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Abstract. This paper deals with the front propagation for discrete periodic monostable equations.
We show that there is a minimal wave speed such that a pulsating traveling front solution exists if
and only if the wave speed is above this minimal speed. Moreover, in comparing with the continuous
case, we prove the convergence of discretized minimal wave speeds to the continuous minimal wave
speed.
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1 Introduction

Front propagation occurs in many applied fields such as chemical kinetic, combustion theory,
biological invasions, transport in porous media, etc. There have been many studies on
traveling fronts in reaction-diffusion equations, since the pioneer works of Fisher [9] and
Kolmogorov, Petrovsky and Piskunov [15] in 1937. Most of these works are concerned with
traveling fronts propagating in homogeneous media. But, in many natural environments,
for example, noise effects in biology and inhomogeneous porous media in transport theory,
heterogeneities are often present. Therefore, it is very important to understand how these
heterogeneities influence the properties of front propagation.

In this paper, we focus on the case of periodic environments. The typical example of a
continuous periodic reaction-diffusion equation is in the form

uy =V - (A(z)Vu) + g(x,u), v € RY, (1.1)

where the diffusion matrix A and the reaction term ¢ are periodic in x. The question of
propagation speed in periodic media was first studied by Gértner and Freidlin [11] in 1979.
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See, also, the papers by Freidlin [10], Shigesada, Kawasaki and Teramoto [17], and Hudson
and Zinner [13]. The existence of periodic traveling waves for the bistable reaction-diffusion
equation with periodic coefficients was established in a series of papers by Xin [19, 21, 22]
(see also the survey paper [23]). For more recent works, we refer the readers to [1, 2, 3, 4, 24]
and the references cited therein.

In this paper, we study the following periodic discrete problem (P):

U;(t) = j+1Uj+1(t) + dej_l(t) — (dj+1 + d])u](t) + f(j, Uj(t)), t € R, j € Z, (12)
Uj(t+N/C):Uj_N(t)7 tER, j€Z7
u;(t) = las j — —oo, wuj(t) — 0asj— 400, locallyint e R, (1.4

where d; = d;_y for all j € Z, N is a positive integer, ¢ is a (nonzero) unknown constant
(the wave speed), the function f :Z x [0,1] — R, (j,s) — [f(j,s) is of class C* in s for each
J € Z and it satisfies

(Vjie€Z, f(;,0)=f(,1) =0,

V(j,8) €Zx[0,1], f(4,s)=f(G—N,s),
VjezZ, [fij,0):=0f/0s(j,0) >0, (15)
V(j,s) €Zx(0,1), 0<[f(j,8) < f:(4,0)s, '
Ja>0,3v2>0,V(j,s) €Zx[0,1], f(j.s)=> [,
| dpec(0,1), VjeZ, Vp<s<s <1, f(4,9)

0)s — ysite

(;
> 1. ).

The equation (1.2) is a spatial-discrete version of (1.1) in one space-dimensional case. It
also comes directly from many biological models in a patchy environment (cf. [8, 18]). See
also the book by Shigesada and Kawasaki [16]. For related works to (1.2) on homogeneous
discrete media with monostable or bistable nonlinearities, we refer the readers to [5, 6, 7, 14,
25, 26] and the references cited therein.

Note that the assumption

Ja>0,37y>0, V(js)€Zx[0,1], f(j,8) > f(j0)s —ys't
could be replaced without loss of generality by
Ja>0,3 >0,37>0,V(j,s) €Zx[0,8, f(j,s)>f(j0)s—s"

Throughout the paper, the solutions u = (u;(t))(jnezxr of (P) are assumed to range in [0, 1],
namely u; : R — [0, 1] for each j € Z. We call a solution u of (P) a pulsating traveling front
solution.

Introduce the N x N symmetric matrix A := [a;;] defined by

aj,j = _(d]+1+dj>7 j: 17 7N7
ajjr1 = Qi1 =djp1, =1, N =1,

a1 N = aN,;1 = dy,

Q5 = 0 if |Z_]‘ > 2 and (Zvj) ¢ {<17N)7<N71)}7



and, for A € R, denote by Ay := [ay,; ;] the N x N matrix defined by

axjj = —(djr1 +dj), j=1,---, N,
arjjs1 =dje ™, j=1,-- N—1,
Axj+1,5 = j+1€)‘7 j=1- N-—1,
ax1,N = d1€/\>

N1 = die ™,

axij = 0if [i = j| = 2 and (i,5) ¢ {(1, N), (N, 1)}.

