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Abstract

We consider reaction-diffusion fronts in spatially periodic bistable media with large periods.
Whereas the homogenization regime associated with small periods had been well studied for
bistable or Fisher-KPP reactions and, in the latter case, a formula for the limit minimal
speeds of fronts in media with large periods had also been obtained thanks to the linear
formulation of these minimal speeds and their monotonicity with respect to the period, the
main remaining open question is concerned with fronts in bistable environments with large
periods. In bistable media the unique front speeds are not linearly determined and are not
monotone with respect to the spatial period in general, making the analysis of the limit of
large periods more intricate. We show in this paper the existence of and an explicit formula
for the limit of bistable front speeds as the spatial period goes to infinity. We also prove that
the front profiles converge to a family of front profiles associated with spatially homogeneous
equations. The main results are based on uniform estimates on the spatial width of the fronts,
which themselves use zero number properties and intersection arguments.

AMS Subject Classifications: 35B10; 35B27; 35B30; 35B51; 35C07; 35K57.

Keywords: reaction-diffusion equations; pulsating fronts; slowly oscillating media.

1 Introduction and main results

In this paper, we study the following reaction-diffusion equation

ut = (aL(x)ux)x + fL(x, u), t ∈ R, x ∈ R, (1.1)

with L > 0, where ut = ∂tu = ∂u
∂t and (aL(x)ux)x = ∂x(aL(x)∂xu) and ∂x = ∂

∂x . The diffusion
and reaction coefficients aL and fL are given by

aL(x) = a
(x
L

)
and fL(x, u) = f

(x
L
, u
)
,
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where the function a : R→ R is positive, of class C2(R), 1-periodic, that is, a(x+ 1) = a(x) for
all x ∈ R, and the function f : R × [0, 1] → R, (x, u) 7→ f(x, u) is of class C1, 1-periodic in x,
and (x, u) 7→ ∂uf(x, u) is Lipschitz-continuous in u ∈ [0, 1] uniformly with respect to x ∈ R. We
also assume the following conditions on f :

(A1) there is a continuous function b : R → (0, 1), x 7→ b(x), such that for every x ∈ R, the
profile f(x, ·) is of the bistable type in the following sense

f(x, 0) = f(x, 1) = f(x, b(x)) = 0, f(x, ·) < 0 on (0, b(x)), f(x, ·) > 0 on (b(x), 1);

(A2) 0 and 1 are uniformly (in x) stable zeroes of f(x, ·), in the sense that there exist γ0 > 0
and δ0 ∈ (0, 1/2) such that{

f(x, u) ≤ −γ0u for all (x, u) ∈ R× [0, δ0],

f(x, u) ≥ γ0(1− u) for all (x, u) ∈ R× [1− δ0, 1],
(1.2)

and ∂uf(·, 0) and ∂uf(·, 1) are assumed to be of class C1 in R.

Notice that the assumptions (A1)-(A2) imply in particular that max(∂uf(x, 0), ∂uf(x, 1)) ≤ −γ0

for all x ∈ R. Hence, 0 and 1 are two linearly stable L-periodic steady states of (1.1).
Here, an L-periodic steady state ū is said to be linearly stable (resp. linearly unstable)
if λ1(ū) < 0 (resp. λ1(ū) > 0), where λ1(ū) is the principal eigenvalue of the operator
ϕ 7→ Lϕ := ∂x(aL(x)∂xϕ) + ∂ufL(x, ū(x))ϕ in the space of L-periodic functions ϕ ∈ C2(R).

In the paper, for mathematical convenience, we extend f in R× (R\[0, 1]) as follows:{
f(x, u) = ∂uf(x, 0)u for (x, u) ∈ R× (−∞, 0),

f(x, u) = ∂uf(x, 1)(u− 1) for (x, u) ∈ R× (1,+∞).
(1.3)

Thus, it is clear that f is of class C1 in R2, 1-periodic in x, minx∈R f(x, u) > 0 for all u < 0 and
maxx∈R f(x, u) < 0 for all u > 1, and f(x, u), ∂uf(x, u) are globally Lipschitz-continuous in u
uniformly in x ∈ R. It is also easily seen that this extension does not affect the behavior of the
pulsating front connecting 0 and 1 defined below.

By a pulsating front of (1.1) connecting 0 and 1, we mean a classical entire solution UL :
R×R→ (0, 1) of (1.1) for which there exist a real number cL and a function φL : R×R→ (0, 1)
satisfying 

UL(t, x) = φL

(
x− cLt,

x

L

)
for all (t, x) ∈ R× R,

φL(ξ, y) is 1-periodic in y,

φL(−∞, y) = 1, φL(+∞, y) = 0 uniformly in y ∈ R.

(1.4)

The constant cL is called the front speed and φL is the front profile. Clearly, if cL 6= 0, then

UL(t, x) = UL

(
t+

L

cL
, x+ L

)
for all (t, x) ∈ R× R, (1.5)

that is, the spatial profiles x 7→ UL(t, x+ cLt) of the solution in the frame moving with speed cL
repeat periodically in time with period L/cL. In the case cL = 0, (1.4) simply means that UL does
not depend on t (that is, it is a steady solution) and UL(−∞) = 1, UL(+∞) = 0. Throughout
this paper, when we refer to a pulsating front for (1.1), we mean a solution UL : R× R→ (0, 1)
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satisfying (1.4) or, equivalently, a pair (φL, cL) given as in (1.4), with φL : R×R→ (0, 1) and UL
solving (1.1).

Fronts are of great importance in reaction-diffusion equations, which are the most-used equa-
tions in population dynamics models in biology and ecology, as fronts are the main mathematical
notion for the description of the invasion of a state (here, the trivial state 0) by another one
(here, the constant state 1). The notion of pulsating front in spatially periodic media was first
introduced in [51, 54]. It is a natural generalization of the classical notion of traveling front
in spatially homogeneous media where the coefficients a and f are independent of x. In that
case, the function x 7→ b(x) is a constant which is the only unstable zero of f in (0, 1). For the
homogeneous bistable equation

ut = auxx + f(u),

it is well known [4, 28] that there exist a unique speed c ∈ R and a unique traveling front
u(t, x) = φ(x − ct) with 0 < φ < 1 in R and φ(−∞) = 1, φ(+∞) = 0. The speed c has the
sign of the integral

∫ 1
0 f , and the front profile φ is decreasing, unique up to shifts, and globally

asymptotically stable, as in Theorem 1.1 (iii) below. The global stability of the traveling fronts
reinforces their fundamental role in reaction-diffusion equations.

Media are however rarely homogeneous, and reaction-diffusion equations with spatially pe-
riodic coefficients, such as (1.1), are some of the most important classes of non-homogeneous
equations. Their study has attracted much attention in the mathematical literature. One of the
reasons for that interest is that the question of the existence of pulsating fronts is rather subtle.
Indeed, the possible presence of multiple ordered L-periodic steady states may prevent the exis-
tence of pulsating fronts connecting the extremal steady states 0 and 1, see [16, 23, 31, 32]. On
the other hand, it is known from [23, 27] that such a possibility does not happen provided that
equation (1.1) admits a bistable structure in the sense that any L-periodic steady state strictly
between 0 and 1 is linearly unstable (we recall that 0 and 1 are linearly stable steady states).
With such a bistable structure, pulsating fronts have been proved to exist by using different ap-
proaches [22, 23, 27]. Furthermore, in an earlier paper by the first two authors [18], the bistable
structure was verified under various explicit conditions on the functions a(x) and f(x, u) when
the spatial period L is large or small. In particular, if in addition to (A1)-(A2) the function f is
assumed to satisfy

(A3)

∫ 1

0
f(x, u) du > 0 and ∂uf(x, b(x)) > 0 for all x ∈ R, 1

then a pulsating front with a positive speed cL exists when L is large (i.e., the medium oscillates
slowly). On the other hand, if the function x 7→

∫ 1
0 f(x, u)du is not of a constant sign, it was

shown in [17] that, when L is large, non-stationary pulsating fronts do not exist, while multiple
stationary fronts do exist (see also [17, 34, 38, 55, 57] for further results on the existence of
stationary fronts for bistable equations of the type (1.1)). We point out that, apart from the
aforementioned works, the existence of pulsating fronts was investigated in [43, 46, 54, 56, 58].
References [43, 46, 58] were also concerned with generalized transition fronts in the sense of [9, 10],
for which the media can be non-periodic (see [3, 14, 20, 24, 25, 41, 45, 47, 49, 52] for further
propagation or blocking results in non-periodic bistable media).

For clarity, we collect some known results from [17, 18] concerning the existence and qualitative
properties of pulsating front which will be frequently used in the present work.

1Together with (A1) and the C1 smoothness of f , condition (A3) implies that b ∈ C1(R).
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Theorem 1.1. [17, 18] Let (A1)-(A3) hold. Then there exists L∗ > 0 such that, for any L ≥ L∗,
problem (1.1) admits a pulsating front UL(t, x) = φL(x− cLt, x/L) with speed cL. Furthermore:

(i) cL > 0, cL is the unique front speed and the map L 7→ cL is bounded in [L∗,+∞);

(ii) the front UL is unique up to shifts in time t, and ∂tUL(t, x) > 0 for all (t, x) ∈ R2;

(iii) the front UL is globally asymptotic stable in the sense that, for any u0 ∈ C(R)∩L∞(R) with

lim inf
x→−∞

u0(x) > 1− δ0 and lim sup
x→+∞

u0(x) < δ0, (1.6)

where δ0 > 0 is the constant given in (A2), we have

lim
t→+∞

‖u(t, ·;u0)−UL(t+τ0, ·)‖L∞(R) = lim
t→+∞

‖u(t, ·;u0)−φL(·−cLt−cLτ0, ·/L)‖L∞(R) = 0,

where (t, x) 7→ u(t, x;u0) is the solution of the Cauchy problem for (1.1) with initial condi-
tion u0, and τ0 ∈ R is a constant depending on u0;

(iv) the front speed cL and the front profile φL are continuous with respect to L ≥ L∗ in the sense
that cL → cL0 as L → L0 in [L∗,+∞) and, up to translations of φL in such a way that
φL(0, 0) = φL0(0, 0), there holds φL− φL0 → 0 in H1(R× (0, 1)) and UL → UL0, φL → φL0

locally uniformly in R2.

More precisely, we refer to [18, Theorems 1.1, 1.5, 1.9] for the existence, uniqueness, mono-
tonicity and global stability of pulsating fronts as well as the sign property of cL. The continuity
of (cL, φL, UL) with respect to L follows directly from [18, Theorem 1.8] and its proof, together
with the uniform boundedness of ‖∂tUL‖L∞(R2) + ‖∂xUL‖L∞(R2) with respect to L ∈ [L∗,+∞)
(which itself follows from standard parabolic estimates). The boundedness of cL is an easy con-
sequence of [17, Theorem 1.4] which established a uniform bound for the propagation rates of all
generalized transition fronts.

In this paper, we are chiefly interested in the asymptotic behavior of the front speeds cL and
the front profiles φL as L→ +∞. Before stating our main results, let us first recall some related
results in the spatially periodic Fisher-KPP case,2 i.e., when, instead of (A1)-(A2), f(x, u) is
periodic in x with f(·, 0) = f(·, 1) = 0 in R and

0 < f(x, u) ≤ ∂uf(x, 0)u for all (x, u) ∈ R× (0, 1). (1.7)

In this case, for each L > 0, there is a minimal front speed c∗L of pulsating fronts [8, 53] (namely,
pulsating fronts exist for all speeds c ≥ c∗L, and do not exist if c < c∗L), this minimal speed c∗L is
positive and non-decreasing with respect to L > 0 [44], the limit of c∗L as L→ +∞ was determined
in [34, 35],3 and the homogenization limit of c∗L as L → 0 was characterized in [26, 39, 50].
The proofs in the aforementioned papers strongly rely on the fact that the minimal speed is
linearly determined and has a variational characterization in terms of principal eigenvalues of
parameterized elliptic operators [11, 12, 42, 53]. However, for equation (1.1) with the bistable

2This case is named after the seminal works [29, 40] on homogeneous equations.
3In multidimensional periodic media, even if the minimal speed c∗L(e) of pulsating fronts in a given direction e is

not monotone in general with respect to L for equations with periodic drifts, the existence of a finite limit of c∗L(e)
as L → +∞ is still known, see [35, 44]. We also refer to [1, 16, 32, 33] for further results on the dependence
of the minimal or unique speeds of multidimensional pulsating monostable or bistable fronts with respect to the
direction e.
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assumptions (A1)-(A2) or (A1)-(A3), the unique front speed cL is not linearly determined and
it is not monotone in L in general. More precisely, first of all, the limit of cL as L → 0 was
determined in [18, 37] under certain assumptions (see also Remark 1.5 below). Moreover, in
the case where the diffusion rate a is a constant and b in (A1) is piecewise constant, numerical
results [34] showed that cL can in some cases be increasing in small L and then decreasing for
larger L. On the other hand, if a(x) truly depends on x while the reaction is homogeneous and
has the special form f(u) = u(1 − u)(u − b) with 0 < b < 1/2, it was proved in [19] that the
speed cL for L ' 0 is smaller than its limit as L→ 0.

In short, the question whether, in the bistable case (A1)-(A3), the speeds cL of the pulsating
fronts of (1.1) (which exist for all large L by Theorem 1.1) converge as L → +∞ is the main
remaining open problem in the theory of bistable pulsating fronts. This question, which is
definitely more challenging than in the Fisher-KPP case (1.7), is solved in this paper (see the
main Theorem 1.2 below). Furthermore, a formula for the limit speed is established, as well as
further properties on the front profiles as L→ +∞.

Convergence of the front speeds cL as L→ +∞

In this section, we state our main result on the convergence of cL as L→ +∞. To do so, we need
some notations. For each y ∈ R, let u(t, x) = ψ(x− c(y)t, y) be the traveling front connecting 0
and 1, with speed c(y), of the following equation with coefficients frozen at y:

ut = a(y)uxx + f(y, u) for t ∈ R and x ∈ R. (1.8)

Namely, (ψ(ξ, y), c(y)) satisfies{
a(y)∂ξξψ(ξ, y) + c(y)∂ξψ(ξ, y) + f(y, ψ(ξ, y)) = 0 for ξ ∈ R,

ψ(−∞, y) = 1, ψ(+∞, y) = 0.
(1.9)

In (1.8)-(1.9), y is viewed as a parameter, since the derivatives only concern the variables (t, x)
or ξ. Under conditions (A1)-(A3), it is well known [4, 28] that the function c : y 7→ c(y) is
1-periodic and positive, and that for each y ∈ R, the wave profile ψ(ξ, y) is unique up to shifts
in ξ (see Section 4.1 below for more properties of the speed c(y) and the wave profile ψ(ξ, y), in
particular the C1 smoothness of y 7→ c(y)). Throughout this paper, we normalize ψ(ξ, y) uniquely
in such a way that

ψ(0, y) =
1

2
for each y ∈ R, (1.10)

and we denote by c∗ the harmonic mean of the 1-periodic function y 7→ c(y), that is,

c∗ =

(∫ 1

0
c−1(y)dy

)−1

. (1.11)

Theorem 1.2. Let (A1)-(A3) hold, and for any L ≥ L∗ (with L∗ > 0 as in Theorem 1.1), let cL
be the unique front speed of the pulsating front of (1.1). Then, cL → c∗ as L→ +∞.

Several comments are in order. Let us first point out that Theorem 1.2 coincides with the
known result for the minimal front speeds c∗L of equations with Fisher-KPP reactions (1.7) in the
special case where the function r := ∂uf(x, 0) is a constant, see [35, Corollary 2.4]. Indeed, in
the latter case, the limit of the minimal front speeds c∗L as L→ +∞ is given by

2
√
r

(∫ 1

0
(a(y))−1/2dy

)−1

,
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which is equal to the harmonic mean of the 1-periodic function y 7→ w∗(y) := 2
√
r a(y), where,

for each y ∈ R, 2
√
r a(y) is the minimal front speed of the associated homogeneous equation (1.8).

In the case where ∂uf(x, 0) truly depends on x, the limit of the minimal front speeds c∗L has a
variational formula in terms of the underlying parameters (see [35, Theorem 2.3]), but it may
be not equal to the harmonic mean of the function w∗ (see [34] for the case where ∂uf(x, 0) is a
piecewise constant function). It is noteworthy that, in our bistable case (A1)-(A3), Theorem 1.2
shows that the unique wave speed cL converges to the harmonic mean c∗ of the function y 7→ c(y),
no matter whether f depends on x or not.

Theorem 1.2 is proved by taking the large-time and large-space scaling, i.e., t→ Lt, x→ Lx,
and determining the singular limit of the Cauchy problem of the rescaled equation

∂tuL = L−1∂x(a(x)∂xuL) + Lf(x, uL), t ∈ R, x ∈ R. (1.12)

For a given initial condition independent of L, the singular limit of the solutions uL of (1.12)
as L → +∞ has been widely investigated, even in the general case where the coefficients are
allowed to be non-periodic. Due to the smallness of the diffusion and the largeness of the reaction
in (1.12), an interface separating the regions where uL(t, x)→ 1 and uL(t, x)→ 0 is developed in a
short time. This property has been proved by different approaches, see e.g. [30] for a probabilistic
approach and [5, 6, 7, 15] for a viscosity solution approach. Particularly, in our spatially periodic
case, Gärtner’s result [30] suggested that, as L→ +∞, the interface propagates at a mean speed
equal to c∗. Thanks to this observation and further crucial uniform estimates on the boundedness
of the wave length (more precisely, see Theorem 1.7 below), we show that c∗ is the limit of cL by
constructing suitable sub- and super-solutions of (1.12).

Notice that, if the assumption
∫ 1

0 f(x, u)du > 0 in (A3) if replaced by
∫ 1

0 f(x, u)du < 0,
equation (1.1) admits a pulsating front with negative speed cL < 0 for all large L, see [18]. In this
situation, the quantity c∗ is negative, and similarly to Theorem 1.2, we can prove that cL → c∗ as
L→ +∞. Furthermore, as an immediate consequence of this observation and [17, Theorem 1.7],
we have the following classification of the asymptotic behavior of cL as L→ +∞.

Corollary 1.3. Let (A1)-(A2) hold. Then, we have

(i) if (A3) holds, then cL > 0 for all large L, and cL → c∗ as L→ +∞;

(ii) if
∫ 1

0 f(x, u)du < 0 and ∂uf(x, b(x)) > 0 for all x ∈ R, then cL < 0 for all large L, and
cL → c∗ as L→ +∞;

(iii) if the functions a, ∂uf(·, 0) and ∂uf(·, 1) are constants and if

min
x∈R

∫ 1

0
f(x, u)du < 0 < max

x∈R

∫ 1

0
f(x, u)du,

then (1.1) admits pulsating fronts for all large L, with necessarily cL = 0, that is, the fronts
are stationary.

Remark 1.4. By [18], the conditions (A1)-(A3) not only imply the existence of pulsating fronts
of (1.1) satisfying (1.4), but they also provide the existence of pulsating fronts propagating in
the opposite direction for the same range of periods L. Namely, for any L ≥ L∗, (1.1) admits
a pulsating front of the type ŨL(t, x) = φ̃L(x + c̃Lt, x/L), where φ̃L is 1-periodic in the second
variable, and satisfies the reversed limiting conditions:

φ̃L(−∞, y) = 0, φ̃L(+∞, y) = 1 uniformly in y ∈ R. (1.13)
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Moreover, both cL and c̃L are positive. It is worthy pointing out that if the functions a(x)
and f(x, u) are not even in x, the speeds cL and c̃L may be dramatically different [16]. Neverthe-
less, since the function y 7→ c(y) given in (1.9) is 1-periodic and c∗ in (1.11) can be expressed as

c∗ =

(∫ 1/2

−1/2
c−1(y)dy

)−1

=

(∫ 1/2

−1/2
c−1(−y)dy

)−1

,

it follows from Theorem 1.2 that cL and c̃L have the same limit c∗ as L→ +∞.

Remark 1.5. For Fisher-KPP functions f satisfying (1.7), for each L > 0, pulsating fronts
of (1.1) exist, with speeds not smaller than a minimal speed c∗L > 0, and the map L 7→ c∗L is non-
decreasing [44], hence limL→0 c

∗
L ≤ limL→+∞ c

∗
L (and the inequality is strict if the coefficients

a(x) and ∂uf(x, 0) are not constant in x).
In the bistable case with assumptions (A1)-(A3), the situation is in general different and

more complicated. Consider for instance a function f defined by f(x, u) = u(1 − u)(u − b(x))
for (x, u) ∈ R × [0, 1], where b : R → (0, 1/2) is a given 1-periodic function of class C1. Such a
function f satisfies (A1)-(A3).

