TRAVELING WAVES FOR A LATTICE DYNAMICAL SYSTEM ARISING
IN A DIFFUSIVE ENDEMIC MODEL

YAN-YU CHEN, JONG-SHENQ GUO, AND FRANCOIS HAMEL

ABSTRACT. This paper is concerned with a lattice dynamical system modeling the evolution
of susceptible and infective individuals at discrete niches. We prove the existence of traveling
waves connecting the disease-free state to non-trivial leftover concentrations. We also char-
acterize the minimal speed of traveling waves and we prove the non-existence of waves with
smaller speeds.

1. INTRODUCTION

In this article, we consider the following lattice dynamical system (LDS)

ds,, )
—= = (Sn41+ 81— 25,) + p— p Sy — BSpin, n €L,
dt
(L i
% Alinss + iny — 2in) — fin + B 8nin — Yin, 1 € Z,

where s, = $,(t), i, = i,(t), t € R, and pu, 8,7 are positive constants. Here s,(t) and i,/(t)
represent the population density of the susceptible individuals and the infective individuals
at niches n at time ¢, 1 and d are the random migration coefficients for susceptible and
infective population, respectively, and p is regarded as the rate of the inflow of newborns
into the susceptible population by assuming the total population of susceptible, infective and
recovered individuals is normalized to be 1. The death rate of the susceptible population and
the infective population are both assumed to be pu, 3 is the infective (transmission) coefficient
and + is the recovered /removed coefficient. Actually, as in [28], the equation for the recovered
individuals r,(t) is given by

dry, ,

E = Vln — UTn,
if there is no migration of the recovered individuals.
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For system (1.1), it easy to see there are two constant states (1,0) and

1
(1.2) (s"e) = (= B (0 - 1),
o
where o := /(4 7). In this paper, we always assume that ¢ > 1, that is,

B> pu+.

This means that, when the density of susceptible individuals is close to 1, the infective in-
dividuals have a positive per capita growth rate. Without migration, the steady state (1,0)
is dynamically unstable with respect to perturbations whose second component are positive,
while the steady state (s*,e*) is dynamically stable. System (1.1) is therefore called monos-
table.

In this paper, we are interested in the existence of traveling wave solutions of (1.1). We first
consider traveling waves which can be expressed as two bounded profiles of the continuous
variable n + ct, namely

(1.3) sp(t) = p(n+ct) and i,(t) = ¥(n+ ct)

for n € Z and t € R, for some nonnegative bounded functions ¢, on R (the wave profiles)
and some constant ¢ (the wave speed). By setting & = n + ¢t and substituting (s, (t),i,(t)) =
(0(&),1(&)) into (1.1), we then obtain

—c¢'(§) + D[¢](&) + (1 —¢(§)) — B v(§) = 0,
—c'(§) + dDWIE) — (n+7)¥(&) +Bo(E)v(E) = 0
for all £ € R, where

(1.4)

DIf](§) == f(€+1) + f(§ —1) = 2f (&)
Furthermore, from the epidemic point of view, we are interested in traveling wave solutions
connecting the trivial disease-free state (1,0) as £ — —oo (ahead of the front) and non-trivial
states as & — +0o0.
Define the constant ¢* by

A - _ o _
(1.5) A G ) e et Tt §
A>0 A

By the assumption § > u+ v (i.e. ¢ > 1), we know that ¢* = ¢*(d, 3, u,7y) is a well-defined
real number (and the infimum in (1.5) is a minimum) and ¢* > 0.

Our first main result is the following theorem on the existence of traveling waves for (1.4)
and the characterization of their minimal speed.

Theorem 1.1. For any ¢ > c¢*, there exists a bounded classical solution (¢,v) of the sys-
tem (1.4) such that

(1.6) 0<op<linR, »>0inR
and
(1.7) lim (¢(£),¥(€)) = (1,0),

E——o0
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together with
(1.8) O<1€imjnf o(€) <s* <limsupp(£)<1 and 0 <1§im inf ¢ (&) <e* <limsup (§) < +o0,
—+00

E—+oo —r+00 E—+oo

where (s*,€*) is given in (1.2). Furthermore, for any ¢ < c*, there is no classical solution

(p,1) of the system (1.4) satisfying (1.6) and (1.7).

Behind the front, as & — 400, the leftover concentrations of susceptible and infective
individuals are non-trivial. It is still an open question to know whether the traveling wave
solutions converge to the endemic state (s*,e*) as & — 400, but Theorem 1.1 asserts that
both susceptible and infective individuals coexist behind the front and that the endemic
state (s*,e*) is the only possible constant leftover state. To show the convergence to the
endemic state as £ — +oo, the difficulties come from the fact that (1.4) is a system and
is non-local (such issues also arise for equations with non-local nonlinear interaction, see
e.g. [1,2,4, 18,19, 23, 21, 40, 41]). We also point out that the random migration coefficient d
for the infective individuals is any arbitrary positive real number and is therefore in general
different from that for the susceptible individuals. Furthermore, we mention that, due to
the transmission term s with opposite signs, the systems (1.1) and (1.4) are not monotone
(neither cooperative nor competitive) and therefore do not satisfy the maximum principle.
For the same reason, the question of the uniqueness, up to shifts in time, of the traveling
wave profiles for a given speed ¢ > ¢* is still open (by analogy with continuous thermal
diffusion models [5, 36, 39], uniqueness or non-uniqueness of the profiles (¢, 1) may depend
on the sign of d — 1). As for the monotonicity of the profiles for a given speed ¢ > ¢*, the
numerical simulations presented in Section 7 show that the wave profiles ¢ and v are not
always monotone.

Theorem 1.1 is concerned with traveling waves for the continuous problem (1.4). Let us
now come back to the original discrete problem (1.1). For (1.1), besides (1.4), another nat-
ural definition of traveling waves consists of nonnegative and non-constant classical solutions
(8n)nez and (i, )nez which are bounded (that is, each s,, and each 4, is of class C'(R)N L>°(R)
and sup,,cz ||5n || oo (r) + SUP,ez ||in]| L) < +00) and for which there is ¢ € R\ {0} such that

1 1
(1.9) S (t + —) = Sp+1(t) and i, (t + —) =ip41(t) foralln € Z and t € R.
c c

We also allow the possibility of bounded nonnegative and non-constant solutions (i, ),ecz and
(Sn)nez which are stationary (that is, independent of ¢ € R). It immediately follows from
Theorem 1.1 and (1.3) that, for any speed ¢ > ¢*, problem (1.1) admits traveling waves
solutions in the sense of (1.9) connecting the trivial disease-free state (1,0) as ¢ — —oo (that
is, as n — —o0) and some non-trivial leftover concentrations. Furthermore, it turns out that,
as for (1.4), problem (1.1) does not admit any such traveling wave solutions in the sense
of (1.9) for any speed ¢ < ¢* either. Namely, the following result holds.

Theorem 1.2. For any ¢ > c*, there exists a bounded traveling wave of the system (1.1) in
the sense of (1.9), such that

(1.10) 0<su(t) <1 and i,(t) >0 forallne€Z andt e R,
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together with

(1.11) lim (s,(),i,(t)) = (1,0) locally uniformly int € R,
n——oo
(1.12) tlim (sn(t),in(t)) = (1,0) for alln € Z,
——00
and
[ 0<liminf s, (t)<s* < limsup s,(t) <1, 0<liminfi,(t)<e* <limsupi,(t) <-+oo
n—+00 n—+o00 n—+0o0 n—+o00
(1.13) for allt € R,
' 0<liminf s,(t) <s* <limsups,(t) <1, 0<liminfi,(t) <e*<limsupi,(t) <+oo
t—+o0 t— 400 t—+o0 t——+o0
for alln € Z.

\
Furthermore, for any ¢ < c*, there is no traveling wave of the system (1.1) in the sense of (1.9)
or stationary, and satisfying (1.10) and (1.11).

Theorem 1.2 implies in particular that the set of speeds of traveling waves for the original
problem (1.1), in the sense of (1.9), is the same as for problem (1.4). However, as for (1.4),
the characterization of the leftover concentrations as n — +oo (or equivalently as ¢ — +oo0,
since ¢ > 0) or the uniqueness of the profiles s, (t) and i,(¢) up to shifts in time for a given
speed ¢ > ¢* are still open for (1.9).