In particular, Ay = A. Lastly, call D := [d;;] the diagonal N x N matrix defined by
dj,j = f;(j,O) for aHj = ]., 7N.

Since the coefficients d; are uniformly bounded from above and below by two positive
constants, it especially follows that the Cauchy problem for (1.2), say with an initial condition
(1;(0))jez which ranges between 0 and 1, is well-posed, and that the parabolic maximum
principle holds for the solutions of (1.2).

The following two theorems show that pulsating traveling front solutions of (P) exist if
and only if the wave speed c¢ is above a minimal wave speed ¢*, where ¢* is defined as in (1.6)
below.

Theorem 1 Let u be a C* solution of (1.2)-(1.4) with a speed ¢ # 0. Then ¢ > 0 and
wi(t) >0, uj(—00) =0 < uy(t) <1=uj(+00)

for all (4,t) € Z x R. Furthermore,

¢ > ¢ =min
A>0

M(N)
T 0, (1.6)

where M(X) is the largest real eigenvalue of the matriz Ay + D.
Theorem 2 For each ¢ > ¢*, there exists a solution u of (1.2)-(1.4) with speed c.

Consider now the continuous problem
Ou = 0, (d(z)0u) + g(x,u), t € R, z € R. (1.7)

The function d is assumed to be periodic with period L > 0, to be of class C# for some
B > 0, and to satisfy 0 < infrd < supgd < 400. The nonlinearity g : R x [0,1] — R is
assumed to be periodic with period L in its first variable and to be of class C'. Furthermore,
one assumes that g(x,0) = g(z,1) = 0 for all z € R, 0 < g(x,s) < 0s9(x,0)s for all
(z,s) € R x (0,1] and that there exist a > 0, & > 0 such that g(x,s) > 0,g(z,0)s — §s* T
for all (z,s) € R x [0,1]. Tt is known ([1], see also [4]) that equation (1.7) admits pulsating
traveling solutions w(t,x) such that w(t + L/v,z) = u(t,z — L) and u(t,z) — 1 (resp. — 0)
as x — —oo (resp. & — +00) for each ¢t € R, if and only if v > ~*, where v* > 0 is given by

*

_ o BOY
L c D

(1.8)
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and k()) is the principal eigenvalue of the operator (d(z)¢) — 2Xd(x)¢' + (—=Ad'(z) + A\3d +
0s9(x,0))p with periodicity L.
Approximate equation (1.7) by the discretized problem

() - %(d<<j+%>h><uj+l<t>—w(t»—d((j—§>h><uj<t>—Uj—1<t>>) (1.9)

+g(.]h7uj(t))7 tGR, jGZ,

where h = L/N, and N is a (large) integer. This discretized equation is of the type (1.2)
with . N2 -
d; h d((] 2)h) LQd((] 2)N) L d]

FGs) = glihs)=g (J%) )
It is immediate to check that the coefficients d? are periodic with period N, so is f" in the
variable j. Furthermore, f" satisfies (1.5). Therefore, for each N € N\{0}, Theorems 1 and
2 assert the existence of solutions u of (1.9) and (1.3)-(1.4) if and only if ¢ > ¢}, where ¢} is
given by (1.6).
The following result connects the discretized minimal speeds c; to the continuous one ~*:

Theorem 3 Under the above notations, one has

L
hey — v* as N — 400, with h = N

After completing this work, we realized that the existence result of pulsating traveling
fronts for all speeds ¢ > ¢* (Theorem 2) was a consequence of a result of Hudson and Zinner
[12]. However, the proofs are really different. The proof in [12] is based on the approximation
of the equation in bounded domains (like in [26], or [1, 20] in the continuous case). Here, we
directly attack the problem in the unbounded domain, by using suitable space-time global
sub- and super-solutions. We choose to present this alternative approach, which also includes
new Liouville type results for discrete time-dependent or stationary equations, since it has its
own interest. Furthermore, in this paper, we also prove that the condition ¢ > ¢* is not only
a sufficient condition for the existence of pulsating traveling fronts, but it is also a necessary
condition. We further prove that all such solutions are actually increasing in time. Lastly,
we show the convergence of the renormalized discretized minimal speeds to the continuous
minimal speed. For monostable nonlinearities, the convergence was known only in the case
with constant diffusion coefficients, [13] (even if it was actually not previously known that
these speeds were really the minimal speeds). We here generalize this convergence property
to problem (1.2) where both the reaction and the diffusion are heterogeneous and periodic.