On the one hand, if a is constant, then it follows from [18, Theorems 1.2 and 1.4] that
equation (1.1) admits a pulsating front with speed cL for every small L > 0, and that cL → c0 as
L → 0, where c0 =

√
2a (1/2− b̄) is the unique speed of a traveling front connecting 0 and 1 for

the homogeneous equation ut = auxx + u(1− u)(u− b̄), with b̄ =
∫ 1

0 b(x) dx ∈ (0, 1/2). With the

notations (1.9), one has c(y) =
√

2a (1/2 − b(y)) for each y ∈ R, and Theorem 1.2 implies that

cL → c∗ =
√

2a
( ∫ 1

0 (1/2− b(y))−1dy
)−1

as L→ +∞. Therefore, the Cauchy-Schwarz inequality
yields c0 ≥ c∗ and even c0 > c∗ as soon as b is not constant. This is in sharp contrast with the
inequality limL→0 c

∗
L ≤ limL→+∞ c

∗
L under the Fisher-KPP assumption (1.7).

On the other hand, if b ≡ b̄ ∈ (0, 1/2) is constant, it follows from [18, Theorems 1.2
and 1.4] that equation (1.1) admits a pulsating front with speed cL for every small L > 0,4

and that cL → c0 as L → 0, where c0 =
√

2aH (1/2 − b̄) is the unique speed of a traveling
front connecting 0 and 1 for the homogeneous equation ut = aHuxx + u(1 − u)(u − b̄), with
aH = (

∫ 1
0 a(y)−1dy)−1 being the harmonic mean of the diffusion coefficient a. With the nota-

tions (1.9), one has c(y) =
√

2a(y) (1/2 − b̄) for each y ∈ R, and Theorem 1.2 implies that

cL → c∗ =
√

2 (1/2− b̄)
( ∫ 1

0

√
a(y)

−1
dy
)−1

as L→ +∞. Therefore, the Cauchy-Schwarz inequa-
lity yields c0 ≤ c∗ and even c0 < c∗ as soon as a is not constant.

To sum up, the influence of the oscillations of the heterogeneities in (1.1) under the bistable
assumptions (A1)-(A3) turns out to be more complicated than under the Fisher-KPP assump-
tion (1.7). Moreover, the oscillations in the diffusion and reaction terms can lead to opposite
effects on the bistable front speed.

Convergence of the front profiles φL as L→ +∞

The second main result of the present paper is concerned with the convergence as L → +∞ of
the front profiles φL(ξ, y) given in (1.4). It is difficult to address this problem by considering the
singular equation (1.12), since the solutions φL(L(x−cLt), x) of (1.12) converge to a step function
as L → +∞ for any t ∈ R (this will actually be a consequence of Theorem 1.8 below), hence
the information of φL(ξ, y) is lost when passing to the limit as L → +∞. We instead show the

4Notice that, in this case, pulsating fronts are even known to exist for all L > 0 if the function a is uniformly
close to a constant [27, 54].
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convergence of φL(ξ, y) by constructing sub- and super-solutions for the original equation (1.1)
when L is large (as a matter of fact, this approach also provides the convergence of cL as L→ +∞,
as will follow from the proof of Theorem 1.6 below).

Before stating the result, we point out that, since equation (1.1) is invariant by translation
in time t, we have to suitably shift the fronts in order to pass to the limit as L→ +∞. Namely,
with L∗ > 0 as in Theorem 1.1, since for each L ≥ L∗ the pulsating front UL is unique up shifts
in time, with UL(−∞, x) = 0 and UL(+∞, x) = 1 for all x ∈ R, we normalize for definiteness UL
by requiring

UL(0, 0) =
1

2
. (1.14)

Clearly, under such a normalization, UL(t, x) is uniquely determined, and the front profile φL(ξ, y)
is uniquely determined and satisfies φL(0, 0) = 1/2. Now, for each L ≥ L∗, since ∂ξφL < 0 in R2

and φL satisfies (1.4) and is at least of class C1(R2), the implicit function theorem yields the
existence of a uniquely determined C1(R) function y 7→ ζL(y) such that

φL(ζL(y), y) =
1

2
. (1.15)

Clearly, ζL(0) = 0 and ζL(y) is 1-periodic in y ∈ R. Moreover, it follows from Theorem 1.1 (ii)
and (iv) that the function (L, y) 7→ ζL(y) is continuous in [L∗,+∞)× R.

For the convergence of the front profiles as L→ +∞, in addition to (A1)-(A3), the following
condition will also be assumed:

(A4) the function a is a constant, and there exists a constant δ′0 ∈ (0, 1/2) such that ∂xf(x, u) = 0
for all x ∈ R and u ∈ [0, δ′0]∪[1−δ′0, 1], and then for all x ∈ R and u ∈ [−δ′0, δ′0]∪[1−δ′0, 1+δ′0]
by (1.3).

Theorem 1.6. Let (A1)-(A4) hold. For each L ≥ L∗, let UL(t, x) = φL(x − cLt, x/L) be the
pulsating front of (1.1) given by Theorem 1.1, and let ζL be the function given by (1.15). Let
also (ξ, y) 7→ ψ(ξ, y) and y 7→ c(y) be given in (1.9)-(1.10). Then,

sup
y∈R, ξ∈R

∣∣∣∣φL(ξ + ζL(y),
ξ

L
+ y

)
− ψ(ξ, y)

∣∣∣∣ −→L→+∞
0. (1.16)

Moreover,

sup
y∈R, x∈[−A,A]

∣∣∣∣∣ζL (y +
x

L

)
− ζL(y)− L

∫ y+x/L

y

(
1− cL

c(s)

)
ds

∣∣∣∣∣ −→L→+∞
0 (1.17)

for every A > 0, and

sup
L≥L∗, y∈R, x∈[−L,L]

∣∣∣∣∣ζL (y +
x

L

)
− ζL(y)− L

∫ y+x/L

y

(
1− cL

c(s)

)
ds

∣∣∣∣∣ < +∞. (1.18)

Several remarks are in order. First of all, by choosing y = 0 and x = y0L for some y0 ∈ (0, 1]
in (1.18), one has

sup
L≥L∗

∣∣∣∣ζL(y0)− L
∫ y0

0

(
1− cL

c(s)

)
ds

∣∣∣∣ < +∞.

In the special case y0 = 1, since ζL(1) = ζL(0) = 0, we rediscover that cL → c∗ = (
∫ 1

0 c(s)
−1ds)−1

as L → +∞, here under the additional assumption (A4). Furthermore, since the function y 7→
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c(y) is in general not constant even under the assumption (A4), it then follows that ζL(y0) is
unbounded in L ≥ L∗ for each y0 ∈ (0, 1) such that y0

∫ 1
0 c(s)

−1ds 6=
∫ y0

0 c(s)−1ds. On the other
hand, (1.18) implies that ζL(y0) = O(L) as L → +∞ for all y0 ∈ R (that will coincide with the
observation in Theorem 1.8 (iii) below).

Secondly, we point out that (1.16) can be equivalently rephrased as

sup
y∈R, ξ∈R

∣∣∣∣UL(Ly − ζL(y)

cL
, ξ + Ly

)
− ψ(ξ, y)

∣∣∣∣ −→L→+∞
0.

As we will see, this last formulation implies that, as L → +∞, the spatial profiles UL(t, ·) look,
at any time t and uniformly in space, like shifts of the profiles ψ(·, y) of traveling fronts of the
homogeneous equations (1.9) for some values of y. Indeed, by (1.18) and limL→+∞ cL = c∗,
the continuous functions z 7→ z − ζL(z)/L converge as L → +∞ locally uniformly in z ∈ R
to the function z 7→ c∗

∫ z
0 c(s)

−1ds (by applying (1.18) with y = 0 and x = Lz). Therefore, for
every L > 0 large enough and for every t ∈ [0, L/cL], there is zL,t ∈ R such that zL,t−ζL(zL,t)/L =
cLt/L. Hence UL(t, ·) = UL((LzL,t − ζL(zL,t))/cL, ·) and ‖UL(t, ·)− ψ(· − LzL,t, zL,t)‖L∞(R) → 0
as L→ +∞ uniformly in t ∈ [0, L/cL]. Since the profiles x 7→ UL(t, x+cLt) in the frames moving
with speeds cL are periodic in time with period L/cL, one finally gets that

sup
t∈R

d
(
UL(t, ·),

{
ψ(·+ a, y) : a ∈ R, y ∈ R

})
−→

L→+∞
0, (1.19)

where d is the distance associated with the norm in L∞(R). Actually, the convergence of the
profiles of the pulsating fronts to profiles of homogeneous traveling fronts as L → +∞ is quite
natural since equation (1.1) looks like, as L → +∞, families of locally spatially homogeneous
equations. But the difficulty in Theorem 1.6 and in the consequent formula (1.19) is to show
rigorously this convergence and its uniformity with respect to time and space.

The strategy of the proof of Theorem 1.6 can be briefly summarized as follows. First, by
virtue of Theorem 1.1 (iii) on the global stability of the pulsating front φL, we show that, up to
some shift in ξ, φL(·, y) is close to ψ(·, y) when L is sufficiently large. Next, we use Theorem 1.8
below on the uniform boundedness of the front width to determine the limit shifts appearing
in (1.16). The assumption (A4) is used in the construction of suitable sub- and super-solutions
(see Lemmas 4.2-4.3 below), which is the key point of the proof of Theorem 1.6. We believe that
(A4) is only a technical assumption, as one can see from Theorem 1.2 that the wave speed cL
converges to c∗ without this assumption. However, at the moment, it is unclear how to remove
this assumption in Theorem 1.6.

Uniform boundedness of front width

As a matter of fact, Theorems 1.2 and 1.6 on the limit speeds and profiles of the pulsating fronts
as L → +∞ are based on the uniform boundedness of the width of the front profiles, in a sense
to be made more precise below. Under conditions (A1)-(A3), with L∗ > 0 as in Theorem 1.1, it
follows from the definition (1.4) of pulsating fronts that, for any δ ∈ (0, 1/2] and L ≥ L∗, there
exists a constant C > 0 such that

sup
x∈R

diam
(
{t ∈ R : δ ≤ UL(t, x) ≤ 1− δ}

)
≤ C (1.20)

and
sup
t∈R

diam
(
{x ∈ R : δ ≤ UL(t, x) ≤ 1− δ}

)
≤ C, (1.21)
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where diam(E) denotes the diameter of a set E ⊂ R. Notice that, for each δ ∈ (0, 1/2], L ≥ L∗
and x ∈ R, the set {t ∈ R : δ ≤ UL(t, x) ≤ 1 − δ} is a compact interval, from (1.4) and the
continuity of UL and its monotonicity with respect to t. Hence the diameter of the set in (1.20)
is equal to its length. We also point out that property (1.21) could be rephrased equivalently by
saying that, for any λ ∈ (0, 1), the distance between cLt and the level set {x ∈ R : UL(t, x) = λ}
is uniformly bounded in t.

Our next result, which is a key stone in determining the convergences of front profiles φL
and front speeds cL as L → +∞, and which has its own interest, shows that the constants C
in (1.20)-(1.21) can be taken independently of L ≥ L∗.

Theorem 1.7. Let (A1)-(A3) hold. For each L ≥ L∗, with L∗ as in Theorem 1.1, let UL be a
pulsating front of (1.1). Then, for any δ ∈ (0, 1/2], there exist constants C > 0 and β > 0 (both
are independent of L) such that (1.20) and (1.21) hold true for all L ≥ L∗, and

∂tUL(t, x) ≥ β for all L ≥ L∗ and (t, x) ∈ R2 such that δ ≤ UL(t, x) ≤ 1− δ. (1.22)

The following theorem is a consequence of Theorem 1.7.

Theorem 1.8. Let (A1)-(A3) hold. For each L ≥ L∗, with L∗ as in Theorem 1.1, let φL be a
front profile of (1.1) and let ζL be defined by (1.15) and ζL(0) = 0. Then,

(i) the following two convergences hold uniformly in L ≥ L∗ and y ∈ R:

lim
ξ→−∞

φL(ξ + ζL(y), y) = 1 and lim
ξ→+∞

φL(ξ + ζL(y), y) = 0;

(ii) for any δ ∈ (0, 1/2], there exists β > 0 (independent of L) such that

∂ξφL(ξ, y) ≤ −β for all L ≥ L∗ and (ξ, y) ∈ R2 such that δ ≤ φL(ξ, y) ≤ 1− δ;

(iii) the function (L, y) 7→ ζL(y)/L is continuous and bounded in [L∗,+∞)× R.

Notice that the continuity of (L, y) 7→ ζL(y)/L in [L∗,+∞) × R follows from the comments
after (1.15), while the quantities ζL(y) are in general unbounded with respect to L ≥ L∗, from
the discussion after Theorem 1.6.

Theorems 1.7 and 1.8 mean that the fronts do not flatten as L→ +∞. Their proofs are based
on some intersection number arguments inspired by [2] and from the comparison of the pulsating
fronts with some well chosen stationary solutions.

Outline of the paper

Section 2 is devoted to the proof of Theorems 1.7 and 1.8 on the uniform boundedness of the
wave lengths of the pulsating fronts UL with respect to L ≥ L∗. The proof of Theorem 1.2 on
the limit of the speeds cL as L→ +∞ is done in Section 3, and that of Theorem 1.6 on the limit
of the profiles is done in Section 4. Lastly, Section 5 is an appendix on some properties of the
profiles ψ(ξ, y) and speeds c(y) of the family of homogeneous equations (1.8)-(1.9).
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2 Uniform boundedness of front width: proofs of Theorems 1.7
and 1.8

This section is devoted to the proof of Theorems 1.7 and 1.8. Our proof strongly relies on a zero
number argument, and the classification of all solutions to the ordinary differential equations

(aLw
′)′ + fL(x,w) = 0 in R, w(0) ∈ (0, 1), (2.1)

according to the number of intersections of their graphs with those of the constant solutions 0
and 1. First, after recalling in Section 2.1 some properties on intersection number arguments, we
investigate in Section 2.2, for any given L ≥ L∗ with L∗ > 0 as in Theorem 1.1 and for any time
t ∈ R, the number and type of intersection points of the spatial profiles UL(t, ·) of the pulsating
fronts UL with all solutions to (2.1). Then, using a passage to the limit as L → +∞ and some
properties of the stationary solutions to the y-frozen equation (1.8), we prove Theorem 1.7 by
contradiction in Section 2.3. Lastly, we show in Section 2.4 that Theorem 1.7 implies Theorem 1.8.

2.1 Zero number properties

We begin with the collection of some zero number properties which will be used later. We refer
the reader to [2, 21, 23, 48] for a more detailed overview of the general arguments and their
applications.

Let us first introduce some fundamental notions. For any sign-changing function w : R→ R,
let Z[w] denote the number of sign changes of w, and let SGN [w] (which is defined when Z[w] <
+∞) be a word consisting of + and −, which describes the sign changes of w. More precisely,
Z[w] is the supremum of all k ∈ N∗ such that there exist real numbers x1 < x2 < · · · < xk+1 with

w(xi) · w(xi+1) < 0 for all i = 1, 2, · · · , k,

and if Z[w] < +∞, SGN [w] = [sgn(w(x1)), · · · , sgn(w(xk+1))], where sgn(w) ∈ {−,+} is the
classical sign function, and x1 < · · · < xk+1 is the sequence that appears in the definition of
Z[w] with maximal k. When w does not change sign, for convenience, we set Z[w] = 0 and
SGN [w] = [sgn(w)] if w 6≡ 0, and set Z[w] = −1 and SGN [w] = [ ] (the empty word) if w ≡ 0.
By definition, the length of the word SGN [w] is equal to Z[w] + 1.

For any two words A,B consisting of + and −, we write ABB (or equivalently, B CA) if B
is a subword of A. For example, any element in {[+−], [+], [−], [ ]} is a subword of [+−].

It follows from the above definitions that Z is semi-continuous with respect to the pointwise
convergence, as stated below.

Lemma 2.1. Let (wn)n∈N be a sequence of real-valued functions converging to w pointwise on R.
Then,

Z[w] ≤ lim inf
n→+∞

Z[wn], and SGN [w]C lim inf
n→+∞

SGN [wn].

The following lemma is an easy application of the zero number properties for solutions to a
linear parabolic equation of the form

∂tw = a(t, x)∂xxw + b(t, x)∂xw + c(t, x)w in (t1, t2)× R, (2.2)

where −∞ ≤ t1 < t2 ≤ +∞ and the coefficients a > 0, a−1, at, ax, axx, b, bt, bx, c belong
to L∞((t1, t2)× R).
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Lemma 2.2. [2, 21, 23] Let L > 0, let u1(t, x) be a bounded solution of the Cauchy problem
associated with (1.1) in (0,+∞)×R, with a piecewise continuous bounded initial condition u1(0, ·),
and let u2(x) be a C2(R) stationary solution of (1.1). Assume also that u1(0, ·)−u2 changes sign
at most finitely many times on R, that is, Z[u1(0, ·)− u2] < +∞. Then,

(i) For any 0 ≤ t < t′ < +∞, we have

Z[u1(t, ·)− u2] ≥ Z[u1(t′, ·)− u2]

and
SGN [u1(t, ·)− u2]B SGN [u1(t′, ·)− u2].

(ii) If u1(t∗, x∗) = u2(x∗) and ∂xu1(t∗, x∗) = u′2(x∗) for some t∗ > 0 and x∗ ∈ R, and
if u1(t, x) 6≡ u2(x) in (0,+∞)× R, then

Z[u1(t, ·)− u2]− 2 ≥ Z[u1(s, ·)− u2] ≥ 0 for all t ∈ (0, t∗) and s ∈ (t∗,+∞).

Since the function (x, u) 7→ f(x, u) is globally Lipschitz-continuous with respect to u ∈ R
uniformly in x ∈ R, it is easily seen that w(t, x) := u1(t, x) − u2(x) satisfies an equation of
the form (2.2) in (0,+∞) × R with a bounded continuous coefficient c defined by c(t, x) :=
(fL(x, u1(t, x))−fL(x, u2(x)))/(u1(t, x)−u2(x)) if u1(t, x) 6= u2(x) and c(t, x) := ∂ufL(x, u1(t, x))
if u1(t, x) = u2(x). Then, the proof of Lemma 2.2 follows from that of [23, Lemma 2.4] with some
obvious modifications; therefore, we omit the details.

2.2 Intersections of pulsating fronts with stationary solutions

Now, for any given L ≥ L∗, with L∗ > 0 as in Theorem 1.1, we investigate Z[UL(t, ·) − w]
and SGN [UL(t, ·)− w] at any time t ∈ R, where UL : R2 → (0, 1) is the pulsating front of (1.1)
and w is an arbitrary C2(R) solution to (2.1). Let us first classify the solutions of (2.1) as follows.

Lemma 2.3. Let L ≥ L∗ be fixed, and let w ∈ C2(R) be a solution of (2.1). Then, w must be
one of the following types:

(a) Z[w − 1] = 1 and Z[w] = 1;

(b) Z[w − 1] = 0, Z[w] = 0, and 0 < w < 1 in R;

(c) Z[w − 1] = 0, Z[w] = 1, w < 1 in R, and SGN [w] = [−,+];

(d) Z[w − 1] = 0, Z[w] = 1, w < 1 in R, and SGN [w] = [+,−];

(e) Z[w − 1] = 0, Z[w] = 2, w < 1 in R, and SGN [w] = [−,+,−].

Proof. First of all, since w(0) ∈ (0, 1), we have Z[w − 1] ≥ 0 and Z[w] ≥ 0. Suppose now that
there exists some x1 ∈ R such that w(x1) = 1. It is then clear that w′(x1) 6= 0 (otherwise,
since fL(·, 1) ≡ 0, the Cauchy-Lipschitz theorem would imply that w ≡ 1 in R, a contradiction
with w(0) ∈ (0, 1)).

Then, we observe that, if w′(x1) > 0, then w(x) > 1 for all x > x1. Indeed, otherwise, there
would exist some x2 > x1 such that w(x2) = 1, w′(x2) < 0 and w(x) > 1 for all x ∈ (x1, x2).
Since maxR fL(·, u) < 0 for all u > 1, one would have (aLw

′)′ > 0 in (x1, x2), and hence,
aL(x2)w′(x2) > aL(x1)w′(x1) > 0. Since a is a positive function, there holds w′(x2) > 0, which is
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a contradiction. Similarly, we can conclude that, if w′(x1) < 0, then w(x) > 1 for all x < x1. As
a consequence, we obtain that Z[w − 1] ≤ 2, and if Z[w − 1] = 2, then SGN [w − 1] = [+,−,+].

Since minR fL(·, u) > 0 for all u < 0, with similar arguments as above, one gets that Z[w] ≤ 2,
and if Z[w] = 2, then SGN [w] = [−,+,−].

Consequently, we always have

Z[w − 1] + Z[w] ≤ 2.

Observe that the Cauchy-Lipschitz theorem also implies that, if w ≤ 1 in R (respectively w ≥ 0
in R), then w < 1 in R (respectively w > 0 in R). Therefore, since 0 < w(0) < 1, one gets
that w < 1 in R if Z[w − 1] = 0 (respectively w > 0 in R if Z[w] = 0).

Now, to complete the proof, it remains to exclude the following three cases:

• Z[w − 1] = 1, Z[w] = 0 and SGN [w − 1] = [+,−];

• Z[w − 1] = 2, Z[w] = 0 and SGN [w − 1] = [+,−,+];

• Z[w − 1] = 1, Z[w] = 0 and SGN [w − 1] = [−,+].

