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Abstract. This paper is concerned with propagation phenomena for reaction-diffusion equa-
tions of the type

ut −∇ · (A(x)∇u) = f(x, u), x ∈ RN

where A is a given periodic diffusion matrix field, and f is a given nonlinearity which is periodic
in the x-variables. This article is the sequel to [8]. The existence of pulsating fronts describ-
ing the biological invasion of the uniform 0 state by a heterogeneous state is proved here. A
variational characterization of the minimal speed of such pulsating fronts is proved and the
dependency of this speed on the heterogeneity of the medium is also analyzed.

Résumé. Ce papier traite de phénomènes de propagation pour des équations de réaction-
diffusion du type

ut −∇ · (A(x)∇u) = f(x, u), x ∈ RN ,

où A(x) est un champ de matrices uniformément définies positives, et f est une non-linéarité
donnée; A et f sont périodiques dans les variables d’espace x. Cet article est la suite de [8].
Nous prouvons ici l’existence de fronts progressifs pulsatoires décrivant l’invasion biologique de
l’état uniforme 0 par un état hétérogène. Nous montrons une formule variationnelle pour la
vitesse minimale de ces fronts pulsatoires et nous analysons également la dépendance de cette
vitesse en fonction des hétérogénéités du milieu.
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1 Introduction and main results

This paper deals with the mathematical analysis of a periodically fragmented environ-
ment model which is given by the reaction-diffusion equation

ut −∇ · (A(x)∇u) = f(x, u), x ∈ RN (1.1)

with periodic dependence in the x variables. It is the sequel to the paper [8], which
focused on some conditions for the stationary equation

{ −∇ · (A(x)∇p) = f(x, p) in RN ,
p(x) > 0, x ∈ RN ,

(1.2)

to have a bounded solution, and on the effects of the heterogeneity in x. The present
paper is concerned with the propagation phenomena, and especially the propagation of
fronts, associated to (1.1) – precise definitions will be given below. Some formulas for the
speeds of propagation of fronts are proved and the dependence in terms of the coefficients
of (1.1) is analyzed.

The archetype of such reaction-diffusion models is the following equation

ut −∆u = f(u) in RN (1.3)

which was introduced in the pioneering papers of Fisher [15] and Kolmogorov, Petrovsky,
Piskunov [25]. An example of nonlinear term is given by the logistic law f(u) = u(1−u).
This type of equation was first motivated by population genetics, and, as (1.1), it also
arises in more general models for biological invasions or combustion.

Of particular interest are the propagation phenomena related to reaction-diffusion
equations of the type (1.3), or (1.1). First, equation (1.3) may exhibit planar travelling
fronts, which are special solutions of the type u(t, x) = U(x · e + ct) for some direction
e (|e| = 1, −e is the direction of propagation) and U : R → (0, 1) (assuming that
f(0) = f(1) = 0). Such solutions are invariant in time in the comoving frame with
speed c in the direction −e. Second, starting with an initial datum u0 ≥ 0, 6≡ 0 which
vanishes outside some compact set, then, under some assumptions on f , u(t, x) → 1 as
t → +∞ ; furthermore, the set where u is close to 1 expands at a certain speed which
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is the asymptotic speed of spreading and which, in the case of equation (1.3) with a
nonlinearity f positive in (0, 1), is the minimal speed of planar fronts (see e.g. [1]).

Whereas the homogeneous equation (1.3) has attracted many works in the mathe-
matical literature, propagation phenomena for heterogeneous equations of the type (1.1),
where both the diffusion and the reaction coefficients depend on the space variables x,
were studied more recently (see e.g. [4, 16, 21, 26, 30]). In models of biological invasions,
the heterogeneity may be a consequence of the presence of highly differentiated zones,
such as forests, fields, roads, cities, etc., where the species in consideration may tend to
diffuse, reproduce or die with different rates from one place to another.

One focuses here on periodic environments models and for which the diffusion matrix
A(x) and the reaction term f(x, u) now depend on the variables x = (x1, · · · , xN) in a
periodic fashion. As an example, f may be of the type

f(x, u) = u(µ(x)− κ(x)u), (1.4)

or even, simply,
f(x, u) = u(µ(x)− u), (1.5)

where the periodic coefficient µ(x), which may well be negative, can be interpreted
as an effective birth rate of the population and the periodic function κ(x) reflects a
saturation effect related to competition for resources. The lower µ is, the less favorable
the environment is to the species.

These models for biological invasions in unbounded domains were first introduced by
Shigesada et al. in dimensions 1 and 2 (see [23, 26, 27]). In these works, the nonlinearity
f is given by (1.5), and A and µ are piecewise constant and only take two values.
This model is then referred to as the patch model. Numerical simulations and formal
arguments were discussed in [23, 26, 27] about this model – in space dimensions 1 or 2.
The various works of Shigesada and her collaborators have been an inspiring source for
the present paper. We aim here at proving rigorously some properties which had been
discussed formally or observed numerically. The introduction of new mathematical ideas
will furthermore allow us to derive results in greater generality and for higher dimensional
problems as well.

In the paper [8] and in the present one, we discuss these types of problems in the
framework of a general periodic environment, and we give a complete and rigorous math-
ematical treatment of these questions. In the first paper [8], we discussed the existence
of a positive stationary state of (1.1), that is a positive bounded solution p of (1.2).
The latter is referred to as biological conservation. We also analyzed in [8] the effects
of fragmentation of the medium and the effects of coefficients with large amplitude on
biological conservation. Here, we connect the condition for species survival (existence of
such a solution p) to that for propagation of pulsating fronts for which the heterogeneous
state p invades the uniform state 0. This type of question is referred to as biological in-
vasion. We also analyze the effects of the heterogeneity of the medium on the speed of
propagation. We especially prove a monotonous dependence of the speed of invasion on
the amplitude of the effective birth rate.

Let us make the mathematical assumptions more precise. Let L1, · · · , LN > 0 be
N given positive real numbers. A function g : RN → R is meant to be periodic if
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g(x1, · · · , xk + Lk, · · · , xN) ≡ g(x1, · · · , xN) for all k = 1, · · · , N . Let C be the period
cell defined by

C = (0, L1)× · · · × (0, LN).

The diffusion matrix field A(x) = (aij(x))1≤i,j≤N is assumed to be symmetric (aij = aji),
periodic, of class C2,α (with α > 0),1 and uniformly elliptic, in the sense that

∃α0 > 0, ∀x ∈ RN , ∀ξ ∈ RN ,
∑

1≤i,j≤N

aij(x)ξiξj ≥ α0|ξ|2. (1.6)

The function f : RN × R+ → R is of class C1,α in (x, u) and C2 in u, periodic with
respect to x. One assumes that f(x, 0) = 0 for all x ∈ RN and one sets fu(x, 0) :=
lims→0+ f(x, s)/s. Furthermore, throughout the paper, one assumes that

∀x ∈ RN , s 7→ f(x, s)/s is decreasing in s > 0 (1.7)

and
∃M ≥ 0, ∀s ≥ M, ∀x ∈ RN , f(x, s) ≤ 0. (1.8)

Examples of functions f satisfying (1.7-1.8) are functions of the type (1.4) or (1.5),
namely f(x, u) = u(µ(x) − κ(x)u) or simply f(x, u) = u(µ(x) − u), where µ and κ are
C1,α periodic functions.

Let λ1 be the principal eigenvalue of the operator L0 defined by

L0φ := −∇ · (A(x)∇φ)− fu(x, 0)φ,

with periodicity conditions. Namely, λ1 is the unique real number such that there exists
a C2 function φ > 0 which satisfies

{ −∇ · (A(x)∇φ)− fu(x, 0)φ = λ1φ in RN ,
φ is periodic, φ > 0.

(1.9)

One says that 0 is an unstable solution of (1.2) if λ1 < 0, and “stable” if λ1 ≥ 0.
We especially proved in [8] that, if λ1 ≥ 0, then 0 is the only nonnegative bounded

solution of (1.2) and any solution of (1.1) with bounded nonnegative initial condition
u0 converges to 0 uniformly in x ∈ RN as t → +∞ (one refers to this phenomenon
as extinction). On the other hand, if λ1 > 0, then there is a unique positive bounded
solution p of (1.2), which turns out to be periodic,2 and the solution u(t, x) converges to
p(x) locally in x as t → +∞, as soon as u0 ≥ 0, 6≡ 0.

The above results motivate the following

1The smoothness assumptions on A, as well as on f below, are made to ensure the applicability of
some a priori gradients estimates for the solutions of some approximated elliptic equations obtained
from (1.1) (see Lemma 2.10 in Section 2.3). These gradient estimates are obtained for smooth (C3)
solutions through a Bernstein-type method, [5]. We however believe that the smoothness assumptions
on A, as well as on f , could be relaxed, by approximating A and f by smoother coefficients.

2Notice that the periodicity is forced by the uniqueness, but was not a priori required in the formu-
lation of equation (1.2).
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Definition 1.1 We say that the hypothesis for conservation is satisfied if there exists a
positive bounded solution p of (1.2).

A simple necessary and sufficient condition for the hypothesis for conservation (or
survival) to be satisfied is that λ1 < 0, and the solution p is then unique and periodic.
This hypothesis is fulfilled especially if fu(x, 0) ≥ 0, 6≡ 0. An example of a function
f satisfying the hypothesis is the classical Fisher-KPP nonlinearity f(x, u) = f(u) =
u(1− u) (see [15, 25]), where p(x) ≡ 1. For a general nonlinearity f satisfying (1.7) and
(1.8), comparison results and conditions on fu(x, 0) for λ1 to be negative are given in
[8] (see also Theorem 1.3 below). However, it is not easy to understand in general the
interaction between the heterogeneous diffusion and reaction terms.

One focuses here on the set of solutions which describe the invasion of the uniform
state 0 by the periodic positive function p, when the hypothesis for conservation is
satisfied. A solution u(t, x) of (1.1) is called a pulsating travelling front propagating in
the direction −e with the effective speed c 6= 0 if





∀ (t, x) ∈ R× RN , ut −∇ · (A(x)∇u) = f(x, u),

∀ k ∈
N∏

i=1

LiZ, ∀ x ∈ RN , u

(
t +

k · e
c

, x

)
= u(t, x + k),

(1.10)

with the asymptotic conditions

u(t, x) →
x·e→−∞

0, u(t, x)− p(x) →
x·e→+∞

0. (1.11)

The above limits are understood as local in t, and uniform in the directions of RN

orthogonal to e.
Our first result is the following existence theorem :

Theorem 1.2 Under the above assumptions on A and f , and under the hypothesis for
conservation, there exists c∗ > 0 such that problem (1.10-1.11) has a classical solution
(c, u) if and only if c ≥ c∗. Furthermore, any such solution u is increasing in the variable
t.

Lastly, the minimal speed c∗ is given by the following variational formula

c∗ = min {c, ∃ λ > 0 such that µc(λ) = 0} ,

where µc(λ) is the principal eigenvalue of the elliptic operator

−Lc,λψ = −∇ · (A(x)∇ψ)− 2λ eA(x)∇ψ
−[λ∇ · (A(x)e) + λ2eA(x)e− λc + fu(x, 0)]ψ,

(1.12)

with periodicity conditions.

Before going further on, let us briefly comment this result and recall some earlier
works in the literature. Observe first that the formula for the minimal speed simply
reduces to the well-known Fisher KPP formula 2

√
f ′(0) for the minimal speed of planar
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front φ(x · e + ct) for the homogeneous equation ut−∆u = f(u) in RN with f satisfying
(1.7-1.8) and p(x) ≡ min {s > 0, f(s) ≤ 0}. Periodic nonlinearities f(x, u) in space
dimension 1 were first considered by Shigesada, Kawasaki and Teramoto [27], and by
Hudson and Zinner [21].3 The case of equations ut − ∆u + v · ∇u = f(u) with shear
flows v = (α(y), 0, · · · , 0) in straight infinite cylinders {(x1, y) ∈ R× ω} was dealt with
by Berestycki and Nirenberg [11], under the assumption that f stays positive in, say,
(0, 1) ; min-max type formulas for c∗ were obtained in [17]. Berestycki and Hamel [4]
generalized the notion of pulsating fronts and got existence and monotonicity results in
the framework of more general periodic equations ut−∇·(A(x)∇u)+v(x) ·∇u = f(x, u)
in periodic domains, under the assumption that f ≥ 0 and f(x, 0) = f(x, 1), f(x, s) > 0
for all s ∈ (0, 1). A formula for the minimal speed is given in [7] under the assumption
that f(x, s) ≤ fu(x, 0)s for all s ∈ [0, 1] and the dependence of c∗ in terms of the diffusion,
advection, reaction coefficients as well as the geometry of the domain, is analyzed. Some
lower and upper bounds for the minimal speed when the advection term v is large are
given in [2, 3, 6, 12, 19, 24]. Lastly, let us add that some previously mentioned works, as
well as other ones, [1, 4, 10, 11, 13, 14, 17, 18, 19, 20, 22, 28, 30], were also devoted to
other types of nonlinearities (combustion, bistable), for which the speed of propagation
of fronts may be unique.

One of the difficulties and specificities of problem (1.10-1.11) with a nonlinearity f
satisfying (1.7-1.8) is that f may now be negative at some points x, whereas it is positive
at other places, for the same value of u. Besides the existence of pulsating fronts and
the variational characterization of the minimal speed, Theorem 1.2 above also gives the
monotonicity of all fronts in the variable t (notice that a similar formula for c∗ was given
by Weinberger in [29], with a different approach, but the monotonicity of the front was
a priori assumed there).