Let us finally mention some references on related problems. Actually, there is a vast litera-
ture on the study of traveling wave solutions for lattice dynamical systems or discrete versions
of continuous parabolic partial differential equations. For monostable equations or monostable
monotone systems, we refer to e.g. [7, 8 9, 16, 17, 22, 24, 26, 30, 32, 37, 38, 44, 47]. Waves
for bistable lattice dynamical systems have been studied in e.g. [6, 10, 11, 12, 13, 14, 15, 25,
27, 29, 33, 34, 35, 45, 46].

Remark 1.3. Notice that the necessity condition ¢ > ¢* holds in Theorem 1.1 (respectively
in Theorem 1.2) for any traveling wave (¢, ¢) satisfying (1.4), (1.6) and (1.7) (respectively for
any traveling wave of (1.1) satisfying (1.9), (1.10) and (1.11)). The limiting conditions (1.8)
(respectively (1.13)) or the boundedness of ¢ (respectively of the sequence (i, )nez in L>(R))
are not used here.

Outline of the paper. Sections 2 and 3 are devoted to the proof of the existence of a
traveling wave in case ¢ > ¢*, with some preliminaries on lower and upper solutions in Sec-
tion 2. Approximated solutions in bounded domains are constructed and the traveling wave
solving (1.4) is obtained by passing to the limit in the whole real line. Some intricate issues
are to show that the limiting 1) component is bounded and that the leftover concentrations are
non-trivial. Section 4 is devoted to the proof of the existence of a traveling wave for the min-
imal speed ¢*, by passing to the limit ¢, — (¢*)7, after a suitable shift of the origin and after
showing that the solutions with speed ¢, are uniformly bounded. Section 5 is concerned with
the proof of the necessity condition ¢ > ¢* for any traveling wave satisfying (1.6) and (1.7),
and Section 6 is devoted to the proof of Theorem 1.2 on the traveling waves for (1.1) in the
sense of (1.9). Lastly, we present some numerical experiments in Section 7.
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2. PRELIMINARIES
In this section, we always assume that ¢ > ¢*. Then the equation
(2.1) die*+e?=2)—cA+B—pu—7=0
has two positive roots A; and Ay with 0 < A; < Ay. Notice that
de*+e?=2)—cA+p—-—pu—7<0
for all A € (A1, A\2).

2.1. Upper and lower solutions. First, we define the notion of upper solution (5, E) and
lower solution (¢,1) of (1.4) as follows.

Definition 2.1. If ¢, ¥, ¢, ¥ are continuous in R, of class C* on R\ F for some finite set

F and if they satisfy the fleo_wmg inequalities

(2.2) DIG)(€) — ¢ (€) + 1 (1 — B(€)) — BA(€) (&) <0,
(2.3) DIg](€) — c¢/(€) + u (1 — 6(&)) — B(E) B(E) > 0,
(2.4) mm—cw’() (1 +7) D(E) + BHE) B(E) <0,
(2.5) D) — c/(€) — (1 +7) (€) + BH(E)(€) > 0

for all € € R\ F, then the functions (¢,), (¢,%) are called a pair of upper and lower solutions
of (1.4).

Following [3, 20], we introduce

(2.6) o) = 1, P =e"*,  (eR,
I pel%, 6 < 517
(2.7) o(&) = {
07 5 2 §17
6)\15 - qen/\ﬁ’ é S 527
(2.8) P = {
07 6 > 527
where
Ly Mg
(29) 51 = 0 and 52 = (77 _ 1) )\1.

Here the constants 6, p, n and g are chosen in sequence such that the following assumptions
(A1)-(A4) hold:
(A1) 6 > 0 is small enough such that 0 < < A\; and €/ + e -2 —c — u <0,

)
(A2) p>max{1, b >1>0,
)

—(ef4+ef—2—cO—p)
(A3) n € (1, min{l + 0/A;, \a/A1}) such that

d(e™ +e™ —2) —cnphi+f—p—v <0,

Ad (1-m)Ai& ﬁp ’
( )q>max{6 7_(d(enAl_l_e—n)\l—2)—Cn/\1+6_ﬂ_'7) >0
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Note that we have

Inq

52:—m<§1=—1—<0.

Also, it easy to see that

max{0,1 — pe’} < 4(§) < 4(€) =1, max{0,eM — g™} <€) < P(€) = e*

for all £ € R.
The next lemma gives the existence of a pair of upper and lower solutions.

Lemma 2.2. The functions (¢,v) and (¢,9) defined by (2.6)-(2.8) are a pair of upper and
lower solutions of (1.4).

Proof. First, the functions ¢ and 1 are of class C*(R) and the inequalities (2.2) and (2.4) hold
on R, since

D[G)() — ¢ (€) + 1 (1 — B(€)) — BH(E) ¥(€) = —B(€) <0,

d D[P)(E) — eV (&) — (u+7)D(E) + BHE) D(€)
=M [d(eM +e™M—2)—cM+B—-—pn—7]=0

[ N}

for all £ € R.

Next, the function ¢ is continuous in R and of class C*(R\{{;}) and we would like to show
that (2.3) holds for  # & . For £ > &, this is trivial since ¢(£) = 0. When £ < & (< 0), we
have (&) =1 — pe’ and so

DIEIE) — eg/(€) + (1= 9(8)) = B (&)

1—pef@&D 11— pef& D 24 9pe% 4 cOpe + ppe — e 4 B pelTre
e’ [— P(ee +e? —2¢6— w) — Be(hf@)é}

B 695 [1 — 6(/\179)5} > ()

(AVARRAVARNI

by 6 < A1 and the choice of p.

Finally, the function 1 is continuous in R and of class C*(R\{{;}) and we claim that (2.5)
holds for £ # &. Clearly, (2.5) holds for £ > &. For the case £ < &, due to & < & < 0, we
know that ¢(&) =1 — pe®® and ¥(€) = eM* — ge"™ €. Then we obtain

dD[P)(E) — cy'(§) — (n+7) ¥(&) + B (&) ¥(€)

d [_ qenA1(£+1) _ qenh(ﬁ—l)_{_ 2qe”)‘1§} +enh qenhf_ (B—p—n) qenx\lﬁ_ ﬁpe(0+’\1)§
— e’M{ —qd (™ e —2) —enh+ B —p -] - 5,06[9*“‘"””5}

> ﬂpenhg(l _ 6(5’4'(1—77))\1)5) > ()

Vv

by the choices of  and q. Therefore, the proof of this lemma has been completed. [l
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2.2. An auxiliary truncated problem. Now, given [ > —& (> 0), we consider the following
truncated problem

Dlgp]—cd' +p(l—9¢)—Bop =0  in[-L1],
(2.10) d D[y] —C_W_— (m+7)Y+pBoy =0 in[-L1],
( 7w> (¢>'¢) on <_007 _l>7
(0,9) = (o(1), (1)) on (I, +00),

where

(=l +h) —o(=0) P(=l+h) —P(=D)

¢'(=1) == lim , Y'(=1) := lim

hN\0 h AND h )
1) —¢(l—h ) —(l—h
oty o= i OOy gy PO 00

Next, we give some notations. Set C' := C([~1,1]) x C([-,1]) and
S={(p0)eC |p<d< v <y <¢in[-11] and (¢,9)(—1) = (§,0)(~I)}.

From the definition of ¢, 9, 1), 1, we know that 0 < ¢ <1 and 0 <19 < erMlin [—1,1] for any
(¢,9) € S'. Hence S' is a nonempty bounded closed convex set in (Cl, | - ||), where || - || is
the usual sup norm. For any (¢,v) € 8!, we extend (¢,) be continuity outside the interval
[—1,1] as in (2.10) and we introduce the continuous functions H!(¢, 1) and Hi(¢, ) defined
in R by

Hi(¢,9)() = ao(&)+ D[gl(&) +u(1— (&) — B &) ¥(&),

Hy(¢,9)(§) = av(§) +dDRIE) — (n+7)v(E) + B (&) (&),

!'is a positive constant such that

where o = «
o > maX{Q—l—u—l—Be)‘ll,Qd—l—u—l—y}.