In the first two cases, one can find a continuous function g : R → [0, 1] satisfying (1.6) such
that g < w in R. Let u(t, x) be the solution of the Cauchy problem associated with (1.1) with
initial condition u(0, x) = g(x). Then, the comparison principle immediately implies that

u(t, x) < w(x) for all t ≥ 0 and x ∈ R. (2.3)

On the other hand, it follows from Theorem 1.1 (iii) that ‖u(t, ·) − UL(t + τ0, ·)‖L∞(R) → 0
as t → +∞, for some τ0 ∈ R. Remember that the wave speed cL is positive. This implies in
particular that u(t, 0)→ 1 as t→ +∞. Since w(0) ∈ (0, 1), we have u(t, 0) > w(0) for all large t,
which is a contradiction with (2.3).

Finally, if the last case occurs, then one reaches a similar contradiction by noticing that
equation (1.1) admits a pulsating front of the type ŨL(t, x) = φ̃L(x + c̃Lt, x/L) satisfying the
asymptotic conditions (1.13), and that such a front is also globally asymptotic stable, with positive
speed c̃L (see Remark 1.4). The proof of Lemma 2.3 is thus complete.

Lemma 2.4. Let L ≥ L∗ be fixed, let UL be a pulsating front of (1.1), and let w ∈ C2(R) be a
solution of (aLw

′)′ + fL(x,w) = 0 in R. Then Z[UL(t, ·) − w] ≤ 2 for all t ∈ R. Furthermore,
if Z[UL(t, ·)− w] = 2 for some t ∈ R, then there must hold

SGN [UL(t, ·)− w] = [+,−,+]. (2.4)

Proof. Let t∗ ∈ R be an arbitrary time such that UL(t∗, x∗) = w(x∗) for some x∗ ∈ R. Denote
α := w(x∗). Notice that α ∈ (0, 1) since 0 < UL < 1 in R2, hence w(· + x∗) solves (2.1) and
Lemma 2.3 applies to w(·+ x∗) and then to w as well. To show Lemma 2.4, it suffices to prove
that either Z[UL(t∗, ·)− w| ≤ 1, or Z[UL(t∗, ·)− w] = 2 and (2.4) holds with t = t∗.

For any z ∈ R, let û(t, x; z) be the solution of the Cauchy problem associated with (1.1) with
initial condition

û(0, x; z) = H(z − x),

where H denotes the Heaviside function defined by H(y) = 0 if y < 0 and H(y) = 1 if y ≥ 0.
When z < x∗, we define

τ(z) := min
{
t > 0 : û(t, x∗; z) = α

}
. (2.5)
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Let us first observe that τ(z) is well defined and 0 < τ(z) < +∞. Indeed, since cL > 0, it follows
from Theorem 1.1 (iii) that limt→+∞ û(t, x∗; z) = 1 > α. This, together with the continuity
of û(·, x∗; z) in [0,+∞) and the fact that û(0, x∗; z) = 0 < α, immediately implies that the
minimum in (2.5) is well defined and 0 < τ(z) < +∞. Moreover, since û(t, x; z)→ 0 as z → −∞
locally uniformly in (t, x) ∈ [0,+∞)× R, we have

lim
z→−∞

τ(z) = +∞.

Furthermore, by the proof of [23, Lemma 3.1], there is an entire solution û∞ : R2 → (0, 1) of (1.1)
that is steeper than any other entire solution between 0 and 1,5 and such that the following limit
exists in the topology of C1;2

t;x;loc(R
2), up to extraction of a subsequence:

lim
k→+∞

û(t+ τ(−kL), x;−kL) = û∞(t, x). (2.6)

Next, we claim that
û∞(t, x) ≡ UL(t+ t∗, x). (2.7)

Indeed, since the pulsating front of (1.1) is unique up to shifts in time (see Theorem 1.1 (ii))
and since UL is steeper than any other entire solution between 0 and 1 by [31, Theorem 1.8], the
function UL is then identically equal to û∞ up to a shift in time. Since û∞(0, x∗) = UL(t∗, x∗) = α,
we obtain (2.7).

For clarity, we divide the remaining arguments into two parts, according to the behavior of w.
First, if w is one of the types (a)-(c) listed in Lemma 2.3, then there exists k∗ ∈ N sufficiently
large such that

Z[û(0, ·;−kL)− w] = 1 for all k ≥ k∗.

It then follows from Lemma 2.2 that

Z[û(t+ τ(−kL), ·;−kL)− w] ≤ 1 for all t ≥ −τ(−kL) and k ≥ k∗.

Hence, by Lemma 2.1 and (2.6)-(2.7), we obtain that Z[UL(t, ·) − w] ≤ 1 for all t ∈ R. No-
tice actually that, since UL(t∗, x∗) = w(x∗) = α and UL is not stationary, Lemma 2.2 implies
that Z[UL(t∗, ·)− w] = 1.

Next, we consider the case where w is one of the types (d)-(e) in Lemma 2.3. In this situation,
it is also easily seen that

Z[û(0, ·;−kL)− w] = 2, and SGN [û(0, ·;−kL)− w] = [+,−,+] for all large k ∈ N.

By using Lemmas 2.1 and 2.2 again, we have

Z[UL(t∗, ·)− w] ≤ 2, and SGN [UL(t∗, ·)− w]C [+,−,+].

In particular, this implies that if Z[UL(t∗, ·)− w] = 2, then SGN [U(t∗, ·)− w] = [+,−,+]. The
proof of Lemma 2.4 is thus complete.

In the following lemma, we give a special solution of (2.1) that decays to 0 as x→ +∞, with
a decay rate that is controlled uniformly with respect to L ≥ L∗.

5The steepness is understood in the following sense: for any two entire solutions u1 : R × R → (0, 1) and
u2 : R × R → (0, 1) of (1.1), we say that u1 is steeper than u2 provided that SGN [u1(t + t′, ·) − u2(t, ·)] C [+,−]
for any t and t′ in R.
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Lemma 2.5. For any L ≥ L∗ and any δ ∈ (0, δ0], where δ0 ∈ (0, 1/2) is the constant provided
by (A2), there exists a solution w ∈ C2(R) of (2.1) such that

w(0) = δ, Z[w − 1] = 0, w < 1 in R, Z[w] ≤ 1, (2.8)

and
0 < w(x) ≤ δe−µx for all x ≥ 0, (2.9)

for some constant µ > 0 independent of L.

Proof. For any L ≥ L∗ and any δ ∈ (0, δ0], we show the existence of the desired solution by an
approximation argument. For each n ∈ N, let us first consider the following problem in bounded
interval: {

(aLw
′)′ + fL(x,w) = 0 in [0, n],

w(0) = δ, w(n) = 0.
(2.10)

Since fL(x, 0) ≡ 0 and since fL(x, δ) < 0 for all x ∈ R, it follows that w = 0 and w = δ are,
respectively, a sub-solution and a super-solution of (2.10). Then, a classical iteration argument
implies that there exists a solution wn ∈ C2([0, n]) such that 0 ≤ wn ≤ δ in [0, n]. Furthermore,
0 < wn < δ in (0, n) from the strong maximum principle and, from the sliding method [13]6,
each wn is unique and the sequence (wn)n∈N is nondecreasing in n ∈ N, in the sense that wn ≤ wm
in [0, n] if n ≤ m. Define now

w(x) := lim
n→+∞

wn(x) for x ∈ [0,+∞).

It then follows from the standard elliptic estimates that w is a C2([0,+∞)) solution of

(aLw
′)′ + fL(x,w) = 0 in [0,+∞), w(0) = δ, 0 ≤ w ≤ δ in [0,+∞),

hence 0 < w < δ in (0,+∞) from the strong maximum principle. Since fL(x, u) is continuous
in R × R and globally Lipschitz-continuous in u ∈ R uniformly in x ∈ R, the function w can
be extended to x ∈ R so that it is a C2(R) solution of (2.1) with w(0) = δ. It further follows
from Lemma 2.3 that this solution must satisfy Z[w − 1] = 0, w < 1 in R, and Z[w] ≤ 1 (more
precisely, only cases (b) or (c) are possible).

Now, to complete the proof, it remains to show the estimate (2.9). Since 0 ≤ wn ≤ δ in [0, n],
by the first line of (1.2), we have, for each n ∈ N,

(aLw
′
n)′ − γ0wn ≥ 0 for x ∈ [0, n].

Since aL(x) = a(x/L) is L-periodic and a is positive and at least of class C1(R), we can find a
small constant µ > 0 (independent of L ≥ L∗) such that aL(x)µ2−a′L(x)µ−γ0 ≤ 0 for all x ∈ R.
Letting w̄(x) := δe−µx for x ≥ 0, we compute that

(aLw̄
′)′(x)− γ0w̄(x) = (aL(x)µ2 − a′L(x)µ− γ0)w̄(x) ≤ 0 for all x ≥ 0.

It then follows from the elliptic weak maximum principle that wn(x) ≤ w̄(x) = δe−µx for all
x ∈ [0, n] and n ∈ N, hence w(x) ≤ δe−µx for all x ≥ 0. This ends the proof of Lemma 2.5.

6For example, to prove wn ≤ wm in [0, n] when n ≤ m, the sliding method is used in the following way: one
first proves that wn(·+ τ) ≤ wm(·) in [0, n− τ ] when τ > 0 is close to n, and then slides τ to 0.

15



In the last lemma of this subsection, we consider the intersection of the pulsating front with
the stationary solution of (2.1) obtained in Lemma 2.5.

Lemma 2.6. Let L ≥ L∗ be fixed, let UL be a pulsating front of (1.1), let δ ∈ (0, δ0] and let
w ∈ C2(R) be the solution of (2.1) provided by Lemma 2.5. Then, Z[UL(t, ·)− w] ≤ 1 for every
t ∈ R. Furthermore, if Z[UL(t, ·)− w] = 1 for some t ∈ R, then SGN [UL(t, ·)− w] = [+,−].

Proof. The proof is similar to that of Lemma 2.4; therefore, we only give its outline. Let t∗ ∈
R be arbitrary. Without loss of generality, we suppose that there exists some x∗ ∈ R such
that UL(t∗, x∗) = w(x∗), hence w(x∗) ∈ (0, 1). To show the lemma, it suffices to prove that
Z[UL(t∗, ·)− w] ≤ 0, or Z[UL(t∗, ·)− w] = 1 and SGN [UL(t∗, ·)− w] = [+,−].

For any z < x∗, let û(t, x; z) be the solution of (1.1) with Heaviside type initial condition
H(z − ·) and let τ(z) be defined as in (2.5) with α = w(x∗). By the proof of Lemma 2.4, we see
that 0 < τ(z) < +∞, limz→−∞ τ(z) = +∞, and that, up to extraction of a subsequence,

û(t+ τ(−kL), x;−kL)→ UL(t+ t∗, x) as k → +∞ in C1;2
t;x;loc(R

2).

Since w satisfies (2.8) and limx→+∞w(x) = 0, it is straightforward to check that

Z[û(0, ·;−kL)− w] = 1 and SGN [û(0, ·;−kL)− w] = [+,−]

for all large k ∈ N. Passing to the limit as k → +∞, it follows from Lemmas 2.1 and 2.2
that Z[UL(t∗, ·)− w] ≤ 1 and SGN [UL(t∗, ·)− w]C [+,−], yielding the desired results.

2.3 Proof of Theorem 1.7

For clarity, we divide the proof into three steps. In our arguments below, δ ∈ (0, 1/2] is given.

Step 1: (1.20) holds true with C > 0 independent of L ≥ L∗. For any L ≥ L∗ and x ∈ R, since
UL(t, x) is continuous and increasing in t with UL(−∞, x) = 0 and UL(+∞, x) = 1, the set

IL(x) := {t ∈ R : δ ≤ UL(t, x) ≤ 1− δ}

is a compact interval in R. Denote by m(IL(x)) the length of this interval. It follows from
Theorem 1.1 (ii) and (iv) that m(IL(x)) is continuous with respect to (L, x) ∈ [L∗,+∞)× R.

Assume by contradiction that the desired result (1.20) is not true. Then, there exist sequences
(Ln)n∈N ⊂ [L∗,+∞) and (xn)n∈N ⊂ R such that

m(ILn(xn)) = m
(
{t ∈ R : δ ≤ ULn(t, xn) ≤ 1− δ}

)
→ +∞ as n→ +∞. (2.11)

From (1.5), one easily sees that m(ILn(xn)) = m(ILn(xn + Ln)). Therefore, without loss of
generality, we may assume that (xn)n∈N ⊂ [0, Ln). Moreover, one observes that Ln → +∞ as
n→ +∞. Otherwise, there would exist subsequences (L′n) ⊂ (Ln) and (x′n) ⊂ (xn) such that as
n→ +∞, L′n → L′∗ ∈ [L∗,+∞) and x′n → x′∗ ∈ [0, L′∗], whence by the continuity of m(IL(x)) in
(L, x), there would hold m(IL′n(x′n))→ m(IL′∗(x

′
∗)) as n→∞, which would contradict (2.11).

For each n ∈ N, since ULn(·, xn) is increasing and continuous, with ULn(−∞, xn) = 0 and
ULn(+∞, xn) = 1, there exists a unique tn ∈ ILn(xn) such that ULn(tn, xn) = 1/2. Define

Ũn(t, x) := ULn(t+ tn, x+ xn) for (t, x) ∈ R2.
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Clearly, each function Ũn is an entire solution of

∂tŨn = ∂x

(
a

(
x+ xn
Ln

)
∂xŨn

)
+ f

(
x+ xn
Ln

, Ũn

)
in R2, (2.12)

with Ũn(0, 0) = 1/2. Up to extraction of some subsequence, one can assume that xn/Ln → x∞ ∈
[0, 1], and that, from standard parabolic estimates, there exists a function Ũ∞ ∈ C1;2

t;x (R2, [0, 1])
such that

Ũn → Ũ∞ in C1;2
t;x;loc(R

2) as n→ +∞. (2.13)

Moreover, Ũ∞ satisfies Ũ∞(0, 0) = 1/2 and it is a solution to

∂tŨ∞ = a(x∞)∂xxŨ∞ + f(x∞, Ũ∞) in R2. (2.14)

By the strong maximum principle, we have 0 < Ũ∞ < 1 in R2. Furthermore, since ∂tŨn > 0
in R2, we have ∂tŨ∞ ≥ 0 in R2. Finally, one infers from (2.11) that

m
(
{t ∈ R : δ ≤ Ũ∞(t, 0) ≤ 1− δ}

)
= +∞. (2.15)

By the monotonicity of Ũ∞ in t and standard parabolic estimates applied to equation (2.14),
it follows that there exist two steady states 0 ≤ p− ≤ p+ ≤ 1 of (2.14) such that

Ũ∞(t, ·)→ p± as t→ ±∞ in C2
loc(R). (2.16)

It is clear that p± satisfy
a(x∞)p′′± + f(x∞, p±) = 0 in R, (2.17)

and 0 ≤ p−(0) ≤ 1/2 ≤ p+(0) ≤ 1. Furthermore, one can conclude that either δ ≤ p−(0) ≤ 1/2
or 1/2 ≤ p+(0) ≤ 1 − δ. (Otherwise, one would have 0 ≤ p−(0) < δ and 1 − δ < p+(0) ≤ 1,
whence by (2.16), there would hold m

(
{t ∈ R : δ ≤ Ũ∞(t, 0) ≤ 1 − δ}

)
< +∞, which would

contradict (2.15).) Then, by the strong maximum principle, we have

either 0 < p− < 1 in R, or 0 < p+ < 1 in R.

Without of loss generality, we assume that the former case happens, since the latter case can
be handled in a similar way. Then, thanks to the assumptions (A1) and (A3), according to the
phase diagrams of equation (2.17), the solution p− can only be one of the following three types:
either a constant function, or a non-constant periodic function, or a ground state solution such
that p−(x)→ 0 as x→ ±∞. We will derive a contradiction in each of these three cases.

Case 1: p− is a constant solution, that is, p− ≡ b(x∞) in R. In this case, for any non-constant
periodic solution 0 < q < 1 of (2.17), one finds some points y1 < z1 < y2 < z2 and some constant
ε0 > 0 such that

q(yi)− p−(yi) ≥ ε0, and q(zi)− p−(zi) ≤ −ε0 for i = 1, 2. (2.18)

Remember that function u 7→ f(x, u) is globally Lipschitz-continuous in u ∈ R uniformly in
x ∈ R. Then, for each n ∈ N, it follows from the classical ODE theory that the following problem(

a

(
x+ xn
Ln

)
w′
)′

+ f

(
x+ xn
Ln

, w

)
= 0 in R, (2.19)
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with w(y1) = q(y1) and w′(y1) = q′(y1), admits a unique solution wn ∈ C2(R). Moreover, by
standard elliptic estimates, we have wn → q as n → +∞ in C2

loc(R). This implies in particular
that there exists N ∈ N such that

|wn(x)− q(x)| ≤ ε0

4
for all x ∈ [y1, z2] and n ≥ N.

On the other hand, it follows from (2.13) and (2.16) that there exists s∗ < 0, with |s∗| sufficiently
large, such that, replacing N by a larger integer if necessary,∣∣∣Ũn(s∗, x)− p−(x)

∣∣∣ ≤ ε0

4
for all x ∈ [y1, z2] and n ≥ N.

Combining the above, we obtain that, for all large n,

wn(yi)− Ũn(s∗, yi) ≥
ε0

2
, and wn(zi)− Ũn(s∗, zi) ≤ −

ε0

2
for i = 1, 2.

By continuity, the function x 7→ Ũn(s∗, x)−wn(x) has at least three sign changes in [y1, z2], which
is a contradiction with the fact that Z[Ũn(s∗, ·)−wn] ≤ 2 (by Lemma 2.4 applied with Ũn(·, ·−xn)
and wn(· − xn)). Hence, Case 1 is ruled out.

Case 2: p− is a non-constant periodic solution. In this case, letting q(x) ≡ b(x∞), we see
that q is a constant solution of (2.17). Then, we can find some points y1 < z1 < y2 < z2 and a
constant ε0 > 0 such that (2.18) holds true, and hence, the same reasoning as in Case 1 yields a
contradiction. Therefore, Case 2 is ruled out too.

Case 3: p− is a ground state solution with p−(x) → 0 as x → ±∞. In this case, p−(x) is
symmetrically decreasing and there exist some points ỹ1 < ỹ0 < ỹ2 and a constant ε̃0 > 0 such
that

b(x∞)− p−(ỹi) ≥ ε̃0 for i = 1, 2, and b(x∞)− p−(ỹ0) ≤ −ε̃0.

Similarly as in Case 1, for each n ∈ N, problem (2.19) with w(ỹ1) = b(x∞) and w′(ỹ1) = 0 has
a unique solution w̃n ∈ C2(R), and from standard elliptic estimates, w̃n → b(x∞) as n → +∞
in C2

loc(R). As a consequence, there exists a large integer Ñ ∈ N such that

|w̃n(x)− b(x∞)| ≤ ε̃0

4
for all x ∈ [ỹ1, ỹ2] and n ≥ Ñ .

On the other hand, by using (2.13) and (2.16) again and by making some adjustment to Ñ if
necessary, one finds some negative time s̃∗ < 0, with |s̃∗| large enough, such that∣∣∣Ũn(s̃∗, x)− p−(x)

∣∣∣ ≤ ε̃0

4
for all x ∈ [ỹ1, ỹ2] and n ≥ Ñ .

Therefore, we obtain that, for each n ≥ Ñ ,

w̃n(ỹi)− Ũn(s̃∗, ỹi) ≥
ε̃0

2
for i = 1, 2, and w̃n(ỹ0)− Ũn(s̃∗, ỹ0) ≤ − ε̃0

2
. (2.20)

Remember that by Lemma 2.4 (applied with Ũn(·, · − xn) and w̃n(· − xn)), we have Z[Ũn(s̃∗, ·)−
w̃n] ≤ 2. Then, (2.20) implies that

Z[Ũn(s̃∗, ·)− w̃n] = 2, and SGN [Ũn(s̃∗, ·)− w̃n] = [−,+,−].

This last property contradicts property (2.4) of Lemma 2.4, hence Case 3 is ruled out too.
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Consequently, the case where 0 < p− < 1 cannot happen. Furthermore, with similar argu-
ments, one can exclude the case where 0 < p+ < 1. Therefore, our assumption (2.11) at the
beginning of the proof is unreasonable. This ends the proof of Step 1.

Step 2: (1.22) holds true with β > 0 independent of L ≥ L∗. Assume by contradiction that there
exist sequences (L̄n)n∈N ⊂ [L∗,+∞) and (t̄n, x̄n)n∈N ⊂ R2 such that UL̄n(t̄n, x̄n) ∈ [δ, 1 − δ] for
each n ∈ N, and

∂tUL̄n(t̄n, x̄n)→ 0 as n→ +∞.

Due to (1.5), we may assume without loss of generality that 0 ≤ x̄n < L̄n. By Theorem 1.1 (ii) (iv)
and standard parabolic estimates, it follows that L̄n → +∞ as n→ +∞.

Define now
Ūn(t, x) := UL̄n(t+ t̄n, x+ x̄n) for (t, x) ∈ R2.