Consider now a nonlinearity f satisfying (1.7-1.8), and such that fu(x, 0) = µ(x) +
Bν(x), where µ and ν are given periodic functions and B is a positive parameter. If
λ1 < 0 (namely if the hypothesis for conservation is satisfied), one calls c∗(B) the minimal
speed, given in Theorem 1.2, of the pulsating fronts solving (1.10-1.11). The following
theorem especially gives a monotonous dependency of c∗(B) on B as well as some lower
and upper bounds for large or small B (when µ ≡ 0, B can then be viewed as the ampli-
tude of the effective birth rate of the species in consideration). Furthermore, Theorem
1.3 below also deals with the influence of the heterogeneity of f on the minimal speed of
pulsating fronts.

Theorem 1.3 Assume that A is a constant symmetric positive matrix and assume that
f satisfies (1.7-1.8) and that fu(x, 0) is of the type fu(x, 0) = µ(x)+Bν(x), where µ and
ν are given periodic C1,α functions, and B ∈ R.

a) Assume that max ν > 0. Then the hypothesis for conservation (λ1 < 0) is satisfied
for B > 0 large enough and

c∗(B) ≤ 2
√

eAe max(µ + Bν) ;

3Hudson and Zinner proved the existence of one-dimensional pulsating fronts for problems of the
type ut − uxx = f(x, u), provided c ≥ c∗, but did not actually prove that c∗ was the minimal speed.
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furthermore, if µ = µ0 is constant, then c∗(B) is increasing in B (for B large enough so
that λ1 < 0).

b) Assume that

∫

C

µ ≥ 0,

∫

C

ν ≥ 0 and max ν > 0. Then the hypothesis for conser-

vation is satisfied for all B > 0, and c∗(B) is increasing in B > 0 under the additional
assumption that µ = µ0 ≥ 0 is constant. Furthermore, for all B > 0,

2

√
eAe

|C|
∫

C

(B−1µ(x) + ν(x))dx ≤ c∗(B)√
B

≤ 2
√

eAe max(B−1µ + ν)

and
1

2

√
eAe max ν ≤ lim inf

B→+∞
c∗(B)√

B
≤ lim sup

B→+∞

c∗(B)√
B

≤ 2
√

eAe max ν.

c) Assume that µ ≡ 0, fu(x, 0) = Bν(x) with

∫

C

ν ≥ 0, max ν > 0. One has

lim
B→0+

c∗(B)√
B

= 2

√
eAe

|C|
∫

C

ν(x)dx.

Theorem 1.3 implies especially that, when fu(x, 0) is of the type µ(x) + Bν(x), and
no matter how bad the environment may be elsewhere, it suffices to have a very favorable
(even quite narrow) zone (namely ν > 0 somewhere) to allow for species survival and
to increase the speed of propagation of fronts. Furthermore, the speed is comparable to√

B for large amplitudes B as soon as, say,

∫

C

ν > 0.

Lastly, call c∗[µ] the minimal speed of pulsating travelling fronts solving (1.10-1.11)
with fu(x, 0) = µ(x), provided the assumption for conservation is satisfied. From the
previous theorem, one immediately deduces the following corollary :

Corollary 1.4 Assume that A is a constant symmetric positive matrix and assume that

f satisfies (1.7-1.8), with fu(x, 0) = µ(x). Assume that

∫

C

µ ≥ µ0|C| with µ0 > 0. Then

f satisfies the hypothesis for conservation and

c∗[µ] ≥ c∗[µ0] = 2
√

(eAe)µ0.

This corollary simply means that the heterogeneity of the medium increases the speed
of propagation of pulsating fronts, in any given unit direction of RN .

As already underlined, the main difference with the results in [4], in the existence
and monotonicity result (Theorem 1.2), is that the function f here is not assumed to be
nonnegative. The nonnegativity of f played a crucial role in [4], where the existence of
the minimal speed c∗ was proved by approximating f with cut-off functions, as in [11].
Although we solve some regularized problems in bounded domains as in [4], the method
used in this paper is rather different since we directly prove that the set of possible speeds
c is an interval which is not bounded from above, and we define c∗ as the minimum of
this interval. Existence of pulsating fronts is proved in Section 2. Monotonicity is proved
in Section 3. Lastly, the characterization of c∗ is given in Section 4, as well as the effects
of the heterogeneity of the medium on the propagation speeds.
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2 Existence result

This section is devoted to the proof of the existence of pulsating fronts for (1.10-1.11) for
large speed. Throughout this section, one assumes that the hypothesis for conservation
is satisfied, namely that there exists a (unique) positive bounded solution p of (1.2),
which is periodic.

2.1 Existence result in finite cylinders for a regularized problem

Let us make the same change of variables as Xin [30] and Berestycki, Hamel [4]. Let
φ(s, x) be the function defined by :

φ(s, x) = u

(
s− x · e

c
, x

)

for all s ∈ R and x ∈ RN , where u is a classical solution of (1.10-1.11).
The function φ satisfies the following degenerate elliptic equation

∇x · (A(x)∇xφ) + (eA(x)e)φss +∇x · (A(x)eφs) (2.13)

+∂s(eA(x)∇xφ)− cφs + f(x, φ) = 0 in D′
L(R× RN)

together with the periodicity condition

φ is L-periodic with respect to x. (2.14)

Moreover, since u(t, x) → 0 as x · e → −∞ and u(t, x) − p(x) → 0 as x · e → +∞,
locally in t and uniformly in the directions of RN which are orthogonal to e, and since φ
is L-periodic with respect to x, one gets

φ(−∞, x) = 0, φ(+∞, x) = p(x) uniformly in x ∈ RN . (2.15)

Conversely, if φ is a solution of (2.13-2.15) such that u(t, x) = φ(x · e + ct, x) is C1 in
t, C2 in x, then u is a classical solution of (1.10-1.11).

Let a and ε be two positive real numbers, and set Σa = (−a, a)×RN . As it was done
in [4], one first works with elliptic regularizations of (2.13) of the type





Lεφ + f(x, φ) = 0 in Σa,
φ is L-periodic w.r.t. x,

∀x ∈ RN , φ(−a, .) = 0, φ(a, x) = p(x),
(2.16)

where Lε is the elliptic (in the (s, x)-variables) operator defined by

Lεφ = ∇x · (A(x)∇xφ) + (eA(x)e + ε)φss

+∇x · (A(x)eφs) + ∂s(eA(x)∇xφ)− cφs.

We will follow the scheme as in [4] to prove the existence of solutions of (2.16) and
state some of their properties, only indicating the differences which may appear.

Let us establish at first the
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Lemma 2.1 For each c ∈ R, there exists a solution φc ∈ C2
(
Σa

)
of (2.16).

PROOF. Let ψ be the function defined by ψ(s, x) = p(x)
s + a

2a
. One sets v = φ − ψ.

Then, since p satisfies −∇·(A(x)∇p)−f(x, p) = 0 in RN , the problem (2.16) is equivalent
to 




−Lεv = f(x, v + ψ)− s + a

2a
f(x, p)

+(2a)−1[2A(x)e · ∇p +∇ · (A(x)e) p− cp] in Σa,
v is L-periodic w.r.t. x,

v(−a, .) = 0, v(a, .) = 0.

(2.17)

Using the fact that f(x, p), p, A, ∇p and ∇x · (Ae) are globally bounded, (since p and
A are L-periodic and C1), one can follow the proof of Lemma 5.1 of [4]. Namely, using
Lax-Milgram Theorem with Schauder fixed point Theorem, one can find a solution v of
the first equation of (2.17), in the distribution sense, in Σa. Then, from the regularity
theory up to the boundary, this solution v is a classical solution of (2.17) in Σa. Finally,
the function φ = v + ψ ∈ C2

(
Σa

)
is a classical solution of (2.16). ¤

Lemma 2.2 The function φc defined above is increasing in s and it is the unique solution
of (2.16) in C2

(
Σa

)
.

PROOF. One has to show at first that 0 < φc(s, x) < p(x) in Σa. Since f ≡ 0 in
RN × (−∞, 0], the strong elliptic maximum principle yields that φc > 0 in (−a, a)×RN .
Let us show that φc(s, x) < p(x).

Set
γ∗ = inf

{
γ, γp(x) > φc(s, x) for all (s, x) ∈ Σa

}
.

Since p > 0 and p is L-periodic with respect to x, there exists δ > 0 such that p > δ in
Σa. Therefore γ∗ does exist. Moreover since φc(a, x) = p(x), γ∗ ≥ 1. One has to show
that γ∗ = 1.

Assume γ∗ > 1. By continuity, one has γ∗p ≥ φc in Σa. On the other hand,
there exists a sequence γn → γ∗, γn < γ∗ and a sequence (sn, xn) in Σa such that
γnp(xn) ≤ φc(sn, xn). Since p and φc are L-periodic in x, one can assume that xn ∈ C.
Up to the extraction of a subsequence, one can also assume that (sn, xn) → (s1, x1) ∈
[−a, a]× C. Passing to the limit n →∞, one obtains γ∗p(x1) = φc(s1, x1).

Next, set z = γ∗p − φc. One has f(x, γ∗p) ≤ γ∗f(x, p) since f(., s)/s is supposed to
be decreasing in s. Thus Lε(γ

∗p) + f(x, γ∗p) ≤ 0. As a consequence, Lεz + f(x, γ∗p)−
f(x, φc) ≤ 0.

Hence, {
Lεz + bz ≤ 0
z ≥ 0

in Σa, (2.18)

where b is a bounded function (because f is globally lipschitz-continuous). Moreover,
one has {

γ∗p(x) > φc(−a, x) = 0,
γ∗p(x) > φc(a, x) = p(x),

(2.19)
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for all x in RN (the last inequality follows from the assumption γ∗ > 1 and from the
positivity of p in RN). Therefore, the point (s1, x1) where z vanishes, lies in (−a, a) ×
C. Using (2.18) with the strong maximum principle, one obtains that z ≡ 0, which
contradicts (2.19).

Thus γ∗ = 1 and φc ≤ p. Using again the strong maximum principle, one obtains
φc(s, x) < p(x) for all (s, x) ∈ [−a, a)× RN .

In order to finish the proof of the lemma, we only have to follow the proof of Lemma
5.2 given in [4], which uses a sliding method in s (see [11]), replacing φc(a, x) = 1 by
φc(a, x) = p(x). ¤

Lemma 2.3 The functions φc are decreasing and continuous with respect to c in the
following sense : if c > c′, then φc < φc′ in Σa and if cn → c ∈ R, then φcn → φc in
C2(Σa).

PROOF. The proof is similar to that of lemma 5.3 in [4]. ¤

In the following, for any ε > 0, a > 0 and c ∈ R, we call φc
ε,a the unique solution of

(2.16) in C2
(
Σa

)
.

Set

p− = min
x∈C

p(x) = min
x∈RN

p(x) > 0 and p+ = max
x∈C

= max
x∈RN

p(x) > 0.

Lemma 2.4 There exist a1 and K such that, for all a ≥ a1 and ε ∈ (0, 1],

(c > K) ⇒
(

max
x∈C

φc
ε,a(0, x) <

p−

2

)
.

PROOF. Let n ≥ 2 be an integer and g be a C1 function defined on [0, np+], such
that g(0) = 0, g(np+) = 0, g(u) > 0 on (0, np+), g′(np+) < 0. For n large enough,
one can choose (using hypothesis (1.8)) g such that f(x, u) ≤ g(u) for all x ∈ RN and
u ∈ [0, np+].

Then, using a result of [9], one can assert that there exists c1 such that the one-
dimensional problem





v′′ − kv′ +
g(v)

α0

= 0 in R,

v(−∞) = 0 < v(.) < v(+∞) = np+ and v(0) =
p−

2
,

(2.20)

admits a unique solution v, for each k ≥ c1 > 0 (remember that α0 > 0 is given in (1.6)).
Set k = c1, and let v = v(s) be the unique solution of (2.20) associated to k = c1. It is
also known that v is increasing in R. Take c > max

x∈RN
{(eA(x)e + 1)k +∇ · (A(x)e)}, and

ε ∈ (0, 1]. One has

Lεv + f(x, v) = (eA(x)e + ε)v′′(s) + (∇ · (A(x)e)− c)v′(s) + f(x, v(s))

= {(eA(x)e + ε)k +∇ · (A(x)e)− c} v′(s)

−(eA(x)e + ε)g(v(s))/α0 + f(x, v(s)),
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from (2.20). Thus

Lεv + f(x, v) ≤ {(eA(x)e + ε)k +∇(·A(x)e)− c} v′(s)− εg(v(s))/α0,

since eA(x)e ≥ α0 and f(x, u) ≤ g(u) for all (x, u) ∈ RN × [0, np+]. Moreover g ≥ 0,
v′ > 0 and (eA(x)e+ε)k +∇·A(x)e− c < 0, owing to the choice of c. As a consequence,
one gets

Lεv + f(x, v) < 0 in Σa.