For (¢;,1;) € 8%, i = 1,2, with ¢ < ¢ and by < 9y in [, 1], we have

(2.11)  Hi(ér,¥2)(€) < Hi(¢r,¥1)(E) < Hi(da,11)(€) and Hy(¢1,91)(€) < Hy(da, ¥2)(€)

for all £ € [—1,1]. Finally, we define the operator F! = (F}, F}) from S' into C! as follows

— £ Ja(z—€)/c
Fl(o,0)(&) = ea(lf)/c¢<_l)+/ e

-l

Hi(¢,9)(2) dz, €€ [~1,1],
£)/c

_ e (
Fi (o)) = e T(—1) + / HY(6.0)(2) dz, € € [-1.1).

1
Note that a fixed point (¢,1) of the operator F!, extended outside the interval [—[
in (2.10), gives a solution of (2.10) which is contmuous in R and of class C'(R\{—1,1}).

To show the existence of such a fixed point, we apply Schauder’s fixed point theorem in the
next lemma.

Lemma 2.3. Given | > —&, there exists a C(R) x C(R) and C'(R\{—1,1}) x CY(R\{—1,})
solution (¢,1) of (2.10) such that

(2.12) 0<¢<¢p<1 and 0<y <Y <9 in(—o0,l.

7l]
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Proof. First, we claim that F'(S') C S'. By (2.11), for any (¢,) € S', we have
Fi(¢, ) < Fi(¢,v) < Fi(6,9) and Fy(g,¥) < Fy(6,9) < Fi(6,9) in [=L,1].

By Lemma 2.2 and the definition of the upper and lower solutions, we also derive that

o < Fi(0,0), Fi(d,0) <o, ¢ < Fy(,¢) and Fy(h, ) < in [~1,1].
Hence F'(S") c S
By using the Arzela-Ascoli theorem, the operator F' : 8" — &' is completely continuous
with respect to the sup norm. With the help of Schauder’s fixed point theorem, we conclude
that there exists a pair (¢,1)) € S' such that (¢,v) = F'(¢,1). Therefore, (¢,), extended

outside the interval [—[,(] as in (2.10), solves (2.10) and satisfies the properties stated in
Lemma 2.3. ]

3. EXISTENCE OF A TRAVELING WAVE FOR ¢ > c¢*

3.1. Proof of Theorem 1.1 for ¢ > ¢*. In this section, we show Theorem 1.1 for any fixed
real number ¢ € (¢*, +00). Namely, we show the existence of a bounded solution (¢, v) of (1.4)
satisfying 0 < ¢ < 1in R, ¢ > 0 in R, and such that (1.7) and (1.8) hold.

First, we consider a positive increasing sequence {lj }ren such that I, — oo as k — oo, and
lp > =& for all £ € N, where & < 0 is as in (2.9). By Lemma 2.3, for each k£ € N, there
exists a C(R) N CY(R\{—11,x}) solution (¢, 1) of (2.10) and (2.12) for [ = I;,. For each
K € N such that Ix > 2, since 9 is bounded above in [~lg, ], it follows from (2.12) that
the sequences

{Ortir, {Uhier, {Ox¥rtrx
are uniformly bounded on [—lf,k]|. Also, the sequences {¢}. }r>x and {¢} }x>xk are uniformly
bounded in [—lx +1,1x — 1], due to (2.10) and (2.12). Since ¢}(&) and ¢} (£) can be expressed
in terms of ¢u(€), Yrl€), k(€ £ 1), Un(E £ 1), Gl £ 2), el€ +2), Gh(€) and Y(€) in
[—lk + 2,k — 2], one infers that the sequences {¢} }r>x and {9} x>k are uniformly bounded
in [—lx +2,lx —2]. By using the Arzela-Ascoli theorem on [—lx + 2,k — 2] for every K € N
large enough, we obtain a subsequence {(¢;, ¥x,)} of {(¢x,1x)} through the diagonal process
such that
bn, = &, Uy = U, B, = &, Y = as j - 400

uniformly in any compact subinterval of R, for some functions ¢ € C*(R) and ¢ € C'(R).
Then (¢,1)) is a solution of the system (1.4) with

(3.1) 0<¢<¢p<1land 0<y<¢<t¢ inR.
By the definitions of ¢, ¥ and 1, it easy to check that
(¢, 9)(—00) = (1,0).

Notice also that, by differentiating the equations (1.4), one infers by induction that the func-
tions ¢ and v are of class C*° in R.

Lemma 3.1. The functions ¢ and i are non-trivial, in the sense that

0<op<l and ¥ >0 inR.
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Proof. Firstly, owing to the definition of ¥, we have ) > 0 in (—o00, ;). For contradiction, we
assume that there exists a real number & € [, 400) such that (&) = 0 and ¥(€) > 0 for
all £ < &. Since ¢ > 0 in R, we also have 9'(§,) = 0. From the second equation of (1.4), we
get that ¢¥(§ — 1) = (& + 1) = 0, a contradiction to the definition of .

Let us now show that ¢ > 0 over R. Indeed, if ¢(£*) = 0 for some real number £*, then

0=—c¢'(¢) + D|(E) + 1 (1= (&) = BAE)Y(E) = —c¢/(€7) + D[D)(E) + 1> 0,

since ¢'(£*) =0, D[¢](¢*) > 0 and g > 0. This contradiction leads to the inequality ¢ > 0 in
R.

Similarly, we claim that ¢ < 1 in R by a contradiction argument. If there exists a real
number ¢ such that ¢(£) = 1, then

0=—c¢'(§) +D[g](€) + n (1 — (&) — B(E)v(&) = —cd/(§) + D[¢](€) — BY(E) <0,

since ¢'(§) = 0, D[¢](§) < 0 and ¥(§) > 0. This contradiction leads to the inequality ¢ < 1
in R. U

The next main step consists in showing that the function v is actually bounded. A first
key-point is the following Harnack type property for equations of the type (1.4) satisfied by
the second component 1. We state this property in a more general framework.

Lemma 3.2. Let M be a positive real number. Then there exists a constant C' = C(M) > 0
such that, for any continuous functions a and b with M~ < a(§) < M and b(§) > —M for
all £ € R and for any positive C*(R) function u satisfying

u'(§) 2 a(§) u(§ +1) +b(§) u(§) for all § €R,

there holds
-1 < u(§ +1)
- u(§)

In order not to lengthen too much the main line of the proof of Theorem 1.1 with ¢ > ¢*,

C

< C forall £ €R.

the proof of Lemma 3.2 is postponed in Section 3.2.
Coming back to our solutions (¢, ) of (1.4), since ¢ > 0 and ¢ is nonnegative, it follows
from Lemma 3.2 applied to the positive function u = v solving ¢’ (£) > (d/e)(§+1)—(2d/c+

u/c+ y/c)p(€) that the functions & — (£ £ 1)/¥(€) are bounded in R. Hence, from the
equation (1.4) itself and since ¢ is bounded, the function

V(€

STy

is therefore bounded too.

The following two lemmas deal with the behavior of ¢ and v at +oo if limsup,_, ,  ¥(§) =
+o00o. The first one says that ¢ is small when v is large. This property actually holds locally
uniformly with respect to the speed c. It is stated in this more general framework since it
will be used again in Section 4 to get the existence of a bounded solution (¢, ) of (1.4) with
speed c*.
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Lemma 3.3. Let 0 < ¢ < € be two given positive real numbers. Let {cy} be a sequence of
real numbers in [c,c] and let {(ér,Vr)} be a sequence of solutions of (1.4) with speed ¢ and
satisfying (1.6). If {&} is a sequence of real numbers such that V(&) — 400 as k — +oo,
then ¢r(&k) — 0 as k — +o0.

Since this lemma is concerned with general sequences of solutions with different speeds, and
in order not to lengthen too much the main line of the proof of Theorem 1.1 with given speed
¢ > c*, the proof of Lemma 3.3 is postponed in Section 3.2.

Coming back to our solution (¢,) of (1.4) satisfying (1.6) and (1.7), the following result
shows the convergence of ¥ to +00 at +oo if it were not bounded.

Lemma 3.4. Iflimsup,_,, . ¥(§) = +oo, then limg_, o ¥(§) = +o0.