Up to extraction of some subsequence, we may assume that the sequence (x̄n/L̄n)n∈N ⊂ [0, 1]
converges as n → +∞. By a slight abuse of notation, we still denote by x∞ this limit. Then,
standard parabolic estimates imply that, possibly up to extraction of a further subsequence,
Ūn → Ū∞ in C1;2

t;x;loc(R
2), where Ū∞ is an entire solution of (2.14). It is clear that ∂tŪ∞ ≥ 0

in R2 and ∂tŪ∞(0, 0) = 0. Furthermore, the strong maximum principle applied to the equation
satisfied by ∂tŪ∞ immediately gives that ∂tŪ∞ ≡ 0 in R2. In other words, Ū∞(t, x) = Ū∞(x) is
independent of t and it obeys a(x∞)Ū ′′∞ + f(x∞, Ū∞) = 0 in R. Notice that 0 ≤ Ū∞ ≤ 1 in R
and δ ≤ Ū∞(0) ≤ 1 − δ. It then follows from the strong maximum principle that 0 < Ū∞ < 1
in R. Furthermore, it follows from (A1) and (A3) that either Ū∞ is a constant solution (i.e.,
Ū∞ ≡ b(x∞)), or it is a non-constant periodic solution, or it is a ground state solution decaying
to 0 as x→ ±∞. Proceeding similarly as in Step 1, we can find a contradiction in each of these
cases: namely, for each large n ∈ N, there exists then a solution w̄n of (2.19) (with L̄n and x̄n
instead of Ln and xn) such that either

Z[Ūn(0, ·)− w̄n] ≥ 3,

or
Z[Ūn(0, ·)− w̄n] = 2 and SGN [Ūn(0, ·)− w̄n] = [−,+,−]

(the proof is even simpler than that in Step 1, as the limit function Ū∞ is stationary; there-
fore we do not repeat the details). Both situations are impossible, due to Lemma 2.4 (applied
with Ūn(·, · − x̄n) and w̄n(· − x̄n)). As a consequence, the proof of Step 2 is complete.

Step 3: (1.21) holds true with C > 0 independent of L ≥ L∗. Assume by contradiction that there
does not exist such a bound independent of L. Then, we can find sequences (Ln)n∈N ⊂ [L∗,+∞),
(sn)n∈N ⊂ R, (αn)n∈N, (γn)n∈N ⊂ [δ, 1− δ] and (xn)n∈N, (yn)n∈N ⊂ R such that

ULn(sn, xn) = αn and ULn(sn, yn) = γn for each n ∈ N,

and
|xn − yn| → +∞ as n→ +∞.

Without loss of generality, for each n ∈ N, we may assume that yn > xn, and thanks to (1.5), we
may also assume that 0 ≤ xn < Ln. Moreover, by Theorem 1.1 (ii) (iv) again, we have Ln → +∞
as n→ +∞.

Define now
Ũn(t, x) := ULn(t+ sn, x+ xn) for (t, x) ∈ R2.
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Clearly, each function Ũn(t, x) is an entire solution of (2.12) with Ũn(0, 0) = αn and Ũn(0, zn) =
γn, where 0 < zn = yn − xn → +∞ as n→ +∞. Up to extraction of some subsequence, we have

xn
Ln
→ x∞ ∈ [0, 1], αn → α∞ ∈ [δ, 1− δ], γn → γ∞ ∈ [δ, 1− δ], as n→ +∞,

and by standard parabolic estimates, Ũn → Ũ∞ in C1;2
t;x;loc(R

2) as n → +∞, where Ũ∞ is a

solution of (2.14) with Ũ∞(0, 0) = α∞.
Set δ∗ := min{δ0, δ}, where δ0 is the constant provided by (A2). It follows from Lemma 2.5

that, for each n ∈ N, (2.1) with L = Ln admits a solution wn ∈ C2(R) such that wn(0) = δ∗,
Z[wn − 1] = 0, Z[wn] ≤ 1 and 0 < wn(x) ≤ δ∗e

−µx for all x ≥ 0, where µ > 0 is independent
of n ∈ N. Notice that for each n ∈ N, Ũn(t, x) is increasing and continuous in t ∈ R, with
Ũn(−∞, x) = 0 and Ũn(+∞, x) = 1 locally uniformly in x ∈ R. This implies in particular that
there exists a unique time τn ∈ R such that Ũn(τn, zn) = wn(zn). Since wn(zn) < δ∗ ≤ δ ≤ γn =
Ũn(0, zn) for each n ∈ N, it is clear that τn < 0.

Now, we claim that
τn → −∞ as n→ +∞. (2.21)

Suppose to the contrary that (τn)n∈N converges, up to extraction of a subsequence, to τ∞ ∈
(−∞, 0]. For each n ∈ N, let us write

zn := z′n + z′′n, and Vn(t, x) := Ũn(t, x+ zn) in R2,

where z′n ∈ LnN and z′′n ∈ [0, Ln). It is easily checked that each Vn is an entire solution of

∂tVn = ∂x

(
a

(
x+ xn + z′′n

Ln

)
∂xVn

)
+ f

(
x+ xn + z′′n

Ln
, Vn

)
in R2,

with Vn(0, 0) = γn and Vn(τn, 0) = wn(zn). Since zn → +∞ as n → +∞ and since wn(x)
decays to 0 as x → +∞ uniformly in n ∈ N, it follows that limn→+∞ Vn(τn, 0) = 0. Next, up
to extraction of another subsequence, we may assume that z′′n/Ln → z∞ ∈ [0, 1] as n → +∞,
and that, by standard parabolic estimates, Vn → V∞ as n→ +∞ in C1;2

t;x;loc(R
2), where V∞ is an

entire solution of

∂tV∞ = a(x∞ + z∞)∂xxV∞ + f(x∞ + z∞, V∞) in R2.

Since 0 ≤ V∞ ≤ 1 and since V∞(τ∞, 0) = limn→+∞ Vn(τn, 0) = 0, it follows from the strong
maximum principle that V∞ ≡ 0 in R2. This contradicts the fact that V∞(0, 0) = limn→+∞ γn =
γ∞ ≥ δ. Therefore, our claim (2.21) is proved.

We are now ready to derive a contradiction. By the proof of Step 1, it follows that the
sequence

(
m({t ∈ R : δ∗ ≤ Ũn(t, 0) ≤ 1− δ∗})

)
n∈N is bounded uniformly in n ∈ N. This together

with Ũn(0, 0) = αn ∈ [δ, 1 − δ] ⊂ [δ∗, 1 − δ∗] and ∂tŨn > 0 yields the existence of A > 0 such
that {t ∈ R : δ∗ ≤ Ũn(t, 0) ≤ 1− δ∗} ⊂ [−A,A] for all n ∈ N. As a consequence, one finds t∗ < 0
such that

Ũn(t∗, 0) < δ∗ = wn(0) for all n ∈ N.

Furthermore, by (2.21) and the positivity of ∂tŨn, there exists n∗ ∈ N sufficiently large such that

Ũn∗(t∗, zn∗) > wn∗(zn∗).
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Combining the above, we immediately obtain that

Z[Ũn∗(t∗, ·)− wn∗ ] ≥ 1 and SGN [Ũn∗(t∗, ·)− wn∗ ]B [−,+],

which is a contradiction with the conclusions of Lemma 2.6 (applied with Ũn∗(·, · − xn∗) and
wn∗(· − xn∗)).

This ends the proof of Step 3, and the proof of Theorem 1.7 is thus complete. �

2.4 Proof of Theorem 1.8

We first show statements (i). From Theorem 1.1 (ii), it suffices to prove that for any δ ∈ (0, 1/2],
the interval

EL(y) :=
{
ξ ∈ R : δ ≤ φL(ξ + ζL(y), y) ≤ 1− δ

}
is bounded uniformly with respect to y ∈ R and L ≥ L∗. To do so, observe that the formula
UL(t, x) = φL(x− cLt, x/L) implies that

UL

(
− ξ

cL
+
Ly − ζL(y)

cL
, Ly

)
= φL(ξ + ζL(y), y) for all ξ ∈ R and y ∈ R. (2.22)

Clearly, UL((Ly − ζL(y))/cL, Ly) = 1/2 for all y ∈ R, by (1.15). Then, by Theorem 1.7, the
following interval

ĨL(Ly) :=

{
t ∈ R : δ ≤ UL

(
t+

Ly − ζL(y)

cL
, Ly

)
≤ 1− δ

}
is bounded uniformly in L ≥ L∗ and y ∈ R. Remember that cL is bounded in L ≥ L∗, by
Theorem 1.1 (i). This together with (2.22) immediately implies that the interval EL(y) is bounded
uniformly in y ∈ R and L ≥ L∗. The proof of statements (i) of Theorem 1.8 is thus complete.

Next, we show statement (ii). It follows from (2.22) that for any (ξ, y) ∈ R×R with ξ ∈ EL(y),
we have −ξ/cL ∈ ĨL(Ly) and

∂ξφL(ξ + ζL(y), y) = − 1

cL
∂tUL

(
− ξ

cL
+
Ly − ζL(y)

cL
, Ly

)
.

Then by Theorem 1.7 and the fact that cL > 0 is bounded in L ≥ L∗, we immediately obtain
statement (ii) (with a constant β > 0 which is in general different from the one appearing
in (1.22)).

Finally, we prove statement (iii). Since ζL(y) is continuous in (L, y) ∈ [L∗,+∞) × R, it is
clear that (L, y) 7→ ζL(y)/L is also continuous. It remains to show that this function is bounded.
Since ζL(y) is 1-periodic in y ∈ R, we only need to show that ζL(y)/L is bounded in (L, y) ∈
[L∗,+∞) × [0, 1]. It follows from (1.14) and Theorem 1.7 that the set {x ∈ R : UL(0, x) = 1/2}
is bounded uniformly in L ≥ L∗, that is, there exists L̄ ≥ L∗ such that{

x ∈ R : UL(0, x) = 1/2
}
⊂ [−L̄, L̄] for all L ≥ L∗.

Remember that limx→+∞ UL(0, x) = 0 for each L ≥ L∗. This implies that UL(0, L(y + 1)) < 1/2
for all y ∈ [0, 1] and L > L̄. Thanks to (2.22) applied with ξ := L(y+1)−ζL(y+1) and y+1 instead
of y, it follows that φL(L(y+ 1)− ζL(y+ 1) + ζL(y), y) = φL(L(y+ 1)− ζL(y+ 1) + ζL(y), y+ 1) =
UL(0, L(y + 1)) < 1/2. Hence, the monotonicity of φL in its first variable implies that

L(y + 1)− ζL(y + 1) > 0 for all y ∈ [0, 1] and L > L̄.
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Consequently, by the periodicity of ζL(y), we obtain ζL(y)/L < y+ 1 for all y ∈ [0, 1] and L > L̄.
In a similar way, by using the fact that limx→−∞ UL(0, x) = 1 and the monotonicity of UL in

its first variable, we can prove that

L(y − 2)− ζL(y − 2) < 0 for all y ∈ [0, 1] and L > L̄,

hence ζL(y)/L > y − 2 for all y ∈ [0, 1] and L > L̄. Combining the above, we immediately
obtain that −2 < ζL(y)/L < 2 for all y ∈ [0, 1] and L > L̄. This together with the continuity of
ζL(y)/L in [L∗,+∞) × [0, 1] implies that ζL(y)/L is bounded in [L∗,+∞) × [0, 1]. The proof of
Theorem 1.8 is thus complete. �

3 Convergence of cL as L→ +∞: proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. When L is large, we consider the Cauchy
problem associated with equation (1.1) under the large-time and large-space scaling, t → Lt,
x → Lx. More precisely, letting v(t, x) = u(Lt, Lx) with u(t, x) being a solution of (1.1), the
rescaled Cauchy problem reads vt =

1

L
(a(x)vx)x + Lf(x, v), t > 0, x ∈ R,

v(0, x) = g(x), x ∈ R.
(3.1)

We consider initial conditions g ∈ C(R, [0, 1]) which are independent of L and front-like, in the
sense that

lim inf
x→−∞

(g(x)− b(x)) > 0, lim sup
x→+∞

(g(x)− b(x)) < 0, (3.2)

where x 7→ b(x) ∈ (0, 1) is the zero of f(x, ·) provided by (A1). For each L > 0, denote
by vL(t, x) the solution of the Cauchy problem (3.1). By the strong maximum principle, we have
0 < vL(t, x) < 1 for all t > 0 and x ∈ R. Moreover, it is easily seen from (1.4) that for each
L ≥ L∗, with L∗ > 0 as in Theorem 1.1, φL(L(x − cLt), x) is a solution of the first equation
of (3.1), and it is defined for all (t, x) ∈ R2.

As we mentioned in Section 1, we use Gärtner’s result [30] to show the convergence of cL as
L → +∞. Recall that the function c : R → R, y 7→ c(y) denotes the unique front speeds of
the family of homogeneous equations (1.8). The following lemma is a direct application of [30,
Corollary, p. 140] to our one-dimensional spatially periodic equation (3.1) (see also Xin’s review
paper [56, Theorem 3.7] in the case where g is compactly supported):

Lemma 3.1. [30] Let g ∈ C(R, [0, 1]) satisfy (3.2) and let Γ0 = {x ∈ R : g(x) = b(x)}. For any
L > 0, let vL(t, x) be the solution of (3.1) with initial condition g (g is independent of L). Then,
as L→ +∞,{

vL(t, x)→ 1 locally uniformly in {(t, x) ∈ (0,+∞)× R : ρ(x,Γ0) < t},
vL(t, x)→ 0 locally uniformly in {(t, x) ∈ (0,+∞)× R : ρ(x,Γ0) > t},

where ρ(x,Γ0) := inf{ρ(x, x2) : x2 ∈ Γ0} and ρ(·, ·) denotes the signed distance function defined
by

ρ(x1, x2) :=

∫ x1

x2

c−1(y)dy for x1 ∈ R, x2 ∈ R.
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Recall that c∗ is the constant defined in (1.11). Since the function y 7→ c(y) is 1-periodic,
the above result suggests that as L → +∞, the solution vL(t, x) propagates at a mean speed
equal to c∗. This however does not imply directly the convergence of the speeds cL to c∗, since
the profiles of the pulsating fronts, say at time 0, depend on L, unlike the initial condition g in
Lemma 3.1. To circumvent this difficulty, we establish in Lemma 3.2 some further comparisons
between the solutions vL(t, x) and the pulsating fronts φL(L(x− cLt), x) for L ≥ L∗, which easily
lead to the proof of Theorem 1.2, on the basis of the uniform estimates proved in Section 2.7

To do so, let δ0 and γ0 be the positive constants provided by the assumption (A2). Since
f(·, 0) = f(·, 1) = 0 in R, there is ε0 ∈ (0, δ0/2] such that

∂uf(x, u) ≤ −γ0

2
for all u ∈ [−2ε0, 2ε0] ∪ [1− 2ε0, 1 + 2ε0] and x ∈ R. (3.3)

We now choose a special initial condition g ∈ C(R, [0, 1]), independent of L ≥ L∗, such that

lim inf
x→−∞

g(x) > 1− ε0, lim sup
x→+∞

g(x) < ε0, and Γ0 = {0}. (3.4)

Notice that it is for instance possible to choose g in such a way that g = 1 in (−∞,−A] and
g = 0 in [A,+∞), for some large A.

Lemma 3.2. For any L ≥ L∗, with L∗ > 0 as in Theorem 1.1, let (φL, cL) be a pulsating front
of (1.1) and let vL(t, x) be the solution of (3.1) with the initial condition g satisfying (3.4). Then
there exist constants C± ≥ 0 and K0 > 0 (all independent of L) such that{

vL(t, x) ≥ φL(L(x− cLt+ C−) +K0ε0, x)− ε0e−γ0Lt/2

vL(t, x) ≤ φL(L(x− cLt− C+)−K0ε0, x) + ε0e−γ0Lt/2
for all t ≥ 0 and x ∈ R. (3.5)

Proof. We use a Fife-McLeod [28] type sub- and super-solutions method to show this lemma. We
only give the construction of a super-solution, as the analysis for a sub-solution is analogous.

First of all, since the initial function g satisfies (3.4), it follows from Theorem 1.8 (i) and (iii)
that there exists a constant C+ > 0 independent of L such that, for all L ≥ L∗ and x ∈ R,

φL (L(x− C+), x) + ε0 = φL

(
L
(
x− C+ −

ζL(x)

L

)
+ ζL(x), x

)
+ ε0 ≥ g(x). (3.6)

For any L ≥ L∗, we then set

vL(t, x) := φL
(
L(x− cLt− C+) + ηL(t), x

)
+ qL(t) for t ≥ 0 and x ∈ R,

where t 7→ qL(t) and t 7→ ηL(t) are some C1([0,+∞)) functions satisfying{
qL(0) = ε0, q′L(t) < 0 < qL(t) for all t ≥ 0,

ηL(0) = 0, η′L(t) < 0 for all t ≥ 0.
(3.7)

By choosing suitable functions ηL and qL later, we will show that vL is a super-solution of (3.1).

7An alternate approach could be to use [30, Theorem 4.1] with L-dependent initial conditions φL(L·, ·) combined
with Theorem 1.8. We here use Lemma 3.1 and the comparisons established in Lemma 3.2, since the method of
proof based on sub- and super-solutions will serve as an archetype to get more involved comparisons in Section 4.2.
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Notice first that (3.6)-(3.7) imply that vL(0, ·) ≥ g = vL(0, ·) in R for each L ≥ L∗. Now, for
(t, x) ∈ (0,+∞)× R, we define

NL(t, x) := ∂tvL(t, x)− 1

L
∂x(a(x)∂xvL(t, x))− Lf(x, vL(t, x)).

Since (t, x) 7→ φL(L(x − cLt − C+), x) is an entire solution of the first equation of (3.1), a
straightforward calculation gives, for all (t, x) ∈ (0,+∞)× R,

NL(t, x) = η′L(t)∂ξφL(L(x− cLt− C+) + ηL(t), x) + q′L(t)

+Lf
(
x, φL(L(x− cLt− C+) + ηL(t), x)

)
− Lf(x, vL(t, x)).

Since ∂ξφL < 0 in R2, we get η′L(t)∂ξφL(L(x − cLt − C+) + ηL(t), x) > 0 and 0 < qL(t) ≤ ε0

for all t ≥ 0 and x ∈ R, provided qL and ηL fulfill (3.7). Then, on the one hand, for any pair
(t, x) ∈ (0,+∞) × R such that φL(L(x − cLt − C+) + ηL(t), x) ∈ (0, ε0] × [1 − ε0, 1), it follows
from (3.3) that

NL(t, x) ≥ q′L(t) + Lf(x, φL(L(x− cLt− C+) + ηL(t), x))− Lf(x, vL(t, x)) ≥ q′L(t) +
γ0L

2
qL(t).

On the other hand, by Theorem 1.8 (ii), there is β > 0 (independent of L ≥ L∗) such that
∂ξφL(ξ, y) ≤ −β for all L ≥ L∗ and for all (ξ, y) ∈ R2 with ε0 ≤ φL(ξ, y) ≤ 1 − ε0. It follows
that, if φL(L(x− cLt− C+) + ηL(t), x) ∈ (ε0, 1− ε0), then

NL(t, x) ≥ −η′L(t)β + q′L(t) + Lf(x, φL(L(x− cLt− C+) + ηL(t), x))− Lf(x, vL(t, x))

≥ −η′L(t)β + q′L(t)− LC1qL(t),

where C1 := ‖∂uf‖L∞(R×R). Let us now choose qL(t) and ηL(t) such that qL(0) = ε0, q′L(t) +
γ0L

2
qL(t) = 0 for t ≥ 0,

ηL(0) = 0, −βη′L(t) + q′L(t)− LC1qL(t) = 0 for t ≥ 0.

Namely, we set

qL(t) = ε0e−γ0Lt/2 and ηL(t) = −ε0(γ0 + 2C1)

βγ0
(1− e−γ0Lt/2) for t ≥ 0.

These functions qL and ηL satisfy (3.7). Consequently, NL(t, x) ≥ 0 for all (t, x) ∈ (0,+∞)× R.
Finally, the comparison principle implies that, for any L ≥ L∗, vL(t, x) ≥ vL(t, x) for all t ≥ 0

and x ∈ R. Taking K0 = (γ0 + 2C1)/(βγ0) and using the fact that φL(ξ, y) is decreasing in ξ, we
obtain the second inequality of (3.5). As we have mentioned above, similar arguments imply the
first one. The proof of Lemma 3.2 is thus compete.