By using a sliding method as in Lemma 2.2, with v and φc
ε,a, and by using the

monotonicity of v and the fact that v(−a) > 0 and v(a) > p+ ≥ p(x) for all x ∈ RN and
for a large enough, one can conclude that

φc
ε,a(s, x) < v(s),

for all (s, x) ∈ Σa and for a large enough.
Hence, it follows that

max
x∈RN

φc
ε,a(0, x) = max

x∈C
φc

ε,a(0, x) < v(0) =
p−

2
,

for c > max
RN

{(eA(x)e + 1)k +∇ · (A(x)e)} and a large enough, which completes the

proof of the lemma. ¤

Let us now consider the functions φ0
ε,a, associated to c = 0. Take a sequence an →

+∞. Let us pass to the limit n → +∞. From standard elliptic estimates and Sobolev’s
injections, the functions φ0

ε,an
converge (up to the extraction of a subsequence) in C2,β

loc (R×
RN), for all 0 ≤ β < 1, to a function φ0 which satisfies





Lεφ
0 + f(x, φ0) = 0 in R× RN ,

φ0 is L-periodic w.r.t. x,
φ0 is nondecreasing w.r.t. s,

with c = 0. Furthermore, 0 ≤ φ0(s, x) ≤ p(x) for all (s, x) ∈ R× RN .
One then has the

Lemma 2.5 There exist x1 ∈ C and N0 ∈ N such that for all n ≥ N0, φ0
ε,an

(0, x1) >
p−

2
.

PROOF. Assume φ0(0, x) < p(x) for all x ∈ C. Then

0 ≤ max
x∈C

φ0(0, x) < p+.

Let (sn)n∈N be a sequence in (−a, a), such that

max
x∈C

φ0
ε,an

(sn, x) = b :=
1

2
p+ +

1

2
max
x∈C

φ0(0, x).

11



Let us show that sn > 0 for n large enough.
Assume by contradiction that there exists a subsequence ak → +∞ such that sk ≤ 0

for all k ∈ N. Then, since φ0
ε,ak

is increasing in s,

b = max
x∈C

φ0
ε,ak

(sk, x) ≤ max
x∈C

φ0
ε,ak

(0, x),

while
max
x∈C

φ0
ε,ak

(0, x) → max
x∈C

φ0(0, x) as k → +∞.

Passing to the limit k → +∞, one obtains

b ≤ max
x∈C

φ0(0, x).

That leads to a contradiction since p+ > max
x∈C

φ0(0, x). Therefore, one has shown that

sn > 0 for n large enough.
Set φan(s, x) = φ0

ε,an
(s + sn, x), defined on (−an − sn, an − sn)× RN . Then

max
x∈C

φan(0, x) = b.

One easily sees that −an − sn → −∞ as n → +∞. Then two cases may occur, up to
the extraction of some subsequence :

case 1 : an − sn → +∞. From standard elliptic estimates and Sobolev’s injections,
the functions φan converge (up to the extraction of a subsequence) in C2,β

loc (R×RN), for
all 0 ≤ β < 1, to a nonnegative function φ satisfying





Lεφ + f(x, φ) = 0 in R× RN (with c = 0),
φ is L-periodic w.r.t. x,

φ is nondecreasing w.r.t. s,
0 ≤ φ ≤ p(x)

max
x∈C

φ(0, x) = b.

(2.21)

Moreover, from standard elliptic estimates, from the monotonicity of φ, and from the
periodicity in x, it follows that

φ(s, x) → φ±(x) in C2(RN) as s → ±∞,

where each function φ± satisfies




∇ · (A(x)∇φ±) + f(x, φ±) = 0 in RN ,
φ± is L-periodic,
φ± ≥ 0.

From the uniqueness Theorem 2.1 of [8], one can conclude that either φ±(x) ≡ 0
or φ±(x) ≡ p(x). Moreover, φ−1 (x) ≤ φ1(0, x) because of the monotonicity of φ1 with
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respect to s. Therefore φ−1 (x) ≤ b < p+. Thus, φ−1 (x) 6≡ p(x), and φ−1 ≡ 0. Similarly,
φ+

1 (x) ≥ φ1(0, x). Thus there exists x0 ∈ C such that φ+
1 (x0) ≥ b > 0. As a consequence,

φ+
1 ≡ p.

Next, multiply the equation (2.21) (with c = 0) by φs and integrate it over (−N, N)×
C, where N is a positive real number. Then,

∫

(−N,N)×C

(eA(x)e + ε)φssφsdsdx +

∫

(−N,N)×C

∇x · (A(x)∇xφ)φsdsdx

+

∫

(−N,N)×C

{∇x · (A(x)eφs) + ∂s(eA(x)∇xφ)}φsdsdx

+

∫

(−N,N)×C

f(x, φ)φsdsdx = 0.

(2.22)

First, one has
∫

(−N,N)×C

(eA(x)e + ε)φssφsdsdx =
1

2

∫

C

[
(eA(x)e + ε)(φs)

2
]N

−N
dsdx. (2.23)

From standard elliptic estimates, one knows that φs → 0 as s → +∞. Passing to the
limit N → +∞ in (2.23), one obtains

∫

R×C

(eA(x)e + ε)φssφsdsdx = 0. (2.24)

Next, using an integration by parts over (−N, N)× C and the periodicity of φ with
respect to x, one has

∫

(−N,N)×C

∇x · (A(x)∇xφ)φsdsdx = −
∫

(−N,N)×C

∇xφs · A(x)∇xφdsdx

= −1

2

∫

(−N,N)×C

(∇xφ · A(x)∇xφ)sdsdx

= −1

2

∫

C

[∇xφ · A(x)∇xφ]N−N dsdx,

(2.25)

since the matrix field A(x) is symmetric. Passing to the limit N → +∞ in (2.25), one
obtains, using standard elliptic estimates :

∫

R×C

∇x · (A(x)∇xφ)φsdsdx = −1

2

∫

C

∇p · (A(x)∇p)dsdx. (2.26)

Next, from the periodicity of φ with respect to x, one can similarly show that
∫

R×C

{∇x · (A(x)eφs) + ∂s(eA(x)∇xφ)}φsdsdx = 0. (2.27)

Set F (x, u) =

∫ u

0

f(x, s)ds. Then,

∫

R×C

f(x, φ)φsdsdx =

∫

R×C

F (x, φ(s, x))sdsdx =

∫

C

F (x, p(x))dx. (2.28)
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Passing to the limit N → +∞ in (2.22), and using (2.24), (2.26), (2.27) and (2.28),
one gets ∫

C

[
F (x, p(x))− 1

2
∇p · (A(x)∇p)

]
dx = 0. (2.29)

Moreover, using a property on the energy of p, which has been established in Proposition
3.7 of [8], one asserts that

∫

C

[
F (x, p(x))− 1

2
∇p · (A(x)∇p)

]
dx =: −E(p) > 0.

The latter is in contradiction with (2.29), therefore case 1 is ruled out.

case 2 : an−sn → b < +∞. Up to the extraction of some subsequence, the functions
φan converge in C2,β

loc ((−∞, b)×RN) (for all 0 ≤ β < 1) to a function φ satisfying (2.21),
with c = 0, in the set (−∞, b) × RN . Moreover, the family of functions (φan) is equi-
Lipschitz-continuous in any set of the type [an − sn − 1, an − sn]× C. Therefore, for all
η > 0, there exists κ > 0 such that

∀x ∈ C, ∀n, ∀s ∈ [an − sn − κ, an − sn], p(x)− η ≤ φan(s, x) ≤ p(x). (2.30)

Then choose x0 ∈ C such that p(x0) = p+. Formula (2.30) applied on x0 together
with

max
x∈C

φan(0, x) = b < p+

implies that an − sn > δ for some δ > 0. Hence b > 0 and

max
x∈C

φ(0, x) = b.

Moreover (2.30) implies that φ can be extended by continuity on {b}×RN with φ(b, x) =
p(x). Furthermore, from standard elliptic estimates up to the boundary, the function φ
is actually in C1

(
(−∞, b]× RN

)
.

Following the proof of case 1, one shows that φ(−∞, .) ≡ 0. The next steps are
similar to those of case 1. One gets a contradiction.

Therefore, there exists x1 ∈ C such that φ0(0, x1) = p(x1). Hence, taking any se-
quence an → +∞ such that the sequence (φ0

ε,an
) converges in C2,β

loc (R × RN) for all

0 ≤ β < 1, there exists N0 such that for all n ≥ N0, φ0
ε,an

(0, x1) >
p−

2
. That completes

the proof of Lemma 2.5. ¤

Finally, one gets

Proposition 2.6 Fix ε ∈ (0, 1]. Let an → +∞ be the sequence defined above. Then,
there exist K ∈ R, N1 ∈ N such that for all n ≥ N1 there exists a unique real number
c = cε,an such that φc

ε,an
satisfies the normalization condition

max
x∈RN

φc
ε,an

(0, x) = max
x∈C

φc
ε,an

(0, x) =
p−

2
. (2.31)
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Furthermore,
∀ 0 < ε ≤ 1, ∀ n ≥ N1, 0 < cε,an < K.

PROOF. Fix ε ∈ (0, 1]. Under the notations of the two preceding lemmas, let us define
N1 such that aN1 > a1 and N1 > N0. It follows from this lemmas that for each n ≥ N1,




∀c ≥ K, max

x∈RN
φc

ε,an
(0, x) <

p−

2
,

for c = 0, max
x∈RN

φ0
ε,an

(0, x) >
p−

2
.

On the other hand, Lemma 2.3 yields that, for each n ≥ N1, the function

Ξ(c) = max
x∈R

φc
ε,an

(0, x)

is decreasing and continuous with respect to c. Therefore the proposition follows. ¤

2.2 Passage to the limit in the unbounded domains

Using the result of Proposition 2.6, we are going to pass to the limit n → +∞ in the
unbounded domain R× RN for the solutions φcε,an

ε,an
satisfying (2.31).

Proposition 2.7 Under the notations of Proposition 2.6, one has

∀ε > 0, 0 < cε := lim inf
n→+∞,n≥N1

cε,an ≤ K.

PROOF. From Proposition 2.6, one has 0 ≤ cε ≤ K. Up to the extraction of a subse-
quence, one can assume cε,an → cε as n → +∞ and φcε,an

ε,an
→ φ in C2,β

loc (R × RN), for all
0 ≤ β < 1, where φ satisfies





Lεφ + f(x, φ) = 0 in R× RN ,
φ is L-periodic w.r.t. x,
φ is nondecreasing w.r.t. s,

with c = cε and

max
x∈RN

φ(0, x) =
p−

2
.

Then, following the calculus of Lemma 2.5, case 1, one can assert that φ(−∞, x) = 0,
φ(+∞, x) = p(x) for all x ∈ R and

cε

∫

R×C

(φs)
2dsdx =

∫

C

[
F (x, p)− 1

2
∇p · (A(x)∇p)

]
dx = −E(p) > 0, (2.32)

from Proposition 3.7 of [8]. Therefore cε > 0. ¤
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Proposition 2.8 Up to the extraction of some subsequence, the functions φcε,an

ε,an
converge

in C2,β
loc (R× RN) (for all 0 ≤ β < 1), to a function φε such that, in R× RN ,





∇x · (A(x)∇xφ
ε) + (eA(x)e + ε)φε

ss +∇x · (A(x)eφε
s)

+∂s(eA(x)∇xφ
ε)− cφε

s + f(x, φε) = 0,
φε is L-periodic w.r.t. x,

max
x∈RN

φε(0, x) =
p−

2
,

φε is increasing w.r.t. s.

Furthermore, φε(−∞, x) = 0 and φε(+∞, x) = p(x) for all x ∈ RN .

PROOF. The convergence follows from the same arguments that were used in the preced-
ing propositions. Moreover, φε in nondecreasing w.r.t. s because each φcε,an

ε,an
is increasing

in s. The limits φε(−∞, x) = 0 and φε(+∞, x) = p(x) can be proved in the same way
as in Lemma 2.5, case 1, using

max
x∈RN

φε(0, x) =
p−

2

and the fact that φε in nondecreasing in s. The only thing that it remains to prove is
that φε is increasing in s.

For any h > 0, the function φε(s + h, x)− φε(s, x) is a nonnegative and nonconstant
solution of a linear elliptic equation with bounded coefficients. It follows then from the
strong maximum principle that φε(s + h, x)−φε(s, x) > 0, for all (s, x) ∈ R×RN . That
proves that the function φε is increasing in the variable s. ¤

2.3 Passage to the limit ε → 0

Our first aim is to prove that the real numbers cε are bounded from below by a positive
constant.

Proposition 2.9 Under the notations of Proposition 2.6, one has

0 < lim inf
ε→0

cε ≤ K.

PROOF. From Proposition 2.6, for each ε > 0, one has 0 < cε ≤ K. Assume that there
exists a sequence εn → 0, εn > 0 such that cεn → 0 as n → +∞. In the sequel, for the
sake of simplicity, we drop the index n. Set uε(t, x) = φε(x · e + cεt, x). Then uε is a
classical solution of





ε

(cε)2
uε

tt +∇x · (A(x)∇xu
ε)− uε

t + f(x, uε) = 0 in R× RN ,

∀ k ∈
N∏

i=1

LiZ, uε

(
t +

k · e
c

, x

)
= uε(t, x + k) in R× RN ,

uε(t, x) → 0 as t → −∞, uε(t, x) → p(x) as t → +∞.

(2.33)
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Moreover, 0 < uε(t, x) < p(x) for all (t, x) ∈ R×RN . Lastly, since φ is increasing in the
variable s and cε > 0, each function uε is increasing in the variable t.

Up to the extraction of some subsequence, as it was said in [4] (Proposition 5.10),
three cases may occur :

ε

(cε)2
→ κ ∈ (0, +∞),

ε

(cε)2
→ +∞ or

ε

(cε)2
→ 0 as ε → 0+.