Proof. Assume by way of contradiction that limsup,_,, . ¥(§) = +o00 and liminfe_, o ¥(§) <
+00. Since ¢’ /1 is globally bounded, there are then M € R and two sequences {6} and {&}
converging to 400 and such that

< _ f— pu—
VO <M, 0, <& —1<&<&E+1< 0, V(&)= A Y ( o @D)

for all £ € N and limy_, o ¥(&§) = +00. Therefore, ¢'(§x) = 0 and d D[¢](&) < 0. Hence,
by (1.4), one infers that (u+~ — B ¢(&)) (&) < 0 for all k € N. This is clearly impossible
for large k since (&) > 0, and ¢(&) — 0 as k — 400 by Lemma 3.3. The proof is thereby
complete. O

To proceed further, we recall the following useful fundamental theory from [9] (or [7]) in
dealing with the asymptotic tail behavior of wave profiles for a lattice dynamical system.

Proposition 3.5. [9] Let ¢ > 0 be a positive constant, let B : R — R be a continuous function
having finite B(£00) := lim,_,+., B(z) and let z be a continuous function such that

(3.2) sz(z) = ele T 2)ds o oI A (s)ds B(z), Vz € R.

Then z is uniformly continuous and bounded in R. In addition, the limits w* = lim, 4. 2(2)
exist and are real roots of the characteristic equations

sw=¢e"+e“+ B(£o0).
With this result and the previous lemmas in hand, we can show that 1) is bounded in R.

Lemma 3.6. The function v is bounded.

Proof. Assume not. Then limsup,_,, () = +oo, since 1 is continuous, positive, and
(—o0) = 0. Therefore, Lemmas 3.3 and 3.4 imply that ¥({) — +oo and ¢(§) — 0 as
¢ — +o0. From (1.4), the continuous function z := v’ /1) satisfies

gz(a:)—efﬁl ds+€f _2_N§7+ﬁ¢d(x)
for all x € R. Since ¢ has finite limits at +00 and ¢(+o0c0) = 0, it then follows from Proposi-
tion 3.5 that, in particular, z has a finite limit w at +o00, with

(3.3) d(e’+e ¥ —2)=cw+p+7.
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Since p and vy are positive, this equation has a negative and a positive root. The function
z = '/ cannot converge to the negative root at +oo, since 1(+00) = +oo. Therefore,
Y’ /¢ converges at +o0o to the positive root w of (3.3). Remember now that A\; < Ay are the
two positive roots of equation (2.1). Since 8 > 0, one infers immediately that A\; < Ay < w.
But limg o0 ¥/ (€) /() = w > 0 yields In9(€) ~ wé as £ — 400, while (3.1) implies that
Y(€) < (&) = eME for all € € R. One gets a contradiction, since A\; < w. As a conclusion,
the function ¢ is bounded and the proof of Lemma 3.6 is complete. O

To complete the proof of Theorem 1.1 in case ¢ > ¢*, we show in the following lemmas that
none of the components ¢ and ¢ can be trivial at +oc.

Lemma 3.7. There holds infg ¢ > 0.

Proof. Remember that the C*° function ¢ satisfies 0 < ¢ < 1in R and ¢(—o0) = 1. Assume by
contradiction that infg ¢ = 0. Then there exists a sequence {&;} converging to +o00 such that
#(&) — 0 as k — +oo. On the other hand, since both functions ¢ and v are bounded, the
equations (1.4) guarantee that the functions ¢ and ¢ have bounded derivatives at any order.
Therefore, by the Arzela-Ascoli theorem, the functions & — ¢(£ + &) and € — (€ + &)
converge in C7°(R) as k — +o00, up to extraction of a subsequence, to some nonnegative C'>°

loc
functions ¢, and 1. Furthermore,

in R and ¢ (0) = 0. Since 0 is a global minimum of ¢.,, one has ¢/ (0) = 0 and the above
equality at 0 leads to a contradiction, since ¢, > 0 and p > 0. Therefore, infg ¢ > 0. U

To show that i) cannot approach 0 at +o00, even for a sequence, the key-step is the following
lemma saying that 1) is increasing when it is small. The property actually holds locally
uniformly with respect to the speed ¢ and we state the lemma in this slightly more general
framework, since it will be used as such in Section 4.

Lemma 3.8. Let 0 < ¢ <€ be two given positive real numbers. There is € > 0 such that, for
any I' € [¢,¢] and for any solution (P, V) of (1.4) (with speed I" in place of ¢) satisfying (1.6),
there holds

VEER, (¥()<e)= (¥'(>0).

In order to conclude now the proof of Theorem 1.1 with ¢ > ¢*, the proof of Lemma 3.8
is postponed in Section 3.2. Coming back to our solution (¢,1)), we immediately get from
Lemma 3.8 and the positivity of ¢ in R that

(3.5) liminf ¢ (&) > 0.

E—+o0
We also claim that
(3.6) limsup ¢(§) < 1.

E—+o00
Indeed, otherwise, there exists a sequence of real numbers {{;} converging to +o0o such that
#(&) — 1 as k — 4o00. As in the proof of Lemma 3.7, up to extraction of a subsequence,
the functions £ — ¢(§ + &) and £ — (€ + &) converge as k — 400 in C2(R) to some

loc
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nonnegative C* functions ¢, and 1, solving (1.4). Furthermore, 0 < ¢, < 1 and ¥, > 0 in
R from Lemma 3.7 and (3.5). Since ¢ (0) = 1, one has ¢ _(0) = 0. The equation (3.4) satisfied
by ¢ at 0 leads to a contradiction, since D[¢s](0) < 0 and —5 ¢oo(0) 100 (0) = =B 150 (0) < 0.
Therefore, the claim (3.6) holds.

In order to complete the proof of (1.8), let us finally show that

(3.7) liminf ¢(§) < s* <limsup ¢(§) and liminfy(§) < e* < limsup(§).

§—+o0 E—+o0 §—+o0 E—+o0

Call ¢— = hminf{—H—oo ¢(§)7 ¢+ = thUPg—>+oo ¢(§)7 1/J— = hminf{—)—i—oo 1/)(5) and 1/J+ -
lim sup,_, , o, ¥(§). One already knows from (3.5), (3.6) and Lemmas 3.6 and 3.7 that

0<op_ <o <1 and 0< ¢y <Yy < 4o00.

Consider now a sequence {&} converging to +oo such that ¢(&;,) — ¢_ as k — +oo. Up
to extraction of a subsequence (as for instance in the proof of Lemma 3.7), the functions
€ — ¢(E+E) and € — P (E+E) converge in C72 (R) to some bounded functions 0 < ¢, < 1 and
oo > 0 satisfying (1.4). Furthermore, 0 < 9)_ = 1)5,(0) = ming ¢),. Therefore, ¢/ (0) = 0
and D[¢](0) > 0. Hence

—(p+7) - + B dee(0) - <0,

that is, 5 ¢oo(0) < p+y. This yields ¢_ = liminfe o ¢(€) < (p+7)/6 = 1/o = s*. Similarly,
it follows that ¢, = limsup;_, ., #(§) > s*. Consider also a sequence {(.} converging to +oo
such that ¢(§) — ¢_ as k — 4o00. As above, up to extraction of a subsequence, the
functions & — ¢(& + (i) and € — (€ + () converge in C2(R) to some bounded functions
0 < &, < 1 and ¥, > 0 satisfying (1.4). Furthermore, 0 < ¢_ = P(0) = ming P.
Therefore, ®/_(0) = 0 and D[®,,](0) > 0. Hence

n(l—¢-) = B Wa(0) < 0.

Since 0 < ¢_ < s* = 1/0, one gets immediately that W, (0) > (u/B8)(c — 1) = e*, whence
Yy = limsup,_, . ¥(§) > e*. Similarly, it follows that ¢ = liminfe ;¥ (&) < e*.

As a conclusion, (1.8) is proved and the proof of Theorem 1.1 in case ¢ > ¢* is thereby
complete.

As explained after the statement of Theorem 1.1 in Section 1, the question of the existence
of a limit of (¢,v) at +00 is unclear. However, we can say that the a priori existence of a
limit of one of these two functions guarantees the convergence of both, and that the endemic
state (s*,e*) defined in (1.2) is the only possible limit.

Lemma 3.9. Let (¢, 1) be a bounded classical solution of (1.4) satisfying (1.6), (1.7) and (1.8),
with speed ¢ > c*. If ¢(+00) or 1)(+00) exists, then they both exist and

(0(+00), P(+00)) = (7, €").