We are now ready to complete the

Proof of Theorem 1.2. Assume by contradiction that cL does not converge to c∗ as L → +∞.
Since the family (cL)L≥L∗ ⊂ (0,+∞) is bounded by Theorem 1.1 (i), one finds a sequence
(Ln)n∈N ⊂ [L∗,+∞) with Ln → +∞ as n→ +∞ and a real number c∞ ≥ 0 such that

cLn → c∞ as n→ +∞, and c∞ 6= c∗.
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Without loss of generality, we assume that c∞ < c∗ (as sketched below, the case where c∞ > c∗
can be treated similarly). Then we have cLn < (c∞+ c∗)/2 < c∗ for all large n ∈ N. Now, we can
choose a large time t∗ > 0 and a positive integer x∗ (both independently of n) such that

cLnt∗ + C+ + 1 < x∗ < c∗t∗ for all large n ∈ N, (3.8)

where C+ ≥ 0 is the constant given by Lemma 3.2. Since each function φLn(ξ, y) is decreasing
in ξ, it follows from the notations of Lemma 3.2 and the second inequality of (3.5) that

0 < vLn(t∗, x∗) ≤ φLn(Ln(x∗ − cLnt∗ − C+)−K0ε0, x∗) + ε0e−γ0Lnt∗/2

≤ φLn(Ln −K0ε0, x∗) + ε0e−γ0Lnt∗/2
(3.9)

for all large n ∈ N. Moreover, since x∗ ∈ N and each function ζLn given by (1.15) is 1-periodic,
we have ζLn(x∗) = ζLn(0) = 0. Therefore, passing to the limit as n→ +∞ in (3.9), we see from
Theorem 1.8 that φLn(Ln −K0ε0, x∗)→ 0 as n→ +∞, hence vLn(t∗, x∗)→ 0 as n→ +∞.

On the other hand, we had chosen g such that Γ0 = {x ∈ R : g(x) = b(x)} = {0}. Since x∗ is
a positive integer and since the function y 7→ c(y) is positive and 1-periodic, we have ρ(x∗,Γ0) =
x∗/c∗, whence ρ(x∗,Γ0) < t∗ due to (3.8). It then follows from Lemma 3.1 that vLn(t∗, x∗) → 1
as n→ +∞, yielding a contradiction. Therefore, the case where c∞ < c∗ is ruled out.

In the case where c∞ > c∗, one can derive a similar contradiction by choosing a large time
t∗ > 0 and a positive integer x∗ (both independently of n) such that

cLnt
∗ − C− − 1 > x∗ > c∗t

∗ for all large n ∈ N.

As a conclusion, cL → c∗ as L→ +∞, and the proof of Theorem 1.2 is thus complete.

4 Convergence of the front profiles: proof of Theorem 1.6

This section is devoted to the proof of Theorem 1.6, that is, the convergence of the front profiles φL
as L → +∞, under the assumptions (A1)-(A4). The key step is to determine the asymptotic
behavior as L→ +∞ of the solutions of Cauchy problem of the following equation:

∂tzL = a∂xxzL + f
(
y +

x

L
, zL

)
for t > 0, x ∈ R, (4.1)

where y ∈ R is arbitrary. We point out that a is here a positive constant, thanks to (A4). We
recall that, for each y ∈ R, the couple (ψ(·, y), c(y)) denotes the front profile and front speed
of the homogeneous equation (1.9)-(1.10). We first present some properties on (ψ(·, y), c(y))
in Section 4.1. In Section 4.2, we choose the initial condition of (4.1) sufficiently close to the
homogeneous front ψ(·, y), and then construct a pair of sub- and super-solutions of (4.1). This
will ensure that, at a certain time t, zL(t, ·+L) is still close to ψ(·, y) provided that L is sufficiently
large (see Proposition 4.7 in Section 4.3). We complete the proof of Theorem 1.6 in Section 4.4.

4.1 Preliminaries on homogeneous fronts

In this subsection, we present some properties regarding the homogeneous traveling front
(ψ(·, y), c(y)) of (1.9)-(1.10) with respect to the parameter y. These properties will be used
in our construction of sub- and super-solutions later and are also of interest in themselves.

Proposition 4.1. Let (A1)-(A3) hold. Then, the following statements hold true:
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(i) the function y 7→ c(y) is positive, 1-periodic, and the function (ξ, y) 7→ ψ(ξ, y) ∈ (0, 1) is
1-periodic in y ∈ R and decreasing in ξ ∈ R;

(ii) limξ→+∞ ψ(ξ, y) = 0 and limξ→−∞ ψ(ξ, y) = 1 uniformly in y ∈ R; furthermore, there exist
positive constants µ1, µ2, M , C1 and C2 (all are independent of y) such that{

0 < ψ(ξ, y) ≤ C1e−µ1ξ for all ξ ≥M and y ∈ R,

0 < 1− ψ(ξ, y) ≤ C2eµ2ξ for all ξ ≤ −M and y ∈ R;
(4.2)

(iii) for any δ ∈ (0, 1/2], there exists γ = γ(δ) > 0 (independent of y) such that

∂ξψ(ξ, y) ≤ −γ for all (ξ, y) ∈ R2 such that δ ≤ ψ(ξ, y) ≤ 1− δ;

(iv) the function y 7→ c(y) is of class C1(R), and the function (ξ, y) 7→ ψ(ξ, y) is of
class C2;1

ξ;y (R2), and satisfies

sup
ξ∈R, y∈R

|∂yψ(ξ, y)| < +∞. (4.3)

The proof of Proposition 4.1 is quite lengthy and is therefore postponed to the appendix in
Section 5. Let us emphasize that this proposition holds without the extra assumption (A4).

4.2 Sub- and super-solutions

In the remaining part of Section 4, we always assume that (A1)-(A4) hold. To present our sub-
and super-solutions, we need some notations. Since the function z 7→ c(z) is 1-periodic and of
class C1(R) by Proposition 4.1 (iv), one infers that, for each y ∈ R and L > 0, the following ODE
problem

X ′y,L(t) = c

(
y +

Xy,L(t)

L

)
for t ≥ 0, Xy,L(0) = 0, (4.4)

admits a unique solution Xy,L : [0,+∞) → R, with Xy,L = Xy+1,L in [0,+∞) for each y ∈ R
and L > 0. Furthermore, each function Xy,L is increasing in [0,+∞) and Xy,L(t) → +∞ as
t→ +∞, since minR c > 0. Let then TL > 0 be the unique time such that

Xy,L(TL) = L.

Since the function c is 1-periodic, it is then checked by integrating the function t 7→ X ′y,L(t)/c(y+
Xy,L(t)/L) = 1 over [0, TL] that TL does not depend on y and is equal to

TL =
L

c∗
(4.5)

where c∗ > 0 is the constant defined by (1.11). In particular, TL → +∞ as L→ +∞ (uniformly
in y ∈ R). Notice also that, again by 1-periodicity of the function c, one has

Xy,L(kTL) = kL for all k ∈ N. (4.6)

Our super-solution is stated in the following lemma.

26



Lemma 4.2. There exists ε0 ∈ (0, δ0), with δ0 ∈ (0, 1/2) as in assumption (A2), such that, for
every ε ∈ (0, ε0], there exists L1,ε > 0 such that, for every y ∈ R and L ≥ L1,ε, the function
v+
ε,y,L : [0,+∞)× R→ R defined by

v+
ε,y,L(t, x) := ψ

(
x−Xy,L(t) + ηε,L(t), y +

Xy,L(t)

L

)
+ qε,L(t)

is a super-solution of (4.1) for t ≥ 0 and x ∈ R, where qε,L and ηε,L are C1([0,+∞)) functions
independent of y ∈ R satisfying{

qε,L(0) = ε, q′ε,L(t) < 0 < qε,L(t) for all t ≥ 0,

ηε,L(0) = 0, η′ε,L(t) < 0 for all t ≥ 0.
(4.7)

Proof. First of all, by the assumptions (A1)-(A2) and the C1(R× [0, 1]) smoothness of f and its
periodicity in x, together with (1.3), there exist δ1 ∈ (0, 1/2) and γ1 > 0 such that

∂uf(x, u) ≤ −γ1 for all x ∈ R and u ∈ [−δ1, δ1] ∩ [1− δ1, 1 + δ1]. (4.8)

Without loss of generality, one can assume that δ1 ≤ δ′0, with δ′0 > 0 as in assumption (A4).
Moreover, by Proposition 4.1 (iv) and the boundedness of the function z 7→ c(z), there is a
constant C1 > 0 such that, for all y ∈ R and L > 0,∣∣∣∣∣X ′y,L(t)

L
∂yψ(ξ, z)

∣∣∣∣∣ ≤ C1

L
for all t ≥ 0 and (ξ, z) ∈ R× R. (4.9)

It further follows from Proposition 4.1 (i)-(ii) that there exist M1 > 0 and

ε0 ∈ (0,min{δ1/2, δ0}) ⊂ (0, 1/4),

with δ0 ∈ (0, 1/2) as in assumption (A2), such that, for all (ξ, z) ∈ R× R,
0 < ψ(ξ, z) ≤ δ1

2
if ξ ≥M1,

1− δ1

2
≤ ψ(ξ, z) < 1 if ξ ≤ −M1,

2ε0 ≤ ψ(ξ, z) ≤ 1− 2ε0 if −M1 < ξ < M1,

where the last inequality is actually a consequence of the continuity of ψ : R2 → (0, 1) and its
periodicity in the second variable.

In the arguments below, ε ∈ (0, ε0] is arbitrary. To show Lemma 4.2, it suffices to find
suitable C1([0,+∞)) functions qε,L and ηε,L satisfying (4.7) such that, if L is sufficiently large
and independently of y, there holds

N(t, x) := ∂tv
+
ε,y,L(t, x)− a∂xxv+

ε,y,L(t, x)− f
(
y +

x

L
, v+
ε,y,L(t, x)

)
≥ 0

for all (t, x) ∈ [0,+∞) × R. Since ψ is a solution of (1.9) and since here a is constant by
assumption (A4), it is straightforward to check that, for any y ∈ R, L > 0 and any C1([0,+∞))
functions qε,L and ηε,L, one has

N(t, x) =
X ′y,L(t)

L
∂yψ + η′ε,L(t)∂ξψ + q′ε,L(t) + f

(
y +

Xy,L(t)

L
,ψ

)
− f

(
y +

x

L
, v+
ε,y,L(t, x)

)
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for all (t, x) ∈ [0,+∞) × R, where ψ = ψ(x − Xy,L(t) + ηε,L(t), y + Xy,L(t)/L), and ∂ξψ, ∂yψ
stand for the partial derivatives of ψ with respect to the first variable and the second variable,
respectively, evaluated at the same point (x−Xy,L(t) + ηε,L(t), y+Xy,L(t)/L). We complete the
proof by considering three cases: (a) x−Xy,L(t)+ηε,L(t) ≥M1, (b) x−Xy,L(t)+ηε,L(t) ≤ −M1,
(c) −M1 < x−Xy,L(t) + ηε,L(t) < M1.

In case (a), with qε,L required to satisfy (4.7), we have

0 < ψ
(
x−Xy,L(t) + ηε,L(t), y +

Xy,L(t)

L

)
< v+

ε,y,L(t, x) ≤ δ1

2
+ ε ≤ δ1

2
+ ε0 ≤ δ1.

Since ψ is decreasing in its first variable and since ηε,L is required to satisfy (4.7), we have

η′ε,L(t) ∂ξψ
(
x−Xy,L(t) + ηε,L(t), y +

Xy,L(t)

L

)
≥ 0.

Remember that f(x, u) is independent of x for u ∈ [0, δ1] ⊂ [0, δ′0] by assumption (A4). It then
follows from (4.8)-(4.9) that

N(t, x) ≥ −C1

L
+ q′ε,L(t) + f

(
0, ψ

(
x−Xy,L(t) + ηε,L(t), y +

Xy,L(t)

L

))
− f(0, v+

ε,y,L(t, x))

≥ −C1

L
+ q′ε,L(t) + γ1qε,L(t).

Let us choose

L1,ε =
2C1

γ1ε
> 0 (4.10)

(notice that L1,ε is independent of y ∈ R) and the function qε,L such that

qε,L(0) = ε and − C1

L
+ q′ε,L(t) + γ1qε,L(t) = 0 for t ≥ 0, (4.11)

namely,

qε,L(t) =
C1

Lγ1
+

(
ε− C1

Lγ1

)
e−γ1t for t ≥ 0. (4.12)

It is clear that, for any L ≥ L1,ε and for any y ∈ R, the function qε,L satisfies (4.7) and N(t, x) ≥ 0
for all (t, x) ∈ [0,+∞)×R such that x−Xy,L(t) + ηε,L(t) ≥M1, provided ηε,L satisfies (4.7) too.

Proceeding similarly as above, we can conclude that, for any L ≥ L1,ε and y ∈ R, N(t, x) ≥ 0
for all (t, x) ∈ [0,+∞)×R such that x−Xy,L(t) + ηε,L(t) ≤ −M1, as soon as ηε,L satisfies (4.7).

It remains to find a suitable function ηε,L such that N(t, x) ≥ 0 in case (c), i.e., −M1 <
x−Xy,L(t) + ηε,L(t) < M1. In this case, we have

2ε0 ≤ ψ
(
x−Xy,L(t) + ηε,L(t), y +

Xy,L(t)

L

)
≤ 1− 2ε0

and 2ε0 ≤ v+
ε,y,L(t, x) ≤ 1 − ε0 (since 0 < qε,L(t) ≤ ε ≤ ε0). It then follows from

Proposition 4.1 (iii) that there exists β1 > 0 (independent of ε, y, L, t and x) such that
∂ξψ(x − Xy,L(t) + ηε,L(t), y + Xy,L(t)/L) ≤ −β1. Noticing that the function f is of class
C1(R × [0, 1]) and periodic in x, one finds some constants K1 > 0 and K2 > 0 (independent
of ε, y, L, t and x) such that{

|f(x1, u)− f(x2, u)| ≤ K1|x1 − x2| for all x1, x2 ∈ R and u ∈ [0, 1],

|f(z, u1)− f(z, u2)| ≤ K2|u1 − u2| for all z ∈ R and u1, u2 ∈ [0, 1].
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Therefore, with ηε,L required to satisfy (4.7) (then being nonpositive in [0,+∞)), we have

N(t, x) ≥ −C1

L
− β1η

′
ε,L(t) + q′ε,L(t) + f

(
y +

Xy,L(t)

L
,ψ
(
x−Xy,L(t) + ηε,L(t), y +

Xy,L(t)

L

))
−f
(
y +

x

L
, v+
ε,y,L(t, x)

)
≥ −C1

L
− β1η

′
ε,L(t) + q′ε,L(t)−K1

|Xy,L(t)− x|
L

−K2qε,L(t),

≥ −C1

L
− β1η

′
ε,L(t) + q′ε,L(t)−K1

M1 − ηε,L(t)

L
−K2qε,L(t).

Then, with qε,L(t) given by (4.11)-(4.12), by choosing ηε,L such that

ηε,L(0) = 0 and − β1η
′
ε,L(t) +

K1

L
ηε,L(t)− (γ1 +K2)qε,L(t) =

K1M1

L
for t ≥ 0,

we have N(t, x) ≥ 0 for (t, x) ∈ [0,+∞)× R such that −M1 < x−Xy,L(t) + ηε,L(t) < M1. It is
straightforward to compute that

ηε,L(t) = −γ1 +K2

β1

[
(C2 + C3,ε,L)eK1t/(Lβ1) − C3,ε,Le−γ1t − C2

]
for t ≥ 0, (4.13)

where

C2 =
C1β1

γ1K1
+

M1β1

K2 + γ1
and C3,ε,L =

ε− C1/(Lγ1)

γ1 +K1/(Lβ1)
.

It is clear that C2 > 0 and C3,ε,L > 0 if L ≥ L1,ε, whence the function ηε,L given in (4.13)
satisfies (4.7).

Combining the above, we can conclude that for any ε ∈ (0, ε0], y ∈ R and L ≥ L1,ε, one has
N(t, x) ≥ 0 for all (t, x) ∈ [0,+∞)× R. This ends the proof of Lemma 4.2.

The following lemma gives the sub-solution of problem (4.1).

Lemma 4.3. Let ε0 ∈ (0, δ0) be given by Lemma 4.2 and, for any ε ∈ (0, ε0], let L1,ε > 0 be
given by (4.10) as in Lemma 4.2. Then, for every ε ∈ (0, ε0], y ∈ R and L ≥ L1,ε, the function
v−ε,y,L : [0,+∞)× R→ R defined by

v−ε,y,L(t, x) := ψ

(
x−Xy,L(t)− ηε,L(t), y +

Xy,L(t)

L

)
− qε,L(t)

is a sub-solution of (4.1) for t ≥ 0 and x ∈ R, where qε,L and ηε,L are C1([0,+∞)) functions
satisfying (4.7), given by (4.12) and (4.13), respectively.

Proof. The proof is analogous to that of Lemma 4.2; therefore, we omit the details.

Before going further on, we give two remarks about the functions qε,L and ηε,L, which will be
useful in the proof of our main result later.

Remark 4.4. For any ε ∈ (0, ε0] and L ≥ L1,ε = 2C1/(γ1ε), let TL = L/c∗ > 0 be the time
provided by (4.5). For any given k ∈ N and τ > 0, the function ηε,L given by (4.13) is bounded
in [0, kTL + τ ] uniformly with respect to ε ∈ (0, ε0] and L ≥ L1,ε. More precisely, we can find
some constants 0 < A1 < A2 (independent of ε, L, k and τ) such that

A1 −A2eK1k/(c∗β1)+K1τγ1ε0/(2C1β1) ≤ A1 −A2eK1k/(c∗β1)+K1τ/(Lβ1) ≤ ηε,L(t) ≤ 0

for all 0 ≤ t ≤ kTL + τ .
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Remark 4.5. We also point out that, for any ε ∈ (0, ε0], the functions t 7→ qε,L(t) and t 7→ ηε,L(t)
converge locally uniformly in t ≥ 0 as L→ +∞. More precisely, there holds

lim
L→+∞

qε,L(t) = ε e−γ1t and lim
L→+∞

ηε,L(t) = −ε γ1 +K1

γ1β1
(1− e−γ1t),

locally uniformly in t ∈ [0,+∞).

Now, for any ε ∈ (0, ε0], with ε0 ∈ (0, δ0) provided by Lemmas 4.2-4.3, we consider any family
of continuous functions v0

ε,y : R→ [0, 1] such that

v0
ε,y+1 ≡ v0

ε,y in R, v0
ε,y(0) =

1

2
and ‖v0

ε,y − ψ(·, y)‖L∞(R) ≤ ε for all y ∈ R.8 (4.14)

Then, for any y ∈ R and L > 0, we denote by vε,y,L : [0,+∞) × R → [0, 1] the solution of (4.1)
with the initial condition v0

ε,y. Since the function f is 1-periodic in its first variable, it follows
that the functions vε,y,L are 1-periodic with respect to the parameter y ∈ R. It is also easily seen
that

max
{
v−ε,y,L(0, x), 0

}
≤ v0

ε,y(x) ≤ min
{
v+
ε,y,L(0, x), 1

}
for all x ∈ R, (4.15)

with v±ε,y,L are in Lemmas 4.2-4.3. Therefore, the next lemma is an immediate consequence of
the comparison principle.

Lemma 4.6. For any ε ∈ (0, ε0], with ε0 ∈ (0, δ0) as in Lemmas 4.2-4.3, any y ∈ R, and any
L ≥ L1,ε with L1,ε > 0 as in (4.10), there holds

max
{
v−ε,y,L(t, x), 0

}
≤ vε,y,L(t, x) ≤ min

{
v+
ε,y,L(t, x), 1

}
for all t ≥ 0 and x ∈ R.

4.3 Asymptotic behavior of the Cauchy problem as L→ +∞

In this subsection and the following one, we always let ε0 ∈ (0, δ0) be provided by Lemmas 4.2-4.3.
Now, for any ε ∈ (0, ε0], we consider the asymptotic behavior as L→ +∞ of the solutions vε,y,L
of (4.1) with initial conditions v0

ε,y satisfying (4.14), at a time T̃ε,y,L defined by

T̃ε,y,L := inf
{
t > 0 : vε,y,L(t, L) =

1

2

}
. (4.16)

Notice immediately that, since the functions vε,y,L are 1-periodic with respect to y, so are the

quantities T̃ε,y,L’s. Furthermore, for each y ∈ R and L ≥ L1,ε, one has vε,y,L(0, L) ≤ v+
ε,y,L(0, L) =

ψ(L, y) + ε by (4.7) and (4.15), hence

lim sup
L→+∞

(
sup
y∈R

vε,y,L(0, L)
)
≤ ε ≤ ε0 < δ0 <

1

2

since ψ(+∞, y) = 0 uniformly in y ∈ R by Proposition 4.1 (ii). Therefore, T̃ε,y,L > 0 for all L
large enough, uniformly in y ∈ R. On the other hand, for each y ∈ R and L ≥ L1,ε, with TL as
in (4.5), one has vε,y,L(2TL, L) ≥ v−ε,y,L(2TL, L) ≥ ψ(−L − ηε,L(2TL), y + 2) − ε by Lemma 4.6
together with (4.6)-(4.7). Hence,

lim inf
L→+∞

(
inf
y∈R

vε,y,L(2TL, L)
)
≥ 1− ε ≥ 1− ε0 > 1− δ0 >

1

2

8A typical example is given by: v0ε,y = ψ(·, y) for y ∈ R, but other functions v0ε,y will be used in the proof of
Theorem 1.6 in Section 4.4.

