycki [6], Constantin, Kiselev and Ryzhik [25], [56] and
Heinze [48] for combustion-type and/or general positive nonlinearities f(u). Rotating flows
were also considered in [3] and [56], and percolating-type flows were dealt with in [56], where
estimates for the more general notion of bulk burning rate (see [24]) are given. Dirichlet type
boundary conditions on ∂Ω, instead of Neumann conditions, were dealt with by Gardner [38]
and Vega [86] in infinite cylinders. Let us also mention here that a formula similar to (1.8) for
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a nonlinear source term f(u) of the KPP type (1.7) has recently been obtained by Schwetlick
for a similar hyperbolic transport equation [80].

Whereas usual travelling fronts of the type φ(x1− ct, y) exist in straight infinite cylinders
in the case of shear flows –assuming that all coefficients in (1.2) are invariant with respect to
the variable x1–, this is not the case anymore in infinite cylinders Ω = {(x1, y), y ∈ ω(x1)}
with oscillating boundaries (ω being periodic in x1), even, say, for the equation ut = ∆u+f(u)
without advection. Such a geometrical configuration was first considered for a bistable
nonlinearity f by Matano [66], and the case of ondulating cylinders whose boundaries have
small spatial periods with small amplitudes was recently dealt with by Lou and Matano [61].

The case of the whole space RN with periodic diffusion and advection was first considered
by Xin [91], [93] for a combustion-type nonlinearity f satisfying (1.10), for which the speed
of propagation of the pulsating fronts was proved to be unique in any given direction. Note
that usual travelling fronts propagating with constant speed and constant shape do not exist
anymore for general advection or diffusion and one has to extend these notions. The homog-
enization limit in RN with coefficients having small periods was investigated by Caffarelli,
Lee and Mellet [21], Freidlin [35], Heinze [46], Majda and Souganidis [63], and Xin [94].
Heinze also considered the case of the whole space with small periodic holes [47]. Freidlin
[35] and Xin [94] also studied questions related to front propagation in random media.

The more general framework of periodic domains and periodic excitable media was con-
sidered by the first two authors of this paper in [7]. It was especially proved that for a
nonnegative combustion-type nonlinearity f(x, y, u) satisfying the following assumptions,
more general than (1.10) :





f is L-periodic with respect to x,
f is globally Lipschitz-continuous and ∃δ > 0, f is C1,δ with respect to u,
∃θ ∈ (0, 1), ∀(x, y) ∈ Ω, ∀s ∈ [0, θ] ∪ {1}, f(x, y, s) = 0,
∃ρ ∈ (0, 1− θ), ∀(x, y) ∈ Ω, ∀1− ρ ≤ s ≤ s′ ≤ 1, f(x, y, s) ≥ f(x, y, s′),
∀s ∈ (θ, 1), ∃(x, y) ∈ Ω, f(x, y, s) > 0,

(1.12)

and given a direction e of Rd, there exists a unique effective speed of propagation c(e) and
a unique (up to shift in time) pulsating travelling front u satisfying (1.2) and (1.6). As
already emphasized, paper [7] also gives the proof of the existence of a minimal speed c∗(e)
of propagation of pulsating fronts for a function f satisfying (1.5). Furthermore, under the
notations of Theorem 1.1, the inequality

c∗(e) ≥ min
λ>0

k(λ)

λ

holds as soon as f satisfies (1.5) (see Remark 1.16 in [7]). However, the question of the
uniqueness, up to shift, of the fronts for any given effective speed c ≥ c∗(e) is still an open
problem.

Remark 1.2 (Equivalent formulas) It can be easily checked in the general framework de-
scribed above that formula (1.8) can be rewritten in the following equivalent formulations :

c∗(e) = min {c, ∃λ > 0, k(λ) = λc} (1.13)
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and

c∗(e) = min
λ>0

min
ψ∈F

max
(x,y)∈Ω

Lλψ(x, y)

λψ(x, y)
(1.14)

where F = {ψ ∈ E,ψ ∈ C2(Ω), ψ > 0 in Ω}. Formula (1.14) is obtained from (1.8) and
from some characterizations of principal eigenvalues of elliptic operators ([18], [74]). We also
refer to [7] for a detailed study of the above eigenvalue problems with periodic and Neumann
type boundary conditions. Such operators Lλ also arise in Bloch eigenvalue problems in
homogenization theory (see [22], [23], [58]).

The proof of formula (1.8), which was announced in [7], is based on the methods de-
velopped in [7] and [17] (sub- and supersolutions, regularizing approximations in bounded
domains). The authors also mention that a formula equivalent to (1.8) was recently obtained
independently with different tools by Weinberger [89] for similar problems.

1.2 Influence of the geometry of the domain and of the underlying
medium

As we have just seen, several equivalent variational formulas for the minimal speed of propa-
gation of pulsating travelling fronts in general periodic excitable media were given. We now
analyze the influence of the geometry of the domain and of the coefficients of the medium
(reaction, diffusion and advection coefficients) on the minimal speed of propagation. Since
the influence of these data may be opposite, we shall investigate each of them separately.

Let us first study the influence of the geometry of the domain. Under the assumptions
of the previous subsection, it easily follows from formula (1.13) that even for a homogeneous
equation, due to the geometry, the minimal speed c∗(e) depends continuously on e in the
unit sphere Sd−1 of Rd. Note that the speed c∗(e) does depend on the direction e in general
because of the geometry of the domain and because of the spatial heterogeneity of the
coefficients of equation (1.2). This situation is in contrast with the homogeneous equation

ut = ∆u + f(u) (1.15)

in the whole space RN , for which pulsating travelling fronts are actually planar travelling
fronts and the minimal speed has the same value, c∗(e) = 2

√
f ′(0) in all directions e of RN .

Let us now consider the above homogeneous equation ut = ∆u + f(u), but now set in
a periodic domain Ω ⊂ RN satisfying (1.1). Assume that the function f satisfies (1.5) and
(1.7). If Ω = RN , then c∗(e) = 2

√
f ′(0) for all e ∈ RN with |e| = 1. The following statement

shows that this value 2
√

f ′(0) is always an upper bound whatever Ω is –provided it satisfies
(1.1)–, and is optimal in some sense :

Theorem 1.3 Let Ω ⊂ RN satisfy (1.1) and let f = f(u) satisfy (1.5) and (1.7). Let
e = (e1, · · · , ed) ∈ Rd be such that |e| = 1. Let c∗(e) be the minimal speed of pulsating
travelling fronts satisfying (1.15) and (1.6) together with the Neumann boundary conditions
∂νu = 0 on ∂Ω. Then,

0 < c∗(e) ≤ 2
√

f ′(0),

and c∗(e) = 2
√

f ′(0) if and only if the domain Ω is invariant in the direction ẽ, namely
Ω + τ ẽ = Ω for all τ ∈ R, where ẽ = (e1, · · · , ed, 0, · · · , 0) ∈ RN .
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In other words, Theorem 1.3 implies that the presence of holes (perforations) in the
domain always hinder the propagation with respect to the case of the whole space. Similarly,
the fronts propagate strictly slower in an infinite cylinder with oscillating boundaries than
in a straight infinite cylinder. The homogenization limit of small holes with a combustion
type nonlinearity was dealt with by Heinze [47] (see also [72] for homogenization of linear
diffusion equations with small holes).

After having proved that holes make the propagation of pulsating fronts slower than in
the case of the whole space RN , it is now natural to wonder whether the minimal speed c∗(e)
is all the smaller the bigger the holes. Actually, the answer is no in general :

Theorem 1.4 Let N ≥ 2 and e be any unit direction in RN . Let f = f(u) satisfy (1.5) and
(1.7). Then there exist some positive numbers L1, · · · , LN , a family of domains (Ωα)0≤α<1

satisfying (1.1) with d = N and

Ω0 = RN , Ωα ⊃ Ωα′ for all 0 ≤ α ≤ α′ < 1,
⋂

0≤α<α′
Ωα = Ωα′ for all 0 < α′ < 1, (1.16)

such that, if cα denotes the minimal speed cα = c∗(e, Ωα) of the pulsating fronts satisfying
(1.15) and (1.6) in Ωα with Neumann boundary conditions on ∂Ωα, then the function α 7→ cα

is continuous on [0, 1), c0 = 2
√

f ′(0), cα < 2
√

f ′(0) for all α ∈ (0, 1) and cα → 2
√

f ′(0) as
α → 1−.

Theorem 1.4 says that the minimal speed of propagation for the homogeneous equation
(1.15) may not be monotone with respect to the size of the holes. Furthermore, under the
notations of Theorem 1.4, one can say that there exists at least one value of α0 in (0, 1) for
which the minimal speed of pulsating fronts is minimal in Ωα0 among all the domains Ωα for
0 < α < 1.

Remark 1.5 Theorem 1.3 no longer holds for equations with periodic heterogeneous co-
efficients even if the equation is invariant in direction ẽ. For instance, let Ω′ ⊂ RN−1

be a periodic domain satisfying (1.1) with d ≤ N − 1, and such that Ω′ 6= RN−1. Let
Ω = Ω′ × R = {x = (x′, xN), x′ ∈ Ω′, xN ∈ R}. Let f(x, u) be a function satisfying (1.5)
and (1.7), and assume that f(x, u) is written as f(x, u) = h(x′)f̃(u), where f̃ satisfies (1.7),
0 < h(x′) ≤ 1 in RN−1, h(x′) = 1 in Ω′ and h 6≡ 1 in RN−1. Let e = eN be the unit vector in
the xN -direction. Then the minimal speed of propagation of pulsating fronts solving

ut = ∆u + f(x, u)

and (1.6) in Ω, together with ∂νu = 0 on ∂Ω, is equal to 2
√

f̃ ′(0). But the minimal speed

for the same equation set in the whole space RN is strictly less than 2
√

f̃ ′(0) (see the proof

of Theorem 1.6 below for more details).

Let us now investigate the influence of the reaction coefficients on the minimal speed of
propagation.
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Theorem 1.6 Under the assumptions (1.1), (1.3) and (1.4), let f = f(x, y, u), resp. g =
g(x, y, u), be a nonnegative nonlinearity satisfying (1.5) and (1.7). Let e be a unit direction
of Rd and let c∗(e, f), resp. c∗(e, g), be the minimal speed of propagation of pulsating fronts
solving (1.2) and (1.6) with nonlinearity f , resp. g.

a) If f ′u(x, y, 0) ≤ g′u(x, y, 0) for all (x, y) ∈ Ω, then c∗(e, f) ≤ c∗(e, g), and if f ′u(x, y, 0) ≤
, 6≡ g′u(x, y, 0), then c∗(e, f) < c∗(e, g).

b) If c∗(e,Bf) denotes the minimal speed for the nonlinearity Bf , with B > 0, then
c∗(e,Bf) is increasing in B and

lim sup
B→+∞

c∗(e,Bf)√
B

< +∞.

Furthermore, if Ω = RN or if νAẽ ≡ 0 on ∂Ω, then lim infB→+∞ c∗(e,Bf)/
√

B > 0.