This paper is organized as follows. In Section 2, we study the lower bound of wave speeds
and prove Theorem 1. The existence of pulsating traveling front solutions with speeds above
the minimal speed (Theorem 2) is proved in Section 3. Finally, in Section 4, we give the
proof of Theorem 3 and derive the convergence of discretized minimal speeds to the minimal
continuous speed.



2 Lower bound for the speeds and monotonicity in
time
This section is devoted to the proof of Theorem 1, which is itself divided into several lemmas.

Lemma 2.1 Under the notation of Section 1, the matriz Ax+ D has a largest real eigenvalue
M (M), for each A € R. Furthermore, the function A — M(\) is convex, M (0) > 0, M'(0) =0
and the minimum of M(X)/X\ over all A > 0 is achieved and is positive.

Proof. It is easy to check that, for

o> max (—di —dip1 + dipre™ + die* + f1(4, O)) ,

the matrix —A) — D+l is invertible and (—A) — D+ al) ™! satisfies the assumptions of the
Krein-Rutman theorem in the space My ;(R) of real column vectors of size N, with positive
cone K = {X = (z1, - ,zn)T, ; > 0 for all i}. Therefore, the matrix —Ay — D + ol has
a smallest real positive and simple eigenvalue (all other eigenvalues have larger real parts),
and this eigenvalue is associated to an eigenvector ¢* € K.

In other words, Ay + D has a largest real eigenvalue M(\), which satisfies M (\) <
max;cz (—di —dii +die™ + die* + (4, O)), whence

M(X) < €y cosh(X) + Cy

with C; = 2max;ezd; > 0 and Cy = max;ez f1(i,0) > 0.
Let ¢* = (o7, ,oN)T be an eigenvector (in K) of Ay + D with the eigenvalue M(\).
Let j € {1,---, N} be such that m = go;-\ = minje(,.. N3 7 > 0. One has

(=dj = dj1 + djpae™ + dje* + f1(5,0)) m < M(N) m, (2.1)
whence
M(X\) > Cscosh(\) — Cf, (2.2)
where C3 = 2min;cz d; > 0. Furthermore, one also gets from (2.1) that
M(0) > Hél%l f1(i,0) > 0. (2.3)

On the other hand, the min-max formulation of the largest eigenvalue M () of Ay + D
reads
((Ax + D)o)i

BRI = eV R v S S

where K., = {u = (u;)iez € R?, u; > 0 and u;_y = u; for all i € Z} and

—(dl + di+1)ui + di+1€_>\’ui+1 + die’\ui,l -+ f; (Z, O)’U,Z
U; '

g\ u,1) =

Let us now prove that the function A — M()) is convex. Let (A, \?) € R?, ¢ € [0,1],
(ut, u?) € Kper X Kpep. Call
A=t + (1 -\
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and

tIn(u))+(1—t) ln(uf)) )

u = (u;)icz = (e i€z

Clearly, u € K. It follows from the above characterization of M (\) that
M(N\) < max [—(d; + dis) + dyyqe O TN Tl ful)+ (1=t In(ud,y /uf)

1€Z

n diet)\1+(17t))\2+tln(u%il/u})Jr(lft)ln(uffl/uf) + fé(Z,O)]
Since the coefficients d;’s are positive and the exponential function is convex, there holds

_ 2 2 1,1 B 2 2 .
M(N) Sr?eazx [tg(\' ut i) + (1= t)g(A*,u?,4)] Str?eazxg()\ yu i) + (1 t)r?eazxg()\ LU, 1)

because 0 < ¢t < 1. Since the functions u!' and u? were arbitrary in Kper, one concludes that
M) < tM(AY) + (1 — t)M(N?). Therefore, the function M is convex. In particular, it is
continuous.

Let us now prove that M'(0) = 0. For each A € R, call u* the unique element of K.,
such that

—(d; + digr)ud + direMudyy + dietu) o+ (5, 0)u) = M(\)u; (2.4)
for all ¢ € Z, with max;cz ul)‘ =1.

Let (An)nen be a sequence converging to 0. By periodicity and boundedness, one can
extract a subsequence (u*'), such that u;" — @; € [0,1] for all i € Z, with @; = 1 for some
j. By continuity of the function M, the family (a;);cz satisfies (2.4) with A = 0, whence
(@1, ,an)? is an eigenvector of Ay + D for the eigenvalue M(0). By uniqueness, one
concludes that @; = u? for all i € Z and that the whole sequence (u)"),en converges to ul
as n — +oo, for all i € Z.