30



by Remark 4.4 and since ψ(−∞, y) = 1 uniformly in y ∈ R by Proposition 4.1 (ii). As a
consequence, there is

L2,ε ≥ L1,ε > 0

such that
0 < T̃ε,y,L ≤ 2TL < +∞ for all y ∈ R and L ≥ L2,ε, (4.17)

and then

vε,y,L(T̃ε,y,L, L) =
1

2
. (4.18)

The following proposition shows that when L is sufficiently large, the profile vε,y,L(t, ·+L) at

time t = T̃ε,y,L is close to that of the initial condition vε,y,L(0, ·) = v0
ε,y.

Proposition 4.7. For any ε ∈ (0, ε0], with ε0 ∈ (0, δ0) as in Lemmas 4.2-4.3, there exists
L3,ε ≥ L2,ε, with L2,ε > 0 as in (4.17), such that, for any y ∈ R and L ≥ L3,ε, there holds∥∥∥vε,y,L(T̃ε,y,L, ·+ L)− ψ(·, y)

∥∥∥
L∞(R)

≤ ε

2
,

where T̃ε,y,L is given by (4.16), and vε,y,L solves (4.1) with initial conditions v0
ε,y satisfying (4.14).

For the proof of Proposition 4.7, let us first show two lemmas which are concerned with the
comparison of TL and T̃ε,y,L.

Lemma 4.8. For any fixed ε ∈ (0, ε0], with ε0 ∈ (0, δ0) as in Lemmas 4.2-4.3, let TL and T̃ε,y,L
be given by (4.5) and (4.16), respectively, for y ∈ R and L ≥ L2,ε. Then, there is a constant
Mε ≥ 0 such that

sup
y∈R, L≥L2,ε

|TL − T̃ε,y,L| ≤Mε,

for all families of initial conditions v0
ε,y ∈ C(R, [0, 1]) satisfying (4.14).

Proof. We fix ε ∈ (0, ε0] throughout the proof. We first prove the existence of some real numbers
L+

2,ε ∈ [L2,ε,+∞) and M+
ε ≥ 0 such that

sup
y∈R, L≥L+

2,ε

(T̃ε,y,L − TL) ≤M+
ε (4.19)

for all families of initial conditions v0
ε,y ∈ C(R, [0, 1]) satisfying (4.14). Assume by contradiction,

there exist sequences (yn)n∈N ⊂ R, (Ln)n∈N ⊂ [L2,ε,+∞), and initial conditions (v0
ε,yn)n∈N ⊂

C(R, [0, 1]) satisfying (4.14), such that Ln → +∞ and T̃ε,yn,Ln − TLn → +∞ as n→ +∞. Then
for each n ∈ N, by Lemma 4.6, we have

vε,yn,Ln(t, x) ≥ ψ
(
x−Xyn,Ln(t)− ηε,Ln(t), yn +

Xyn,Ln(t)

Ln

)
− qε,Ln(t)

vε,yn,Ln(t, x) ≤ ψ
(
x−Xyn,Ln(t) + ηε,Ln(t), yn +

Xyn,Ln(t)

Ln

)
+ qε,Ln(t)

(4.20)

for all t ≥ 0 and x ∈ R.
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We already know from (4.17) that T̃ε,yn,Ln ≤ 2TLn for all n ∈ N. Next, for any n ∈ N,

choosing t = T̃ε,yn,Ln and x = Ln in the first inequality of (4.20) yields

1

2
= vε,yn,Ln(T̃ε,yn,Ln , Ln) ≥ ψ

(
Ln −Xyn,Ln(T̃ε,yn,Ln)− ηε,Ln(T̃ε,yn,Ln), yn +

Xyn,Ln(T̃ε,yn,Ln)

Ln

)
−qε,Ln(T̃ε,yn,Ln).

Since we have assumed T̃ε,yn,Ln − TLn → +∞ as n → +∞, we may assume without loss of

generality that T̃ε,yn,Ln > TLn = Ln/c∗ for all n ∈ N (hence, T̃ε,yn,Ln → +∞ as n→ +∞). Then,
we have

Xyn,Ln(T̃ε,yn,Ln) = Xyn,Ln(TLn)︸ ︷︷ ︸
=Ln

+

∫ T̃ε,yn,Ln

TLn

c

(
yn +

Xyn,Ln(t)

Ln

)
dt ≥ Ln + c−(T̃ε,yn,Ln − TLn),

where c− = minz∈R c(z) > 0. Remember that the function (ξ, z) 7→ ψ(ξ, z) is decreasing in ξ ∈ R.
It follows that

1

2
≥ ψ

(
− c−(T̃ε,yn,Ln − TLn)− ηε,Ln(T̃ε,yn,Ln), yn +

Xyn,Ln(T̃ε,yn,Ln)

Ln

)
− qε,Ln(T̃ε,yn,Ln). (4.21)

Since T̃ε,yn,Ln → +∞ as n → +∞, we see from (4.12) that qε,Ln(T̃ε,yn,Ln) → 0 as n → +∞.

Furthermore, since 0 < T̃ε,yn,Ln ≤ 2TLn by (4.17), one infers from Remark 4.4 that the sequence

(ηε,Ln(T̃ε,yn,Ln))n∈N is bounded. Passing to the limit as n → +∞ in (4.21) and using Proposi-
tion 4.1 (ii), we obtain 1/2 ≥ 1, which is impossible. Thus, (4.19) is proved.

Similarly as above, one can prove the existence of some real numbers L−2,ε ∈ [L2,ε,+∞)

and M−ε ≥ 0 such that supy∈R, L≥L−2,ε
(TL − T̃ε,y,L) ≤ M−ε for all families of initial conditions

v0
ε,y ∈ C(R, [0, 1]) satisfying (4.14), by using this time in the previous paragraph the second

inequality of (4.20) instead of the first one, together with qε,Ln ≤ ε < 1/2 in [0,+∞) by (4.7).

Finally, since 0 < T̃ε,y,L ≤ 2TL = 2L/c∗ for all y ∈ R and L ≥ L2,ε by (4.5) and (4.17), the
desired conclusion of Lemma 4.8 follows, with Mε := max{M+

ε ,M
−
ε , 2L

+
2,ε/c∗, 2L

−
2,ε/c∗}.

Lemma 4.9. For any fixed ε ∈ (0, ε0], with ε0 ∈ (0, δ0) as in Lemmas 4.2-4.3, let TL and T̃ε,y,L
be given by (4.5) and (4.16), respectively, for y ∈ R and L ≥ L2,ε. Then there holds

lim
L→+∞

Xy,L(t+ T̃ε,y,L)

Xy,L(TL)
= 1 (4.22)

and
lim

L→+∞

∣∣Xy,L(t+ T̃ε,y,L)−Xy,L(TL)− c(y)(t+ T̃ε,y,L − TL)
∣∣ = 0 (4.23)

locally uniformly with respect to t ∈ R, and uniformly with respect to y ∈ R and with respect to
the families of initial conditions v0

ε,y ∈ C(R, [0, 1]) satisfying (4.14).

Proof. For any y ∈ R, L ≥ L2,ε, and t ∈ R, one has Xy,L(TL) = L and

∣∣∣∣∣Xy,L(t+ T̃ε,y,L)

Xy,L(TL)
− 1

∣∣∣∣∣ =

∣∣∣∣∣
∫ t+T̃ε,y,L

TL

c

(
y +

Xy,L(s)

L

)
ds

∣∣∣∣∣
Xy,L(TL)

≤
c+|T̃ε,y,L − TL + t|

L
,
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where c+ = maxz∈R c(z). Lemma 4.8 then immediately gives (4.22).
It remains to show (4.23). Let y ∈ R, L ≥ L2,ε and t ∈ R be arbitrary. Without loss

of generality, we may assume that t + T̃ε,y,L ≥ TL (the case t + T̃ε,y,L ≤ TL can be treated
identically). Since

Xy,L(t+ T̃ε,y,L)−Xy,L(TL)− c(y)(t+ T̃ε,y,L − TL) =

∫ t+T̃ε,y,L

TL

(
c
(
y +

Xy,L(s)

L

)
− c(y)

)
ds,

and since the function z 7→ c(z) is 1-periodic and of class C1 by Proposition 4.1 (iv), we have
c(y) = c(y + 1) and∣∣∣Xy,L(t+ T̃ε,y,L)−Xy,L(TL)− c(y)(t+ T̃ε,y,L − TL)

∣∣∣
≤ ‖c′‖L∞(R) × |t+ T̃ε,y,L − TL| × max

s∈[TL, t+T̃ε,y,L]

∣∣∣∣ Xy,L(s)

Xy,L(TL)
− 1

∣∣∣∣ .
Lemma 4.8 and (4.22) then yield (4.23).

Now, we are ready to give the

Proof of Proposition 4.7. Fix any ε ∈ (0, ε0], and assume by contradiction that the conclusion is
not true. Then, there exist sequences (yn)n∈N ⊂ R, (Ln)n∈N ⊂ [L2,ε,+∞), (xn)n∈N ⊂ R, and
initial conditions (v0

ε,yn)n∈N ⊂ C(R, [0, 1]) satisfying (4.14) such that Ln → +∞ as n→ +∞, and∣∣∣vε,yn,Ln(T̃ε,yn,Ln , xn)− ψ(xn − Ln, yn)
∣∣∣ > ε

2
for all n ∈ N. (4.24)

Remember that, for each n ∈ N, the inequalities stated in (4.20) hold true. By 1-periodicity
of the functions vε,y,L and ψ(·, y) with respect to y, we may assume without loss of generality
that (yn)n∈N ⊂ [0, 1].

We first claim that the sequence (xn − Ln)n∈N is bounded. Suppose by way of contradiction
that xn − Ln → +∞ as n → +∞ (as we will sketch below, the case where xn − Ln → −∞
as n → +∞ can be treated analogously). Choosing t = T̃ε,yn,Ln (notice that T̃ε,yn,Ln → +∞
as n→ +∞ by (4.5) and Lemma 4.8) and x = xn in the second inequality of (4.20), we have

0 ≤ vε,yn,Ln(T̃ε,yn,Ln , xn)

≤ ψ
(
xn − Ln +Xyn,Ln(TLn)−Xyn,Ln(T̃ε,yn,Ln) + ηε,Ln(T̃ε,yn,Ln), yn +

Xyn,Ln(T̃ε,yn,Ln)

Ln

)
+qε,Ln(T̃ε,yn,Ln).

Due to Lemma 4.8 and the definition of Xyn,Ln(t), the sequence (Xyn,Ln(TLn)−Xn(T̃ε,yn,Ln))n∈N is

bounded. Moreover, by Remark 4.4 and (4.17), the sequence (ηε,Ln(T̃ε,yn,Ln))n∈N is also bounded.
Thus, since ψ(ξ, y)→ 0 as ξ → +∞ uniformly in y ∈ R by Proposition 4.1 (ii), we have

ψ
(
xn − Ln +Xyn,Ln(TLn)−Xyn,Ln(T̃ε,yn,Ln) + ηε,Ln(T̃ε,yn,Ln), yn +

Xyn,Ln(T̃ε,yn,Ln)

Ln

)
→ 0

as n → +∞. This together with qε,Ln(T̃ε,yn,Ln) → 0 as n → +∞ (from (4.12) and Lemma 4.8)

yields vε,yn,Ln(T̃ε,yn,Ln , xn) → 0 as n → +∞, hence vε,yn,Ln(T̃ε,yn,Ln , xn) − ψ(xn − Ln, yn) → 0
as n→ +∞, which is a contradiction with (4.24).
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Similarly, if xn − Ln → −∞ as n → +∞, by using the first inequality of (4.20), one can
conclude that vε,yn,Ln(T̃ε,yn,Ln , xn) → 1 and ψ(xn − Ln, yn) → 1 as n → +∞, which is also a
contradiction with (4.24). Therefore, the sequence (xn − Ln)n∈N is bounded.

Next, for each n ∈ N, we set wn(t, x) = vε,yn,Ln(t + T̃ε,yn,Ln , x + Ln) for (t, x) ∈
[−T̃ε,yn,Ln ,+∞)× R. Clearly, wn(0, 0) = 1/2 and wn solves

∂twn = a∂xxwn + f

(
yn +

x

Ln
, wn

)
for t > −T̃ε,yn,Ln and x ∈ R.

It is also easily seen from (4.20) that, for any t ∈ R, x ∈ R and any n ∈ N such that t+T̃ε,yn,Ln ≥ 0,
wn(t, x) satisfies

wn(t, x) ≥ ψ
(
x+Xyn,Ln(TLn)−Xyn,Ln(t+T̃ε,yn,Ln)−ηε,Ln(t+T̃ε,yn,Ln), yn+

Xyn,Ln(t+T̃ε,yn,Ln)

Ln

)
− qε,Ln(t+ T̃ε,yn,Ln)

and

wn(t, x) ≤ ψ
(
x+Xyn,Ln(TLn)−Xyn,Ln(t+T̃ε,yn,Ln)+ηε,Ln(t+T̃ε,yn,Ln), yn+

Xyn,Ln(t+T̃ε,yn,Ln)

Ln

)
+ qε,Ln(t+ T̃ε,yn,Ln).

Thanks to Lemma 4.8 and the boundedness of the sequence (xn − Ln)n∈N, one can find some
τ∞ ∈ R, ξ∞ ∈ R and y∞ ∈ [0, 1], such that, up to extraction of some subsequence,

T̃ε,yn,Ln − TLn → τ∞, xn − Ln → ξ∞ and yn → y∞ as n→ +∞.

Furthermore, by standard parabolic estimates and possibly up to extraction of a further sub-
sequence, there is a function w∞ ∈ C1;2

t;x (R2) such that wn → w∞ in C1;2
t;x;loc(R

2) as n → +∞.
Clearly, w∞ is an entire solution of

∂tw∞ = a∂xxw∞ + f (y∞, w∞) for t ∈ R and x ∈ R. (4.25)

Notice that for any t ∈ R, limn→+∞ qε,Ln(t + T̃ε,yn,Ln) = 0 and there exists a constant C > 0
independent of t such that

− C ≤ lim inf
n→+∞

ηε,yn(t+ T̃ε,yn,Ln) ≤ lim sup
n→+∞

ηε,yn(t+ T̃ε,yn,Ln) ≤ 0 (4.26)

(indeed, since the sequence (TLn − T̃ε,yn,Ln)n∈N is bounded by Lemma 4.8 and since TLn → +∞
as n → +∞, it follows that, for any t ∈ R, one has 0 ≤ t + T̃ε,yn,Ln ≤ 2TLn for all large n;
then (4.26) follows immediately from Remark 4.4). Passing to the limit as n→ +∞ in the above
inequalities on wn(t, x), it follows from Lemmas 4.8 and 4.9, together with the continuity of the
map z 7→ c(z) and the 1-periodicity of ψ(ξ, y) with respect to y, that

ψ (x− c(y∞)(t+ τ∞) + C, y∞) ≤ w∞(t, x) ≤ ψ (x− c(y∞)(t+ τ∞)− C, y∞)

for all (t, x) ∈ R2. Namely, w∞ is an entire solution of (4.25) which is trapped between two shifts
of the corresponding traveling front ψ(x−c(y∞)t, y∞). Remember that the reaction f(y∞, ·) is of
the bistable type from (A1). It then follows from [9, Theorem 3.1] that there exists x0 ∈ R such
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that w∞(t, x) ≡ ψ(x−c(y∞)t+x0, y∞) for all (t, x) ∈ R2. Furthermore, notice that wn(0, 0) = 1/2
for each n ∈ N, hence w∞(0, 0) = 1/2. This together with the normalization condition (1.10)
implies that x0 has to be 0. Therefore, we have

w∞(t, x) ≡ ψ(x− c(y∞)t, y∞)

for all (t, x) ∈ R2.
On the other hand, it follows from (4.24) that |wn(0, xn − Ln) − ψ(xn − Ln, yn)| > ε/2 for

all n ∈ N. Taking the limit as n → +∞ yields |w∞(0, ξ∞) − ψ(ξ∞, y∞)| ≥ ε/2, which is a
contradiction. The proof of Proposition 4.7 is thus complete.

In addition to the previous observations, the last step before doing the proof of Theorem 1.6
in Section 4.4 is the global stability of the pulsating fronts φL, as stated below.

Proposition 4.10. For any ε ∈ (0, ε0] with ε0 ∈ (0, δ0) as in Lemmas 4.2-4.3, and for any
L ≥ L∗ with L∗ > 0 as in Theorem 1.1, let (vε,y,L)y∈R be the family the solutions of (4.1) with
initial conditions (v0

ε,y)y∈R satisfying (4.14). Then, there exists a 1-periodic real-valued function
y 7→ ξε,y,L such that

lim
t→+∞

∥∥∥vε,y,L(t, ·)− φL
(
· − cLt+ ξε,y,L,

·
L

+ y
)∥∥∥

L∞(R)
= 0 for every y ∈ R. (4.27)

Proof. Let ε ∈ (0, ε0] ⊂ (0, δ0) and L ≥ L∗ be fixed. For each y ∈ R, the function

uε,y,L : (t, x) 7→ uε,y,L(t, x) := vε,y,L(t, x− Ly)

is a solution of

∂tuε,y,L = a∂xxuε,y,L + f(x/L, uε,y,L) for t > 0 and x ∈ R,

with initial condition uε,y,L(0, ·) = v0
ε,y(·−Ly) ∈ C(R, [0, 1]) such that ‖uε,y,L(0, ·)−ψ(·−Ly, y)‖ ≤

ε ≤ ε0 < δ0, by (4.14). It then follows from Theorem 1.1 (iii) that there exists a unique ξ̃ε,y,L ∈ R
such that

lim
t→+∞

∥∥∥uε,y,L(t, ·)− φL
(
· − cLt+ ξ̃ε,y,L,

·
L

)∥∥∥
L∞(R)

= 0.

Choosing ξε,y,L = ξ̃ε,y,L + Ly, we see from the above that (4.27) holds.
Lastly, since vε,y,L and φL(·, y) are 1-periodic in y, and since φL(ξ, y) is decreasing with

respect to ξ, it follows that ξε,y,L in (4.27) is unique and necessarily 1-periodic in y. The proof
of Proposition 4.10 is thus complete.

4.4 Proof of Theorem 1.6

For clarity, we proceed with several steps.

Step 1: approximation of the front profiles φL by ψ(·, y). In this step, we fix any ε ∈ (0, ε0], with
ε0 ∈ (0, δ0) as in Lemmas 4.2-4.3 and δ0 ∈ (0, 1/2) as in assumption (A2). Let

L4,ε := max{L∗, L3,ε},

with L∗ > 0 and L3,ε > 0 provided by Theorem 1.1 and Proposition 4.7, respectively.
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We shall prove in this step that there exists a real number L5,ε ∈ [L4,ε,+∞) such that, for
every L ≥ L5,ε, there is a 1-periodic real-valued function y 7→ ξ∗ε,y,L such that∥∥∥φL (·+ ξ∗ε,y,L,

·
L

+ y
)
− ψ(·, y)

∥∥∥
L∞(R)

≤ ε for every y ∈ R and L ≥ L5,ε. (4.28)

To do so, for any y ∈ R and L ≥ L4,ε (≥ L3,ε ≥ L2,ε), let vε,y,L be the solution of (4.1) with ini-
tial condition v0

ε,y satisfying (4.14) (for instance, say, take here v0
ε,y = ψ(·, y)). By Proposition 4.7

and (4.18), we have

vε,y,L(T̃ε,y,L, L) =
1

2
and

∥∥∥vε,y,L(T̃ε,y,L, ·+ L
)
− ψ(·, y)

∥∥∥
L∞(R)

≤ ε

2
≤ ε,

where T̃ε,y,L is defined by (4.16)-(4.17). Since f is 1-periodic with respect to its first variable, the

function (t, x) 7→ vε,y,L(t+ T̃ε,y,L, x+L) is still a solution of (4.1), now with the initial condition

vε,y,L(T̃ε,y,L, · + L) ∈ C(R, [0, 1]). Furthermore, since both vε,y,L and T̃ε,y,L are 1-periodic with

respect to y, one has vε,y+1,L(T̃ε,y+1,L, ·+ L) ≡ vε,y,L(T̃ε,y,L, ·+ L) in R for each y ∈ R. By using
Proposition 4.7 again, we infer that∥∥∥vε,y,L(T̃ 2

ε,y,L, ·+ 2L
)
− ψ(·, y)

∥∥∥
L∞(R)

≤ ε

2
≤ ε,

where T̃ 2
ε,y,L := min

{
t > T̃ε,y,L : vε,y,L(t, 2L) = 1/2

}
(the quantities T̃ 2

ε,y,L are well defined

real numbers, as are the T̃ε,y,L’s, from the same arguments as in (4.16)-(4.18)). Then, a simple
induction argument implies that, for any k ∈ N,∥∥∥vε,y,L(T̃ kε,y,L, ·+ kL, y

)
− ψ(·, y)

∥∥∥
L∞(R)

≤ ε

2
, (4.29)

where T̃ kε,y,L = min
{
t > T̃ k−1

ε,y,L : vε,y,L(t, kL) = 1/2
}

. Moreover, due to Lemma 4.8, there holds

sup
y∈R, L≥L4,ε, k∈N

∣∣T̃ k+1
ε,y,L − T̃

k
ε,y,L − TL

∣∣ < +∞,

where TL is defined by (4.5). Since TL → +∞ as L→ +∞ (independently of y ∈ R), there exists
L5,ε ∈ [L4,ε,+∞) such that T̃ kε,y,L → +∞ as k → +∞ uniformly in y ∈ R and L ≥ L5,ε.