Part a) of Theorem 1.6 follows immediately from Theorem 1.1 (note that similar mono-
tonicity results also hold for equations with nonlinearities changing sign, see [11], [12]). Notice
that the inequality c∗(e, f) ≤ c∗(e, g) holds as soon as f and g satisfy (1.5) and f ≤ g, even
if f or g do not satisfy (1.7) (this inequality follows from the construction of the minimal
speed by approximation of speeds of fronts with combustion-type nonlinearities satisfying
(1.12), see [7] and Remark 1.7 below). However, the strict inequality c∗(e, f) < c(e, g) does
not hold in general if f ≤ g and f 6≡ g, even if f and g satisfy (1.5) and (1.7) : indeed,
under these assumptions, the dependence on f of the minimal speed c∗(e, f) is only through
its derivative f ′u(x, y, 0) at u = 0+.

The condition νAẽ ≡ 0 on ∂Ω especially holds if Aẽ is constant and if Ω is invariant in this
direction Aẽ (for instance, A = I and Ω is a straight infinite cylinder in direction ẽ). Notice
that parts a) and b) of Theorem 1.6 obviously hold for the KPP formula c∗ = 2

√
Bf ′(0)

in the case of the homogeneous equation (1.15) in RN with nonlinearity Bf . However, the
precise asymptotic behavior of c∗(e,Bf)/

√
B as B → +∞ is not known in general.

Lastly, part b) also holds good if the nonlinearity Bf is replaced by a nonlinearity of the
type Bf + f0, with given f and f0 satisfying (1.5) and (1.7).

Remark 1.7 Similar comparison properties as in Theorem 1.6 also hold for the unique
speeds c(e, f) and c(e, g) of the pulsating fronts solving (1.2) and (1.6) in the case where the
nonnegative nonlinearities f = f(x, y, u) and g = g(x, y, u) satisfy (1.12) and are ordered.
Namely, if f ≤ g in Ω × [0, 1], then c(e, f) ≤ c(e, g). Furthermore, in this framework, one
has c(e, f) < c(e, g) if f ≤ g and f 6≡ g. These facts follow easily from the proofs in [7].
However, the behaviour of c(e,Bf) for large B is not known in this case.

The influence of advection on the speed of propagation is more difficult to analyze,
because of possible interaction between the stream lines and the geometry of the domain,
especially the holes. However, at least in the case where the domain is invariant in the
direction ẽ, with isotropic diffusion, one can compare the speeds of propagation in direction
e when there is, or not, a drift term in the equation.

Theorem 1.8 Let Ω ⊂ RN be a domain satisfying (1.1) and Ω + τ ẽ = Ω for all τ ∈ R,
where e is a unit vector of Rd. Assume that A = I and that f = f(u) satisfies (1.5) and
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(1.7), and that q satisfies (1.4). Let c∗q(e) be the minimal speed of the pulsating fronts solving
(1.2) and (1.6), with advection coefficient q. Then

c∗q(e) ≥ c∗0(e) = 2
√

f ′(0)

and equality holds if and only if q · ẽ ≡ 0 in Ω.

Under the above assumptions, Theorem 1.8 means that the advection, or stirring, makes
the propagation faster, whatever the flow is a shear flow or not. Roughly speaking, the
presence of turbulence in the medium increases the speed of propagation of the pulsating
fronts. Furthermore, the influence of advection on the speed of propagation is minimal if
and only if the advection is orthogonal to the direction of propagation.

The influence of large periodic advection, namely where q is replaced with Bq with large
B, is analyzed by the authors in [9]. The behaviour of c∗Bq(e) is always at most linear in
B for large B, in a general domain Ω which satisfies (1.1) but may not be invariant in the
direction ẽ. A necessary and sufficient condition for c∗Bq(e) to be at least linear in B is given
in [9], involving the first integrals of the velocity field q.

Remark 1.9 It is not clear in general whether, under the assumptions of Theorem 1.8,
c∗Bq(e) is nondecreasing with respect to B > 0 or not. However, in the case of a shear flow
q = α(x2, · · · , xN)e1 in a straight cylinder Ω = R×ω in the direction e1, with, say, ω bounded
in RN−1, α 6≡ 0 of class C1 and with zero average, the first author proved in [6] that c∗Bq(e1)
is increasing with B > 0, c∗Bq(e1)/B is decreasing with B > 0 and c∗Bq(e1)/B → ρ > 0 as
B → +∞.

As far as the influence of the diffusion coefficients is concerned, one can compare the min-
imal speed of propagation in the case of heterogeneous diffusion with that of a homogeneous
diffusion in a given direction e. The following theorem also gives a monotonicity result of
the speed of propagation with respect to the intensity of diffusion :

Theorem 1.10 Under the assumptions (1.1), (1.3), (1.5) and (1.7), let q = 0. Let e be a
unit direction of Rd. Then,

1)

c∗(e) ≤ 2
√

M0M, (1.17)

where M0 = max(x,y)∈Ω ζ(x, y) and M = max(x,y)∈Ω ẽA(x, y)ẽ. Furthermore, the equality

holds in (1.17) if and only if ζ and ẽAẽ are constant, ∇ · (Aẽ) ≡ 0 in Ω and νAẽ = 0 on ∂Ω
(if ∂Ω 6= ∅).

2) Assume furthermore that f = f(u) depends on u alone. Let c∗γ(e) denote the minimal
speed of pulsating fronts in the direction e, with diffusion matrix γA, where γ > 0. Then
c∗α(e) ≤ c∗β(e) if 0 < α ≤ β.

As a special case of (1.17) we see that c∗α(e) ≤ C
√

α for all α > 0, where C does
not depend on α > 0. Furthermore, part 2) implies that a larger diffusion speeds up the
propagation.
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Remark 1.11 The assumption q = 0 was made for the sake of simplicity in the derivation
of the upper bound (1.17). However, more general bounds can be obtained when q 6= 0.
Namely, under the assumptions (1.1), (1.3), (1.4), (1.5) and (1.7), one gets as in the proof
of Theorem 1.10 :

c∗(e) ≤ 2
√

M0M + max
(x,y)∈Ω

(−q(x, y) · ẽ),

where M0 and M are the same as in Theorem 1.10.
Lower bounds can be obtained as well, but are more restrictive. Namely, under the

assumptions (1.1), (1.3), (1.4), (1.5) and (1.7), assume furthermore that Ω = RN or νAẽ = 0
on ∂Ω if ∂Ω 6= ∅. Then

c∗(e) ≥ min
(m0m

b
,−b + 2

√
m0m

)
, (1.18)

under the convention that m0m/b = +∞ if b = 0, where m0 = min(x,y)∈Ω ζ(x, y), m =
min(x,y)∈Ω ẽA(x, y)ẽ and b = ‖∇ · (Aẽ)‖L∞(Ω) + ‖q · ẽ‖L∞(Ω). Formula (1.18) is proved in

Section 3.2. It especially implies that, if q · ẽ ≡ 0, then lim infε→0+ c∗ε(e)/
√

ε > 0, where c∗ε(e)
denotes the minimal speed of pulsating fronts in the direction e with diffusion matrix εA.

1.3 Spreading speed in periodic domains

The question of the stability of travelling fronts and the asymptotic convergence to travelling
fronts for the solutions of Cauchy problems of the type (1.2) with “front-like” initial condi-
tions has been thoroughly studied since the pioneering paper by Kolmogorov, Petrovsky and
Piskunov [57] in the one-dimensional case (see e.g. [1], [20], [28], [31], [37], [52], [59], [67],
[78], [79], [83], [85] for other stability results in the homogeneous 1d case, [2] for the homo-
geneous multidimensional case, or [14], [44], [65], [76], [77] for the case of infinite cylinders
with shear flows). However, few results (see [60], [70], [92]) have so far been obtained about
the stability of pulsating travelling fronts in periodic media.

Another important notion is that of asymptotic speed of propagation, or spreading (see
below for precise meaning), for solutions of Cauchy problem like (1.2) with nonnegative
continuous compactly supported initial condition u0 6≡ 0. This problem for the homogeneous
equation (1.15) in RN was solved by Aronson and Weinberger [2]. They proved that, under
the above assumptions on u0 and if f satisfies (1.5) and lim infu→0+ f(u)/u1+2/N > 0,3 then

min
|z|≤ct

u(t, z) → 1 if 0 ≤ c < c∗ and max
|z|≤ct

u(t, z) → 0 if c > c∗, as t → +∞,

where c∗ is the minimal speed of planar fronts. The speed c∗ can then also be viewed as a
spreading speed (see [1], [2], [31], [51], [53], [78] for similar results with other nonlinearities
f(u) in dimensions 1 or higher). These spreading properties were generalized by Mallordy
and Roquejoffre [65], [77] for equations with shear flows in straight infinite cylinders.

The case of a reaction-diffusion equation (1.2) without advection in the whole space RN

with periodic coefficients was considered in the important work of Gärtner and Freidlin [39]
and later by Freidlin [34] in the case with advection q (the proofs in [39] and [34] used

3The latter is fulfilled if f satisfies (1.7) as well.

13



probabilistic tools). Namely, under the assumptions (1.3), (1.4), (1.5)4 and (1.7), if u0 is
nonnegative, continuous and compactly supported, then the solution u(t, z) of (1.2) in RN

with initial condition u0 is such that, for any unit vector e of RN ,

u(t, z+c t e) → 1 if 0 ≤ c < w∗(e) and u(t, z+cte) → 0 if c > w∗(e), as t → +∞, (1.19)

locally in x ∈ RN . Furthermore, Gärtner and Freidlin derive a formula which we call the
Gärtner-Freidlin formula :

w∗(e) = min
~λ·e>0

k̃(~λ)

~λ · e
(1.20)

and ~λ ∈ RN and k̃(~λ) is the first eigenvalue of the operator

L~λ := ∇ · (A∇)− 2~λA∇+ q · ∇+ [−∇ · (A~λ)− q · ~λ + ~λ · A~λ + ζ]

with L-periodicity condition (as a consequence, w∗(±1) = c∗(±1) in dimension N = 1).
The speed w∗(e) can then be viewed as a ray speed in the direction e. It follows from
(1.8) that w∗(e) ≤ c∗(e). Notice that the latter can also be easily obtained from (1.19) and
the parabolic maximum principle, putting u0 below a pulsating front moving with speed
c∗(e) in the direction e, even if it means changing f into a function f̃ such that f̃ ≥ f ,
f̃ ′u(z, 0) = f ′u(z, 0) and (1.7) holds for f̃).

Let us also mention that several works have dealt with the solutions of Cauchy problems
for equations of the type (1.2), with small diffusion ε, together with large reaction ε−1f , or
with slowly varying flows of the type q(εz), or for equations involving more general spatio-
temporal scales. Typically, the solutions of such Cauchy problems converge as ε → 0+ to
two-phase solutions of Hamilton-Jacobi type equations, separated by interfaces (see e.g. [33],
[35], [36], [63], [64]). The determination of the asymptotic speed of propagation was also
studied for nonlinear integral equation in dimension 1 (see [4], [27], [68], [84]), or for systems
of reaction-diffusion equations in dimension 1 (see [81]).