Next, multiply the equation (2.4) by u) and multiply the equation (2.4) with A = 0 by
u). Substracting the two equations and summing over i = 1,..., N gives

Z [dizie Mudud + dieu) quf — dipqudu) — dud )] = (M(X) — M(O))Zu;\ug

i=1 i=1

Divide by A SN 9 (for X # 0). By periodicity, one gets

zlzz

— 1Zduzul 1+ - 1Zdl+1u qu

_ M) — M(0)
N a A
2wl
i=1
Since u} — u for all i € Z as A — 0, the left-hand side converges to 0 as A — 0. Therefore,

the function M is differentiable at 0 and M’(0) = 0.
It especially follows that M(A) > M(0) for all A € R. The conclusion of Lemma 2.1 is a
consequence of (2.2), (2.3) and of the above properties. O

Lemma 2.2 Let u be a C* solution of (1.2)-(1.4) with a speed ¢ # 0. Then 0 < u;(t) < 1
forall (j;t) €ZX R, ¢ >0, uj(t) = 1 ast — 400, uj(t) — 0 as t — —oo and uj(t) — 0 as
t — t+o0, for all j € Z.



Proof. By assumption, 0 < u;(¢) < 1. Assume that there is (j,t9) € Z x R such that
uj(to) = 0. Therefore, u)(to) = f(j,u;(to)) = 0. Since each coefficient d; is positive, one
infers that u;_;(to) = uj+1(to) = 0 from (1.2). By induction, u;(ty) = 0 for all ¢ € Z, which
contradicts (1.4).

Therefore, u;(t) > 0 for all (j,t) € Z x R. Replacing u with 1 — u leads with the same
arguments to the conclusion that u;(t) < 1 for all (j,¢t) € Z x R.

Let k be any positive real number larger than |N/c|. Integrate the equation (1.2) over
[—k, k] and sum over j = 1,..., N. One gets

N k

S = u(=0) = [ [dn(t) + dyiruia(t) + diunlt) = dyarux ()t
> [ G
jzlﬁk*k . (2.5)
= d1 U1t — Ug d d1 Uo — U d
4#%<m e [ (onlt) — )
>0 [ pusoar

because of (1.3) and the periodicity of the d;’s. But equations (1.3) and (1.4) imply that

uj(t) — 1last — 400 and u;(t) — 0 as t — —oo (resp. u;(t) — 0 ast — +oo and u;(t) — 1

as t — —00) if ¢ > 0 (resp. ¢ < 0), for each j € Z. Since f > 0in Z x (0, 1), the passage to
“+oo

the limit as k — 400 in (2.5) yields that each integral f(J,u;(t))dt converges, and that

—0o0

N - p+oo
Nsgn(e) =3 [ sl

where sgn(c) denotes the sign of ¢. Therefore, ¢ > 0.
It then follows from (1.3-1.4) that u;(t) — 1 as t — +o0, u;(t) — 0 as t — —oo and
ui(t) — 0 as t — +oo, for all j € Z. O

Lemma 2.3 Let u be a C' solution of (1.2)-(1.4) with a speed ¢ # 0. Then

“up | (2)]
Gityezxr U;(t)

< 400

Proof. Since 0 < f(j,s)/s < max;ez fi(i,0) for all (j,s) € Z x (0,1], it is enough to
prove, from (1.2), that the quantities w; 1 (t)/u;(t) and u;_;(t)/u;(t) are globally bounded.
Because of (1.3), it is even enough to prove that the quantities ;.1 (¢)/u;+n(t + N/c) and
uj_1(t)/ujyn(t + N/c) are globally bounded.

Let us work with the first quantity, w;41(¢)/u;4n(t + N/c), the other one being dealt
with the same way. Let (jo,t0) € Z X R be given. From the maximum principle applied to
problem (1.2), and since f > 0, one immediately has that

ujoJrN(tO + N/C) > Uj0+N(t0 + N/C)7
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where (v;(t)) ez satisfies (1.2) for t > ¢, with f = 0 and v;(tg) = u;(to) for all j € Z. Since
u;(tg) > 0 for all j € Z, one can even say that

uj0+N(t0 + N/C) > vjoJrN(tO + N/C) = wjoJrN(tO + N/C)7 (26)

where (w;(t));ez satisfies (1.2) for t > to with f = 0, w;y+1(t0) = uj41(to) and w;(ty) = 0
for all 7 # jo + 1.