Let us study the :

case 1 : Assume
ε

(cε)2
→ κ ∈ (0, +∞). Let x0 RN be such that x0 ∈

∏N
i=1 LiZ

and x0 · e > 0. Since uε(t, x0) → 0 as t → −∞ and uε(t, x0) → p(x0) as t → +∞
from our assumptions on uε, one can assume, up to translation with respect to t, that

uε(0, x0) =
p−

2
.

Since
ε

(cε)2
→ κ, standard elliptic estimates imply that the functions uε converge (up

to extraction of some subsequence) in C2,β
loc (R× RN) (for all 0 ≤ β < 1) to a function u

satisfying {
κutt +∇x · (A(x)∇xu)− ut + f(x, u) = 0 in R× RN ,

0 ≤ u ≤ p, ut ≥ 0 in R× RN ,

and u(0, x0) =
p−

2
. Now, fix any B ∈ R. Since cε → 0+ and x0 · e > 0, B < x0·e

cε for

ε sufficiently small. Thus, as uε is increasing in t, one has uε(B, 0) ≤ uε(x0·e
cε , 0). But

uε(x0·e
cε , 0) = uε(0, x0) = p−

2
. Therefore, passing to the limit ε → 0, one obtains

∀ B > 0, u(B, 0) ≤ p−

2
. (2.34)

Let u+ be the function defined in RN by u+(x) = limt→+∞ u(t, x). This function can
be defined since u is bounded and nondecreasing in t. From standard elliptic estimates,
the convergence holds in C2

loc(RN), and u+ solves

∇ · (A(x)∇u+) + f(x, u+) = 0 in RN (2.35)

with 0 ≤ u+(x) ≤ p(x) for all x ∈ RN . But it follows from our hypotheses on f and
from Theorems 2.1 and 2.3 of [8] that the equation (2.35) admits exactly two nonneg-

ative solutions, which are 0 and p. Therefore, as u(0, x0) = p−
2

and ut ≥ 0, one has

u+(x0) ≥ p−
2

> 0, thus u+ ≡ p. However, (2.34) gives u+(0) ≤ p−
2

. As a consequence, u+

cannot be equal to p and case 1 is ruled out.

case 2 : Assume that
ε

(cε)2
→ +∞. As it was done in [4] (Proposition 5.10), one

makes the change of variables τ = (cε/
√

ε)t. The function vε(τ, x) = uε

(√
ε

cε
τ, x

)
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satisfies




vε
ττ +∇x · (A(x)∇xv

ε)− cε

√
ε
vε

τ + f(x, vε) = 0 in R× RN ,

∀ k ∈
N∏

i=1

LiZ vε

(
τ +

k · e√
ε

, x

)
= vε(τ, x + k) in R× RN ,

vε(τ, x) → 0 as τ → −∞, vε(τ, x)− p(x) → 0 as τ → +∞.

Moreover, 0 < vε < p and vε is nondecreasing with respect to τ . Furthermore, as
it was done in case 1, one can assume that vε(0, x0) = p−

2
for some x0 ∈ RN such that

x0 ∈
∏N

i=1 LiZ and x0 · e > 0. Since cε/
√

ε → 0+, the functions vε converge (up to the

extraction of some subsequence) in C2,β
loc (R × RN) (for all 0 ≤ β < 1) to a function v

which satisfies
{

vττ +∇x · (A(x)∇xv) + f(x, v) = 0 in R× RN ,
0 ≤ v ≤ p, vτ ≥ 0 in R× RN ,

and v(0, x0) = p−
2

. Moreover, as in case 1, one can show that

∀ B > 0, v(B, 0) ≤ p−

2
.

By defining v+(x) := limτ→+∞ v(τ, x), one can also obtain a contradiction the same
way as in case 1.

case 3 : Assume that
ε

(cε)2
→ 0. The elliptic operators in (2.33) become degenerate

at the limit ε → 0, and one cannot use the same arguments as in cases 1 and 2.
In order to pass to the limit ε → 0, let us state two new inequalities on uε.
Using the same calculations as those which were used to prove (2.29) and (2.32), and

making the change of variables t =
s− x · e

cε
, one obtains

∀ ε ∈ (0, 1),

∫

R×C

(uε
t)

2 = −E(p).

Therefore, the periodicity condition in (2.33) gives us that

∀ε ∈ (0, 1), ∀n ∈ N,

∫

R×(−nL1,nL1)×···×(−nLN ,nLN )

(uε
t)

2 = −(2n)NE(p). (2.36)

Similarly, multiplying equation (2.33) by 1 and uε, one gets the existence of γ ≥ 0
such that

∀ε ∈ (0, 1), ∀n ∈ N,

∫

R×(−nL1,nL1)×···×(−nLN ,nLN )

f(x, uε) + |∇xu
ε|2 ≤ (2n)Nγ. (2.37)

Next, using Theorem A.1 of [4] (see also [5]), one has the following a priori estimate :
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Lemma 2.10 There exists a constant M , which does not depend on ε, such that the
function uε solving (2.33) satisfies

|∇xu
ε| ≤ M in R× RN (2.38)

for ε small enough.

The above estimates were proved in [5] with a Bernstein-type method. This method
uses the maximum principle applied to some quantities involving |∇xu

ε|2, and it requires
that the functions uε are of class C3. The latter is true here because of the smoothness
assumptions on A and f .

From (2.36) and (2.38), and arguing as in [4] (Proposition 5.10), we obtain that uε

converges (up to the extraction of some subsequence) almost everywhere in R×RN to a
function u ∈ H1

loc(R× RN) and

(uε, uε
t ,∇xu

ε) ⇀ (u, ut,∇xu) in L2(K),

for every compact subset K ⊂ R×RN . From (2.36) and (2.38), one can actually assume
that uε → u in L2

loc

(
R× RN

)
strong. Moreover, 0 ≤ u ≤ p(x), ut ≥ 0 and from (2.36),

(2.37) and (2.38),

∫

R×K1

|∇xu|2 + (ut)
2 ≤ C(K1), (2.39)

for every compact subset K1 ⊂ RN .
From parabolic regularity, u is then a classical solution of

{
ut −∇x · (A(x)∇xu)− f(x, u) = 0 in R× RN ,

0 ≤ u ≤ p, ut ≥ 0 in R× RN .
(2.40)

Moreover, one can assume, up to a translation in t, that

∀ ε > 0,

∫

(0,1)×C

uε(t, x + x0)dxdt = |C|p
−

2
. (2.41)

for some x0 ∈
∏N

i=1 LiZ such that x0 · e > 0. Since cε → 0+ and uε is increasing in t, it
follows that for all B ∈ R, and for ε sufficiently small,

∀ (t, x) ∈ (0, 1)× C, uε(B + t, x) ≤ uε(t +
x0 · e

cε
, x) = uε(t, x + x0)

from (2.33). Next, one integrates over (0, 1) × C and passes to the limit ε → 0+. By
using (2.41) and the fact that uε ⇀ u in L2

loc

(
R× RN

)
weak,4 one obtains

∀ B ∈ R,

∫

(0,1)×C

u(B + t, x)dxdt ≤ |C|p
−

2
. (2.42)

4This convergence is actually strong.
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Using the monotonicity of u in t, let us define u+(x) = lim
t→+∞

u(t, x). Then, one has

u+ ≥ 0 and ∇x · (A(x)∇xu
+)+f(x, u+) = 0. Therefore, as it was stated in Theorems 2.1

and 2.3 of [8], u+ ≡ 0 or u+ ≡ p. But (2.41), passing to the limit ε → 0 and t → +∞,
rules out the case u+ ≡ 0. Hence u+ ≡ p. Next, using (2.42), and since u is nonincreasing
in t, one obtains ∫

(0,1)×C

p(x)dx ≤ |C|p
−

2

which is impossible. The proof of Proposition 2.9 is complete. ¤

2.4 Existence of a solution (c1, u1)

Let us choose a subsequence ε → 0 such that cε → c1 > 0. For each ε, set uε(t, x) =
φε(x ·e+ct, x). As it was done in case 3 of Proposition 2.9, the functions uε converge (up
to the extraction of some subsequence), in H1

loc(R× RN) weak, and almost everywhere,
to a classical solution u1 of (2.40).

Let us prove that u1

(
t +

k · e
c1

, x

)
= u1(t, x + k) for all k ∈ ∏N

i=1 LiZ and for all

(t, x) ∈ R× RN . For all B > 0 and every compact set K1 in RN , one has,

∫

(−B,B)×K1

[
uε

(
t +

k · e
c1

, x

)
− uε(t, x + k)

]2

=

∫

(−B,B)×K1

[
uε

(
t +

k · e
c1

, x

)
− uε

(
t +

k · e
cε

, x

)]2

,

whence
∫

(−B,B)×K1

[
uε

(
t +

k · e
c1

, x

)
− uε(t, x + k)

]2

≤
(

k · e
c1

− k · e
cε

)2 ∫

R×K1

(uε
t)

2 ≤
(

k · e
c1

− k · e
cε

)2

C(K1)

from (2.39). Therefore, by passing to the limit ε → 0, we obtain

u1

(
t +

k · e
c1

, x

)
= u1(t, x + k) (2.43)

almost everywhere in R× RN . Since u1 is continuous, the equality holds for all (t, x) ∈
R× RN .

In order to obtain our result, one has to prove that u1(t, x) → 0 as x · e → −∞ and
u1(t, x) − p(x) → 0 as x · e → +∞, locally in t. Since u1 verifies (2.43), and c > 0, it
is equivalent to prove that u1(t, x) → 0 as t → −∞ and u1(t, x) → p(x) as t → +∞,
locally in x.

As it was done in the proof of Proposition 2.9, case 3, one can assume, up to a
translation in t, that

∀ ε,

∫

(0,1)×C

uε(t, x)dxdt = |C|p
−

2
. (2.44)
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Since u1 is bounded and nondecreasing with respect to t, one can define u±(t, x) =
limt→±∞ u1(t, x). As done above, one knows that u± satisfies∇·(A(x)∇u±)+f(x, u±) = 0
and one has 0 ≤ u± ≤ p. As already said, this equation admits exactly two nonnegative
solutions, which are not larger than p, namely 0 and p.

Passing to the limit ε → 0 in (2.44), and using the fact that u1 is nondecreasing with
respect to t, one has ∫

C

u+(x) ≥ |C|p
−

2
, (2.45)

and ∫

C

u−(x) ≤ |C|p
−

2
. (2.46)

One then easily concludes from (2.45) that u+ is not equal to 0, and therefore u+ ≡ p,
and from (2.46), u− is not equal to p, thus u− ≡ 0.

From strong parabolic maximum principle, one obtains that u1 is increasing in t. The
existence result follows.

2.5 Existence of a solution (c, u) for all c > c1

Proposition 2.11 For each c > c1, there exists a solution u of (1.10-1.11), associated
to the speed c, and u is increasing in t.

PROOF. Set φ1(s, x) = u1

(
s− x · e

c
, x

)
, and, as before, define Lε by

Lεφ = ∇x · (A(x)∇xφ) + (eA(x)e + ε)φss +∇x · (A(x)eφs) + ∂s(eA(x)∇xφ)− cφs.

Then, as it was done in [4] (Proposition 6.3), using Krylov-Safonov-Harnack type inequal-
ities applied to v = ∂tu

1, one gets the existence of a constant C such that |∂ttu
1| ≤ C∂tu

1

in R× RN , whence

Lεφ
1 + f(x, φ1) = εφ1

ss + (c1 − c)φ1
s < 0 in R× RN , (2.47)

for ε > 0 small enough. In what follows, let ε > 0 be small enough so that (2.47) holds.
For any a ∈ R+ and τ ∈ R, set

hτ = min
C

φ1(−a + τ, .).

With a similar method as in Lemma 2.1, one can show the existence of a solution φτ ∈
C2

(
Σa

)
of the following problem :





Lεφτ + f(x, φτ ) = 0 in Σa,
φτ is L-periodic w.r.t. x,

φτ (−a, x) = hτ
p(x)

p+
, φτ (a, x) = φ1(a + τ, x) for all x ∈ RN .

(2.48)
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Let us now show that hτ
p(x)

p+
< φτ for all (s, x) ∈ Σa. First, since f(x, u) = 0 for all

u ≤ 0, one has, from the strong maximum principle, φτ > 0 in Σa. Therefore, one can
define

γ∗ = sup

{
γ > 0, φτ > γhτ

p(x)

p+
in Σa

}
.