Recently, Weinberger [89] extended the results of Gärtner and Freidlin to the general
periodic framework described in [7] and here, with possible time-discrete equations. Under
assumptions (1.1), (1.3), (1.4), (1.5) and (1.7), it is proved in [89] that, for any unit direction
e of Rd, there exists w∗(e) > 0 such that, if u(t, x, y) solves (1.2) with a nonnegative,
continuous and compactly supported initial condition u0 6≡ 0, then,

{
u(t, x + cte, y) → 1 if 0 ≤ c < w∗(e)
u(t, x + cte, y) → 0 if c > w∗(e),

as t → +∞, (1.21)

locallyin (x, y) with respect to the points (x, y) such that (x + cte, y) ∈ Ω. Furthermore,

{ρξ, ξ ∈ Sd−1, 0 ≤ ρ ≤ w∗(ξ)} := {x ∈ Rd, x · ξ ≤ c∗(ξ) for all ξ ∈ Sd−1}, (1.22)

i.e. w∗(e) = minξ∈Rd, e·ξ>0 c∗(ξ)/(e · ξ), or

w∗(e) = min
~λ·e>0

k̃(~λ)

~λ · e
, (1.23)

4The function f = f(z, u) was actually assumed in [34] to be positive in RN × (0, 1).
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with ~λ ∈ Rd and k̃(~λ) being the principal eigenvalue of the operator L~λ := ∇ · (A∇) −
2λ̃A∇ + q · ∇ + [−∇ · (Aλ̃) − q · λ̃ + λ̃Aλ̃ + ζ] acting on the set Ẽ = {ψ ∈ C2(Ω), ψ is

L-periodic with respect to x and νA∇ψ = (νAλ̃)ψ on ∂Ω} (we set λ̃ = (~λ, 0, · · · , 0) ∈ RN).

Remark 1.12 As already emphasized, it is clear from the parabolic maximum principle
that w∗(e) ≤ c∗(e) for all e ∈ Sd−1. The latter could also be viewed as a consequence of (1.8)
and (1.20) in the case of equation (1.2) in RN , or from (1.22-1.23) in the general periodic
case.

The equality w∗(e) = c∗(e) holds for the homogeneous isotropic equation ut = ∆u+ f(u)
in RN , for all direction e, but it does not hold in general. Indeed, consider the equation

ut = a2ux1x1 + b2ux2x2 + f(u) in R2,

where a > 0 and b > 0 are two given constants, and f = f(u) satisfies (1.5) and (1.7). From
the above formulas for w∗(e) or c∗(e), it is easy to see that, for all θ ∈ R and e = (cos θ, sin θ),

w∗(e) = 2
√

f ′(0)

√
a2b2

a2 sin2 θ + b2 cos2 θ
, c∗(e) = 2

√
f ′(0)

√
a2 cos2 θ + b2 sin2 θ

(notice that the formula for w∗(e) could also be deduced from the case of isotropic diffusion
after scaling). Hence, the equality w∗(e) = c∗(e) holds here if and only if e = (±1, 0) or
(0,±1), or if a = b (isotropic diffusion). In other words, in the case of anisotropic diffusion
(a 6= b), the asymptotic spreading speed is less than the minimal speed of pulsating fronts in
any direction which is not an eigenvector of the diffusion matrix. Notice also that the curve
r(θ) = w∗(cos θ, sin θ) in polar coordinates is an ellipse, while the curve r(θ) = c∗(cos θ, sin θ)
is not an ellipse in general (but the curve r(θ) = (c∗(cos θ, sin θ))−1 is an ellipse).

Some numerical simulations with isotropic but heterogeneous diffusion have been per-
formed in [55], confirming that the radial speed w∗(e) may be less that the minimal speed
c∗(e) of pulsating fronts. We conjecture that, by analogy, the strict inequality w∗(e) < c∗(e)
may also occur in some directions e in some domains with holes. However, a condition for
the equality w∗(e) = c∗(e) to hold or not is not known in general in the periodic setting.

In the sequel, we discuss some properties of the spreading speed w∗(e) in periodic domains.
As for the minimal speed of pulsating fronts, we study the influence on the speed w∗(e) of
all the phenomena involved in problem (1.2).

As in Theorem 1.3, let us first consider the case of the homogeneous equation (1.15) in
a periodic domain Ω. Since w∗(e) ≤ c∗(e) for any unit direction e ∈ Sd−1, it follows from
Theorem 1.3 that w∗(e) ≤ 2

√
f ′(0) and that, if w∗(e) = 2

√
f ′(0), then Ω is a straight infinite

cylinder in the direction ẽ. Conversely, if Ω is a straight infinite cylinder in the direction ẽ,
then c∗(e) = 2

√
f ′(0) by Theorem 1.3; furthermore, the last equality holds for w∗(e) as well,

namely :

Theorem 1.13 Under the assumptions (1.1) for Ω (with d ≥ 1), and (1.5) and (1.7) for
f = f(u), let e be a unit direction of Rd and u(t, x, y) be the solution of (1.15) with a given
initial condition u0 6≡ 0 which is nonnegative, continuous and compactly supported. Then
w∗(e) ≤ 2

√
f ′(0) and equality holds if and only if Ω is invariant in the direction ẽ.
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Theorem 1.13 rests on the following Liouville type result :

Proposition 1.14 Let Ω satisfy (1.1). Let g : [0, +∞) → R be a C1 function such that
g(0) = g(1) = 0, g′(0) > 0, g > 0 in (0, 1) and g < 0 in (1, +∞), and let b ∈ RN be such
that |b| < 2

√
g′(0). Let u be a classical bounded solution of





∆u + b · ∇u + g(u) = 0 in Ω
u ≥ 0 in Ω

∂νu = 0 on ∂Ω.
(1.24)

Then u ≡ 0 or u ≡ 1.

This result, which is of independent interest, is a Liouville type result for some solutions
of semi-linear elliptic equations in periodic domains. If u were assumed to be L-periodic
and not identically equal to 0, then the conclusion u ≡ 1 would follow immediately from the
strong maximum principle, since u would then be bounded from below by a positive constant
(see case 1 of the proof of Proposition 1.14 in section 4). The difficultly here is that u is not
assumed to be L-periodic a priori. Let us also mention that the conclusion of Proposition
1.14 was known in the case Ω = RN , and was proved by Aronson and Weinberger [2], by
using parabolic tools (see also Remark 4.3 below). The proof of Proposition 1.14 given in
Section 4 rests on some sliding arguments and on the elliptic maximum principle.

The influence of all other phenomena (reaction, diffusion and advection) is summarized in
the following propositions, most of which are consequences of the results stated in Section 1.2.

Let us start with the dependency on the reaction terms.

Proposition 1.15 Under the assumptions (1.1), (1.3), (1.4), let e be a unit direction of Rd

and let f and g be two functions satisfying (1.5) and (1.7). Call w∗(e, f) and w∗(e, g) the
spreading speeds in the direction e for problem (1.2) with nonlinearities f and g respectively.

If f ′u(x, y, 0) ≤ g′u(x, y, 0) for all (x, y) ∈ Ω, then

w∗(e, f) ≤ w∗(e, g).

If f ′u(x, y, 0) ≤, 6≡ g′u(x, y, 0), then w∗(e, f) < w∗(e, g). Hence, w∗(e,Bf) is increasing in
B > 0. Furthermore,

lim sup
B→+∞

w∗(e,Bf)√
B

< +∞.

Lastly, if Ω = RN , then lim infB→+∞ w∗(e,Bf)/
√

B > 0.

The next result is about the influence of stirring on propagation.

Proposition 1.16 Let Ω = RN , A = I and assume that f = f(u) satisfies (1.5) and (1.7).
For any unit vector e of RN , call w∗

q(e) the spreading speed in direction e, with advection
term q satisfying (1.4). Then,

w∗
q(e) ≥ w∗

0(e) = 2
√

f ′(0),

and the equality w∗
q(e) = 2

√
f(0) holds if and only if q · e ≡ 0 in RN .
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The last proposition is concerned with the influence of the diffusion on the asymptotic
spreading speed.

Proposition 1.17 Under the assumptions (1.1), (1.3), (1.5) and (1.7), let e be a unit
direction of Rd. Assume moreover that q = 0. Then,

w∗(e) ≤ 2
√

M0M.

Furthermore, if Ω = RN , then

w∗(e) ≥ min(m0α1/b̃,−b̃ + 2
√

m0α1),

where α1 was given in (1.3), m0 = minx∈RN f ′u(x, 0) and

b̃ = max
x∈RN , ~µ∈RN , ~µ6=0

|∇ · (A(x)~µ)|/|~µ| + max
x∈RN

|q(x)|.

Lastly, if f = f(u) and w∗
γ(e) denotes the spreading speed in the direction e, with diffusion

matrix γA, then
w∗

α(e) ≤ w∗
β(e) if 0 < α ≤ β.

The proofs of the above Propositions are sketched in Remarks 3.2, 3.3 and 3.4 in Section 3
below.

2 Variational formula for the minimal speed of pulsat-

ing travelling fronts

This section is devoted to the proof of formula (1.8) in Theorem 1.1. One assumes all the
hypotheses in Theorem 1.1, and e denotes a unit vector of Rd.

Let us first collect some useful properties of the first eigenvalue k(λ) of the operator Lλ

given in (1.9).

Lemma 2.1 The function λ 7→ k(λ) is a convex function of λ. Furthermore, there exists a
convex function k0 such that k0(0) = k′0(0) = 0 and

∀λ ∈ R, 0 < min
Ω

ζ ≤ min
Ω

ζ + k0(λ) ≤ k(λ) ≤ max
Ω

ζ + k0(λ). (2.1)

Proof. Up to a change of notations (q into −q, and e into −e) in the equations in [7], the
first eigenvalue k(λ) of the operator Lλ corresponds to the eigenvalue −µγ,ζ(λ) + λγ of the
operator Lγ,λ,ζ + λγ in Proposition 5.7 of [7]. From parts (ii) and (iii) of Proposition 5.7 of
[7], it follows that

∀λ ∈ R, min
Ω

ζ + k0(λ) ≤ k(λ) ≤ max
Ω

ζ + k0(λ),

where k0(λ) is the first eigenvalue of the operator Lλ − ζ, and k0(0) = k′0(0) = 0 (k0(λ)
corresponds to −h(λ) in Proposition 5.7 of [7]). It follows from [7] that the function k0 is
convex. As a consequence, k0 is a nonnegative function, and (2.1) follows.
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Furthermore, as in [7], the first eigenvalue k(λ) can be rewritten as

k(λ) = min
ψ∈F

max
Ω

Lλψ

ψ
= min

ψ̃∈F̃
max

(x,y)∈Ω

(
∇ · (A∇ψ̃) + q · ∇ψ̃

ψ̃(x, y)
+ ζ(x, y)

)
, (2.2)

where F = {ψ ∈ C2(Ω), ψ is L-periodic with respect to x, νA∇ψ = λ(νAẽ)ψ on ∂Ω and
ψ > 0 in Ω}, and

F̃ = {(x, y) 7→ ψ(x, y)e−λx·e, ψ ∈ F}
= {ψ̃ ∈ C2(Ω), ψ̃eλx·e is L-periodic w.r.t. x, νA∇ψ̃ = 0 on ∂Ω and ψ̃ > 0 in Ω}.

It follows from the last expression of k(λ) in (2.2), as in Proposition 5.7 of [7], that the
function k is convex with respect to λ.