On the other hand, for each L ≥ L5,ε (≥ L4,ε ≥ L∗), it follows from Proposition 4.10 that
there exists a 1-periodic real-valued function y 7→ ξε,y,L such that

lim
t→+∞

∥∥∥vε,y,L(t, ·)− φL
(
· − cLt+ ξε,y,L,

·
L

+ y
)∥∥∥

L∞(R)
= 0

for every y ∈ R. Therefore, for each L ≥ L5,ε and y ∈ [0, 1), there is kε,y,L ∈ N such that∥∥∥vε,y,L(T̃ kε,y,Lε,y,L , ·+ kε,y,LL
)
− φL

(
·+ ξ∗ε,y,L,

·
L

+ y
)∥∥∥

L∞(R)
≤ ε

2
,

where ξ∗ε,y,L := kε,y,LL−cLT̃
kε,y,L
ε,y,L +ξε,y,L (we here use the 1-periodicity of φ in its second variable).

Combining this with (4.29) at k = kε,y,L, we obtain that∥∥∥φL( ·+ξ∗ε,y,L, ·L + y
)
− ψ(·, y)

∥∥∥
L∞(R)

≤ ε. (4.30)
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We can then extend the function y 7→ ξ∗ε,y,L as a 1-periodic function, so that (4.30) holds for all
y ∈ R, since φL(ξ, y) and ψ(ξ, y) are 1-periodic with respect to y ∈ R. The proof of Step 1 is
thus complete.

Step 2: proof of

lim
ε→0

(
sup

y∈R, L≥L5,ε

∣∣ξ∗ε,y,L − ζL(y)
∣∣) = 0, (4.31)

with ζL given by (1.15). Indeed, for each ε ∈ (0, ε0], since ψ(0, y) = φL(ζL(y), y) = 1/2 for all
y ∈ R and L ≥ L5,ε, (4.28) implies in particular that

sup
y∈R, L≥L5,ε

∣∣∣φL (ξ∗ε,y,L, y)− φL(ζL(y), y)︸ ︷︷ ︸
=1/2

∣∣∣ ≤ ε ≤ ε0 <
1

4
. (4.32)

Then, by Theorem 1.8 (i)-(ii), it follows that there exists a constant B1 > 0 such that

|ξ∗ε,y,L − ζL(y)| ≤ B1 for all ε ∈ (0, ε0], y ∈ R and L ≥ L5,ε, (4.33)

and also that (4.31) holds.

Step 3: lim supL→+∞ |L− cLTL| < +∞, with TL given by (4.5).9 Notice that for any y ∈ R and
L ≥ L5,ε0 ≥ L4,ε0 = max{L∗, L3,ε0}, the function

(t, x) 7→ φL

(
x− cLt+ ξ∗ε0,y,L,

x

L
+ y
)

= UL

(
t−

ξ∗ε0,y,L
cL

+
Ly

cL
, x+ Ly

)
is the solution of (4.1) with initial condition φL(· + ξ∗ε0,y,L, ·/L + y). Since L ≥ L5,ε0 ≥ L1,ε0 , it
follows from (4.28) and Lemmas 4.2-4.3 (with their notations) that

v−ε0,y,L(t, x) ≤ φL
(
x− cLt+ ξ∗ε0,y,L,

x

L
+ y
)
≤ v+

ε0,y,L
(t, x) for all t ≥ 0 and x ∈ R. (4.34)

In particular, choosing t = TL and x = L yields

ψ(−ηε0,L(TL), y)− qε0,L(TL) ≤ φL(L− cLTL + ξ∗ε0,y,L, y) ≤ ψ(ηε0,L(TL), y) + qε0,L(TL).

Since limL→+∞ qε0,L(TL) = 0 by (4.12) and since supL≥L5,ε0
|ηε0,L(TL)| < +∞ by Remark 4.4, it

then follows from Proposition 4.1 (namely, the continuity of ψ : R2 → (0, 1) and its 1-periodicity
in its second variable) that there exist κ0 ∈ (0, 1/2) and L̄ ≥ L5,ε0 such that

κ0 ≤ φL
(
L− cLTL + ξ∗ε0,y,L, y

)
≤ 1− κ0 for all y ∈ R and L ≥ L̄.

Hence, by Theorem 1.8 (i), there exists B2 > 0 such that∣∣L− cLTL + ξ∗ε0,y,L − ζL(y)
∣∣ ≤ B2 for all y ∈ R and L ≥ L̄.

This together with (4.33) implies that |L − cLTL| ≤ B1 + B2 for all L ≥ L̄, which yields the
desired result.

Step 4: proof the convergence (1.16). We fix any σ > 0. We have to show the existence of L∗σ > 0
such that for any L ≥ L∗σ,

sup
y∈R

∥∥∥φL (·+ ζL(y),
·
L

+ y
)
− ψ(·, y)

∥∥∥
L∞(R)

≤ σ. (4.35)

9With this property, we here recover that cL → c∗ as L→ +∞.
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To do so, we first recall that the map L 7→ cL is continuous and positive from Theo-
rem 1.1 (i) and (iv), and that cL → c∗ > 0 by Theorem 1.2 (or by Step 3 of the present
proof), hence supL≥L∗ c

−1
L < +∞. It then follows from standard parabolic estimates that

M := supL≥L∗‖∂ξφL‖L∞(R2) = supL≥L∗c
−1
L ‖∂tUL‖L∞(R2) ∈ [0,+∞). Next, by Step 2, there is

εσ ∈ (0,min{ε0, σ/2}] such that

M × |ξ∗εσ ,y,L − ζL(y)| ≤ σ

2
for all y ∈ R and L ≥ L5,εσ .

Hence,∥∥∥φL (·+ ζL(y),
·
L

+ y
)
− φL

(
·+ ξ∗εσ ,y,L,

·
L

+ y
)∥∥∥

L∞(R)
≤ σ

2
for all y ∈ R and L ≥ L5,εσ .

Then, (4.28) (applied with εσ) and the inequality εσ ≤ σ/2 give (4.35) for all L ≥ L∗σ := L5,εσ > 0.
This ends the proof of Step 4.

Step 5: the convergence (1.17) holds locally uniformly in x ∈ R. Let us first show that, for any
given A > 0,

sup
y∈R, L≥L5,ε, x∈[0,A]

∣∣∣∣∣ξ∗ε,y,L + L

∫ y+x/L

y

(
1− cL

c(s)

)
ds− ζL

(
y +

x

L

)∣∣∣∣∣ → 0 as ε→ 0. (4.36)

For any ε ∈ (0, ε0], y ∈ R, L ≥ L5,ε and x ∈ [0, A], define

ty,L,x := L

∫ y+x/L

y
c−1(s)ds. (4.37)

Clearly, ty,L,x ≥ 0. It is easily seen from the definition of Xy,L(t) in (4.4) that Xy,L(ty,L,x) = x.
Choosing x and t = ty,L,x in (4.34) (these inequalities actually hold as in Step 3 with ε0 replaced
by any ε ∈ (0, ε0], and for any L ≥ L5,ε) gives

ψ

(
−ηε,L(ty,L,x), y +

Xy,L(ty,L,x)

L

)
− qε,L(ty,L,x)

≤ φL

(
L

∫ y+x/L

y

(
1− cL

c(s)

)
ds+ ξ∗ε,y,L,

x

L
+ y

)

≤ ψ
(
ηε,L(ty,L,x), y +

Xy,L(ty,L,x)

L

)
+ qε,L(ty,L,x).

(4.38)

Moreover, by the normalization conditions (1.10) and (1.15), we have

ψ

(
0, y +

Xy,L(ty,L,x)

L

)
= φL

(
ζL

(x
L

+ y
)
,
x

L
+ y
)

=
1

2
.

It then follows that∣∣∣∣∣φL
(
L

∫ y+x/L

y

(
1− cL

c(s)

)
ds+ ξ∗ε,y,L,

x

L
+ y

)
− φL

(
ζL

(x
L

+ y
)
,
x

L
+ y
)∣∣∣∣∣

≤ max

{∣∣∣∣ψ(ηε,L(ty,L,x), y +
Xy,L(ty,L,x)

L

)
− ψ

(
0, y +

Xy,L(ty,L,x)

L

)∣∣∣∣ ,∣∣∣∣ψ(−ηε,L(ty,L,x), y +
Xy,L(ty,L,x)

L

)
− ψ

(
0, y +

Xy,L(ty,L,x)

L

)∣∣∣∣}
+qε,L(ty,L,x).

(4.39)
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By definition of ty,L,x, we have ty,L,x/L → 0 as L → +∞ uniformly in y ∈ R and x ∈ [0, A].
Furthermore, thanks to (4.7) and (4.13), and since L5,ε ≥ L1,ε → +∞ as ε → 0 by (4.10), one
infers that

sup
y∈R, L≥L5,ε, x∈[0,A]

(
qε,L(ty,L,x)︸ ︷︷ ︸

≥0

+|ηε,L(ty,L,x)|
)
→ 0 as ε→ 0.

Passing to the limit as ε → 0 in (4.39) and using the boundedness of ∂ξψ in R2 (which itself
follows from standard elliptic estimates), one infers that

sup
y∈R, L≥L5,ε, x∈[0,A]

∣∣∣∣∣∣∣∣φL
(
L

∫ y+x/L

y

(
1− cL

c(s)

)
ds+ ξ∗ε,y,L,

x

L
+ y

)
− φL

(
ζL

(x
L

+ y
)
,
x

L
+ y
)

︸ ︷︷ ︸
=1/2

∣∣∣∣∣∣∣∣→ 0

as ε → 0. This together with Theorem 1.8 (i)-(ii) implies (4.36) (the proof is actually similar
to that of Step 2; therefore, we omit the details). Combining (4.31) and (4.36), we immediately
obtain that (1.17) holds in the case where x ∈ [0, A].

It remains to consider the case where x ∈ [−A, 0]. Clearly, the convergence (4.36) holds with x
replaced by A and by x+A ∈ [0, A] as well. Since ξ∗ε,y,L is independent of the variable x, it then
follows that

sup
y∈R, L≥L5,ε, x∈[−A,0]

∣∣∣∣∣ζL
(
y +

x+A

L

)
− ζL

(
y +

A

L

)
− L

∫ y+(x+A)/L

y+A/L

(
1− cL

c(s)

)
ds

∣∣∣∣∣ → 0

as ε→ 0. Replacing y by y +A/L, we obtain (1.17) in the case where x ∈ [−A, 0]. The proof of
Step 5 is thus compete.

Step 6: proof of the estimate (1.18). By (4.31) and the continuity of the map (L, y) 7→ ζL(y)
in [L∗,+∞)×R and its 1-periodicity in y, in order to show (1.18), it suffices to prove the existence
of ε1 ∈ (0, ε0] such that

sup
ε∈(0,ε1], y∈R, L≥L5,ε

∥∥∥∥∥ξ∗ε,y,L + L

∫ y+·/L

y

(
1− cL

c(s)

)
ds− ζL

(
y +

·
L

)∥∥∥∥∥
L∞([−L,L])

< +∞. (4.40)

Consider any ε ∈ (0, ε0], y ∈ R, L ≥ L5,ε, and x ∈ [0, L]. Let ty,L,x be as in (4.37). There
holds 0 ≤ ty,L,x ≤ TL and Xy,L(ty,L,x) = x, since Xy,L(TL) = L ≥ x and Xy,L is increasing. It
is also easily seen that the inequalities (4.38) remain valid. Moreover, by (4.7) and Remark 4.4,
we have 0 < qε,L(ty,L,x) ≤ ε and −B3 ≤ ηε,L(TL) ≤ ηε,L(ty,L,x) ≤ 0, where B3 is a positive
constant independent of ε, y, L and x. Then, by the continuity of the map ψ : R2 → (0, 1) and
its 1-periodicity with respect to its second variable, there exist ε1 ∈ (0, ε0] and κ1 ∈ (0, 1/2) such
that

κ1 ≤ φL

(
L

∫ y+x/L

y

(
1− cL

c(s)

)
ds+ ξ∗ε,y,L,

x

L
+ y

)
≤ 1− κ1

for all ε ∈ (0, ε1], y ∈ R, L ≥ L5,ε, and x ∈ [0, L]. It further follows from Theorem 1.8 that there
exists B4 ∈ [0,+∞) such that

sup
ε∈(0,ε1], y∈R, L≥L5,ε, x∈[0,L]

∣∣∣∣∣ξ∗ε,y,L + L

∫ y+x/L

y

(
1− cL

c(s)

)
ds− ζL

(
y +

x

L

)∣∣∣∣∣ ≤ B4. (4.41)
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This means that (4.40) holds true with [−L,L] replaced by [0, L].
Next, for any x ∈ [−L, 0], we have x+L ∈ [0, L]. Since z 7→ ζL(z) and z 7→ c(z) are 1-periodic,

it then follows from (4.41) and the formula TL = L/c∗ that∣∣∣∣∣ξ∗ε,y,L − ζL (y +
x

L

)
+ L

∫ y+x/L

y

(
1− cL

c(s)

)
ds

∣∣∣∣∣
=

∣∣∣∣∣ξ∗ε,y,L − ζL
(
y +

x+ L

L

)
+ L

∫ y+(x+L)/L

y

(
1− cL

c(s)

)
ds− (L− cLTL)

∣∣∣∣∣
≤ B4 + |L− cLTL|,

for all ε ∈ (0, ε1], y ∈ R, L ≥ L5,ε, and x ∈ [−L, 0]. By the conclusion of Step 3 and the
continuity of cL and TL with respect to L, the last quantity is then bounded uniformly with
respect to ε ∈ (0, ε1], y ∈ R, L ≥ L5,ε, and x ∈ [−L, 0]. Combining the above, we obtain (4.40),
hence (1.18) is proved. This ends the proof of Theorem 1.6. �

5 Appendix

The appendix is devoted to the proof of Proposition 4.1. Statement (i) follows easily from the
assumption that a(y) and f(y, u) are 1-periodic in y and the classical theory on homogeneous
bistable traveling waves established in [4]. It is also not difficult to prove statements (ii)-(iii) by
using phase-plane arguments. As we failed to find a direct proof in the literature, we just sketch
the main arguments below for the sake of completeness.

Proof of Proposition 4.1 (ii)-(iii). For each y ∈ R, with writting q(·, y) = ψ(·, y), the equation
in (1.9) is equivalent to the following first-order system

dq(ξ, y)

dξ
= p(ξ, y),

dp(ξ, y)

dξ
= − c(y)

a(y)
p(ξ, y)− f(y, q(ξ, y))

a(y)
for ξ ∈ R. (5.1)

Since p(ξ, y) < 0 for all ξ ∈ R and y ∈ R, there is a one-to-one corresponding between the
trajectories Ty(ξ) = (q(ξ, y), p(ξ, y)) of (5.1) and the integral curves Iy(q) = (q, P (q, y)) of the
equation

dP (q, y)

dq
= − c(y)

a(y)
− f(y, q)

a(y)P (q, y)
(5.2)

in the semi-strip S = (0, 1) × (−∞, 0) of the (q, p)-plane. It follows directly from [30, Proposi-
tion 2.3] that c(y) is continuous in y ∈ R, and hence, the right hand side of (5.2) is continuous with
respect to (q, P, y) ∈ S×R. This together with the fact that for each y ∈ R, Iy is the unique curve
lying in S and connecting (0, 0) and (1, 1), implies that the function (q, y) ∈ (0, 1)×R 7→ P (q, y)
is continuous. Now, coming back to equation (5.1) and recalling that q(0, y) = 1/2 by (1.10), we
obtain that q(ξ, y) is continuous in (ξ, y) ∈ R2. Then, applying standard elliptic estimates to the
equation in (1.9), one can conclude that the map y 7→ ψ(·, y) from R to C2

loc(R) is continuous.
Using this continuity and arguing by contradiction, one can derive that ψ(ξ, y) tends to its limits
and ∂ξψ(ξ, y) tends to 0 as ξ → ±∞ uniformly in y ∈ R. This immediately gives the first part
of (ii), and (iii) as well. Furthermore, together with [48, Lemmas 3.2-3.3] (see also [4]), the above
convergences also imply that

∂ξψ(ξ, y)

ψ(ξ, y)
→ −λ1(y) as ξ → +∞ and

∂ξψ(ξ, y)

1− ψ(ξ, y)
→ −λ2(y) as ξ → −∞,
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where the convergences are taken uniformly in y ∈ R, and λ1(y), λ2(y) are positive constants
given by

λ1(y) =
c(y) +

√
c2(y)− 4a(y)∂uf(y, 0)

2a(y)
and λ2(y) =

−c(y) +
√
c2(y)− 4a(y)∂uf(y, 1)

2a(y)
.

Thanks to the assumption (A2) and the fact that the functions y 7→ a(y) and y 7→ c(y) are
continuous positive and 1-periodic, choosing µ1 > 0 and µ2 > 0 such that

0 < µ1 < min
y∈R

c(y) +
√
c2(y) + 4γ0a(y)

2a(y)
and 0 < µ2 < min

y∈R

−c(y) +
√
c2(y) + 4γ0a(y)

2a(y)
,

one obtains (4.2). This gives the second part of (ii). The proof of Proposition 4.1 (ii)-(iii) is thus
complete.

Remark 5.1. Before proceeding with the proof of statement (iv), we collect some easy corollaries
of the estimate (4.2), which will be used frequently later. First of all, by (4.2) and standard
elliptic estimates applied to (1.9) and its derivative, we can find a constant C̃1 > 0 (independent
of y ∈ R) such that

‖1− ψ(·, y)‖L2((−∞,0)) + ‖ψ(·, y)‖L2((0,+∞)) + ‖∂ξψ(·, y)‖H2(R) ≤ C̃1 (5.3)

for all y ∈ R. Furthermore, for ξ ∈ R and y ∈ R, letting

w∗(ξ, y) := exp

(
c(y)

a(y)
ξ

)
∂ξψ(ξ, y), (5.4)

one observes from the proof of (4.2) and standard elliptic estimates that there is a constant C̃2 > 0
such that

|∂ξψ(ξ, y)| ≤ C̃2 min{e−((c(y)+
√
c2(y)+4γ0a(y))/(2a(y))) ξ, 1} for all (ξ, y) ∈ R2. (5.5)

Therefore, w∗(ξ, y) decays no slower than e−µ̃1ξ as ξ → +∞, where µ̃1 is given by

µ̃1 = min
y∈R

−c(y) +
√
c2(y) + 4γ0a(y)

2a(y)
> 0,

and, as above, there is a constant C̃3 > 0 such that ‖w∗(·, y)‖H2(R) ≤ C̃3 for all y ∈ R.

Now, we turn to the proof of statement (iv) of Proposition 4.1. The proof shares some
similarities with the proof of [18, Theorem 1.2] which established the existence of pulsating fronts
of (1.1) when L is small and the convergence of those fronts as L → 0 by using the implicit
function theorem (see also [36, Theorem 1.1] for the study of pulsating fronts in perforated
domains). Here, we will apply the implicit function theorem under a similar setting to show the
C1-smoothness of the homogeneous fronts (ψ(·, y), c(y)) with respect to y ∈ R.

Let us first introduce a family of auxiliary operators. In the sequel, we fix a real number
β > 0. For any c ∈ R and y ∈ R, we define

Mc,y(v) = a(y)v′′ + cv′ − βv for v ∈ H2(R).

Clearly, each Mc,y maps H2(R) into L2(R). In the following lemma, we present some basic
properties of this operator.
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Lemma 5.2. Fix β > 0. We have

(i) For any c ∈ R and y ∈ R, the operator Mc,y : H2(R) → L2(R) is invertible. Furthermore,
for every A > 0, there exists a constant C > 0 (depending on β and A, but independent
of y) such that for any c ∈ [−A,A], y ∈ R and g ∈ L2(R),

‖M−1
c,y (g)‖H2(R) ≤ C‖g‖L2(R). (5.6)

(ii) For any g ∈ L2(R),
M−1
cn,yn(gn)→M−1

c,y (g) in H2(R) (5.7)

as n → +∞ for all sequences (gn)n∈N ⊂ L2(R), (cn)n∈N ⊂ R, (yn)n∈R ⊂ R such that
‖gn− g‖L2(R) → 0, cn → c and yn → y as n→ +∞. Furthermore, the above convergence is
uniform in (g, c, y) ∈ BA × R for any A > 0, where BA is the ball given by BA = {(g, c) ∈
L2(R)× R : ‖g‖L2(R) + |c| ≤ A}.

Proof. The proof of the invertibility of Mc,y follows from similar arguments used in the proof
of [18, Lemma 3.1]; therefore, we omit the details. To obtain the estimate (5.6), let v = M−1

c,y (g).
Integrating Mc,y(v) = g against v over R gives

∫
R a(y)(v′)2 + βv2 = −

∫
R gv, whence∫

R
a(y)(v′)2 +

β

2
v2 ≤ 1

2β

∫
R
g2.