Assume that γ∗ < 1. As in the proof of Lemma 2.2, using the fact that γ∗hτp(x)/p+ <
φτ (±a, x) for all x ∈ RN (since p(x)/p+ ≤ 1 and φ1 is increasing w.r.t. s), one gets
the existence of (s∗, x∗) ∈ (−a, a)× C such that γ∗hτp(x)/p+ ≤ φτ (s, x) for all (s, x) ∈
[−a, a]× RN , with equality at (s∗, x∗) ∈ (−a, a)× RN . On the other hand,

Lε(hτγ
∗ p

p+
) = γ∗

hτ

p+
Lε(p) > −f(x, γ∗hτ

p

p+
),

since γ∗hτ/p
+ < 1, and since f(., s)/s is decreasing in s from our hypothesis on f . That

leads to a contradiction as in Lemma 2.2.
Therefore, γ∗ ≥ 1, whence φτ ≥ hτp/p

+, and the strong maximum principle yields

∀ (s, x) ∈ Σa, hτ
p(x)

p+
< φτ (s, x). (2.49)

Similarly, one can easily show that φτ (s, x) < p(x) for all (s, x) ∈ Σa. Therefore,
φ1(s + τ + k, x) ≥ φτ (s, x) in Σa for k large enough. Let k be the smallest k such that
the latter holds. From the boundary conditions in (2.48), one knows that k ≥ 0. Assume
k > 0. By continuity, it necessarily follows that φ1(s + τ + k, x) ≥ φτ (s, x) with equality
at a point (s, x) ∈ Σa. Since φ1 is increasing in s,

φ1(−a + τ + k, ·) > φ1(−a + τ, ·) ≥ hτ ≥ hτ
p(·)
p+

= φτ (−a, ·),

and φ1(a + τ + k, ·) > φ1(a + τ, ·) = φτ (a, ·). Therefore (s, x) ∈ (−a, a) × C (one can
assume this using the L-periodicity in x of φ1 and φτ ). But, from (2.47), it is found that
φ1(s + τ + k, x) is a supersolution of (2.48). Therefore, the strong maximum principle
implies that φ1(s+τ +k, x) = φτ (s, x) in Σa. One gets a contradiction with the boundary
condition at s = a. As a consequence, k = 0 and one has

∀ (s, x) ∈ Σa, φτ (s, x) ≤ φ1(s + τ, x). (2.50)

Since φ1 is increasing in s, it also follows that φτ (s, x) < φ1(a + τ, x) in Σa.
As a conclusion, from (2.49) and (2.50), one has

∀(s, x) ∈ Σa, hτ
p(x)

p+
< φτ (s, x) < φ1(a + τ, x).

Using the same sliding method as in Lemma 5.2 in [4], it follows that φτ is increasing
in s and is the unique solution of (2.48) in C2

(
Σa

)
. Moreover, using the fact that the

boundary conditions for φτ at s = ±a are increasing in τ , one can prove, as in Lemma 5.3
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in [4], that the functions φτ are continuous with respect to τ in C2
(
Σa

)
and increasing

in τ . But, since φ1(−∞, x) = 0 and φ1(+∞, x) = p(x) in RN , it follows from (2.49) and
(2.50) that φτ → 0 as τ → −∞ uniformly in Σa and that,

∀ α > 0, ∃ T, ∀ τ > T, φτ (s, x) >
p−

p+
p− α in Σa.

Therefore, for each a > 1, there exists a unique τε(a) ∈ R such that φε,a := φτε(a) solves
(2.48) and satisfies

∫

(0,1)×C

φε,a(s, x)dsdx =
(p−)2

2p+
|C|min(c, 1). (2.51)

Let an → +∞. From standard elliptic estimates, the functions φε,an converge in
C2,β

loc (R × RN) (for all 0 ≤ β < 1), up to the extraction of a subsequence, to a function
φε satisfying {

Lεφ
ε + f(x, φε) = 0 in R× RN ,

φε is L-periodic w.r.t. x.
(2.52)

Moreover, φε is nonincreasing with respect to s, satisfies 0 ≤ φε(s, x) ≤ p(x) in R×RN ,
and ∫

(0,1)×C

φε(s, x)dsdx =
(p−)2

2p+
|C|min(c, 1).

From standard elliptic estimates, and from the monotonicity of φε with respect to s,
one states that φε(s, x) → φε

±(x) as s → ±∞ in C2(C). Moreover, φε
± are L-periodic

and satisfy
∇ · (A(x)∇φε

±) + f(x, φε
±) = 0 in C,

with 0 ≤ φε
±(x) ≤ p(x) in C.

But, as one has said before, from Theorems 2.1 and 2.3 of [8], the former equation,
together with the bounds 0 ≤ φε

±(x) ≤ p(x), admits exactly two nonnegative solutions,
which are 0 and p. Since φε is nondecreasing in s, and from (2.51), one has

∫

C

φε
+(x)dx ≥ (p−)2

2p+
|C|min(c, 1) > 0, (2.53)

and ∫

C

φε
−(x)dx ≤ (p−)2

2p+
|C|min(c, 1) <

∫

C

p(x)dx. (2.54)

From (2.53) one deduces that φε
+ ≡ p and from (2.54) one has φε

− ≡ 0.
Coming back to the original variables (t, x), one defines uε(t, x) = φε(x · e+ ct, x). As

it was done in the proof of (2.36) and Lemma 2.10, it follows from (2.52) and from the
limiting behavior of φε as s → ±∞ that uε satisfies the estimates (2.39), independently
of ε. As it was done in subsection 2.4, there exists a function u ∈ H1

loc(R × RN) such
that (up to the extraction of a subsequence), uε ⇀ u weakly in H1

loc(R × RN). From
parabolic regularity, u is then a classical solution of

{
ut −∇x · (A(x)∇xu)− f(x, u) = 0 in R× RN ,

0 ≤ u ≤ p, ut ≥ 0 in R× RN .
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Moreover, as it was done in subsection 2.4, one still has u(t + k·e
c

, x) = u(t, x + k) in

R× RN for all k ∈ ∏N
i=1 LiZ. Furthermore, u satisfies

∫

{0<x·e+ct<1, x∈C}
u(t, x)dtdx =

(p−)2

2cp+
|C|min(c, 1).

One deduces from standard parabolic estimates and from the monotonicity of u in t, that
u(t, x) → u±(x) locally in x as t → ±∞, and that u± solve ∇· (A(x)∇u±)+f(x, u±) = 0
in RN . Moreover, 0 ≤ u± ≤ p. From the monotonicity of u with respect to t, one can
also assert that ∫

C

u+(x)dx ≥ (p−)2

2cp+
|C|min(c, 1) > 0,

and ∫

C

u−(x)dx ≤ (p−)2

2cp+
|C|min(c, 1) <

∫

C

p(x)dx.

Therefore using the same argument as for φε
±, one concludes that u+ ≡ p and u− ≡ 0.

Finally, one deduces from the (t, x)-periodicity of u and the positivity of c that
u(t, x) → 0 as x · e → −∞ and u(t, x) − p(x) → 0 as x · e → +∞, locally in t. Thus
(c, u) is a classical solution of (1.10-1.11). Moreover, since ut ≥ 0, the strong parabolic
maximum principle yields that u is increasing in t.

That completes the proof of Proposition 2.11. ¤

3 Monotonicity of the solutions

We are going to establish the monotonicity result in Theorem 1.2, namely, each solution
(c, u) of (1.10-1.11) is such that u is increasing with respect to t. This will enable us to
define a minimal speed c∗ in the next section.

One first establishes the following lemma, which is close to Lemma 6.5 of [4]. Nev-
ertheless, its proof does not use the fact that f has a given sign (which is not true in
general) and clearly uses the property that 0 is an unstable solution of the stationary
problem.

Lemma 3.1 Let (c, u) be a classical solution of (1.10-1.11). Then c > 0 and

0 < Λ := lim inf
t→−∞, x∈C

ut(t, x)

u(t, x)
< +∞.

PROOF. Let us first prove that c > 0. Set φ(s, x) = u

(
s− x · e

c
, x

)
. From standard

parabolic estimates, ut(t, x) → 0 as t → ±∞, ∇xu(t, x) → 0 as t → −∞ and∇xu(t, x) →
∇xp(x) as t → +∞. Therefore φs(s, x) → 0 as s → ±∞, ∇xφ(s, x) → 0 as s → −∞
and ∇xφ(s, x) → ∇xp(x) as s → +∞. Then, arguing as in Lemma 2.5 (case 1), one can
prove that

c

∫

R×C

(φs)
2 = −E(p) > 0.

24



Therefore c > 0.
Next, as it was done in [4] (Lemma 6.5), one can assert, using standard interior

estimates, Harnack type inequalities and the (t, x)-periodicity of u, that ut/u and ∇u/u
are globally bounded. Let Λ be defined as in the stating of the above lemma. Then Λ is
a finite real number.

Let (tn, xn) be a sequence in R× C such that tn → −∞ and

ut(tn, xn)/u(tn, xn) → Λ as n → +∞.

Up to the extraction of some subsequence, one can assume that xn → x∞ ∈ C as
n → +∞. Now set

wn(t, x) =
u(t + tn, x)

u(tn, xn)
.

From the boundedness of ut/u and ∇u/u, one can assert that the functions wn are
locally bounded. Moreover, they satisfy

∂twn −∇ · (A(x)∇wn)− f(x, u(t + tn, x))

u(t + tn, x)
wn = 0 in R× RN .

From standard parabolic estimates, the positive functions wn converge, up to the ex-
traction of some subsequence, to a function w∞, which is a nonnegative classical solution
of

∂tw∞ −∇ · (A(x)∇w∞)− fu(x, 0)w∞ = 0 in R× RN ,

since u(t, x) → 0 as t → −∞ locally in x. Moreover, w∞(0, x∞) = 1, thus w∞ is
positive from the strong parabolic maximum principle. One also has w∞(t+ k · e/c, x) =
w∞(t, x + k) for all (t, x) ∈ R× RN and for all k ∈ ∏N

i=1 LiZ.
Then using the arguments of the Lemma 6.5 of [4], one can check that the func-

tion w∞(t, x)e−Λt does not depend on t. Indeed, one clearly has (w∞)t/w∞ ≥ Λ, and
(w∞)t(0, x∞) = Λw∞(0, x∞) from the definition of (tn, xn). Therefore, the function
z = (w∞)t/w∞ satisfies

∂tz −∇ · (A(x)∇z)− 2
∇w∞
w∞

· ∇z = 0 in R× RN

with z ≥ Λ and z(0, x∞) = Λ, and ∇w∞/w∞ is bounded. The strong maximum principle
yields z ≡ Λ ; in other words, w∞(t, x)e−Λt does not depend on t.

Therefore the C2(RN) function ψ(x) = w∞(0, x)e−Λ(x·e)/c is positive and L-periodic.
Moreover, it satisfies

−Lc,λψ = 0, (3.55)

where one has set λ = Λ/c, and

−Lc,λψ = −∇ · (A(x)∇ψ)− 2λ(eA(x)∇ψ)
−[λ2eA(x)e + λ∇ · (A(x)e)− λc + fu(x, 0)]ψ.
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Now, from [4] (Proposition 5.7.1), one knows that for all λ and c in R, there exists a
unique µc(λ) ∈ R and a unique positive function ψλ ∈ C2(RN) such that

{ −Lc,λψλ = µc(λ)ψλ in RN ,
ψλ is L-periodic, ‖ψλ‖∞ = 1.

(3.56)

That allows us to define the function λ 7→ µc(λ). Let us show that it is concave.
First, using the result 2) of Proposition 5.7 in [4], one has

µc(λ) = max
φ ∈ E

inf
RN

−Lc,λφ

φ
,

where E =
{
φ ∈ C2(RN), φ > 0, φ is L− periodic

}
. Let E ′

λ be the set defined by

E ′
λ =

{
φ ∈ C2(RN), ∃ Υ ∈ E with φ(x) = eλx·eΥ

}
.

Then, µc(λ) = cλ + h(λ) with

h(λ) = max
φ ∈ E′λ

inf
RN

{−∇ · (A(x)∇φ)

φ
− fu(x, 0)

}
.

Our aim is to show that h is concave. Let λ1, λ2 ∈ R and t ∈ [0, 1]. Set λ =
tλ1 + (1 − t)λ2. One only has to show that h(λ) ≥ th(λ1) + (1 − t)h(λ2). Let φ1 and
φ2 be two arbitrary chosen functions in E ′

λ1
and E ′

λ2
respectively, and set z1 = ln(φ1),

z2 = ln(φ2), z = tz1 + (1− t)z2 and φ = ez. It easily follows that φ ∈ E ′
λ. Therefore

h(λ) ≥ inf
RN

{−∇ · (A(x)∇φ)

φ
− fu(x, 0)

}
.

Moreover,

−∇ · (A(x)∇φ)

φ
− fu(x, 0) = −∇ · (A(x)∇z)−∇zA(x)∇z − fu(x, 0),

and

∇zA(x)∇z = t∇z1A(x)∇z1 + (1− t)∇z2A(x)∇z2

−t(1− t)(∇z1 −∇z2)A(x)(∇z1 −∇z2)

≤ t∇z1A(x)∇z1 + (1− t)∇z2A(x)∇z2,

since 0 ≤ t ≤ 1.
As a consequence,

−∇ · (A(x)∇φ)

φ
− fu(x, 0) ≥ t[−∇ · (A(x)∇z1)−∇z1A(x)∇z1 − fu(x, 0)]

+(1− t)[−∇ · (A(x)∇z2)−∇z2A(x)∇z2 − fu(x, 0)]

≥ t

(−∇ · (A(x)∇φ1)

φ1

− fu(x, 0)

)

+(1− t)

(−∇ · (A(x)∇φ2)

φ2

− fu(x, 0)

)
.
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Thus,

h(λ) ≥ t inf
RN

(−∇ · (A(x)∇φ1)

φ1

− fu(x, 0)

)
+(1− t) inf

RN

(−∇ · (A(x)∇φ2)

φ2

− fu(x, 0)

)
,

and, since φ1 and φ2 were arbitrarily chosen, one bets that h(λ) ≥ th(λ1) + (1− t)h(λ2).
Therefore h is concave. This implies that h is continuous. Thus λ 7→ µc(λ) = cλ + h(λ)
is continuous and concave.

Next, let us show that µc(0) < 0. By definition, µc(0) is the first eigenvalue of the
linear problem −∇ · (A(x)∇ψ)ψ − fu(x, 0)ψ with L-periodicity conditions. From the
hypothesis for conservation, it follows that µc(0) < 0.