The main result of this section is the following

Proposition 2.2 If c ∈ R satisfies

c > inf {γ ∈ R; ∃λ > 0, k(λ) = λγ},

then c > 0 and there exists a solution u(t, x, y) of (1.2) and (1.6), namely u is a pulsating
travelling front propagating in the direction e with the effective speed c.

This proposition is proved at the end of this section. Let us now turn to the
Proof of Theorem 1.1. As already emphasized, it follows from Remark 1.16 and Section
6.4 in [7] that, for all pulsating travelling front propagating in the direction e, with speed
c ≥ c∗(e), there exists λ > 0 such that k(λ) = λc. Therefore,

c∗(e) ≥ inf {c, ∃λ > 0, k(λ) = λc}. (2.3)

From Proposition 2.2 above, inequality (2.3) turns out to be an equality. Furthermore,
the infimum is reached since for c = c∗(e), there still exists λ∗ > 0 such that k(λ∗) = λ∗c∗(e).

Eventually, one concludes that

inf
λ>0

k(λ)

λ
= inf {c, ∃λ > 0, k(λ) = λc} = c∗(e) =

k(λ∗)
λ∗

,

whence c∗(e) = minλ>0 k(λ)/λ. That completes the proof of Theorem 1.1.

Remark 2.3 Since c∗(e) > 0, it follows from the above proof and Lemma 2.1 that the
function λ 7→ k(λ)/λ is continuous on R∗+ and

k(λ)

λ
→ +∞ as λ → 0+, and lim inf

λ→+∞
k(λ)

λ
> 0.
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Let us now turn to the
Proof of Proposition 2.2. The proof follows the lines of those of [7] and [17], together
with the additional assumption (1.7), and we just outline it.

Let c be as in Proposition 2.2 and let c′ < c and λ′ > 0 be such that k(λ′) = λ′c′. Let
ψ′ ∈ E be the unique (up to multiplication) positive principal eigenfunction of

Lλ′ψ
′ = k(λ′)ψ′ in Ω.

Let us first observe that k(λ′) is positive from Lemma 2.1, whence c′ and c are positive as
well.

Finding a classical C2(R×Ω) solution u(t, x, y) of (1.2) and (1.6) is the same, up to the
change of variables

u(t, x, y) = φ(x · e− ct, x, y), φ(s, x, y) = u

(
x · e− s

c
, x, y

)
,

as proving the existence of a function φ ∈ C2(R× Ω) solving




Lφ + f(x, y, φ) := ∇x,y · (A∇x,yφ) + (ẽAẽ)φss +∇x,y · (Aẽφs) + ∂s(ẽA∇x,yφ)
+q · ∇x,yφ + (q · ẽ + c)φs + f(x, y, φ) = 0 in R× Ω

φ(−∞, ·, ·) = 1, φ(+∞, ·, ·) = 0 (uniform limits in (x, y) ∈ Ω)
φ is L-periodic with respect to x
νA(∇x,yφ + ẽφs) = 0 on R× ∂Ω.

The existence of a solution φ of the above problem shall be proved by solving regularized
elliptic equations of the type

Lεφ + f(x, y, φ) := Lφ + εφss + f(x, y, φ) = 0,

where ε > 0, in cylinders of the type Σa = {(s, x, y), −a < s < a, (x, y) ∈ Ω} which are
bounded in the variable s. One shall then pass to the limits a → +∞ and ε → 0+.

To this end, let us first fix a > 0. The number ε > 0 shall be chosen later. Let us now
extend the function f by f(x, y, u) = 0 for all u ≥ 1 and (x, y) ∈ Ω. For r ∈ R, let vr be the
function defined by

vr(s, x, y) = e−λ′(s+r)ψ′(x, y)

for all (s, x, y) ∈ R × Ω. This function vr is a supersolution for ε > 0 small enough and for
all r ∈ R, in the sense that, from (1.7) and from the definition of λ′ and ψ′,

Lεvr + f(x, y, vr) ≤ [∇ · (A∇ψ′) + (λ′)2(ẽAẽ)ψ′ − 2λ′ẽA∇ψ′ − λ′∇ · (Aẽ)ψ′

+q · ∇ψ′ − λ′(q · ẽ + c)ψ′ + ε(λ′)2ψ′]e−λ′(s+r) + ζ(x, y)vr

≤ [k(λ′)− λ′c + ε(λ′)2]ψ′e−λ′(s+r)

≤ λ′(c′ − c + ελ′)ψ′e−λ′(s+r)

≤ 0

as soon as 0 < ε ≤ (c − c′)/λ′ (this is possible since c′ < c and λ′ > 0). Furthermore, the
function vr satisfies

νA(∇x,yvr + ẽ∂svr) = [νA∇ψ′ − λ′(νAẽ)ψ′]e−λ′(s+r) = 0 on R× ∂Ω
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because of the definition of ψ′. Lastly, the function v′r := min(vr, 1) is therefore a supersolu-
tion in the above sense as well.

For all r ∈ R, let hr be the positive constant defined by

0 < hr := min
(x,y)∈Ω

v′r(a, x, y) ≤ 1.

The constant function hr clearly satisfies Lεhr + f(x, y, hr) = f(x, y, hr) ≥ 0 in R × Ω,
together with νA(∇x,yhr + ẽ∂shr) = 0 on R × ∂Ω. Furthermore, hr ≤ v′r(s, x, y) for all
(s, x, y) ∈ Σa since v′r is nonincreasing with respect to s.

From the general results of Berestycki and Nirenberg [16] (see also Lemma 5.1 in [7]),
there exists a solution wr ∈ C(Σa) ∩ C2(Σa\{±a} × ∂Ω) of





Lεwr + f(x, y, wr) = 0 in Σa

νA(∇x,ywr + ẽ∂swr) = 0 on (−a, a)× ∂Ω
wr is L-periodic with respect to x
wr(−a, x, y) = v′r(−a, x, y) for all (x, y) ∈ Ω
wr(a, ·, ·) = hr

0 < hr ≤ wr(s, x, y) ≤ v′r(s, x, y) for all (s, x, y) ∈ Σa,

(2.4)

as soon as 0 < ε ≤ (c − c′)/λ′. Furthermore, since the function v′r is nonincreasing with
respect to s and since the coefficients of Lε · +f(x, y, ·) do not depend on the variable s, it
follows that the function wr is actually unique and it is nonincreasing with respect to s. This
can be done as in Lemma 5.2 in [7], by using the same sliding method as in [16]. Lastly,
the same device as in Lemma 5.3 in [7] yields that wr is nonincreasing with respect to r,
and that the function r 7→ wr is continous with respect to r in C2,α

loc (Σa\{±a} × ∂Ω) (for all
0 < α < 1) and in C(Σa).

Since 0 ≤ hr ≤ wr ≤ v′r ≤ 1 in Σa and hr → 1 (resp. v′r → 0) uniformly in Σa as r → −∞
(resp. r → +∞), one finally concludes that, for each ε ∈ (0, (c − c′)/λ′] and for all a > 0,
there exists a unique rε,a ∈ R such that the function wε,a := wrε,a satisfies (2.4) and

max
(x,y)∈Ω

wε,a(0, x, y) = 1/2.

Let ε ∈ (0, (c − c′)/λ′] be fixed and consider a sequence an → +∞. From the standard
elliptic estimates up to the boundary, the functions wε,an converge, up to extraction of some
subsequence, in C2,α

loc (R× Ω) (for all 0 < α < 1) to a function wε solving





Lεwε + f(x, y, wε) = 0 in R× Ω
νA(∇x,yw

ε + ẽ∂sw
ε) = 0 on R× ∂Ω

wε is L-periodic with respect to x
0 ≤ wε ≤ 1, max

(x,y)∈Ω
wε(0, x, y) = 1/2.

(2.5)

Furthermore, the function wε is nonincreasing with respect to s.
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From the monotonicity of wε with respect to s and from the standard elliptic estimates,
it follows that wε(s, x, y) → φ±(x, y) in C2,α(Ω) as s → ±∞, where the functions φ± satisfy





∇ · (A∇φ±) + q · ∇φ± + f(x, y, φ±) = 0 in Ω
νA∇φ± = 0 on ∂Ω
φ± is L-periodic with respect to x
0 ≤ φ+ ≤ φ− ≤ 1.

(2.6)

Integrating by parts over the cell C leads to
∫

C

f(x, y, φ±(x, y)) dx dy = 0,

whence f(x, y, φ±(x, y)) ≡ 0 in Ω by continuity. Now multiply equation (2.6) by φ± and
integrate by parts over C. It follows that

∫

C

∇φ±A∇φ± = 0

and that φ± are constants. From the monotonicity of wε and the normalization of wε on the
section {0} × Ω, together with assumption (1.7), one concludes that

φ+ = 0 and φ− = 1.

Let us now come back to the variables (t, x, y). For ε ∈ (0, (c− c′)/λ′), the functions uε

defined by
uε(t, x, y) = wε(x · e− ct, x, y) for all (t, x, y) ∈ R× Ω

satisfy





uε
t = ∇ · (A∇x,yu

ε) +
ε

c2
uε

tt + q · ∇x,yu
ε + f(x, y, uε) in R× Ω

νA∇x,yu
ε = 0 on R× ∂Ω

∀k ∈ L1Z× · · · × LdZ, ∀(t, x, y) ∈ R× Ω, uε

(
t− k · e

c
, x, y

)
= uε(t, x + k, y)

max
x·e=ct, (t,x,y)∈R×Ω

uε(t, x, y) = 1/2.

(2.7)

Furthermore, each function uε is nondecreasing in the variable t and uε(t, x, y) → 1 (resp.
→ 0) as t → +∞ (resp. t → −∞) in C2

loc(Ω).
As in Lemma 5.11 in [7], by multiplying the equation (2.5) by 1, wε and ∂sw

ε and
integrating by parts over R × C, it follows that, for every compact set K ⊂ Ω, there exists
a constant C(K) independent of ε such that

∫

R×K

[(uε
t)

2 + |∇x,yu
ε|2] dt dx dy ≤ C(K)

(
1 + N‖q‖2

∞
2α1

+ 2 max
(x,y)∈Ω

F (x, y, 1)

)
,

where F (x, y, t) =

∫ t

0

f(x, y, τ)dτ and α1 is given from (1.3).
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Let (εn)n ∈ (0, (c − c′)/λ′] be a sequence converging to 0+. There exists a function
u ∈ H1

loc(R×Ω) such that, up to extraction of some subsequence, the functions uεn converge,
in L2

loc(R × Ω) strong, H1
loc(R × Ω) weak and almost everywhere in R × Ω, to a function u.

From parabolic regularity, the function u is then a classical solution of




ut = ∇ · (A∇x,yu) + q · ∇x,yu + f(x, y, u) in R× Ω
νA∇x,yu = 0 on R× ∂Ω

∀k ∈ L1Z× · · · × LdZ, ∀(t, x, y) ∈ R× Ω, u

(
t− k · e

c
, x, y

)
= u(t, x + k, y)

0 ≤ u ≤ 1 and ut ≥ 0 in R× Ω.