Proof. Assume first that | = limg, o ¢(§) exists. Property (1.8) yields 0 < | = s* < 1.
Consider now any sequence {{;} converging to +o0o. Up to extraction of a subsequence, the
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functions € — ¢(£ + &) and & — (€ + &) converge in C72(R) to some functions ¢o, =1 = s*
and 1., such that
p(l—s")— s (&) =0 forall £ € R.

Therefore, the function v, is identically equal to the constant pu(1 — s*)/(5s*) = e*. Since

%, |

the limit does not depend on the sequence {&;}, one infers that lime o ¥(§) =

Conversely, if L = lim¢_, o ¥(§) exists, property (1.8) yields 0 < L = e*. For any sequence
{&} converging to +oo, the functions & — ¢(§ + &) and & — (€ + &) converge in C72(R),
up to a subsequence, to some functions ¢, and 1o, = L = e¢* such that

—(p+7) e+ Be" ps(€) =0 for all £ € R.

Therefore, the function ¢, is identically equal to the constant (u+y)/8 = s*. Since the limit
does not depend on the sequence {&;}, one infers that lime_, o ¢(§) = s*.

Therefore, if the limit [ = ¢(400) or the limit L = 1¢(+00) exists, then they both exist such
that (¢(400),1(+00)) = (s, €*). O

Remark 3.10. The condition ¢ > ¢* in Lemma 3.9 is not a restriction, since we shall prove
in Section 5 that, for any solution (¢, ) of (1.4) satisfying (1.6) and (1.7) with speed ¢, there
holds ¢ > ¢*.

3.2. Proof of Lemmas 3.2, 3.3 and 3.8. In this section, we prove some technical lemmas
stated in Section 3.1.

Proof of Lemma 3.2. Although the idea of the proof is similar to the one given in [9], we
provide the details here for completeness. Up to multiplication of u by a positive constant
and up to a shift in space, one can assume without loss of generality that «(0) = 1 and it is
sufficient to show that u(+1) < C' = C(M). Firstly, since u/(§) > —M u(§) for all £ € R, the
function & — v(€) := u(€) eM¢ is nondecreasing, hence

u(—1) < eMu(0) = M.
Secondly, for all £ € [0, 1], one has
E+1)e™ S v(l)e ™™  wu(l)
- M M
Hence, v(§) > v(0) + u(1){/M =1+ u(1)¢/M for all € € [0,1]. In other words,

u(€) > (1 + %)5) e ME for all € € 0,1].

() = () + Mu(€)) e > a(€) ue + 1) M€ > U

Finally, for all £ € [-1/2,0],

V(©) > a@u(e + 1) > S (14 BLET LY e 5 0 (g L)y
Therefore,
— e M U(l) e M u(]_)
1=0(0) 2 o1/ < (14 g7) = 5 < (14 557).

>0
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Hence
u(l)<2M (2M e —1)
and the proof of Lemma 3.2 is thereby complete with C(M) = max{e™ 2M (2MeM —1)}. O

Proof of Lemma 3.3. Let 0 < ¢ <€, {c}, {(odr,¥r)} and {&} be as in the statement and
assume by way of contradiction that there are ¢ > 0 and a subsequence, still denoted with
the same index k, such that ¥y(&) — 400 as k — 400 and ¢(&) > ¢ for all £ € N.
Since 0 < ¢ < 1 and ¢, > 0 in R, the equation (1.4) for ¢, (with ¢ € [c,¢]) implies that
®, < (2+p)/cin R. Hence

(3.8) d(€) > g for all € € [& — 6,&] and for all k € N,

where § = e¢/(4+ 2u) > 0. On the other hand, since
d 2d + p+ v
WO 2 e 1) - 2L

Lemma 3.2 applied to the positive functions 1, implies that the functions & +— ¥ (£ 1) /1 (§)
are globally bounded independently of k € N. Hence, the functions v, /1, are globally bounded
in R independently of & € N. Therefore, the limit limg_, o V(&) = +oo implies that
0 < M}, = ming, _5¢,)%r — +00 as k — +00. Now, equation (1.4) and the inequalities
0 < ¢ < 1 and (3.8) yield

Pr(€) for all € € R and for all k € N,

/

2 M,
max ¢, < O My

< — — —00 as k — +oo.
[Ek—0,6k] C 2¢c

This contradicts the global boundedness of the functions ¢,. The proof of Lemma 3.3 is
thereby complete. O

Proof of Lemma 3.8. Assume by way of contradiction that there is no such . Then there
exist a sequence of real numbers {¢;} in [c, ¢, a sequence of solutions { (¢, 1)} of (1.4) with
speed ¢ = ¢ and 0 < ¢ < 1, ¢, > 0 in R, and a sequence of real numbers {&;.} such that

(3.9) (&) = 0 as k — 400 and (&) <0 for all k € N.
Up to a shift of the origin, one can assume without loss of generality that
(3.10) & =10

for all £ € N. Up to extraction of a subsequence, one can also assume that ¢, — ¢ € [c, €] as
k — 4o0.

Notice first that Lemma 3.2 and the equations (1.4) satisfied by (¢, ¥x) with ¢, € [¢,¢] C
(0,4+00) imply that the sequence {1} /¢ } is bounded in L>°(R), that is, there is C' > 0 such
that [¢}.(§)] < C(§) for all k € N and € € R. Since 14(0) — 0% as k — +o00, it follows that

Yr — 0 locally uniformly in R as k& — +oc.

As a consequence, there also holds that ¢;, — 0 locally uniformly in R as k — +o00.
Furthermore, by differentiating the equation (1.4) satisfied by ¢y, one gets that the functions
. and ¢} are locally bounded (and the functions ¢y are globally bounded). Therefore, the
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functions ¢y, converge in C. (R), up to extraction of a subsequence, to a function 0 < ¢, < 1
solving (1.4) with speed ¢, and with ¢ = 0, that is,

(3.11) Coo P = D]hoo] + 11 (1 — ¢oo) in R.

Call @ = infg ¢ and let {(,} be sequence of real numbers such that ¢o((,) — « as
m — +oo. Up to extraction of a subsequence, the functions £ +— ¢ (§ + () converge
as m — +oo in C2(R) to a function @, solving c,, P, = D[Py] + p(l — @) in R,
a < d, <1linRand ¢,(0) = a. Consequently, ' (0) = 0 and D[P](0) > 0, whence
p(l—a) =p(l —&,(0)) < 0. Thus, @ > 1. Since a = infg P and ¢ < 1 in R, one

concludes that

O =1 in R.

Now set y (5)
Uk

M) = 50)

for k € Nand £ € R. Since the sequence {¢}. /¢ } is bounded in L*(R), the positive functions
Uy, are locally bounded, in the sense that supyey ¢j<r Yx(§) < +o0 for all R > 0. Therefore,

the functions (€)W (€)
1iey — PR\S) Yk
V(&) = RORNRG)

are locally bounded too. Since each W satisfies
= WE(€) + d DIWL](E) — (1 +7) Wi(€) + B (&) Wi(§) + B dr(§) Wi (§) =0
in R and the sequence {¢;} is bounded in C}

loc

x Wi (&)

(R), one infers that the functions ¥} are locally
bounded too. By the Arzela-Ascoli theorem, it follows that, up to extraction of a subsequence,

the positive functions ¥, converge in C} _(R) to a nonnegative solution ¥, of

loc

where one used the fact that ¢ () — ¢(§) =1 as k — +oo for all £ € R. Furthermore, we
claim that U, > 0 in R. Otherwise, there is &, € R such that V(&) = 0, and V(&) = 0. It
follows from (3.12) applied at &y that Voo (§p+1) = Voo (§p —1) = 0, and then Vo (§+m) =0
for all m € Z by immediate induction. Since o, ¥, > (6—p—v—2) ¥, in R, the nonnegative
function & = W, (&) e~ (#=#=172)¢/= js nondecreasing. Since it vanishes at &+m for all m € Z,
one concludes that it is identically equal to 0, whence ¥, = 0 in R. This contradicts the fact
that W (0) = 1. Therefore,

U (€) >0
for all £ € R.
The continuous function z := W/_/¥_, obeys
(3.13) %‘O () = fET A | S s g 67% in R.