Finally, it remains to show that µ′c(0) > 0. For each λ ∈ R, consider the positive and
L-periodic eigenfunction ψλ ∈ C2(RN) for problem (3.56), associated to the eigenvalue
µc(λ). By definition, it satisfies the equation

−∇ · (A(x)∇ψλ)− 2λ(eA(x)∇ψλ)
−(λ2eA(x)e + λ∇ · (A(x)e)− λc + fu(x, 0))ψλ = µ1(λ)ψλ.

Multiply this equation by ψ0, and integrate it by parts over C. One obtains, using
the L-periodicity of ψλ and ψ0, and since the matrix field A(x) is symmetric,

−
∫

C

ψλ∇ · (A(x)∇ψ0)− λ

∫

C

[∇ · (A(x)eψλ) + eA(x)∇ψλ]ψ0

−
∫

C

[
(λ2eA(x)e− λc)ψλ + fu(x, 0)ψλ

]
ψ0 = µc(λ)

∫

C

ψλψ0.

(3.57)
Multiplying by ψλ the equation satisfied by ψ0, one obtains,

−
∫

C

[ψλ∇ · (A(x)∇ψ0) + fu(x, 0)ψλψ0] = µc(0)

∫

C

ψλψ0. (3.58)

Substituting (3.58) into (3.57), and dividing by λ, one gets

−
∫

C

[∇ · (A(x)eψλ) + eA(x)∇ψλ]ψ0

−
∫

C

(λeA(x)e− c)ψλψ0 =
µc(λ)− µc(0)

λ

∫

C

ψλψ0.
(3.59)

Now, take an arbitrary sequence λn → 0. Since µc(λn) → µc(0), standard elliptic
estimates, and Sobolev injections imply, up to the extraction of some subsequence, that
the functions ψλn converge locally (and therefore uniformly by L-periodicity) in C2,β (for
all 0 ≤ β < 1) to a nonnegative function ψ0 such that ‖ψ0‖∞ = 1, ψ0 is L-periodic and
satisfies

−∇ · (A(x)∇ψ0)− fu(x, 0)ψ0 = µc(0)ψ0.

From strong elliptic maximum principle, it follows that ψ0 > 0, and by uniqueness
(up to normalization), ψ0 = ψ0, and the whole family ψλn converges to ψ0 as n → +∞.
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Therefore, passing to the limit λ → 0 in (3.59), one obtains that µc is differentiable at
0, and

−
∫

C

[∇ · (A(x)eψ0) + eA(x)∇ψ0]ψ0 + c

∫

C

ψ2
0 = µ′c(0)

∫

C

ψ2
0.

From the L-periodicity of ψ0, and since the matrix field A(x) is symmetric, one has
∫

C

[∇ · (A(x)eψ0) + eA(x)∇ψ0]ψ0 =

∫

C

[eA(x)∇ψ0 − A(x)e · ∇ψ0]ψ0 = 0,

whence
µ′c(0) = c > 0.

Therefore, one has shown that λ 7→ µc(λ) is concave, with µc(0) < 0 and µ′c(0) > 0.
Moreover, coming back to our solution ψ of (3.55), one has µc(Λ/c) = 0. Therefore
Λ > 0, and the lemma is proved. ¤

One can now turn to the proof of the monotonicity result in Theorem 1.2. Set

φ(s, x) = u

(
s− x · e

c
, x

)
. Then

ut(t, x)/u(t, x) = cφs(x · e + ct, x)/φ(x · e + ct, x).

One knows from Lemma 3.1 that c > 0 and

lim inf
t→−∞, x∈C

ut(t, x)

u(t, x)
> 0.

Therefore,

lim inf
s→−∞, x∈RN

φs(s, x)

φ(s, x)
> 0

and, from the L-periodicity of φ with respect to x, one can deduce that there exists s ∈
R such that

∀ s ≤ s, ∀ x ∈ RN , φs(s, x) > 0.

Moreover inf
s≥s, x∈RN

φ(s, x) > 0 and φ(−∞, x) = 0 uniformly in x ∈ RN . As a conse-

quence, there exists B ∈ R such that −B ≤ s and

∀ τ ≥ 0, ∀ s ≤ −B, ∀ x ∈ RN , φ(s, x) ≤ φτ (s, x) (3.60)

where one has defined φτ (s, x) = φ(s + τ, x). One can assume that B ≥ 0.
Fix now any τ ≥ 0. Set

λ∗ = inf
{
λ, λφτ ≥ φ in [−B, +∞)× RN

}
.

The real λ∗ is well defined since φ is bounded and inf
s≥−B, x∈RN

φτ (s, x) > 0.

Assume λ∗ > 1. Since φ(s, x) → p(x) > 0 as s → +∞ uniformly in x, with p bounded
from below, and since φ is L-periodic in x, there exists a point (s0, x0) ∈ [−B, +∞)×C
such that λ∗φτ (s0, x0) = φ(s0, x0).
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Furthermore, λ∗φτ ≥ φ in ∈ [−B, +∞) × RN by continuity and in (−∞,−B] × RN

by (3.60) and because λ∗ > 1. Coming back to the original variables (t, x), set z(t, x) =
λ∗φτ (x · e + ct, x) − φ(x · e + ct, x). Then z ≥ 0 in R × RN , moreover, z satisfies the
following equation :

zt −∇ · (A(x)∇z) = λ∗f(x, φτ )− f(x, φ).

Therefore, using (1.7), one obtains

f(x, λ∗φτ ) ≤ λ∗f(x, φτ ).

Thus one has
zt −∇ · (A∇z) ≥ f(x, λ∗φτ )− f(x, φ).

Therefore, there exists a bounded function b such that

zt −∇ · (A(x)∇z) + b(x)z ≥ 0. (3.61)

Furthermore, since λ∗φτ (s0, x0) = φ(s0, x0), setting t0 = s0−x0·e
c

, one has z(t0, x0) =
0. Besides, z is nonnegative, and satisfies (3.61); therefore, from the strong parabolic
maximum principle, one has z(t, x) = 0 for all t ≤ t0 and x ∈ RN , whence z(t, x) ≡ 0 in
R× RN since z

(
t + k·e

c
, x

)
= z(t, x + k) for all (t, x) ∈ R× RN and k ∈ ∏N

i=1 LiZ. One
gets a contradiction since z(t, x) → (λ∗ − 1)p(x) > 0 as t → +∞.

Thus λ∗ ≤ 1 for all τ ≥ 0, whence φτ ≥ φ in R × RN for all τ ≥ 0. One therefore
gets that φ is nondecreasing with respect to s, and u is nondecreasing in t because
c > 0. Finally, with the same arguments as above, one can prove, using the strong
parabolic maximum principle, that u is increasing in t. That concludes the proof of the
monotonicity result in Theorem 1.2. ¤

Remark 3.2 Notice that this monotonicity result especially implies that any solution
(c, u) of (1.10-1.11) is such that 0 < u(t, x) < p(x) for all (t, x) ∈ R× RN .

4 The minimal speed c∗

This section is devoted to the proof of the existence of a minimal speed of propagation
of the pulsating fronts, and some properties of this minimal speed with respect to the
nonlinearity f .

4.1 Existence of a positive minimal speed c∗

As it was proved in Lemma 3.1, any solution (c, u) of (1.10-1.11) is such that c > 0. In
order to complete the proof of the first part of Theorem 1.2 and to obtain the existence
of a c∗ > 0 such that there exists a solution of (1.10-1.11) if and only if c ≥ c∗.

Proposition 4.1 There exists c∗ > 0 such that, for c ≥ c∗, there exists a solution u of
(1.10-1.11), while no solution exists for c < c∗.

29



PROOF. First, assume by contradiction that there exists a sequence cn → 0+ and some
classical functions un such that (cn, un) is a solution of (1.10-1.11).

As already done, let x0 ∈
∏N

i=1 LiZ, be such that x0 · e > 0. One can assume that

un(0, x0) =
p−

2
.

From standard parabolic estimates, the positive functions un converge locally uni-
formly, up to the extraction of some subsequence, to a nondecreasing (in t) function u,
which is a classical solution of

∂tu−∇ · (A(x)∇u) = f(x, u) ∈ R× RN .

Moreover, u satisfies 0 ≤ u ≤ p and one has u(0, x0) =
p−

2
.

Since u is nondecreasing in t, one can define u+(x) =: lim
t→+∞

u(t, x), and from standard

elliptic estimates, u+ satisfies ∇ · (A(x)∇u+) + f(x, u+) = 0. Moreover 0 ≤ u+ ≤ p.
Hence, as already said (using Theorems 2.1 and 2.3 of [8]), u+ ≡ 0 or u+ ≡ p. But for

every B > 0, for n large enough, un(B, 0) ≤ un(x0·e
cn

, 0) = un(0, x0) = p−
2

. Therefore

u+(0) ≤ p−
2

. Thus u+ ≡ 0. But since u is nondecreasing and u(0, x0) = p−
2

, u+(0) ≥ p−
2

,
which is contradictory with the preceding result.

On the other hand, the arguments used in Proposition 2.11 actually imply that, if
(c0, u0) is a solution of (1.10-1.11) with c0 > 0 and (u0)t > 0, then there is a solution
(c, u) of (1.10-1.11) for each c > c0.

Using Lemma 3.1, one concludes that there exits c∗ > 0 such that for all c > c∗, there
exists a solution u of (1.10-1.11), while no solution exists for c < c∗.

In particular, there exists a sequence (cn, un) of solutions of (1.10-1.11), such that
cn → c∗ as n → +∞, with cn > c∗. As it was done in the first part of the proof of this
Proposition assume that un(0, x0) = p−

2
. From standard parabolic estimates, un converge

locally uniformly in (up to the extraction of some subsequence), to a classical solution
u∗ of

∂tu
∗ −∇ · (A(x)∇u∗) = f(x, u∗) ∈ R× RN ,

with 0 ≤ u∗ ≤ p, and u∗t ≥ 0. Moreover, u∗(0, x0) = p−
2

. Using the same argu-
ments as those of the beginning of this proof, one concludes that limt→−∞ u∗(t, x) = 0
and limt→+∞ u∗(t, x) = p(x), locally in x. Furthermore, by passing to the limit,
u∗

(
t + k·e

c∗ , x
)

= u∗(t, x + k) for all (t, x) ∈ R × RN and k ∈ ∏N
i=1 LiZ. Finally, the

strong maximum principle, with u∗t ≥ 0, gives us that u∗ is increasing in t. ¤

4.2 Characterization of c∗

This section is devoted to the proof of the variational characterization of the minimal
speed c∗. Notice first that the assumption (1.7) implies that

∀ x ∈ RN , ∀ u ≥ 0, f(x, u) ≤ fu(x, 0)u. (4.62)

Let us define
c∗0 = inf {c ∈ R, ∃ λ > 0 with µc(λ) = 0} ,
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where µc(λ) is the principal eigenvalue of the elliptic operator

−Lc,λψ = −∇ · (A(x)∇ψ)− 2λ eA(x)∇ψ
−[λ2eA(x)e + λ∇ · (A(x)e)− λc + fu(x, 0)]ψ,

with L-periodicity conditions.

Proposition 4.2 One has c∗ = c∗0.

The proof is divided into several lemmas.

Lemma 4.3 The real number c∗0 does exist and 0 ≤ c∗0 ≤ c∗.

PROOF. Let c ≥ c∗, and (c, u) be a solution of (1.10-1.11). Then, arguing as in the proof
of Lemma 3.1, one obtains a positive function ψ, satisfying (3.55) with λ = Λ/c > 0. In
other words, µc(λ) = 0. That yields c∗0 ≤ c∗.

Moreover, using the concavity of λ 7→ µc(λ), which has been shown in the proof of
Lemma 3.1, together with µc(0) < 0 and (µc)

′(0) = c, one immediately gets that if c < 0,
then µc(λ) < 0 for all λ > 0. Therefore 0 is a lower bound of the set {c ∈ R, ∃ λ > 0
with µc(λ) = 0}. ¤

From Lemma 4.3 and Proposition 4.1, the next lemma follows :

Lemma 4.4 For all c < c∗0, problem (1.10-1.11) has no solution (c, u).

Now, for all ε > 0, let us define

c∗ε = inf {c ∈ R, ∃ λ > 0 with µε
c(λ) = 0} ,

where µε
c(λ) is the principal eigenvalue of the elliptic operator

−Lε
c,λψ = −∇ · (A(x)∇ψ)− 2λeA(x)∇ψ

−(eA(x)e + ε)λ2ψ − λ∇ · (A(x)e)ψ + λcψ − fu(x, 0)ψ,

with L-periodicity conditions.
First, using a result of [4] (Proposition 5.7.2), one obtains that

µε
c(λ) = max

φ∈E
inf
RN

−Lε
c,λφ

φ
,

where E =
{
φ ∈ C2(RN), φ > 0, φ is L-periodic

}
.

Set

j(λ) = max
φ∈E

inf
x∈RN

{−∇ · (A(x)∇φ)− 2λeA(x)∇φ

φ
− λ2eA(x)e− λ∇ · (A(x)e)− fu(x, 0)

}
.

Then,
µε

c(λ) = j(λ) + λc− ελ2 = µc(λ)− ελ2.
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Lemma 4.5 The real number c∗ε does exist for all ε > 0, and c∗ε ≥ 0.