Furthermore, from the normalization of uε on the set {x · e = ct} and from the monotonicity
of uε in t, one has

u(t, x, y) ≤ 1/2 for all (t, x, y) such that x · e ≤ ct. (2.8)

On the other hand, equation (2.7) is an elliptic regularization of a parabolic equation.
From Theorem A.1 in [7]5 (it is easy to check that assumptions are satisfied, especially the
functions uε are of class C3(R× Ω) from the regularity assumptions and from the standard
elliptic estimates), the following gradient estimates hold :

‖∇x,yu
ε‖L∞(R×Ω) ≤ C, (2.9)

where C is independent of ε.
Since maxx·e=ct u

ε(t, x, y) = 1/2 and uε(t − k · e/c, x, y) = uε(t, x + k, y) in R × Ω for
all k ∈ L1Z × · · · × LdZ, there exists a sequence of points (tn, xn, yn) ∈ R × C such that
xn · e = ctn and uεn(tn, xn, yn) = 1/2. Therefore, the sequence (tn, xn, yn)n is bounded and
converges, up to extraction of some subsequence, to a point (t, x, y) ∈ R × C such that
x · e = ct. Choose any η > 0. From the uniform gradient estimates (2.9), there exists r > 0
such that uεn(tn, x, y) ≥ 1/2−η for all n and for all (x, y) ∈ Br(xn, yn)∩Ω, where Br(xn, yn)
denotes the euclidian closed ball in RN of radius r and center (xn, yn). Since each uε is
nondecreasing in t, it follows that, for n large enough,

uεn(t, x, y) ≥ 1/2− η

for all t ≥ tn and (x, y) ∈ Br/2(x, y) ∩ Ω. Since uεn converges to the continous function u
almost everywhere, one gets that

u(t, x, y) ≥ 1/2− η

for all t ≥ t and for all (x, y) ∈ Br/2(x, y) ∩ Ω. Since η > 0 was arbitrary, it follows that
u(t, x, y) ≥ 1/2. From (2.8) and the (t, x) periodicity of u, one concludes that

max
x·e=ct, (t,x,y)∈R×Ω

u(t, x, y) = 1/2. (2.10)

5We also refer to Theorem 1.6 in [8] for more general estimates of a class of elliptic regularizations of
degenerate equations.
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Lastly, the standard parabolic estimates together with the monotonicity of u with respect
to t imply that u(t, x, y) → u±(x, y) in C2

loc(Ω) as t → ±∞, where the functions u± satisfy



∇ · (A∇u±) + q · ∇u± + f(x, y, u±) = 0 in Ω
νA∇u± = 0 on ∂Ω
u± are L-periodic with respect to x

and are such that 0 ≤ u− ≤ u+ ≤ 1. As explained earlier for the functions φ± solving (2.6),
one can easily prove that the functions u± are actually constant and satisfy f(x, y, u±) = 0
for all (x, y) ∈ Ω. Furthermore, 0 ≤ u− ≤ 1/2 ≤ u+ ≤ 1 from (2.10) and ut ≥ 0. One
concludes from (1.7) that u− = 0 and u+ = 1.

Eventually, the function u is a classical solution of (1.2) and (1.6). Indeed, because of the
(t, x) periodicity of u, the limits u(t, x, y) → 0 (resp. → 1) as x ·e → +∞ (resp. x ·e → −∞)
hold locally in (t, y) and uniformly in the x variables which are orthogonal to e.

That completes the proof of Proposition 2.2.

3 Influence of the geometry of the domain and of the

coefficients of the medium

3.1 Influence of the geometry of the domain : proofs of Theorems
1.3 and 1.4

This subsection deals with the influence of the geometry of the domain on the speed of
propagation of pulsating fronts for the homogeneous equation (1.15) in periodic domains Ω.
Namely, one shall prove Theorems 1.3 and 1.4.

Proof of Theorem 1.3. One first recalls that the minimal speed c∗(e) of the pulsating
fronts solving (1.15) and (1.6) is positive (see [7]). Furthermore, from Theorem 1.1, c∗(e) is
given by the formula

c∗(e) = min
λ>0

k(λ)

λ
,

where k(λ) is the first eigenvalue of the problem

∆ψλ − 2λẽ · ∇ψλ + (λ2 + f ′(0))ψλ = k(λ)ψλ in Ω (3.1)

and ψλ is positive in Ω, L-periodic with respect to x, and satisfies ∂νψλ = λ(ν · ẽ)ψλ on ∂Ω.
Multiply the above equation by ψλ and integrate by parts over the cell C. It follows from

the boundary and periodicity conditions that

−
∫

C

|∇ψλ|2 + (λ2 + f ′(0))

∫

C

ψ2
λ = k(λ)

∫

C

ψ2
λ. (3.2)

Therefore,
∀λ > 0, k(λ) ≤ λ2 + f ′(0) (3.3)
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and c∗(e) = minλ>0 k(λ)/λ ≤ 2
√

f ′(0).
Assume now that the domain Ω is invariant in the direction ẽ. Then ν · ẽ = 0 on ∂Ω

and a (unique up to multiplication) solution ψλ of the eigenvalue problem (3.1) is ψλ = 1.
Therefore, k(λ) = λ2 + f ′(0) for all λ > 0. Thus, c∗(e) = 2

√
f ′(0).

Conversely, assume that c∗(e) = 2
√

f ′(0). Set λ∗ =
√

f ′(0). One claims that k(λ∗) =
(λ∗)2 + f ′(0). If not, then k(λ∗) < (λ∗)2 + f ′(0) from (3.3) and

c∗(e) ≤ k(λ∗)
λ∗

<
(λ∗)2 + f ′(0)

λ∗
= 2

√
f ′(0),

which contradicts our assumption. Therefore, k(λ∗) = (λ∗)2 + f ′(0) and it follows from (3.2)
that ψλ∗ is constant. As a consequence, ν · ẽ ≡ 0 on ∂Ω. Hence, Ω is invariant in the direction
ẽ.

Let us now turn to the
Proof of Theorem 1.4. Up to a rotation of the frame, one can assume without loss of
generality that e = e1 = (1, 0, · · · , 0). Furthermore, if there is a family of domains (Ωα)0≤α<1

of R2 such that the conclusion of Theorem 1.4 holds with N = 2 and e = e1, then the family
of domains (Ω′

α)0≤α<1 = (Ωα ×RN−2)0≤α<1 satisfies the conclusion of Theorem 1.4 in higher
dimensions N with e = e1.

Therefore, it is enough to deal with the case N = 2 and e = e1 = (1, 0). Fix L1 = L2 = 1,
and 0 < β < 1/2. Let now (Ωα)0≤α<1 be a family of smooth open connected subsets of R2

satisfying (1.1) with L1 = L2 = 1, satisfying (1.16) and such that

∀ 0 ≤ α ≤ 1

3
, R2\Ωα ⊂ Z2 +

(
1

2
− α,

1

2
+ α

)
×

(
1

2
− α,

1

2
+ α

)

and

∀2

3
≤ α < 1, Z2 + (1− α, α)× [β, 1− β] ⊂ R2\Ωα ⊂ Z2 +

(
1− α

2
,
1 + α

2

)
× [β, 1− β].

One also assumes that, for each α0 ∈ (0, 1), there exists r > 0 such that the sets Ωα are C3

uniformly with respect to α ∈ (α0 − r, α0 + r).
Let us prove that this family of domains fulfills the conclusion of Theorem 1.4 with N = 2

and e = e1.
One first observes that, for each α ∈ (0, 1), the domain Ωα is not invariant in the direction

e1, whence cα < 2
√

f ′(0) from Theorem 1.3.
The other parts facts in Theorem 1.4 are proved in Steps 2, 3 and 4 below. Step 1 is

concerned with the derivation of inequality (3.5) below.
Step 1. Let first α ∈ [0, 1) be fixed. The minimal speed cα = c∗(e1, Ωα) of the pulsating

fronts satisfying (1.15) and (1.6) in Ωα with Neumann boundary conditions on ∂Ωα, is given
by the formula

cα = min
λ>0

kα(λ)

λ
,
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where kα(λ) is the first eigenvalue of the problem

∆ψα,λ − 2λ∂1ψα,λ + (λ2 + f ′(0))ψα,λ = kα(λ)ψα,λ in Ωα (3.4)

and ψα,λ is positive in Ωα, (1, 1)-periodic with respect to (x1, x2), and satisfies ∂νψα,λ =
λ(ν · e1)ψα,λ on ∂Ωα, where ν stands for the unit exterior normal to Ωα. Observe now that,
from the monotonicity of the domains (Ωα), one has

Ωα ⊃ R× (−β, β).

Therefore, it follows from the maximum principle (see [18] for more details) that kα(λ) ≥ κ(λ)
for all λ > 0, where κ(λ) (resp. ψλ) is the first eigenvalue (resp. eigenfunction) of





∆ψλ − 2λ∂1ψλ + (λ2 + f ′(0))ψλ = κ(λ)ψλ in R× (−β, β),
ψλ > 0 in R× (−β, β),
ψλ = 0 on R× {±β},
ψλ is 1-periodic with respect to x1.

By uniqueness, the function ψλ does not depend on the variable x1, whence κ(λ) = λ2 +
f ′(0)− (π/(2β))2. It follows that

∀α ∈ [0, 1), ∀λ > 0, kα,(λ) ≥ λ2 + f ′(0)−
(

π

2β

)2

. (3.5)

Step 2. Let α be fixed in (0, 1) and let us now prove that the function t 7→ ct is continuous
at α. If not, there exists ε > 0 and a sequence (αn)n∈N → α such that |cαn − cα| ≥ ε for all
n. Up to extraction of some subsequence, two cases may occur :

Case 1 : cαn ≤ cα−ε for all n. For each n, let λn > 0 be such that cαn = kαn(λn)/λn (the
existence of such λn follows from Theorem 1.1), and let ψn = ψαn,λn solve (3.4) in Ωαn . The
functions ψn are positive in Ωαn , (1, 1)-periodic in (x1, x2) and satisfy ∂νψn = λn(ν · e1)ψn

on ∂Ωαn . Up to normalization, one can assume that ψn(0, 0) = 1.
Since 0 ≤ cαn = kαn(λn)/λn ≤ cα − ε, it follows from (3.5) that the sequence (λn) is

bounded. On the other hand, kαn(λn) ≥ f ′(0) from Lemma 2.1. Therefore, the sequence
(λn) is bounded from below by a positive constant. Up to extraction of some subsequence,
one can then assume that λn → λ ∈ (0, +∞) as n → +∞. On the other hand, one can also
assume that cαn → c ∈ [0, cα − ε] as n → +∞.

Furthermore, since the domains (Ωαn) are uniformly C3, the functions ψn satisfy uniform
C2,δ bounds in Ωαn up to the boundary. Up to extraction of some subsequence, the functions
ψn converge in C2

loc(Ωα) to a solution ψ of

∆ψ − 2λ∂1ψ + (λ2 + f ′(0))ψ = cλψα,λ in Ωα,

which can be extended as a C2 function in Ωα such that ∂νψ = λ(ν · e1)ψ on ∂Ωα. Further-
more, ψ is nonnegative, (1, 1)-periodic, and satisfies ψ(0, 0) = 1. From the strong maximum
principle, the function ψ is positive. It is therefore the first eigenfunction of problem (3.4)
with the above periodicity and boundary condition. Hence, cλ = kα(λ). Formula (1.13)

25



implies that c ≥ cα, which contradicts the fact that c ≤ cα − ε. In other words, case 1 is
ruled out.