This together with Mc,y(v) = g implies that

‖v‖L2(R) ≤
1

β
‖g‖L2(R), ‖v′‖L2(R) ≤

√
1

2βminx∈R a(x)
‖g‖L2(R)

and

‖v′′‖L2(R) ≤
1

minx∈R a(x)

(√
c2

2βminx∈R a(x)
+ 1

)
‖g‖L2(R).

Thus, part (i) of Lemma 5.2 follows.
Next, we prove the convergence (5.7). For each n ∈ N, let un = M−1

cn,yn(gn) and u = M−1
c,y (g).

Let A > 0 be fixed and (g, c, y) ∈ BA × R. Without loss of generality, we may assume that
(gn, cn, yn) ∈ B2A×R for all n ∈ N. By the proof of (5.6), we have ‖u‖H2(R) ≤ C1‖g‖L2(R), where
C1 is a positive constant depending only on β and A. Notice that

Mcn,yn(un − u) = (a(yn)− a(y))u′′ + (c− cn)u′ + (gn − g)

for all n ∈ N. By the proof of (5.6) again, we find a positive constant C2 depending only on β
and A such that ‖un − u‖H2(R) ≤ C2‖(a(yn)− a(y))u′′ + (cn − c)u′ + (gn − g)‖L2(R), whence

‖un − u‖H2(R) ≤ C1C2

(
max
x∈R
|a′(x)|

)
|yn − y|‖g‖L2(R) + C1C2|cn − c|‖g‖L2(R) + C2‖gn − g‖L2(R),

for all n ∈ N. This implies that (5.7) holds uniformly in (g, c, y) ∈ BA × R. The proof of
Lemma 5.2 is thus complete.
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In addition to β > 0, we also consider in the sequel an arbitrary real number y0. Now, for
any (v, c, y) ∈ L2(R)× R× R, we define

K(v, c, y) : ξ 7→ K(v, c, y)(ξ) := a(y)∂ξξψ(ξ, y0) + c∂ξψ(ξ, y0) + βv(ξ) + f(y, v(ξ) + ψ(ξ, y0)).

Clearly, K(0, c(y0), y0)(ξ) = 0 for all ξ ∈ R, by (1.9). By Remark 5.1, we know that
ψ(·, y0) ∈ L2((0,+∞)), 1− ψ(·, y0) ∈ L2((−∞, 0)), and ∂ξψ(·, y0) ∈ H2(R). Moreover, since the
function f(x, u) satisfies (A1) and is globally Lipschitz continuous with respect to u uniformly
in x ∈ R, it follows that the function ξ 7→ f(y, v(ξ) + ψ(ξ, y0)) belongs to L2(R). Therefore, for
any (v, c, y) ∈ L2(R)× R× R, we have K(v, c, y) ∈ L2(R).

Now, for any (v, c, y) ∈ H2(R)× R× R, we set G(v, c, y) = (G1, G2)(v, c, y) with

G1(v, c, y) = v +M−1
c,y (K(v, c, y)) and G2(v, c, y) = v(0).

It is easily seen from Lemma 5.2 (i) that the function G maps H2(R) × R × R into H2(R) × R.
Remember that (ψ(·, y), c(y)) is the unique solution of (1.9)-(1.10). It is straightforward to check
that for any y ∈ R, we have ψ(·, y)− ψ(·, y0) ∈ H2(R) by (5.3), and

G(ψ(·, y)− ψ(·, y0), c(y), y) = (0, 0).

On the other hand, thanks to Lemma 5.2 (ii) and the assumption that the function f(x, u) is of
class C1 in (x, u) ∈ R2, and f(x, u), ∂uf(x, u) are globally Lipschitz continuous in u uniformly in
x ∈ R, by similar arguments to those used in the proof of [18, Lemma 3.4], one can check that the
function G : H2(R)×R×R→ H2(R)×R is continuously Fréchet differentiable (the verification
is simpler in our case, since no singularity occurs) and that the derivatives are given by

∂(v,c,y)G(v, c, y)(ṽ, c̃, ỹ) =

(
∂vG1(v, c, y)(ṽ) + ∂cG1(v, c, y)(c̃) + ∂yG1(v, c, y)(ỹ)

∂vG2(v, c, y)(ṽ) + ∂cG2(v, c, y)(c̃) + ∂yG2(v, c, y)(ỹ)

)

for all (ṽ, c̃, ỹ) ∈ H2(R)× R× R, where
∂vG1(v, c, y)(ṽ) = ṽ +M−1

c,y

[
∂uf(y, v + ψ(·, y0)) ṽ + βṽ

]
,

∂cG1(v, c, y)(c̃) = −c̃M−1
c,y

{
∂ξ
[
M−1
c,y (K(v, c, y))− ψ(·, y0)

]}
,

∂yG1(v, c, y)(ỹ) = −ỹ M−1
c,y

{
a′(y)∂ξξ

[
M−1
c,y (K(v, c, y))− ψ(·, y0)

]
− ∂xf(y, v + ψ(·, y0))

}
,

and
∂vG2(v, c, y)(ṽ) = ṽ(0), ∂cG2(v, c, y)(c̃) = 0, ∂yG2(v, c, y)(ỹ) = 0.

We will apply the implicit function theorem for the function G : H2(R)×R×R→ H2(R)×R
and show the C1-smoothness of the functions y 7→ c(y) and y 7→ ψ(·, y) at y = y0. To do so, we
need the following lemma.

Lemma 5.3. The operator Qy0 = ∂(v,c)G(0, c(y0), y0) : H2(R) × R → H2(R) × R is invertible.

Furthermore, there exists a constant C > 0 independent of y0 such that for any (g̃, d̃) ∈ H2(R)×R,

‖Q−1
y0 (g̃, d̃)‖H2(R)×R ≤ C‖(g̃, d̃)‖H2(R)×R, (5.8)

where the space H2(R)× R is endowed with norm ‖(g̃, d̃)‖H2(R)×R = ‖g̃‖H2(R) + |d̃|.
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Proof. Let H be the linearization of (1.9) with respect to ψ at (ψ(·, y), c(y)) with y = y0. Namely,
we define

H(v) = a(y0)v′′ + c(y0)v′ + ∂uf(y0, ψ(·, y0))v for v ∈ H2(R).

By [36], the operator H and the adjoint operator H∗, given by H∗(v) = a(y0)v′′ − c(y0)v′ +
∂uf(y0, ψ(·, y0))v for v ∈ H2(R), have algebraically simple eigenvalue 0. Moreover, the kernel
ker(H) is equal to R∂ξψ(·, y0) and ker(H∗) is equal to Rw∗, with w∗ := w∗(·, y0) given by (5.4).
Moreover, it is also known from [36] that the range of H is closed in L2(R). Based on these
properties, one can conclude that the operator Qy0 : H2(R)×R→ H2(R)×R is invertible. The
proof follows the same lines as those used in [18, Lemma 3.4] and [36, Lemma 2.4]; therefore, we
do not repeat the details here.

Next, we show the estimate (5.8) (with a constant C independent of y0). To do so, by linearity,
it is sufficient to show that

sup
y0∈R, (g̃,d̃)∈S

‖Q−1
y0 (g̃, d̃)‖H2(R)×R < +∞,

where S := {(g̃, d̃) ∈ H2(R) × R : ‖(g̃, d̃)‖H2(R)×R = 1}. For any y0 ∈ R and (g̃, d̃) ∈ S, set

(ṽ, c̃) = Q−1
y0 (g̃, d̃) and w̃ = ṽ − g̃. It then follows from the definition of Qy0 that

w̃ = −M−1
c(y0),y0

[
∂uf(y0, ψ(·, y0)) ṽ + βṽ

]
− c̃M−1

c(y0),y0

[
∂ξψ(·, y0)

]
,

whence, owing to the definition of H,

H(w̃) = −∂uf(y0, ψ(·, y0)) g̃ − βg̃ − c̃∂ξψ(·, y0).

Testing this equation with w∗(·, y0) ∈ ker(H∗) (which is given by (5.4)), we obtain

c̃

∫
R
∂ξψ(ξ, y0)w∗(ξ, y0) dξ = −

∫
R

[
∂uf(y0, ψ(ξ, y0)) g̃(ξ) + βg̃(ξ)

]
w∗(ξ, y0) dξ.

From Remark 5.1, the map y 7→
∫
R ∂ξψ(ξ, y)w∗(ξ, y)dξ is positive, periodic, continuous in R,

and ‖w∗(·, y)‖L2(R) is bounded uniformly in y ∈ R. Therefore, there is a constant C1 > 0

(independent of y0 ∈ R and (g̃, d̃) ∈ S) such that

|c̃| ≤ C1‖g̃‖L2(R) ≤ C1. (5.9)

It remains to estimate ‖ṽ‖H2(R). Let w̃ = w̃1 + w̃2, where w̃1 is orthogonal to ∂ξψ(·, y0)
in L2(R) and w̃2 ∈ R∂ξψ(·, y0). Since w̃2 ∈ Ker(H), we have

H(w̃1) = H(w̃) = −∂uf(y0, ψ(·, y0)) g̃ − βg̃ − c̃∂ξψ(·, y0).

We first claim that ‖w̃1‖L2(R) is bounded uniformly with respect to y0 ∈ R and (g̃, d̃) ∈ S. Assume
by contradiction that this is not true. Then, thanks to (5.9) and the 1-periodicity with respect
to y0, there exist a sequence (yn)n∈N ⊂ [0, 1], a sequence (g̃n, d̃n)n∈N ⊂ S, a bounded sequence
(c̃n)n∈N ⊂ R and a sequence of (pn)n∈N ⊂ H2(R) with ‖pn‖L2(R) → +∞ as n→ +∞ such that pn
is orthogonal to ∂ξψ(·, yn) for each n ∈ N and

Hn(pn) := a(yn)p′′n + c(yn)p′n + ∂uf(yn, ψ(·, yn))pn = −∂uf(yn, ψ(·, yn)) g̃n − βg̃n − c̃n∂ξψ(·, yn).
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For each n ∈ N, writing

qn =
pn

‖pn‖L2(R)
and gn =

−∂uf(yn, ψ(·, yn)) g̃n − βg̃n − c̃n∂ξψ(·, yn)

‖pn‖L2(R)
,

we have ‖gn‖L2(R) → 0 as n→ +∞ by (5.3), and Mc(yn),yn(qn) = −∂uf(yn, ψ(·, yn)) qn−βqn+gn is
uniformly bounded in L2(R). Up to extraction of a sequence, we can assume that yn → y∗ ∈ [0, 1]
as n → +∞. It follows from Lemma 5.2 and the boundedness of the sequence (c(yn))n∈N that
the sequence (qn)n∈N is bounded in H2(R). Hence, up to extraction of another subsequence, the
sequence (qn)n∈N converges in H2(R) weakly and in C1

loc(R) to some q∗ ∈ H2(R). This implies
that a(y∗)q

′′
∗ + c(y∗)q

′
∗ + ∂uf(y∗, ψ(·, y∗))q∗ = 0. Furthermore, q∗ is orthogonal to ∂ξψ(·, y∗)

in L2(R), by (5.5) and the continuity of ∂ξψ(·, y) in y. As a consequence, q∗ = 0.
Therefore, qn → 0 in C1

loc(R), hence in L2
loc(R), as n → +∞. In order to get a contradic-

tion, we further show that this convergence holds in L2(R). Indeed, by Proposition 4.1 (ii)
and the assumption (A2), there exists a constant M ′ > 0 (independent of n ∈ N) such
that ∂uf(yn, ψ(ξ, yn)) ≤ −γ0/2 for all ξ ∈ (−∞,−M ′] ∪ [M ′,+∞) and n ∈ N. Integrating
the equation Hn(qn) = gn against qn over (M ′,+∞), we get

−a(yn)

∫ +∞

M ′
(q′n)2(ξ) dξ +

∫ +∞

M
∂uf(yn, ψ(ξ, yn))q2

n(ξ) dξ → 0 as n→ +∞.

This implies in particular that ‖qn‖L2((M ′,+∞)) → 0 as n → +∞. The same analysis
over (−∞,−M ′) gives ‖qn‖L2((−∞,−M ′)) → 0 as n → +∞. Finally, the sequence (qn)n∈N tends
to 0 in L2(R), which is a contradiction with the fact that ‖qn‖L2(R) = 1 for each n ∈ N. We can

thus conclude that ‖w̃1‖L2(R) is bounded uniformly with respect to y0 ∈ R and (g̃, d̃) ∈ S.
Furthermore, since Mc(y0),y0(w̃1) = −∂uf(y0, ψ(·, y0)) (w̃1 + g̃) − β(w̃1 + g̃) − c̃∂ξψ(·, y0), it

follows from (5.3), (5.9) and Lemma 5.2, together with the bondedness of c(y0) with respect to
y0 ∈ R, that there exists a positive constant C2 (independent of y0 and (g̃, d̃) ∈ S) such that

‖w̃1‖H2(R) ≤ C2. (5.10)

By the Sobolev inequality, maxξ∈R |w̃1(ξ)| ≤ C3‖w̃1‖H2(R) ≤ C3C2 for some constant C3 > 0

independent of y0 and (g̃, d̃) ∈ S. In particular, we have |w̃1(0)| ≤ C3C2. Similarly, we have
|g̃(0)| ≤ C3‖g̃‖H2(R) ≤ C3. Finally, remembering that ṽ(0) = d̃ ∈ [−1, 1] and ṽ− g̃ = w̃ = w̃1+w̃2,

we have w̃2(0) = d̃− g̃(0)− w̃1(0). This together with Proposition 4.1 (iii), (1.10), (5.3) and the
fact that w̃2 ∈ R∂ξψ(·, y0) implies that

‖w̃2‖H2(R) =

∣∣∣∣ w̃2(0)

∂ξψ(0, y0)

∣∣∣∣ ‖∂ξψ(·, y0)‖H2(R) ≤ C4

for some constant C4 > 0 independent of y0 and (g̃, d̃) ∈ S. Combining this with (5.9)-(5.10)
and the fact that ṽ = w̃ + g̃, we obtain that ‖Q−1

y0 (g̃, d̃)‖H2(R)×R ≤ C5 for some constant C5 > 0

independent of y0 and (g̃, d̃) ∈ S. This completes the proof of Lemma 5.3.

Based on the above preparations, we are now ready to complete the

Proof of Proposition 4.1 (iv). For any y0 ∈ R, we define

T (y) = (ψ(·, y)− ψ(·, y0), c(y)) for y ∈ R.
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Clearly, T maps R into H2(R) × R, and G(T (y), y) = (0, 0) for all y ∈ R, by (1.9) and the
definitions of T and G. Applying the implicit function theorem to the function G : H2(R) ×
R × R → H2(R) × R, one infers that, for each y0 ∈ R, there is δ > 0 such that the function
T : (y0 − δ, y0 + δ) → H2(R) × R is continuously Fréchet differentiable, namely of class C1.
Denote the derivative operator at y ∈ (y0 − δ, y0 + δ) by Ay : R → H2(R) × R. Thus, the
function y 7→ Ay is continuous from (y0 − δ, y0 + δ) to L(R, H2(R) × R). At y = y0, we have
Ay0(ỹ) = −Q−1

y0 (∂yG(0, c(y0), y0)(ỹ)) for every ỹ ∈ R, that is,

Ay0(ỹ) = −ỹ Q−1
y0

(
M−1
c(y0),y0

(
a′(y0)∂ξξψ(·, y0) + ∂xf(y0, ψ(·, y0))

)
, 0
)
.

Since the function f is of class C1 in R2 and satisfies (A1), it follows from (5.3) that there exists
a constant C1 > 0 independent of y0 such that ‖a′(y0)∂ξξψ(·, y0) + ∂xf(y0, ψ(·, y0))‖L2(R) ≤ C1.
Remember that the periodic function y0 7→ c(y0) is bounded. Then, by Lemmas 5.2 and 5.3, we
find a constant C2 > 0, independent of y0 ∈ R, such that ‖Ay0(ỹ)‖H2(R)×R ≤ C2|ỹ| for all ỹ ∈ R,
that is,

‖Ay0‖H2(R)×R ≤ C2, (5.11)

where we identify Ay0 ∈ L(R, H2(R) × R) to an element of H2(R) × R, with a slight abuse of
notation.

On the other hand, notice that, for each y0 ∈ R,

T (y0 + ỹ)− T (y0) = (ψ(·, y0 + ỹ)− ψ(·, y0), c(y0 + ỹ)− c(y0)) = Ay0 ỹ + ω(y0, ỹ) for all ỹ ∈ R,

where ω(y0, ỹ) ∈ H2(R)×R satisfies ‖ω(y0, ỹ)‖H2(R)×R = o(|ỹ|) as ỹ → 0. Hence, for each y0 ∈ R,∥∥∥∥(ψ(·, y0 + ỹ)− ψ(·, y0)

ỹ
,
c(y0 + ỹ)− c(y0)

ỹ

)
−Ay0

∥∥∥∥
H2(R)×R

−→ 0 as ỹ
6=−→ 0. (5.12)

Writing Ay0 = (A1
y0 , A

2
y0) ∈ H2(R) × R for each y0 ∈ R, we see from (5.12) and the previ-

ous paragraph that the functions y0 7→ c(y0) and y0 7→ ψ(·, y0) are of class C1 in R with
derivatives ∂yψ(·, y0) = A1

y0 and c′(y0) = A2
y0 at each y0 ∈ R. It further follows from (5.11)

that ‖∂yψ(·, y0)‖H2(R) ≤ C2 for all y0 ∈ R, with C2 independent of y0. Using the Sobolev
inequality, we immediately obtain (4.3). Finally, by standard elliptic estimates, the function
(ξ, y) 7→ ψ(ξ, y) is of class C2;1

ξ;y (R2). This completes the proof of Proposition 4.1.

Remark 5.4. Consider now a reaction-diffusion equation

vt = (aL(x)vx)x + qL(x)vx + fL(x, v), t ∈ R, x ∈ R (5.13)

with an advection term
qL(x) = q

(x
L

)
,

where q : R → R is a given 1-periodic function of class C1. Under the same assumptions on
the coefficients a and f as in Section 1, it follows that, for each y ∈ R, there is a unique pair
(Ψ(·, y), γ(y)) ∈ C2(R)× R solving the y-frozen problem{

a(y)∂ξξΨ(ξ, y) + γ(y)∂ξΨ(ξ, y) + q(y)∂ξΨ(ξ, y) + f(y,Ψ(ξ, y)) = 0 for ξ ∈ R,

Ψ(−∞, y) = 1, Ψ(+∞, y) = 0,
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where Ψ(ξ, y) is unique up to shifts in ξ, and γ(y) = c(y)− q(y) by uniqueness of the speed c(y)
for problem (1.9) (actually, by uniqueness, Ψ(·, y) is a shift of the profile ψ(·, y) solving (1.9)).
Notice that the map γ is 1-periodic in R. We conjecture that, if γ(y) 6= 0 for all y ∈ R, then
problem (5.13) admits non-stationary pulsating fronts ΦL(x − γLt, x/L) connecting 0 and 1 for
all L large enough, and that their speeds γL converge as L → +∞ to the harmonic mean of the
function γ over [0, 1], that is,

γL →
(∫ 1

0
γ−1(y)dy

)−1

as L→ +∞.

However, the arguments of the paper do not extend as such to this case, especially the intersection-
number arguments of Section 2 using the comparison with stationary solutions of y-frozen pro-
blems, not to mention that the results of [30] used in Section 3 did not cover the case of bistable
equations with advection terms. We point out that even the existence of pulsating fronts ΦL(x−
γLt, x/L) connecting 0 and 1 for all L large enough is not known in this case. Furthermore, when
q has large enough oscillations, the speeds γ(y) can vanish for some y’s and blocking phenomena
associated with the existence of stationary fronts may occur, as in [17, 34, 38, 55, 57], making
γL vanish for large L. All these questions are very relevant and left open for further studies.

Coming back to (1.1), assume now that, instead of steady 1, the equation (1.1) admits a
unique stable non-constant positive L-periodic steady state x 7→ pL(x). After rescaling the un-
known function u = pLv, the equation (1.1) becomes of the type (5.13) with an L-periodic ad-
vection term qL(x) = 2aL(x)p′L(x)/pL(x) and a new reaction term gL(x, v) = (f(x/L, pL(x)v)−
f(x/L, pL(x))v)/pL(x) which is L-periodic in x, instead of fL(x, v). Even if the constant 1 is
now a steady state of this new equation and even if one assumes that these new reaction terms
gL(x, ·) have a bistable structure over [0, 1] for all x, we are led to the same issues as in the
previous paragraph, together with the additional complication that the functions pL may not be
L-rescalings of a common function p1, and so for the coefficients qL and gL. Nevertheless, un-
der suitable assumptions on the profiles of the functions u 7→ f(x, u), by working directly on the
equations having a stable non-constant positive steady state and adopting strategies analogous to
those employed in [18] and the present paper, we conjecture that the existence of non-stationary
pulsating fronts for large L [18, Theorem 1.5] and the convergence of wave speed as L → +∞
(Theorem 1.2 in this paper) can be generalized to the case with stable non-constant positive steady
state. The verifications are also left for further studies.
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