Therefore, by Proposition 3.5, z2(§) = V/_(£)/ V(&) has finite limits wy as & — £o0, which
are roots of the characteristic equation

Coows =d (e +e ™ —=2)+ 5 —pu—r.
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Since ¢y > ¢ > 0 and 8 > pu + v, the roots of the previous equation are necessarily positive.
In particular, ¥/_ is positive at +o0o. Furthermore, by differentiating (3.13), one gets that

B14) () = (el + 1)~ ) TS d (e - 1) = 5(6)

Therefore, if 2z has a minimum & in R, then 2/(§) = 0 and 2({ +1) = 2(£ — 1) = 2(§), whence
2(§ +m) = z(§) for all m € Z by immediate induction. As a consequence,

-1
TCD) g

i%fz > min{z(—00), z(+00)} > 0.

Finally, ¥/, > 0 in R, hence 0 < ¥/ _(0) = limy 1 ¥} (0) = limy 400 ¥1(0)/20x(0) and
.(0) > 0 for all £ large enough. This contradicts the fact that ¢,(0) < 0 for all k € N
(remember (3.9) and (3.10)).

As a conclusion, there is € > 0 such that ¢/(¢) > 0 for any £ € R with ¢(§) < ¢ for any
solution (¢, ) of (1.4) with ¢ € [¢,¢], 0 < ¢ < 1 and ¢ > 0 in R. The proof of Lemma 3.8 in
thereby complete. O

4. THE CASE ¢ = ¢*

This section is devoted to the proof of the existence of a traveling wave (¢,v) of (1.4)
satisfying (1.6), (1.7) and (1.8) with speed ¢ = ¢*. To do so, we consider a sequence {c;} of
real numbers such that ¢, € (¢*,¢* + 1] for each k € N, and

cp, — ¢ as k — +oo.

For each k € N, Section 3 provides the existence of a traveling wave (¢, ¢x) of (1.4) (with
speed ¢j) satisfying (1.6), (1.7) and (1.8). The natural strategy is to pass to the limit as
k — +oo, in order to get the existence of a traveling wave with the limiting speed ¢*. To
achieve this goal, we need some a priori bounds for the functions ¢, in order to get a non-
trivial solution at the limit. We also point out that the inequalities (3.1) satisfied by the
approximated waves (¢, ) do not carry over at the limit ¢z — ¢* (since the coefficients
in the definitions of the lower solutions depend on ¢; and degenerate at the limit ¢ — ¢*).
Therefore, we will have to suitably shift and renormalize the approximated waves (¢, V)
before passing to the limit as k — +oc.

The first a priori bound asserts that the functions ¢, do not converge to 0 uniformly as
k — +o0.

Lemma 4.1. There holds liminfy_, o ||t | Leory > 0.

Proof. Assume that the conclusion does not hold. Then, up to extraction of a subsequence,
one can assume without loss of generality that ||| @) — 0 as k — +o00. Since ¢, €
[c¢*,¢* + 1] C (0,+00) for each k£ € N, Lemma 3.8 implies that ¢, > 0 in R for all k large
enough. Since each 1)y is bounded, it follows that the limit ¢ (400) exists in R, for all k&
large enough. Since each (¢, 1) satisfies the assumptions of Lemma 3.9, one then infers in
particular that, for all £ large enough,

wk(+oo>:e*:%<a—1>>o.
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This contradicts the fact that limy_, o ||1%]] reo®) = 0. Thus, the conclusion of Lemma 4.1
holds. 0

The second key-point is the boundedness of the sequence {} in L>(R).
Lemma 4.2. There holds limsup,_, | ||| @) < +oc.

Proof. Assume that the conclusion does not hold. Then, up to extraction of a subsequence,
one has ||¢g|| L) — +00 as k — 4o00. For each k € N, since the function 1, is bounded and
positive in R, there is then & € R such that

1
. > - — oo (R)-
(4.1 06 = (1= ) el
In particular, ¥, (&) — +00 as k — +oo. Furthermore, one has
d 2d + p+ 7y .
YO 2 Sun(E+1) — =T () nR

for all £ € N. Since each v is positive, it follows from Lemma 3.2 that the functions & —
(€ £ 1) /Yx(§) are globally bounded in R independently of k£ € N, and so are the functions
& — L&) /Yr(§), from the equation (1.4) satisfied with speed ¢ € (¢*, ¢* + 1] (remember also
that 0 < ¢, < 1 in R). As a consequence,

Vi€ + &) k—+> +00 locally uniformly in £ € R.
—+00

Lemma 3.3 then implies that
Dr(€) = Pr(€ + &) =0
as k — +oo locally uniformly in £ € R.
From the boundedness of the sequence {1}, /¢, } in L>(R), one also infers that the functions

- 250

are locally bounded independently of k (in the sense that supjey || Wkl ze(x) < 400 for any
compact set K C R). Each function ¥; obeys

cp Vi = d D[] — (n+7) Ui + B ¥y, in R,

whence the functions W) are locally bounded too. From the Arzela-Ascoli theorem, the pos-
itive functions W, converge locally uniformly in R, up to extraction of a subsequence, to a
continuous nonnegative function ¥.,. Furthermore, from the above equation and the fact that
¢, — 0 as k — 400 locally uniformly in R (together with ¢, — ¢* > 0), the functions ¥},
converge locally uniformly in R too. Therefore, the functions ¥y converge in C} _(R) to ¥,
and the function V¥, satisfies

(4.2) W =dDVy]— (p+7) ¥y inR.

Notice that this function W, is thus automatically of class C*(R). Furthermore, ¥, is
nonnegative and W, (0) = limg_, o, ¥,(0) = 1. As in the proof of Lemma 3.8 for the solution
of (3.12), one then infers that W, is positive in R.

Finally, for every & € R, there holds 9 (§ + &) < ||¥kllze@) < (1 + 1/k) ¥r(&e) from (4.1).
In other words, Wx(§) < 1+ 1/k for every £ € R and k € N with k£ > 1, whence ¥ (§) < 1
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for every £ € R. Therefore, since U, (0) = 1, 0 is a global maximum of the function ¥, and
U’ (0) =0, D[¥](0) < 0. The equation (4.2) evaluated at 0 leads to a contradiction, since
u and ~ are positive. The proof of Lemma 4.2 is thereby complete. 0

End of the proof of Theorem 1.1 in case ¢ = ¢*. First of all, Lemma 3.8 applied with ¢ = ¢* > 0
and ¢ = ¢* + 1 yields the existence of £ > 0 such that U'(£) > 0 for every £ € R with U(£) < ¢,
and for every solution (®, W) of (1.4) and (1.6) with speed ¢ € [¢*, ¢* + 1]. Without loss of
generality, one can assume that

(4.3) 0<5§e*:%(0—1).

Coming back to our solutions (¢, %) of (1.4) (with speed ¢;) satisfying (1.6), (1.7) and (1.8),
it follows from Lemma 4.1 and the positivity of each 1, that one can also assume without loss
of generality that

O<e< lirellf\; ||77Dk:||L°°(R)
Therefore, for each k € N, since ¢,(—o0) = 0 and v, > 0, there is & € R such that

Ur(&r) = €.
Shift the origin at &, and denote

Ou(€) = dr(€ + &) and ¥i(€) = vir(6 + &).

From Lemma 4.2, the sequence {¢;} is bounded in L>*(R). Remember also that 0 < ¢y, < 1
in R and ¢ — ¢* > 0 as k — +o00. Therefore, up to extraction of a subsequence, the functions
¢r and 1y converge in CP2°(R) to some bounded C*°(R) functions ¢ and v solving (1.4) with

loc

speed c*. Furthermore, 0 < ¢ <1 and ¢ > 0 in R, while
»(0) =¢>0.

In order to complete the proof of Theorem 1.1 in case ¢ = ¢*, one shall show that the
pair (¢,%) is non-trivial and satisfies the desired limiting conditions at 4oo, that is, the
conditions (1.6), (1.7) and (1.8) hold.

Let us first show that

¥ >0 in R.