PROOF. Let ε be fixed. Let λ be given. Since µε
c(λ) = j(λ) + λc − ελ2, there exists

c > 0 large enough such that µε
c(λ) > 0. Since µε

c(0) = λ1 < 0 (λ1 is the first eigenvalue
of −∇ · (A(x)∇ψ) − fu(x, 0)ψ with L-periodicity conditions), and since λ 7→ µε

c(λ) =
µc(λ)−ελ2 is concave, whence continuous, one gets the existence of λ′ such that µε

c(λ
′) =

0. Therefore c∗ε < +∞ for all ε > 0.
Moreover, as it was done in Lemma 4.3, one easily sees that 0 is a lower bound of the

set {c ∈ R, ∃ λ > 0 with µε
c(λ) = 0}. ¤

Let us now show that

Lemma 4.6 For all c > c∗ε, there exists λ > 0 such that µε
c(λ) = 0.

PROOF. Let c be s.t. c > c∗ε. From the definition of c∗ε, one knows that there
exists a sequence (cn) such that cn → c∗ε as n → +∞ and, for each n, there is
λn > 0 with µε

c(λn) = 0. Therefore, there exists N such that cN < c. One has
µε

c(λN) = µε
cN

(λN) + (c− cN)λN > 0. Using the same argument than this of Lemma 4.5,
one deduces that there exists λ > 0 such that µε

c(λ) = 0. ¤

Next, let us prove that

Lemma 4.7 One has c∗ε → c∗0 as ε → 0.

PROOF. First, one observes that c∗ε ≥ c∗0 for all ε > 0. Indeed, for c > c∗ε, there exists,
from Lemma 4.6, λ > 0 such that µε

c(λ) = 0. Thus, since µc(λ) > µε
c(λ) = 0, arguing as

in Lemma 4.6, one easily sees that there exists λ0 > 0 such that µc(λ0) = 0.
Next, let us show that for any c > c∗0, there exists ε0 such that c ≥ c∗ε for all ε < ε0.
Indeed, one deduces from Lemma 4.6, adapted to c∗0, that for each c > c∗0, there exists

λ1 > 0 such that µ c+c∗0
2

(λ1) = 0. Then

µε
c(λ1) = µ c+c∗0

2

(λ1) +
c− c∗0

2
λ1 − λ2

1ε.

Thus, µε
c(λ1) =

c−c∗0
2

λ1 − λ2
1ε. Hence, for ε small enough, µε

c(λ1) > 0. Therefore, there
exists λ > 0 such that µε

c(λ) = 0. Finally, from the definition of c∗ε, one deduces that
c ≥ c∗ε, and the lemma is proved. ¤

Let us now turn to the
PROOF of Proposition 4.2. Let c be such that c > c∗0. Then, from Lemma 4.7, one
knows that for ε small enough, c > c∗ε. Therefore, from Lemma 4.6, there exist λ > 0
and ψ > 0 L-periodic, depending on ε, and such that

−Lε
c,λψ = 0. (4.63)
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Now, set φ1(s, x) := ψ(x)eλs, for all (s, x) ∈ R× RN, and let Lε be defined as in the
proof of Proposition 2.11. Then,

Lεφ
1 = { ∇ · (A(x)∇ψ) + 2λeA(x)∇ψ

+(eA(x)e + ε)λ2ψ + λ∇ · (A(x)e) ψ − λcψ} eλs,

and, since ψ satisfies (4.63), one has

Lεφ
1 = −fu(x, 0)φ1.

Therefore, using (4.62), one obtains,

Lεφ
1 + f(x, φ1) = f(x, φ1)− fu(x, 0)φ1 ≤ 0. (4.64)

Moreover, φ1 is increasing in s and L-periodic with respect to x.
Now, with the notations of Section 2.1, and as it was proved in Lemma 2.1, there

exists a solution φτ ∈ C2
(
Σa

)
of the following problem :





Lεφτ + f(x, φτ ) = 0 in Σa,
φτ is L-periodic in x,

φτ (−a, x) = min

{
inf
y∈C

φ1(−a + τ, y), p−
}

p(x)/p+,

φτ (a, x) = min{φ1(a + τ, x), p(x)}.

(4.65)

First, following the proof of Proposition 2.11, one obtains that

∀ (s, x) ∈ Σa, φτ (−a, x) < φτ (s, x). (4.66)

Next, using φτ (a, x) = min {φ1(a + τ, x), p(x)}, and since φ1(s, x) → +∞ as s →
+∞, one has, for k large enough, φ1(s+ τ + k, x) > φτ (s, x) in Σa. Let k be the smallest
k such that the latter holds. It exists since φ1(s, x) → 0 as s → −∞ and φτ (s, x) > 0 in
Σa. Assume k > 0. By continuity, φ1(s + τ + k, x) ≥ φτ (s, x) with equality at a point
(s, x) ∈ Σa. Since φ1 is increasing in s, φ1(−a + τ + k, x) > φ1(−a + τ, x) ≥ φτ (−a, x) in
C, and similarly, φ1(a + τ + k, x) > φ1(a + τ, x) ≥ φτ (a, x). Thus, (s, x) ∈ (−a, a) × C
(one can assume this using the L-periodicity in x of φ1 and φτ ). But, from (4.64), it is
found that φ1(s + τ + k, x) is a super-solution of (4.65). Therefore, the strong maximum
principle implies that φ1(s + τ + k, x) ≡ φτ (s, x) in Σa. One gets a contradiction with
the boundary condition at s = a. As a consequence, k = 0 and, one has

∀ (s, x) ∈ Σa, φτ (s, x) ≤ φ1(s + τ, x) (4.67)

and, since φ1 is increasing in s, it follows that φτ (s, x) < φ1(a + τ, x) in Σa.
As a conclusion, from (4.66) and (4.67), one has

∀ (s, x) ∈ Σa, φτ (−a, x) < φτ (s, x) < φτ (a, x). (4.68)

Using the same arguments as those of Proposition 2.11, it follows that φτ is increasing
in s and is the unique solution of (4.65) in C2

(
Σa

)
. Moreover, since the boundary
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conditions for φτ at s = ±a are nondecreasing in τ , one can prove, as in Lemma 2.3,
that the functions φτ are continuous with respect to τ in C2

(
Σa

)
and nondecreasing in

τ . But, since φ1(−∞, x) = 0 and φ1(+∞, x) = +∞ in RN , it follows from (4.68) that
φτ → 0 as τ → −∞ uniformly in Σa and that,

∀ α > 0, ∃ T, ∀τ > T, φτ >
p−p

p+
− α in Σa.

Therefore, for each a > 1, there exists τ(a) ∈ R such that φε,a := φτ(a) solves (4.65) and
satisfies ∫

(0,1)×C

φε,a(s, x)dsdx =
(p−)2

2p+
|C|min(c, 1).

Moreover φτ (a, .) is bounded independently of a. Thus, letting an → +∞, from
standard elliptic estimates, the functions φε,an converge in C2,β

loc (R×RN) (for all 0 ≤ β <
1), up to the extraction of a subsequence, to a function φε satisfying

{
Lεφ

ε + f(x, φε) = 0 in R× RN ,
φε is L-periodic w.r.t. x.

Moreover, φε is nonincreasing with respect to s, and satisfies

0 ≤ φε(s, x) ≤ p(x) in R× RN ,

and ∫

(0,1)×C

φε(s, x)dsdx =
(p−)2

2p+
|C|min(c, 1).

Next, passing to the limit ε → 0 and using the same arguments as those of the end
of the proof of Proposition 2.11, one obtains a solution (c, u) of the problem (1.10-1.11).

But since c was chosen arbitrarily such that c > c∗0, one concludes that there exists
a solution (c, u) of (1.10-1.11) for all c > c∗0. Next, using Lemma 4.4, one obtains that
c∗ = c∗0. ¤

That completes the proof of Theorem 1.2.

4.3 Dependency of c∗ with respect to the nonlinearity f

In this section, we study the dependency of c∗, with respect to the ”shape” and the ”size”
of the nonlinearity f . This section is devoted to the proofs of Theorem 1.3 and Corollary
1.4. In the whole section, one assumes that the matrix field A(x) = A is constant, and
one considers the problem (1.10-1.11), with a nonlinearity f such that fu(x, 0) is of the
type fu(x, 0) = µ(x) + Bν(x), where B is a positive real number and mu and ν are
periodic C0,α functions.

It then follows from Theorem 2.8 of [8] that the function f satisfies the hypothesis

for all B > 0 if

∫

C

µ ≥ 0 and

∫

C

ν ≥ 0 with ν 6≡ 0. It also follows from Theorem 2.8 of [8]
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that f satisfies the hypothesis for conservation for B > 0 large enough under the only
assumption max ν > 0.

In the next propositions, we will make several uses of the following characterizations
of c∗ : first, from Theorem 1.2,

c∗ = inf {c, ∃ λ > 0 with µc,B(λ) = 0} , (4.69)

where µc,B(λ) is the principal eigenvalue of the elliptic operator

−Lc,B,λψ = −∇ · (A∇ψ)− 2λAe · ∇ψ − (λ2 eAe− λc)ψ − (µ(x) + Bν(x))ψ,

on the set E of L-periodic C2 functions. Furthermore, as it was said in [4] and in [30],
for pulsating fronts in RN , the formula below is equivalent to the following one :

c∗ = min
λ>0

−kλ(B)

λ
, (4.70)

where kλ(B) is the principal eigenvalue of the operator

−LB,λφ = −∇ · (A∇φ)− 2λAe · ∇φ− λ2 eAeφ− (µ(x) + Bν(x))φ,

acting on the same set E of functions φ. We call φB,λ be the principal eigenfunction
associated to kλ(B). It satisfies




−LB,λφB,λ = kλ(B)φB,λ,
φB,λ is L-periodic, φB,λ > 0 in RN ,
‖φB,λ‖∞ = 1 (up to normalization).

(4.71)

We are going to study the monotonicity of the function B 7→ c∗ = c∗(B), as soon as
the hypothesis for conservation if satisfied. One has the

Proposition 4.8 Assume that µ = µ0 ≥ 0 is constant and assume that

∫

C

ν(x)dx ≥ 0

with max ν > 0. Then, the hypothesis for conservation is satisfied for all B > 0 and
c∗(B) is an increasing function of B > 0.

PROOF. As already underlined at the beginning of this section, the hypothesis for con-
servation is satisfied for all B > 0.

As done in the proof of Lemma 3.1, one has

kλ(B) = max
φ∈E′λ

inf
RN

−∇ · (A∇φ)

φ
− µ0 −Bν(x),

where E ′
λ be the set defined by

E ′
λ =

{
φ ∈ C2(RN), ∃ Υ > 0, Υ L-periodic with φ(x) = eλx·eΥ

}
.
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Let B1, B2 ∈ R and t ∈ [0, 1]. Set B = tB1 + (1 − t)B2. Let φ1 and φ2 be two
arbitrary chosen functions in E ′

λ, and set z1 = ln(φ1), z2 = ln(φ2), z = tz1 + (1 − t)z2

and φ = ez. It easily follows that φ ∈ E ′
λ. Therefore

kλ(B) ≥ inf
RN

{−∇ · (A∇φ)

φ
− µ0 −Bν(x)

}
.

Then, arguing as in the proof of Lemma 3.1, one obtains that

kλ(B) ≥ t infRN

{−∇ · (A∇φ1)

φ1

− µ0 −B1ν(x)

}

+(1− t) infRN

{−∇ · (A∇φ2)

φ2

− µ0 −B2ν(x)

}
,

and, since φ1 and φ2 were arbitrary chosen, one has kλ(B) ≥ tkλ(B1) + (1 − t)kλ(B2).
Therefore the function B 7→ kλ(B) is concave. This also implies that this function is
continuous.

Next, one easily sees that kλ(0) = −λ2eAe−µ0, and that the associated eigenfunction
φ0,λ is equal to 1.

Now, let us calculate k′λ(0). Let φB,λ be the principal eigenfunction associated to
kλ(B) defined in (4.71), and let us integrate by parts the equation (4.71) over C. Using
the L-periodicity of φB,λ, one obtains

−(λ2eAe + µ0)

∫

C

φB,λ −B

∫

C

ν(x)φB,λdx = kλ(B)

∫

C

φB,λ. (4.72)

By continuity, one knows that kλ(B) → kλ(0) as B → 0. Still arguing as in the proof of
Lemma 3.1, one also knows that φB,λ converges in C2,β (for all 0 ≤ β < 1) to φ0,λ ≡ 1
as B → 0. Then, dividing the equation (4.72) by B, one gets

kλ(B) + λ2eAe + µ0

B

∫

C

φB,λ = −
∫

C

ν(x)φB,λdx.

Therefore, passing to the limit B → 0, one obtains

k′λ(0) = −
∫

C

ν(x)dx.

In the case

∫

C

ν(x)dx > 0, one has k′λ(0) < 0. From the concavity of B 7→ kλ(B), one

deduces that this function is decreasing with respect to B > 0. Since this is true for
all λ > 0, one concludes that the minimal speed c∗(B) given in (4.70) is an increasing
function of B > 0.

Similarly, if

∫

C

ν(x)dx = 0, and max ν > 0, divide the equation (4.71) by φB,λ and

integrate it by parts over C. By L-periodicity, one obtains

−
∫

C

[
∇φB,λA∇φB,λ

φ2
B,λ

]
− (λ2eAe + µ0)|C| −B

∫

C

ν(x)dx = kλ(B)|C|,
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and, since φB,λ is not constant (because ν is not constant) and the matrix A is elliptic,
one gets that kλ(B) < −(λ2eAe + µ0) = kλ(0) for all B > 0. Hence, since k′λ(0) = 0 and
kλ(B) is concave in B, one concludes that B 7→ kλ(B) is decreasing in B > 0. Finally,
it follows that c∗(B) is increasing in B > 0. ¤

The biological interpretation of this proposition is that increasing the amplitude of
the favorableness of the environment increases the invasion’s speed.