Case 2 : cαn ≥ cα − ε for all n. Let now λ > 0 be such that cα = kα(λ)/λ. From (3.3)
and (1.8), one has

λ2 + f ′(0) ≥ kαn(λ) ≥ λcαn ≥ λ(cα + ε). (3.6)

Up to extraction of some subsequence, one can assume that kαn(λ) → k > 0 as n → +∞,
and that the functions ψαn,λ, normalized by ψαn,λ(0, 0) = 1, converge locally in Ωα to a
positive (1, 1)-periodic C2(Ωα) solution ψ of

{
∆ψ − 2λ∂1ψ + (λ2 + f ′(0))ψ = kψα,λ in Ωα

∂νψ = λ(ν · e1)ψ on ∂Ωα.

One concludes that k = kα(λ), whence kα(λ) ≥ λ(cα + ε) from (3.6). This contradicts the
definition of λ. Therefore, case 2 is ruled out too.

That proves the continuity of the map α 7→ cα in (0, 1).
Step 3. Let us now prove that cα → 2

√
f ′(0) as α → 0+. Assume not. Since 0 ≤ cα ≤

2
√

f ′(0) for all α ∈ [0, 1) because of Theorem 1.3, there exists then a sequence (αn) → 0+

such that cαn → c ∈ [0, 2
√

f ′(0)) as n → +∞. On the other hand, there exists a sequence
(λn) such that cαn = kαn(λn)/λn for each n. As in Case 1 of Step 2 above, one can prove
that the sequence (λn) is bounded from below and above by two positive constants. From
(3.3) and Lemma 2.1, it follows that the sequence (kαn(λn)) is itself bounded from below
and above by two positive constants. Therefore, c > 0.

For each n, let un(t, x1, x2) be a pulsating travelling front solving (1.6) with the speed
cαn and such that {

(un)t = ∆un + f(un) in R× Ωαn

∂νun = 0 on R× ∂Ωαn .
(3.7)

Furthermore, each un satisfies 0 ≤ un ≤ 1 and (un)t ≥ 0 in R × Ωαn . Up to normalization,
one can assume that un(0, 0, 0) = 1/2.

Owing to the construction of the domains Ωα, and from standard parabolic estimates,
the functions un converge, up to extraction of some subsequence, to a classical solution
u = u(t, x1, x2) of

ut = ∆u + f(u) in R× (R2\(Z2 + (1/2, 1/2)))

such that 0 ≤ u ≤ 1. The singularities on the lines R × (Z2 + (1/2, 1/2)) in (t, x1, x2)
variables are then removable and the function u can be extended to a classical solution u of
ut = ∆u + f(u) in R× R2. On the other hand, the function u satisfies

u

(
t− k1

c
, x1, x2

)
= u(t, x1 + k1, x2 + k2)

for all (t, x1, x2) ∈ R×R2 and (k1, k2) ∈ Z2. Furthermore, ut ≥ 0 in R×R2 and u(0, 0, 0) =
1/2. By passing to the limit t → ±∞, one can prove as in [7] that u(t, x1, x2) → 0 (resp. 1)
as t → −∞ (resp. t → +∞) locally in (x1, x2).

Eventually, the function u is a pulsating travelling front, solving (1.6) with e = e1, and
(1.15) in R × R2, with the speed c. But the minimal speed for this problem is equal to
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2
√

f ′(0) (from Theorem 1.3 –the domain R2 is invariant in the direction e1). Therefore,

c ≥ 2
√

f ′(0), which is contradiction with our assumption.
As a consequence, the function α 7→ cα is continuous at 0.
Step 4. Let us now prove that cα → 2

√
f ′(0) as α → 1−. Assume not. As above, there

exists then a sequence (αn) → 1− such that cαn → c ∈ (0, 2
√

f ′(0)) as n → +∞. Let
un = un(t, x1, x2) be a pulsating travelling front solving (3.7) and (1.6) with speed cαn . Up
to normalization, one can assume that un(0, 0, 0) = 1/2. Consider now the restrictions, still
called un, of the functions un to R×R× [−β, β]. Owing to the construction of the domains
Ωα, the functions un converge, up to extraction of some subsequence, to a classical solution
u(t, x1, x2) of {

ut = ∆u + f(u) in R× (R× [−β, β]\Z× {±β})
∂νu = 0 on R× R\Z× {±β}

such that 0 ≤ u ≤ 1. The singularities on the lines R × Z × {±β} in (t, x1, x2) variables
are removable and the function u can then be extended to a classical solution u of (1.15) in
R × R × [−β, β] such that ∂νu = 0 on R × R × {±β}. On the other hand, the function u
satisfies

u

(
t− k1

c
, x1, x2

)
= u(t, x1 + k1, x2)

for all (t, x1, x2) ∈ R×[−β, β] and k1 ∈ Z. Furthermore, ut ≥ 0 in R×R2 and u(0, 0, 0) = 1/2.
By passing to the limit t → ±∞, one can prove that u(t, x1, x2) → 0 (resp. 1) as t → −∞
(resp. t → +∞) locally in (x1, x2).

Eventually, the function u is a pulsating travelling front, solving (1.15) in R×R× [−β, β],
together with Neumann boundary conditions on R × R × {±β}. The function u satisfies
(1.6) with e = e1 and speed c. Since the domain R× [−β, β] is invariant in the direction e1,
the minimal speed of such travelling fronts is 2

√
f ′(0). One then gets a contradiction with

our assumption that c < 2
√

f ′(0).

Therefore, cα → 2
√

f ′(0) as α → 1− and the proof of Theorem 1.4 is complete.

Remark 3.1 Let the family (Ωα)0≤α<1 of domains of R2 be given as above. Let e be a unit
direction of R2 such that e 6= ±e1, and let c∗α(e) be the minimal speed of pulsating fronts
solving (1.6) and (1.15) in Ωα with Neumann boundary conditions on ∂Ωα. As above, the
function α 7→ c∗α(e) is continuous on [0, 1), with c∗0(e) = 2

√
f ′(0) and c∗α(e) < 2

√
f ′(0) for

all α ∈ (0, 1). With the same arguments as above, it easily follows than lim infα→1− c∗α(e) ≥
2
√

f ′(0)|e1|, where e1 is the x1-component of the direction e. Neverthless, the determination
of the limit, if any, of c∗α(e) as α → 1− is still open.

3.2 Influence of the coefficients of the medium : proofs of Theo-
rems 1.6, 1.8 and 1.10

This subsection is devoted to the study of the influence of the coefficients of the medium
(reaction, advection and diffusion terms) on the speed of propagation of pulsating travelling
fronts.
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Let us first investigate the dependance on the reaction term f .

Proof of Theorem 1.6. a). Let f and g satisfy (1.5) and (1.7) and assume that f ′u(x, y, 0) ≤
g′u(x, y, 0) for all (x, y) ∈ Ω. For any λ > 0, let k(λ, f) (resp. k(λ, g)) be the first eigenvalue
of (1.9) with ζ(x, y) = f ′u(x, y, 0) (resp. ζ(x, y) = g′u(x, y, 0)). It follows from monotonicity
properties of the first eigenvalue of elliptic problems (see [18]) that k(λ, f) ≤ k(λ, g). Hence,
Theorem 1.1 yields c∗(e, f) ≤ c∗(e, g).

Assume furthermore that f ′u(x, y, 0)≤
6≡
g′u(x, y, 0). Let λ0 > 0 be chosen so that c∗(e, g) =

k(λ0, g)/λ0. We claim that k(λ0, f) < k(λ0, g). If this holds, then

c∗(e, f) ≤ k(λ0, f)

λ0

<
k(λ0, g)

λ0

= c∗(e, g)

and we are done. Assume then that k(λ0, f) ≥ k(λ0, g). Let ψf (resp. ψg) be a positive first
eigenvalue of problem (1.9) with λ = λ0 and ζ(x, y) = f ′u(x, y, 0) (resp. ζ(x, y) = g′u(x, y, 0)).
Let τ > 0 be such that ψf ≤ τψg in Ω with equality somewhere (such a τ > 0 exists since
both ψf and ψg are continuous, positive and L-periodic with respect to x in Ω). The function
z := ψf − τψg satisfies

∇ · (A∇z)− 2λ0ẽA∇z + q · ∇z + [−λ0∇ · (Aẽ)
−λ0q · ẽ + λ2

0ẽAẽ + f ′u(x, y, 0)− k(λ0, f)]z = (k(λ0, f)− k(λ0, g))τψg

+(g′u(x, y, 0)− f ′u(x, y, 0))τψg

≥, 6≡ 0 in Ω
(3.8)

from our assumptions. On the other hand, z ≤ 0 in Ω with equality somewhere, and
νA∇z = λ0(νAẽ)z on ∂Ω. The strong maximum principle and Hopf lemma imply that
z ≡ 0 in Ω. But the right-hand side of (3.8) is not identically equal to 0. One has then
obtained a contradiction, whence k(λ0, f) < k(λ0, g).

b) Let f satisfy (1.5) and (1.7). First, it follows from part a) that the function B 7→
c∗(e,Bf) is increasing with respect to B > 0. For any λ > 0 and B > 0, let k(λ,B) and
ψλ,B be the first eigenvalue and eigenfunction of problem (1.9) with ζ(x, y) = Bf ′u(x, y, 0).
Multiply equation (1.9) by ψλ,B and integrate by parts over C. One gets

k(λ,B)

∫

C

ψ2
λ,B = −

∫

C

∇ψλ,BA∇ψλ,B−λ

∫

C

(q·ẽ)ψ2
λ,B+λ2

∫

C

(ẽAẽ)ψ2
λ,B+

∫

C

Bf ′u(x, y, 0)ψ2
λ,B.

It follows that
k(λ,B) ≤ λ‖q · ẽ‖∞ + λ2‖ẽAẽ‖∞ + B‖f ′u(·, ·, 0)‖∞.

Hence,

c∗(e, Bf) = min
λ>0

k(λ,B)

λ
= O(

√
B) as B → +∞.

Assume now that Ω = RN or νA · ẽ ≡ 0 on ∂Ω. In both cases, integrating over C the
equation (1.9) satisfied by ψλ,B with ζ(x, y) = Bf ′u(x, y, 0) leads to

k(λ,B)

∫

C

ψλ,B = λ

∫

C

∇· (Aẽ)ψλ,B−λ

∫

C

(q · ẽ)ψλ,B +λ2

∫

C

(ẽAẽ)ψλ,B +

∫

C

Bf ′u(x, y, 0)ψλ,B.
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Hence,
k(λ,B) ≥ −λ‖∇ · (Aẽ)‖∞ − λ‖q · ẽ‖∞ + λ2α1 + B min

(x,y)∈Ω
f ′u(x, y, 0),

where α1 > 0 is given in (1.3). Since min(x,y)∈Ω f ′u(x, y, 0) > 0, it follows that there exists
γ > 0 such that

c∗(e,Bf) = min
λ>0

k(λ,B)

λ
≥ γ

√
B

for B large enough. That completes the proof of Theorem 1.6.