Indeed, if there is £&* € R such that ¥(£*) = 0, then ¢/(¢*) = 0 and equation (1.4) at &*
yields ¥(&* + 1) = 0, whence ¥(£* + m) = 0 for all m € Z by immediate induction. But
P > —(2d + p+ )¢ in R, whence the function & — (&) e@4T#7E/¢" is nondecreasing.
Since ¢ > 0 in R and ¥(£* +m) = 0 for all m € Z, one infers that ¢ = 0 in R, which is
impossible since ¥(0) = ¢ > 0. Thus, ¢» > 0 in R. Once the positivity of ¢ is known, it follows
as in the proof of Lemma 3.1 that

0<¢o<1l inR

In other words, the pair (¢, ) fulfills (1.6).

Let us then show that the pair (¢, ) satisfies the limiting conditions (1.7) at —oo. Since
the pair (¢, ) solves (1.4) and (1.6) with speed ¢*, the choice of € > 0 above and the property
¥(0) = ¢ imply that ¢ > 0 in (—o0,0]. In particular, the limit L = lim¢_, ., 1(&) exists,
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and L € [0,e). If L > 0, then the same arguments as in the proof of Lemma 3.9 imply
that ¢(—o0) exists and ¢(—o0) = (w+v)/8 = 1/o € (0,1). The same arguments also
vield L = 9(~00) = (1 — ¢(~00))/(Bd(~00)) = (u/B)(0 — 1) = ¢". Hence, e = L < ,
contradicting (4.3). Therefore,

L =14(—00) =0.

Furthermore, for any sequence {ék} converging to —oo, the functions £ — ¢(§ + ék) and
€ — (€ 4 &) converge in C (R), up to extraction of a subsequence, to a pair (¢, 0), for
some function 0 < ¢, < 1 solving (3.11) with speed c,, = ¢*. It follows as in the proof of
Lemma 3.8 that ¢, = 1 in R. Since the limit does not depend on the choice the sequence
{€}, one gets that the limit lime_, o, ¢(€) exists, and

é(—o0) = 1.

In other words, the pair (¢, ) satisfies (1.7).

Let us finally show that the non-triviality conditions (1.8) hold at +oco. Firstly, as in the
proof of Lemma 3.7, there holds infg ¢ > 0. Secondly, Lemma 3.8 and (1.6) imply at once
that liminfe_, ;o 9(§) > 0. Thirdly, one concludes that limsup,_,, ., ¢(§) < 1 as in the proof
of (3.6) and that (3.7) holds as in the case ¢ > ¢*. The solution (¢,) thus fulfills all desired
properties and the proof of Theorem 1.1 in case ¢ = ¢* is thereby complete. O

5. NON-EXISTENCE OF TRAVELING WAVES FOR ¢ < c*

In this section, (¢,1)) denotes a classical solution of (1.4) satisfying (1.6) and (1.7), with a
speed ¢ € R. By classical, we mean that ¢ and 1) are of class C*(R) (and then of class C*°(R))
if ¢ # 0, and that ¢ and 1 are continuous if ¢ = 0. We shall prove that, necessarily, ¢ > ¢*.
To do so, we consider separately the cases ¢ > 0, ¢ < 0 and ¢ = 0.

First case: ¢ > 0. Since the positive function v satisfies

v(©) > Sy(e 1) - 2 Ty

for all £ € R, Lemma 3.2 implies that the functions £ — (£ £1)/¢ (&) are bounded, and then

so is the function £ — ¢/(§)/1(€). Consider now any sequence {{;} converging to —oo. The
positive functions

o va() = M

are locally bounded and they satisfy

e, =dD[] — (u+7) Ve + BO(- + &) Y in R.

Therefore, the functions v, are locally bounded too (remember that ¢(—oo) = 1). From the
Arzela-Ascoli theorem, up to extraction of a subsequence, the functions v, converge locally

uniformly (and then in C,

(5.1) el = dDoc] + (B —p—7) ¥ in R.

(R) from the above equation) to a function ¢, solving
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Furthermore, ¥, > 0 in R and 1,,(0) = 1. As in the proof of Lemma 3.8 for the function ¥,
solving (3.12), it follows that 1o, > 0 in R. Now, the function z = ¢/ _ /¢, solves

(5.2) gz(g;) =i ads 4 JTT A(s)ds _ g 4 ﬁ%ﬁlﬂ in R.

Proposition 3.5 implies that the limits z(£00) exist in R and are roots w of the equation
cw=d(e*+e“=-2)+8—pu—1.

Since ¢ > 0 and [ > p + 7, the roots must be positive and ¢ > ¢* by definition of ¢* in (1.5).
The proof of the necessity condition is thereby complete in the case ¢ > 0.

Second case: ¢ < 0. Denote (&) = ¢(—¢) and V(¢) = (—¢£). The functions P
and ¥ satisfy (1.4) and (1.6) with speed |c| > 0, together with the limiting conditions
(®(+00), ¥(+00)) = (1,0). Furthermore, since the positive function ¥ satisfies

V() > w1 -

2d + p 4+
— VU
E (€)

]
and (1.4) with speed ||, it follows as in the above case ¢ > 0 that the function ¥'/V is
bounded. Since ¥ > 0 in R and ¥ (400) = 0, one can consider a sequence {{;} converging to
+00 such that

V(&) <0 forall k € N.

As above, up to extraction of a subsequence, the functions £ — Wi (&) := W(& + &)/ V(&)
converge in C} _(R) to a positive solution ¥, of (5.1) with |¢| instead of ¢, and such that
U (0) = 1. Furthermore, here, ¥/ _(0) < 0. The function Z := V/_/V¥, satisfies (5.2) with
|c| instead of ¢ and it follows from Proposition 3.5 that the limits Z(4o00) exist in R and are
roots €2 of the equation
| Q=d(e® +e=2)+5—pu—1.

Since 8 > p+ 7, the roots are positive (and |¢| > ¢*). In particular, Z is positive at +00. But
Z(0) =9 _(0)/¥,(0) =¥’ _(0) <0. Hence, the continuous function Z has a minimum = in
R, that is Z(=2) < Z(¢) for all £ € R. By differentiating the equation satisfied by Z, one gets
as in (3.14) that
1 \Pw(é + 1) 11100(5 — 1)
42/6) = (216 +1) = 2(0) Tt + (26 1) = 260) T
Hence, Z(Z+ 1) = Z(2), and Z(E+ m) = Z(E) = ming Z for all m € Z by immediate
induction. Therefore, Z(£o0) = ming Z < Z(0) < 0, a contradiction with the positivity of
Z(+00). As a consequence, the case ¢ < 0 is ruled out.

Third case: ¢ = 0. Here, the function ¢ satisfies d D[¢)] + (B¢ — p—v) ¥ = 0 in R. Since
d>0,08>p+7vy, ¢(—00) =1and ¢ > 0 in R, it follows that there exists £, € R such that
D[y](€) < 0 for all £ < &. Denote

0(&) = (&) — (€ +1).

The condition D[] < 0 in (—o0,&] means that (£ — 1) < (&) for all £ < &. Furthermore,
since ¢ > 0 in R and ¢(—o0) = 0, there is § < & such that §(&;) < 0. Since 0(&; —m) < 0(&;)

in R.
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for all m € N with m > 1, one infers that
Y& —m) — (&) =D 0 —j) <mb(&)
j=1

for all m € N with m > 1. Thus, ¥(§ —m) < ¥(§) + mO(&) — —oo as m — +00 since
0(&1) < 0. This contradicts the positivity of 1. As a consequence, the case ¢ = 0 is ruled out
too and the proof of Theorem 1.1 is thereby complete. |

Remark 5.1. We give here another proof of the positivity of ¢ when ¢ is bounded (cf. [26]).
Since ¢(—o0) = 1 and 5 > p + 7, there is a sufficiently large K such that

BoE) —p—v>

w >0 for & € (—oo, —K).

Integrating the second equation of (1.4) from —oo to £ < —K, using ¢(—o0) = 0 and the
positivity and boundedness of 1), we obtain

E+1 13 £
o) = d{5 (s)ds — w<s>ds}+ | 1866) - -t as

&-1

o 3
> —d{supw(s)}—l—W/_ ¥(s)ds

seR

for all £ < —K. It follows that the integral

13
R(€) = / b(s) ds

is well-defined for all £ < —K (and then for all £ € R by continuity of v). Integrating the
second equation of (1.4) twice, we obtain

e =al [ r@ac— [ m@a)+ [ [ 60— u-alvis dsde

for all z € R. Since R(§) is strictly increasing, we conclude that ¢ > 0.