For all i € Z, call now ~; := 2}, y(N/c), where (2}(t));ez satisfies (1.2) for t > 0 with f =
0, 2/11(0) = 1 and 2(0) = 0 for all j # i+ 1. One has z(t) > 0 for all (j,t) € Z x R, whence
% = 0. If 9, =0, then (27, v)'(N/c) = 2{, y(N/c) = 0, and zj, y_1(N/c) = 2}, 41 (N/c) = 0.
By induction, z}(N/c) =0 for all j € Z. But

(2))(t) > —Ch2i(t)
for all j € Z, where C| = 2max;cz d;. In particular,
5= (/) 2 €OV (0) = O >,

which gives a contradiction.

As a consequence, each 7; is positive. On the other hand, v; = ~;_n for all i € Z, since
the coefficients d;’s satisfy the same property. Therefore, I' := min;czv; > 0. Eventually,
one has

wjo+N (to + N/¢) = jotjo+1(to)
by linearity. Putting the last formula into (2.6) yields

ujo-l-N(tO + N/C) > Fujo-&-l (t0)7

whence w;1(t)/ujn(t + N/c) < T7! for all (j,t) € Z x R. This completes the proof of
Lemma 2.3. O

Remark 2.1 The above arguments actually imply that, given a positive solution (u;(t)),ecz
of (1.2), there holds sup; yezxr U;(t)/ujys(t +T) < +oo for any J € Z and T' > 0. This is
a version of the Harnack inequality for discrete parabolic operators.
Under the additional property (1.3), it also follows that, for all bounded interval I and
for all J € Z,
sup u;(t)

— < +00. 2.7
(j,t)€EZXR, T€I Uj+J(t —+ 7') ( )

Lemma 2.4 Let u be a C' solution of (1.2)-(1.4) with a speed ¢ # 0. Then, under the

notation of Lemma 2.1,

. wj(t)

A= lim inf
GHEZXR, uj(t)—0 u;(t)

> 0,

M(A/c) = A and
M(N)

¢ > min
A>0




Proof. From Lemma 2.3, one knows that A is a real number. Let (j,,t,) be a sequence in
Z x R such that u;,(t,) — 0 and

uj (tn)
In — A asn — +o0.
uj, (tn)
Because of (1.3), one can assume that j, € {1,---, N} for all n.
Call (t+t)
uj(t +
nt) = 2
KRR

Each function u? is of class C? and satisfies

fU it + 1)

(Y (1) = dyatia(6) 4 s (1) = (g sy (1) + T T ()

(W7)"(t) = djpa(ufy)'(8) + dj(uf)'(8) = (djpr + dy)(uf) (1) + Fu (4 ) (u)' ().

Because of (2.7), for each j € Z, the functions u} are locally bounded in ¢ € R, uniformly
in n. The previous equations for uj then imply that, for each j € Z, the functions u} are
bounded in C?_.(R), uniformly in n € N. Furthermore, (2.7) also yields u;(t + t,) — 0 as
n — 400, for each j € Z and locally in t € R.

Therefore, up to extraction of some subsequence, there exist some C*'(R) functions v,

such that u} — v; as n — +oo, in C},.(R) and for all j € Z. The functions v; satisfy

vi(t) = dj1v541(t) + djoj_1(t) = (djgr + dj)vi(t) + fi(5,0)v;(t) (2.8)

for all j € Z and t € R. Furthermore, one can assume that j, — J € {1,--- N} as
n — +oo, whence v;(0) = 1. On the other hand, v;(t) > 0 for all (j,¢) € Z x R, and v;
satisfies (1.3). It then follows from the strong maximum principle, as in Lemma 2.2, that
vj(t) > 0 for all (j,t) € Z x R. As a consequence, v/;(0) = A and

V(i t) €Z xR, wt):=-L2>A.

I‘ t /‘ t
ol )
Ghezxr V;(t) Ghezxr Ui(t)

< 400

from Lemma 2.3. From (2.8), each function v; is of class C? and the function w; satisfies

wj(t) = a;(t)wj1(2) + b (H)w;-1(t) — (a;(2) + b;(£))w; (1),
where
a;(t) = djr10j01(8) /v(t) > 0 and b;(t) = djv; (1) /v;(t) > 0
Remember that w;(t) > A for all (j,t) € Z x R, and w;(0) = A. Therefore, w/,(0) = 0,

wy—1(0) = wy41(0) = A, and w;(0) = A for all j € Z by induction. Hence, w;(t) = A for all
(4,t) € Z x R from the equation satisfied by w; and from property (1.3) fulfilled by w;.
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In other words, v(t) = Av;(t) and, because of (1.3), v;(t) can be written as
vi(t) = MM,
where U; = U,;_n > 0 for all j € Z. It is straightforward to see that
AU;j = djre Y Ujr + dje Uy = (djar + d5)U; + f2(5,0)U;

for all j € Z. From Lemma 2.1, one concludes that

/()

and A > 0. Therefore, y:=A/c >0, M(pu) = pc and
M)
o

¢ > min
A>0

This completes the proof of Lemma 2.4. m

Lemma 2.5 Let u be a C' solution of (1.2)-(1.4) with a speed ¢ # 0. Then ui(t) > 0 for
all (5,t) € Z x R.