Remark 4.9 If one only assumes that max ν > 0, then the function f satisfies the hy-
pothesis for conservation for B > 0 large enough. Furthermore, under the other assump-
tions of Proposition 4.8, the same arguments as above imply that the function B 7→ c∗(B)
is an increasing function of B (for B large, as soon as the hypothesis for conservation is
satisfied).

In the next proposition, one assumes that f satisfies the hypothesis for conservation.
As one has said above, it follows from Theorem 2.8 of [8] that it is true for all B > 0 if∫

C

µ(x) ≥ 0 and

∫

C

ν(x) ≥ 0 with ν 6≡ 0 ; if one only has max ν > 0, it is true if B is

large enough.

Proposition 4.10 Assume that max ν > 0 and that the function f satisfies the hypoth-
esis for conservation with fu(x, 0) = µ(x) + Bν(x). Then

c∗(B) ≤ 2
√

eAe max(µ + Bν).

PROOF. Let us first observe that the definition of λ1 in (1.9) and that the hypothesis
for conservation (λ1 < 0) imply that max(µ + Bν) > 0.

Next, using the characterization of c∗ given by (4.69), let us integrate by parts over
C the equation −Lc,B,λψ = µ. Using the L-periodicity of ψ, one obtains the following
inequalities :

µc,B(λ) ≥ −λ2eAe + cλ−max(µ + Bν).

Therefore, if c ≥ 2
√

eAe max(µ + Bν), there exists λ0 > 0 such that µc,B(λ0) ≥ 0.
On the other hand, µc,B(0) = λ1 < 0 from the hypothesis for conservation. By
continuity, it follows that there exists a solution λ > 0 of µc,B(λ) = 0 as soon as

c ≥ 2
√

eAe max(µ + Bν). Thus, one finally has

c∗(B) ≤ 2
√

eAe max(µ + Bν). (4.73)

That completes the proof of Proposition 4.10. ¤

Remark 4.11 If the diffusion matrix field A is not assumed to be uniform in the space
variables anymore (but still satisfies (1.6)), and if max ν > 0, then the hypothesis for
conservation is satisfied for B large enough and the same arguments as above imply that

lim sup
B→+∞

c∗(B)√
B

≤ 2
√

max(eAe)
√

max ν.
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Proposition 4.12 Assume now that fu(x, 0) = µ(x) + Bν(x), where

∫

C

µ ≥ 0,

∫

C

ν ≥ 0

and max ν > 0. Then

2

√
eAe

|C|
∫

C

( µ

B
+ ν

)
dx ≤ c∗(B)√

B
≤ 2

√
eAe max

( µ

B
+ ν

)
(4.74)

and
1

2

√
eAe max ν ≤ lim inf

B→+∞
c∗(B)√

B
≤ lim inf

B→+∞
c∗(B)√

B
≤ 2

√
eAe max ν. (4.75)

PROOF. As already underlined, the assumptions of Proposition 4.12 guarantee that the
hypothesis for conservation is satisfied for all B > 0.

We will now use the characterization of c∗ given by (4.70). Let φB,λ be defined by
(4.71). Dividing (4.71) by λφB,λ|C| and integrating by parts leads to

λeAe +

∫

C

(µ + Bν)

λ|C| ≤ −kλ(B)

λ
. (4.76)

One deduces from (4.76) and (4.70) that

2

√
eAe

|C|
∫

C

(µ + Bν) ≤ c∗(B), (4.77)

and the result (4.74) follows from (4.73) and (4.77).
The proof of the lower bound in (4.75) is divided in two steps. Let

0 ≤ γ := lim inf
B→+∞

c∗(B)√
B

≤ 2
√

eAe max ν

and (Bn)n∈N → +∞ such that c∗(Bn)/
√

Bn → γ as n → +∞. First, from (4.70), there

exits a sequence (λn)n∈N in R∗+ such that
−kλn(B)

λn

√
Bn

→ γ as n → +∞. Moreover, from

(4.73), one knows that
−kλn(B)

λn

√
Bn

≤ 2
√

eAe max ν + εn, (4.78)

where εn → 0 as n → +∞. Using the equation (4.76), one obtains with (4.78)

λneAe +

∫

C

(µ + Bν)

|C|λn

≤ −kλn(Bn)

λn

≤ 2
√

BneAe max ν + εn

√
Bn.

Assuming that

∫

C

µ ≥ 0 and

∫

C

ν ≥ 0, one deduces that

λn ≤ 2

√
Bn

eAe
max ν + εn

√
Bn. (4.79)
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Next, consider the eigenvalue problem




−∇ · (A∇ψB,λ)− 2λAe · ∇ψB,λ

−λ2eAeψB,λ − (µ + Bν)ψB,λ = k̃λ(B)ψB,λ,
ψB,λ > 0 on C, ψB,λ = 0 on ∂C, ‖ψB,λ‖∞ = 1,

and let us prove that k̃λ(B) > kλ(B) (for all λ > 0 and B > 0). Assume that, on the

contrary, one has k̃λ(B) ≤ kλ(B); then the function ψB,λ satisfies

−∇ · (A∇ψB,λ)− 2λAe · ∇ψB,λ − λ2eAeψB,λ −(µ + Bν)ψB,λ − kλ(B)ψB,λ

= (k̃λ(B)− kλ(B))ψB,λ ≤ 0.
(4.80)

Since the function φB,λ defined by (4.71) is positive in C, one can assume that κψB,λ <
φB,λ in C for all κ > 0 small enough. Now, set

κ∗ = sup
{
κ > 0, κψB,λ < φB,λ in C

}
> 0.

Then, by continuity, κ∗ψB,λ ≤ φB,λ in C and there exists x1 in C such that κ∗ψB,λ(x1) =
φB,λ(x1). But, since φB,λ > 0 in C and ψB,λ = 0 on ∂C, it follows that x1 ∈ C. Therefore,
using (4.80), it follows from the strong elliptic maximum principle that κ∗ψB,λ ≡ φB,λ

in C, which is impossible from the boundary conditions on ∂C. Finally, one concludes
that k̃λ(B) > kλ(B).

Let us now define ΨB,λ(x) = eλx·eψB,λ(x). From (4.80), the function ΨB,λ satisfies
the eigenvalue problem

{
−∇ · (A∇ΨB,λ)− (µ + Bν)ΨB,λ = k̃λ(B)ΨB,λ,
ΨB,λ > 0 on C, ΨB,λ = 0 on ∂C,

and it follows that

k̃λ(B) = min
ψ∈H1

0 (C), ψ 6≡0

∫

C

∇ψ · (A∇ψ)− (µ(x) + Bν(x))ψ2

∫

C

ψ2

.

Let ε > 0 be arbitrarily chosen. Then, there exists ψε in H1
0 (C), such that ‖ψε‖∞ = 1,

ψε ≥ 0 and, for all x ∈ C,

ψε(x) > 0 ⇒ (max ν − ν(x) < ε) .

One then easily obtains (see the proof of Proposition 5.2 in [8])

−
∫

C

∇ψε · (A(x)∇ψε) +

∫

C

µ(x)ψ2
ε

∫

C

ψ2
ε

+ B (max ν − ε) ≤ −k̃λ(B) (4.81)
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for all λ > 0.
Hence, using (4.79) and (4.81), and since k̃λn(Bn) > kλn(Bn) one has

lim inf
n→+∞

−kλn(Bn)

λn

√
Bn

≥ 1

2

√
eAe

(√
max ν − ε√

max ν

)
.

since −kλn(B) ≥ 0. Since ε > 0 was arbitrary, one concludes that

γ = lim inf
B→+∞

c∗(B)√
B

≥ 1

2

√
eAe max ν.

The formula (4.75) follows. ¤

PROOF of Corollary 1.4. In the special case where fu(x, 0) = µ(x) (ν = 0 and, say,
B = 1) with ∫

c

µ(x)dx ≥ µ0|C| > 0,

it follows from the lower bound in (4.74) that c∗[µ] ≥ c∗[µ0] = 2
√

eAe µ0. ¤

In other words, an heterogeneous medium increases the biological invasion’s speed,

in comparison with a constant medium, when

∫

C

fu(x, 0)dx > 0.

Coming back to the case where fu(x, 0) = µ(x) + Bν(x), it follows from the Proposi-
tion 4.12 that, even if µ and ν have zero average, it suffices for ν to be positive somewhere
for the speed c∗(B) to increase like to the square root of the amplitude of the effective
birth rate.

Proposition 4.13 Assume that µ ≡ 0, fu(x, 0) = Bν(x) with

∫

C

ν ≥ 0 and max ν > 0.

Then, one has

lim
B→0+

c∗(B)√
B

= 2

√
eAe

|C|
∫

C

ν(x)dx.

PROOF. First, it follows from (4.74) that

2

√
eAe

|C|
∫

C

ν(x)dx ≤ c∗(B)√
B

(4.82)

for all B > 0.
In order to establish the opposite inequality at the limit B → 0+, one shall consider

two cases :

Case 1 :

∫

C

ν > 0. Let φB,λ be defined by (4.71) and call φB = φB,λB
with

λB =

√
B

eAe|C|
∫

C

ν(x)dx.
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Multiply (4.71) by φB and integrate it by parts over C. Dividing by

∫

C

φ2
B, one obtains

kλB
(B) =

∫

C

∇φBA∇φB

∫

C

φ2
B

− λ2
BeAe−B

∫

C

νφ2
B

∫

C

φ2
B

,

and

−kλB
(B)

λB

≤ λBeAe +
B

λB

∫

C

νφ2
B

∫

C

φ2
B

.

Moreover, observing that λB → 0 as B → +∞ and arguing as in the proof of Lemma
3.1, one knows that φB converges in C2,β(RN) (for all 0 ≤ β < 1) to φ0 ≡ 1 as B → 0.
Therefore, one can write

−kλB
(B)

λB

≤ λBeAe +
B

λB|C|
∫

C

ν +
B

λB

εB, (4.83)

where εB → 0 as B → 0. Replacing λB by its value in (4.83), one obtains

−kλB
(B)

λB

≤ 2

√
eAe

B

|C|
∫

ν +

√√√√√
BeAe|C|∫

C

ν

εB.

From the characterization (4.70) of c∗(B), one then obtains

c∗(B)√
B

≤ 2

√
eAe

|C|
∫

C

ν + ε̃B,

where ε̃B → 0 as B → 0. Using (4.82), one concludes that

lim
B→0

c∗(B)√
B

= 2

√
eAe

|C|
∫

C

ν.

Case 2 :

∫

C

ν = 0. Choose now λB =
√

δB for arbitrary δ > 0. The above arguments

imply that

lim sup
B→0+

c∗(B)√
B

≤
√

δ eAe

and the conclusion follows. ¤
Finally, Theorem 1.3 follows from the last four propositions.
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[16] J. Gärtner, M. Freidlin, On the propagation of concentration waves in periodic and random media,
Sov. Math. Dokl. 20 (1979), pp 1282-1286.

[17] F. Hamel, Formules min-max pour les vitesses d’ondes progressives multidimensionnelles, Ann.
Fac. Sci. Toulouse 8 (1999), pp 259-280.

[18] S. Heinze, Homogenization of flame fronts, Preprint IWR, Heidelberg, 1993.

[19] S. Heinze, The speed of travelling waves for convective reaction-diffusion equations, Preprint MPI,
Leipzig, 2001.

42



[20] S. Heinze, G. Papanicolaou, A. Stevens, Variational principles for propagation speeds in inhomo-
geneous media, SIAM J. Appl. Math. 62 (2001), pp 129-148.

[21] W. Hudson, B. Zinner, Existence of travelling waves for reaction-diffusion equations of Fisher
type in periodic media, In : Boundary Value Problems for Functional-Differential Equations, J.
Henderson (ed.), World Scientific, 1995, pp 187-199.

[22] Ya.I. Kanel’, Certain problems of burning-theory equations, Sov. Math. Dokl. 2 (1961), pp 48-51.

[23] N. Kinezaki, K. Kawasaki, F. Takasu, N. Shigesada, Modeling biological invasion into periodically
fragmented environments, Theor. Population Biol. 64, (2003), pp 291-302.

[24] A. Kiselev, L. Ryzhik, Enhancement of the traveling front speeds in reaction-diffusion equations
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d’État à Moscou (Bjul. Moskowskogo Gos. Univ.), Série internationale A 1 (1937), pp 1-26.

[26] N. Shigesada, K. Kawasaki, Biological invasions : theory and practice, Oxford Series in Ecology
and Evolution, Oxford : Oxford University Press, 1997.

[27] N. Shigesada, K. Kawasaki, E. Teramoto, Traveling periodic waves in heterogeneous environments,
Theor. Population Biol. 30 (1986), pp 143-160.

[28] A.I. Volpert, V.A. Volpert, V.A. Volpert, Traveling wave solutions of parabolic systems, Transla-
tions of Math. Monographs 140, Amer. Math. Soc., 1994.

[29] H. Weinberger, On spreading speed and travelling waves for growth and migration models in a
periodic habitat, J. Math. Biol. 45 (2002), pp 511-548.

[30] X. Xin, Existence of planar flame fronts in convective-diffusive periodic media, Arch. Ration.
Mech. Anal. 121 (1992), pp 205-233.

43