Remark 3.2 With the same tools as above, it can easily be seen that part a) of Theo-
rem 1.6 extends to the ray speed w∗(e), as defined in section 1.3 and in (1.23). Sim-
ilarly, with obvious notations, w∗(e,Bf) ≤ c∗(e,Bf) = O(

√
B) as B → +∞, and

lim infB→+∞ w∗(e, Bf)/
√

B > 0 if Ω = RN .
That corresponds to Proposition 1.15.

Proof of Theorem 1.8. Under the assumptions of Theorem 1.8, one has ν · ẽ = 0 on ∂Ω,
and c∗q(e) is given by the formula

c∗q(e) = min
λ>0

kq(λ)

λ
,

where kq(λ) and ψλ,q denote the unique eigenvalue and positive L-periodic eigenfunction of

∆ψλ,q − 2λẽ · ∇ψλ,q + q · ∇ψλ,q + [−λq · ẽ + λ2 + f ′(0)]ψλ,q = kq(λ)ψλ,q in Ω (3.9)

with ν · ∇ψλ,q = 0 on ∂Ω. Divide the following formula by ψλ,q and integrate by parts over
C. It follows from (1.4) and the L-periodicity of q and ψλ,q that

∫

C

|∇ψλ,q|2
ψ2

λ,q

+ (λ2 + f ′(0))|C| = kq(λ)|C|, (3.10)

whence
kq(λ) ≥ λ2 + f ′(0) = k0(λ). (3.11)

Therefore, c∗q(e) ≥ 2
√

f ′(0) = c∗0(e).
If q · ẽ ≡ 0, then ψλ,q is constant for each λ > 0, whence kq(λ) = λ2 + f ′(0) and

c∗q(e) = 2
√

f ′(0) = c∗0(e).
Assume now that c∗q(e) = c∗0(e) = 2

√
f ′(0). Let λ∗ > 0 be such that

c∗q(e) =
kq(λ

∗)
λ∗

.

Then kq(λ
∗) = 2λ∗

√
f ′(0), whereas (3.11) yields kq(λ

∗) ≥ (λ∗)2 + f ′(0). Therefore, λ∗ =√
f ′(0) and kq(λ

∗) = (λ∗)2 + f ′(0). From (3.10), one gets that ψλ∗,q is constant, and from
(3.9) one concludes that q · ẽ ≡ 0 in Ω.
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Remark 3.3 With the same arguments as above and with obvious notations, one can deduce
from (1.20) that, if Ω = RN , A = I and f = f(u) satisfies (1.5) and (1.7), then w∗

q(e) ≥
w∗

0(e) = 2
√

f ′(0) for all unit vector e of RN . Furthermore, the equality w∗
q(e) = 2

√
f ′(0)

holds if and only if q · e ≡ 0.
That corresponds to Proposition 1.16.

Proof of Theorem 1.10. Under the assumptions of Theorem 1.10, let k(λ) and ψλ be the
first eigenvalue and eigenfunctions of the operator Lλ defined in (1.9). Multiply the equation
Lλψλ = k(λ)ψλ by ψλ and integrate over C. One gets

k(λ)

∫

C

ψ2
λ = −

∫

C

∇ψλA∇ψλ + λ2

∫

C

ẽAẽ ψ2
λ +

∫

C

ζ(x, y)ψ2
λ. (3.12)

Hence,
k(λ) ≤ max

(x,y)∈Ω
ζ(x, y) + λ2 max

(x,y)∈Ω
ẽA(x, y)ẽ, (3.13)

and (1.17) follows from (1.8).
Assume now that ẽA(x, y)ẽ = M and ζ(x, y) = M0 are constant in Ω, and that ∇·(Aẽ) ≡

0 in Ω and νAẽ = 0 on ∂Ω (if ∂Ω 6= ∅). Then, ψλ is constant for each λ > 0, whence
k(λ) = M0 + λ2M and c∗(e) = 2

√
M0M .

Assume now that c∗(e) = 2
√

M0M , where M0 = max(x,y)∈Ω ζ(x, y) and M =

max(x,y)∈Ω ẽA(x, y)ẽ. Let λ∗ =
√

M0/M > 0. It follows from (1.8) that k(λ∗) ≥
c∗(e)λ∗ = 2M0. On the other hand, k(λ∗) ≤ M0 + (λ∗)2M = 2M0 from (3.13). Therefore,
k(λ∗) = 2M0 = M0 +(λ∗)2M . One deduces from (3.12) and the equation Lλ∗ψλ∗ = k(λ∗)ψλ∗

that ψλ∗ is constant, ζ(x, y) ≡ M0, ẽA(x, y)ẽ ≡ M , ∇ · (Aẽ) ≡ 0, and νAẽ = 0 on ∂Ω.
Assume now that 0 < α ≤ β, and let c∗α(e) (resp. c∗β(e)) denote the minimal speed of

pulsating fronts in the direction e with diffusion αA (resp. βA). By (1.8), one has

c∗α(e) = min
λ>0

kα(λ)

λ
and c∗β(e) = min

λ>0

kβ(λ)

λ
, (3.14)

where kα(λ) (resp. kβ(λ)) is the first eigenvalue of the operator αL̃λ+f ′(0) (resp. βL̃λ+f ′(0))
and L̃λ is the operator L̃λ = ∇ · (A∇) − 2λẽA∇ − λ∇ · (Aẽ) + λ2ẽAẽ acting on the set E
(E has been defined in Theorem 1.1). Under the notations of Lemma 2.1, k0(λ) is the first
eigenvalue of L̃λ, whence

kα(λ) = αk0(λ) + f ′(0) and kβ(λ) = βk0(λ) + f ′(0)

for all λ > 0. On the other hand, it follows from Lemma 2.1 that the function k0 is nonneg-
ative. Therefore, kα(λ) ≤ kβ(λ) and (3.14) yields c∗α(e) ≤ c∗β(e). That completes the proof
of Theorem 1.10.

Let us now turn to the
Proof of the lower bound (1.18). Under the notations in Remark 1.11, integrate the
equation Lλψλ = k(λ)ψλ over C. It follows that

k(λ)

∫

C

ψλ = λ

∫

C

∇ · (Aẽ)ψλ − λ

∫

C

q · ẽ ψλ + λ2

∫

C

ẽAẽ ψλ +

∫

C

ζ(x, y)ψλ.
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Therefore, k(λ) ≥ −λb + λ2m + m0. On the other hand, Lemma 2.1 yields k(λ) ≥ m0.
Formula (1.18) easily follows from (1.8).

Remark 3.4 Under the assumptions and notations of Theorem 1.10, then w∗(e) ≤ c∗(e) ≤
2
√

M0M for all unit vector e of Rd. Furthermore, under the additional assumption that
f = f(u), then the ray speed w∗

γ(e) in the unit direction e of Rd for problem (1.2) with
diffusion matrix γA (γ > 0) is given by

w∗
γ(e) = min

~λ∈Rd, ~λ·e>0

k̃γ(~λ)

~λ · e
,

where k̃γ(~λ) = γk0,~λ/|~λ|(|~λ|) + f ′(0) and, for all unit vector e′ of Rd and all µ > 0, k0,e′(µ)

denotes the first eigenvalue of the operator ∇ · (A∇ψ)− 2µ e′A∇ψ−µ∇ · (Ae′)ψ + µ2e′Ae′ψ
acting on the space of L-periodic functions ψ such that νA∇ψ = µ(νAe′)ψ on ∂Ω. Lemma
2.1 yields k0,e′(µ) ≥ 0. Therefore, w∗

α(e) ≤ w∗
β(e) as soon as 0 < α ≤ β.

Lastly, if Ω = RN , with the same arguments as above, it easily follows from (1.20) that
w∗(e) ≥ min(m0α1/b̃,−b̃ + 2

√
m0α1), where α1 was given in (1.3), m0 = minx∈RN f ′u(x, 0)

and b̃ = maxx∈RN , ~µ∈RN , ~µ6=0 |∇ · (A(x)~µ)|/|~µ| + maxx∈RN |q(x)|.
That corresponds to Proposition 1.17.

4 Spreading speed

This section is devoted to the proof of Theorem 1.13. It is based on the following auxiliary
Lemmas 4.1 and 4.2, and on Proposition 1.14.

Lemma 4.1 Let Ω satisfy (1.1) with d ≥ 1. Let λR be the first eigenvalue, and ψR be the
first eigenfunction of





−∆ψR = λRψR in Ω ∩BR

ψR > 0 in Ω ∩BR

ψR = 0 on Ω ∩ ∂BR

∂νψR = 0 on ∂Ω ∩BR

‖ψR‖L∞(Ω∩BR) = 1,

(4.1)

where BR is the open euclidean ball of radius R > 0 and centre 0. Then λR → 0 as R → +∞.

Proof. It follows from the maximum principle that λR is decreasing with respect to R.
Furthermore, λR has the following variational representation :

λR = min
ψ∈H1(Ω∩BR)\{0}, ψ|Ω∩∂BR

=0

∫

Ω∩BR

|∇ψ|2
∫

Ω∩BR

ψ2

≥ 0.
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Let ξ be a given C∞(RN) function such that ξ = 1 in B1/2 and ξ = 0 in RN\B1. Taking the
function ψ(z) = ξ(z/R) as a test function leads to

λR ≤ R−2‖∇ξ‖2
∞|Ω ∩BR|

|Ω ∩BR/2| .

But |Ω ∩ BR|/|Ω ∩ BR/2| is bounded as R → +∞ because of (1.1), whence λR → 0+ as
R → +∞.

Lemma 4.2 Let Ω satisfy (1.1) with d ≥ 1, let e be in Sd−1, and assume that Ω is invariant
in the direction ẽ. Let f : [0, +∞) → R be a function of class C1 such that f(0) = 0 and
f ′(0) > 0, and let c be such that |c| < 2

√
f ′(0). Then there exist R > 0 and ε0 > 0 such

that, for all ε ∈ (0, ε0), there is a function w satisfying





∆x,yw + cẽ · ∇x,yw + f(w) ≥ 0 in Ω ∩BR

w > 0 in Ω ∩BR

w = 0 on Ω ∩ ∂BR

∂νw = 0 on ∂Ω ∩BR

‖w‖L∞(Ω∩BR) ≤ ε.

(4.2)

Proof. Let R be fixed large enough so that the first eigenvalue λR of (4.1) satisfies

λR < f ′(0)− c2/4.

The latter is possible by Lemma 4.1 and since |c| < 2
√

f ′(0). It then follows that the
function w(x, y) = εe−ce·x/2ψR(x, y) satisfies

∆w + cẽ · ∇w + f(w) = f(εe−ce·x/2ψR(x, y))−
(

c2

4
+ λR

)
εe−ce·x/2ψR(x, y) ≥ 0 in Ω ∩BR

for ε > 0 small engouh. On the other hand, the function w is positive on Ω ∩ BR, vanishes
on Ω ∩ ∂BR, has small L∞(Ω ∩ BR) norm for ε small enough, and it satisfies the Neumann
boundary condition ∂νw = 0 on ∂Ω ∩ BR because so does ψR and Ω is invariant in the
direction ẽ. That completes the proof of Lemma 4.2.