6. PROOF OF THEOREM 1.2

First of all, for any speed ¢ > ¢*, the bounded classical solution (¢, ) of the system (1.4)
given in Theorem 1.1 and satisfying (1.6), (1.7) and (1.8), gives rise to a traveling wave
(Sn(t),in(t))nez, ter of (1.1) in the sense of (1.9) by setting s,(t) = ¢(n + ct) and i,(t) =
Y(n + ct) for all n € Z and t € R. Furthermore, properties (1.10), (1.11), (1.12) and (1.13)
immediately follow.

Consider now any traveling wave (s, (t),4,(t))nez ter of (1.1) in the sense of (1.9) with a
speed ¢ € R\ {0}, and satisfying (1.10) and (1.11). Set

Sn(§) = Sn(§> and [,(§) = Zn<§)

C C
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for n € Z and £ € R. It then follows from (1.9) that, whatever the sign of ¢ may be, each pair
of functions (S,, I,,) is a classical solution of

{ cSi(E) = (Sal€+1)+Su(E—1) —28,(8) + 1 (1 — Su(€)) — B Sa(&) Ln(€),
cINE) = d(I(E+ 1)+ L6 = 1) = 21,(6)) — pLn(€) + B Sn(€) [,(€) — 7 Iu(€)

for all £ € R. In other words, each pair (S,,1,) is a solution of (1.4). Furthermore,
by (1.9), (1.10) and (1.11), each function S, satisfies 0 < S,, < 1 in R, each I, is positive in
R and (S, (—o0), I,(—o0)) = (1,0), whatever the sign of ¢ may be. The same arguments as in
Section 5 for the functions (¢,) therefore apply, both for ¢ > 0 and ¢ < 0. Hence, the case
¢ < 0 is ruled out, and c is positive and satisfies ¢ > ¢*.

Let us finally assume by contradiction that there is a stationary wave (s, i, )nez of (1.1)
(the left-hand sides are thus equal to 0) satisfying (1.10) and (1.11). Since 8 > u + v and
since i,, > 0 for all n € Z and s,, — 1 as n — —o0, it follows that there is ng € Z such that
Int1l + in_1 — 21, < 0 for all n < ng. In other words, by setting

In = tn — lnt1,

one has j,-1 < 7, for all n < ngy. Since 4,, > 0 and 2,, = 0 as n — —oo, there is N < nj such
that jy < 0. As jy_, < jn for all p € N\{0}, one infers that

IN—-m — IN = JN-m + +Jinv-1 < MmJn

for all m € N\{0}. The left-hand side of the above inequality converges to —iy as m — 400,
while the right-hand side converges to —oo (since jy < 0). One has then reached a contra-
diction and the existence of stationary waves of (1.1) satisfying (1.10) and (1.11) is therefore
ruled out. The proof of Theorem 1.2 is thereby complete. O

7. NUMERICAL EXPERIMENTS

This section is devoted to the numerical experiments in order to understand the dynamics
of the system (1.1). We use MATLAB to run some simple numerical experiments.

First, we observe that the endemic state (s*, e*) can be either a stable spiral point or stable
node of the kinetic system (i.e., (1.1) without the discrete diffusion terms), depending on the
parameters (i, 7, #). Indeed, let

5, = oM (

L+ /[y + u]) :

Then (s*,e*) is stable spiral point if and only if 8 € (8-, 5+) N (v + w, 00); while it is a stable
node if and only if 5 € {(0,5-] U [B4+,00)} N (7 + g, 00). For convenience, we try v = 1 and
i = 3 sothat f_ =16/3 and 5, = 16. In our numerical experiments, we set d = 1 and choose
£ =15,6,10,15,20, so that both cases are considered.

We consider the truncated problem of (1.1) for the set n € {0,--- , N+1} so that the number
of equations for s,, (and i,) is N+2. The left-hand boundary condition is set to be the Dirichlet
boundary condition, i.e., (so(t),i0(t)) = (1,0); and the right-hand boundary condition is
chosen to be the zero Neumann boundary condition, i.e., (sy41(t),in11(t)) = (sy(),in(1)).
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f=3, p=3, v=1 (minimal speed=2.073) B=6. 1=3. v=1 (minimal speed=3.017) =10, u=3, v=1 (minimal speed=3.672)
B=5. p=3. =1, sa(t)=0.95 B=6. u=3. v=1, sa(t)=0.95 B=10, =3, v=1. s,(t)=0.95
n amival time (1) speed n amival time (1) speed n amival time (&) speed

1005 99617 2061005771 207 99845 3.006012024 640 9991167 3.66390394
1007 98.6466 2.054231717 910 98.847 3.006012024 646 98.85233 | 5.663957407
1009 87.673 2057613169 913 §7.849 3.006012024 632 97793 5.663957407
1011 96.701 2.053915276 916 96.851 3.006012024 658 96.73367 5.66390394
1013 95.72725 2.065582236 919 95.853 3.006012024 664 95 67433 5.663957407
1015 94.759 2.05338809 922 94.855 3.003003003 670 04 615 5.663957407
1017 93.785 2.056026728 925 93.856 3.006012024 676 93.55567 5.66390394
1019 02.81225 2.06291903 928 92.858 3.006012024 682 9249633 | 5.663957407
1021 01.84275 [2.053915276 931 91.86 3.003003003 688 91.437 5.663957407
1023 90.869 2.059732235 934 90.861 3.006012024 694 90.37767 56621401
1025 89.898 937 89.863 700 29 318

B=15. u=3. v=1 (minimal speed= 8.231) =20, u=3. v=1{minimal speed=10.460)

B=15. p=3, 7=1,s.(t)=0.95 B=20, p=3, v=1, su(1)=0.95
n arrival time (t) speed n arrival time (&) speed

383 99941 8.22622108 160 99 97662 1045226971
39 989685 8.22622108 170 99.01989 10.45292525
399 97.996 8221993834 180 98.06322 10.45303452
407 97.023 8.221993834 190 97.10656 10.45281599
415 96.05 8.22622108 200 96.14988 10.45183273
423 95.0775 8.22622108 210 95.19311 10.45292525
431 94.105 8.221993834 220 94.23644 10.45183273
439 93.132 8.221993834 230 93.27967 10.45292525
4“7 92.159 8221993834 240 92323 10.45172349
455 91.186 8.22622108 250 91.36622 10.45303452
463 90.2135 260 90.40956

TABLE 1. The tables for computed speeds for different /3.

We look for left-moving waves. Therefore, for the initial condition, we choose s,,(0) = 1 for all
n,i,(0) =0forn=1,2,--- ,4N/5, and 4,(0) € (0, 1) randomly for n = 4N/5+1,--- , N. Here
we run the program with N = 1500 on the time interval [0, 100] with time step At = 0.001.

For the wave speed selection problem, we observe from our numerical experiments that
initially compact perturbations converge to traveling waves with approximately the minimal
speed defined in (1.5). See Figure 1, where we plot the wave profiles at ¢ = 10k, k =
1,2,---,10. The wave propagates from the right to the left as time increases.

To compute the approximated wave speed, we choose the front position to be s, (t) = 0.95 for
t € (99,100) and compute the approximated speed ¢; by (n;4.1—n;)/(t;—t;11) fori =1,--- 10,
where n; is the position and ¢; is the arrival time. Here we first choose n; to be the position such
that s, (t1) = 0.95 for t; ~ 100. Then set n;1; = n; +m for i > 1 and find the corresponding
arrival time t;,, (here m is chosen to be the nearest integer to ¢*, but other choices of this
integer m would give similar results for the computed ratio (n;11 — n;)/(t; — tix1)). The
computed speeds are presented in Table 1.

Moreover, from our numerical experiments, it indicates that the leftover state is always the
endemic state. Finally, for the monotonicity of wave profiles, we have observed numerically the
traveling waves are non-monotone for § € {10, 15,20}. It seems that the ones for 8 € {5,6} are
monotone. This indeed is a very interesting open question. On the other hand, unfortunately
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F1GURE 1. Plot of wave profiles at 10 different times for each 3: solid curves
for {s,} and dashed curves for {i,} (waves propagate leftwards).

we were unable to observe whether the right-hand wave tails are non-monotone (even with
very high precision), in particular, when g = 6,10,15 € (5_, 54).
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