Proof of Proposition 1.14. First of all, one can assume without loss of generality that
u 6≡ 0, whence the strong maximum principle yields u > 0 in Ω. If Ω is bounded (this
corresponds to the case d = 0), then the minimum m of u in Ω is reached and positive, and,
since g is positive in (0, 1), the strong maximum principle and Hopf lemma yield m ≥ 1.
Similarly, since g is negative in (1, +∞), the maximum M of u satisfies M ≤ 1. Therefore,
u ≡ 1.

Let us now consider the general case of a domain Ω which is unbounded, i.e. d ≥ 1. Two
cases may occur :

Case 1 : m = infΩ u > 0. Let (xn, yn)n∈N be a sequence of points in Ω such that
u(xn, yn) → m as n → +∞. If m is reached, then the points (xn, yn) may be assumed to
be bounded. In the general case, there exist some points x̃n ∈ L1Z × · · · × LdZ such that
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(xn− x̃n, yn) ∈ C (remember that C is the cell of periodicity of Ω). Up to extraction of some
subsequence, one can assume that (xn − x̃n, yn) → (x, y) ∈ C as n → +∞.

Call un(x, y) = u(x + x̃n, y). The functions un are defined in Ω, by L-periodicity of Ω,
and they satisfy the same equation (1.24) as u. From standard elliptic estimates and Sobolev
injections, the functions un converge, up to extraction of some subsequence, in C2,δ

loc (Ω) (for
all 0 ≤ δ < 1) to a function u∞ solving (1.24). Furthermore, u∞ ≥ m and u∞(x, y) = m.
If m < 1, then g(m) > 0 and one gets a contradiction with the strong maximum principle
and Hopf lemma. Therefore, m ≥ 1. Similarly, one can prove that M = supΩ u ≤ 1. Hence,
u ≡ 1.

Case 2 : m = infΩ u = 0. Remember that (ei)1≤i≤d denotes the canonic basis of Rd. Since
Ω satisfies (1.1), the function (x, y) 7→ u(x + L1e1, y) is defined in Ω. On the other hand,
Harnack type inequalities imply that the function

v(x, y) =
u(x + L1e1, y)

u(x, y)

is globally bounded in Ω. Call M1 = lim supu(x,y)→0, (x,y)∈Ω v and let (xn, yn) ∈ Ω be such
that u(xn, yn) → 0 and v(xn, yn) → M1 as n → +∞. Let x̃n ∈ L1Z × · · · × LdZ be
such that (xn − x̃n, yn) ∈ C. Up to extraction of some subsequence, one can assume that
(xn − x̃n, yn) → (x, y) ∈ C as n → +∞.

For each n ∈ N, let un be the function defined in Ω by

un(x, y) =
u(x + x̃n, y)

u(xn, yn)
.

From Harnack inequalities, the functions un are locally bounded in Ω. On the other hand,
the functions (x, y) 7→ u(x + x̃n, y) satisfy the same equation as u and u(xn, yn) → 0 as
n → +∞. From standard elliptic estimates, the functions un converge in C2,δ

loc (Ω) (for all
0 ≤ α < 1), up to extraction of some subsequence, to a nonnegative function u∞ solving

{
∆u∞ + b · ∇u∞ + g′(0)u∞ = 0 in Ω

∂νu∞ = 0 on ∂Ω.

Furthermore, u∞(x, y) = 1, whence u∞ > 0 in Ω from the strong maximum principle.
Owing to the definitions of M1 and of the sequence (xn, yn), one has that 0 < u∞(x +
L1e1, y)/u∞(x, y) ≤ M1 and u∞(x + L1e1, y)/u∞(x, y) = M1. Notice then that M1 > 0 since
u∞ is positive in Ω.

The function

ξ(x, y) :=
u∞(x + L1e1, y)

u∞(x, y)

satisfies 



∆ξ + 2
∇u∞
u∞

· ∇ξ + b · ∇ξ = 0 in Ω

∂νξ = 0 on ∂Ω,

together with ξ ≤ M1 in Ω and equality at (x, y). It follows from the strong maximum
principle that ξ ≡ M1 in Ω, whence u∞(x + L1e1, y) ≡ M1u∞(x, y).
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In other words, calling α1 = (ln M1)/L1, the function ϕ1(x, y) := e−α1x1u∞(x, y) is posi-
tive in Ω and it satisfies





∆ϕ1 + 2α1∂x1ϕ1 + α2
1ϕ1 + b · ∇ϕ1 + b1α1ϕ1 + g′(0)ϕ1 = 0 in Ω

∂νϕ1 + α1ν · e1 ϕ1 = 0 on ∂Ω
ϕ1(x + L1e1, y) = ϕ1(x, y) in Ω,

where b = (b1, · · · , bN).
Notice now that the function ϕ1(x + L2e2, y)/ϕ1(x, y) is globally bounded in Ω, once

again from Harnack type inequalities. Then call

M2 := sup
(x,y)∈Ω

ϕ1(x + L2e2, y)

ϕ1(x, y)

and do the same procedure as before, and so on d times. One then gets the existence of a
positive L-periodic function ϕ in Ω satisfying

{
∆ϕ + 2α · ∇xϕ + |α|2ϕ + b · ∇ϕ + b · α̃ ϕ + g′(0)ϕ = 0 in Ω

∂νϕ + ν · α ϕ = 0 on ∂Ω,

for some α = (α1, · · · , αd) ∈ Rd, where |α|2 = α2
1 + · · ·+α2

d, α̃ = (α1, · · · , αd, 0, · · · , 0) ∈ RN

and ∇ means the gradient with respect to both (x, y) variables.
Divide the above equation by ϕ and integrate by parts over the cell C. By periodicity, it

follows that
∫

C

{ |∇ϕ|2
ϕ2

+ 2α · ∇xϕ

ϕ
+ |α|2 + b · ∇ϕ

ϕ
+ b · α̃ + g′(0)

}
= 0.

In other words, ∫

C

{∣∣∣∣
∇ϕ

ϕ
+ α̃ +

b

2

∣∣∣∣
2

+

(
g′(0)− |b|2

4

)}
= 0.

One then gets a contradiction with the assumption |b| < 2
√

g′(0).
As a conclusion, case 2 is ruled out, whence infΩ u > 0 and u ≡ 1.

Remark 4.3 In the case where Ω = RN , the above proof can be slightly simplified. Indeed,
using Lemma 4.2, there is R > 0 and a function w such that w > 0 in BR, w = 0 on ∂BR,
w < u in BR and ∆w + cẽ · ∇w + f(w) ≥ 0 in BR. Since the equation (1.24) satisfied by
u is invariant by translation, and since u > 0 in RN , one can slide u in any direction and
prove that, for all x0 ∈ RN , w < u(·+ x0) in BR. Therefore, infRN u > 0 and one concludes
as in Case 1 of the above proof that u ≡ 1.

This result in the case Ω = RN has been known since the paper of Aronson and Weinberger
[2], who used parabolic tools. The above arguments actually provide a simpler proof using
elliptic arguments.
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Let us now turn to the
Proof of Theorem 1.13. As already emphasized, it only remains to prove that, if Ω is a
straight cylinder in the direction ẽ, then w∗(e) = 2

√
f ′(0) for any nonnegative continuous

and compactly supported initial condition u0 6≡ 0.
Let u0 be such a function. Since w∗(e) ≤ c∗(e) ≤ 2

√
f ′(0), one only has to prove that

w∗(e) ≥ 2
√

f ′(0).

Let 0 ≤ c < 2
√

f ′(0) and let us actually prove that u(t, x + ct e, y) → 1 as t → +∞
locally in (x, y) ∈ Ω. Let us mention that, since Ω is invariant in the direction ẽ, the functions
(x, y) 7→ v(t, x, y) = u(t, x + ct e, y) is defined in Ω for all t ≥ 0. The function v actually
satisfies

vt = ∆v + cẽ · ∇v + f(v)

for all t > 0 and (x, y) ∈ Ω, together with Neumann boundary conditions on ∂Ω, and initial
condition u0. Notice that v(t, x, y) > 0 for all t > 0 and (x, y) ∈ Ω from the strong maximum
principle.

Call M = supRN u0. One has 0 < M < +∞ by assumption. Let ξ(t) be the function
solving ξ̇ = f(ξ) and ξ(0) = M . From the assumptions on f , one has ξ(t) → 1 as t → +∞.
Furthermore, v(t, x, y) ≤ ξ(t) for all t ≥ 0 and (x, y) ∈ Ω by the parabolic maximum
principle. Therefore,

lim sup
t→+∞

sup
(x,y)∈Ω

v(t, x, y) ≤ 1. (4.3)

On the other hand, from Lemma 4.2, there exists R > 0 (large enough so that BR∩Ω 6= ∅)
and a function w solving (4.2) and such that, say, v(1, x, y) ≥ w(x, y) for all (x, y) ∈ BR ∩Ω
(remember that min(x,y)∈BR∩Ω v(1, x, y) > 0). Let w̃ be the function defined in Ω by w̃ = w

in BR∩Ω and w̃ = 0 in Ω\BR. The function w̃ is then a subsolution for the equation satisfied
by v. Therefore, the function θ solving





θt = ∆θ + cẽ · ∇θ + f(θ), t > 0, (x, y) ∈ Ω,
∂νθ = 0, t > 0, (x, y) ∈ ∂Ω,

θ(0, x, y) = w̃(x, y),

is nondecreasing with respect to t and, since w̃ ≤ v(1, ·, ·) in Ω, the function θ satisfies

∀t ≥ 0, ∀(x, y) ∈ Ω, θ(t, x, y) ≤ v(t + 1, x, y). (4.4)

Without loss of generality, one can assume that w̃ ≤ 1 in Ω, whence θ(t, x, y) ≤ 1 for
all (t, x, y) ∈ R+ × Ω. By monotonicity in t, the function θ(t, x, y) converges as t → +∞ to
a function ψ(x, y). From standard parabolic estimates, the convergence θ(t, x, y) → ψ(x, y)
as t → +∞ holds locally uniformly in Ω and the function ψ is a classical solution of (1.24)
with g = f , b = cẽ and |b| < 2

√
f ′(0). Furthermore, 0 ≤ w̃ ≤ ψ ≤ 1 in Ω (thus, ψ 6≡ 0 since

w > 0 in BR ∩ Ω 6= ∅). Proposition 1.14 yields ψ ≡ 1.
One deduces from (4.4) that lim inft→+∞ min(x,y)∈K v(t, x, y) ≥ 1 for all compact set

K ⊂ Ω.
One concludes from (4.3) that v(t, x, y) → 1 as t → +∞ locally in (x, y) ∈ Ω. That

completes the proof of Theorem 1.13.
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Remark 4.4 If Ω is invariant in the direction ẽ and satisfies (1.1), then u(t, x+ct e, y) → 1
as t → +∞ locally in (x, y) ∈ Ω for 0 ≤ c < 2

√
f ′(0) and for all solution u of (1.15) with

continuous bounded nonnegative initial condition u0 6≡ 0. The latter indeed holds from the
maximum principle even if u0 is not compactly supported. Furthermore, under the additional
assumption that u0 is compactly supported, then u(t, x + ct e, y) → 0 as t → +∞ locally in
(x, y) ∈ Ω for all c > 2

√
f ′(0).
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