Proof. Step 1. Because of (1.3) and Lemmas 2.2 and 2.4, there exists A > 1 such that

{pguj(t)<1 for all (j,t) e ZxRwithet—j5> A (2.9)

0 <u;(t) <p/2, ui(t)>0 forall(j,t) € ZxRwithct—j<—-A+1,

where p € (0,1) is given in (1.5).
One claims that

IT>0, YVT'>T, V(j,t) €EZxR, (ct—j<—A)= (u;(t+T)>ut). (2.10)

Assume it is not true. Then there is a sequence (7},),en — +00 of positive numbers, and
some points (j,,t,) € Z x R such that ct,, — j, < —A and

Because of (1.3), one can assume that 1 < j, < N for all n and that, up to extraction of
some subsequence, j, = J € {1,---, N} for all n. It follows from Lemma 2.4 and (2.9) that
c(t, +T,) — jn > —A for all n. Hence, the sequence (¢, + T,), is bounded from below. Up
to extraction of some subsequence, two cases may occur :

Case 1: t,+ T, —T € R asn — +oo. Since T,, — 400, one gets t, — —oo. Hence,
w;, (t,) — 0, whereas w;, (t, + T5,) — u;(T) > 0 as n — +o00. This contradicts (2.11).

Case 2 : t, + T, — +oo as n — +oo. Then w; (t, +71,) — 1 as n — 400, whereas
uj, (t,) < p/2 < 1.

Therefore, both cases 1 and 2 are ruled out and the claim (2.10) is proved.

Step 2. Fix T'> 0 as in (2.10) and let 7 be any real number such that

7 > max(T,2A/c).
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One has u;(t 4+ 7) > u;(t) as soon as ¢t — j < —A, because of (2.10).
Let us now prove the same inequality for ¢t —j > —A. Since 0 < u;(t) < 1, it follows
that w;(t 4+ 7) +¢ > w;(t) for all (j,¢) with ¢t —j > —A and for all € > 0 large enough. Call

e =inf {e >0, w;(t+7)>u;(t) for all (j,t) with ¢t —j > —A}.

One immediately has ¢ > 0 and u;(t + 7) + €* > w;(t) for all (j,¢) such that ¢t — j > —A.
Assume now that €* > 0. There exist then some sequences (g,,), and (jy,t,) such that
O0<e, <& ctp—jgn>—A, e, — " asn — +oo and

w;, (ty +7) + €0 < uj, (tn). (2.12)

Because of (1.3), one can assume that 1 < j, < N. Since ¢* > 0 and u;(t) — 1 as t — +o0,
for each j € Z, (2.12) implies that the sequence (¢,) is bounded from above. On the other
hand, it is bounded from below because ct,, — j, > —A.

Up to extraction of some subsequence, one can then assume that (j,,t,) — (J,T) € ZxR
as n — +oo (whence j, = J for n large enough), where ¢J — T > —A. Passing to the limit
as n — +o00 in (2.12) yields u (T + 7) + ¢* < uy (7). Since the opposite inequality holds as
well, one gets that

wy(T+ 1)+ =uy (7).

Denote
v;(t) = uj(t +7) + " and w;(t) = v;(t) —u;(t) = u;(t +7) + " — w;(1).

Let us extend f(j,s) for s > 1 by f(j,s) = (s —1)f.(j,1) for all j € Z and s > 1. It follows
from (1.5) that f(j,-) is of class C'([0,400)) for each j € Z and that f(j,s) > f(j,s") for
all j € Z and p < s < §' < +o0.

For all (j,t) with ¢t —j > —A, one has ¢(t +7) —j > —A+ ¢t > A due to the choice of
7. Therefore, u;(t+7) > p, f(j,u;(t +7)) > f(j,u;(t +7)+¢€*) and

Vi(t) > djavjpa(t) + djuj o (t) — (djpa + dy)v;(t) + (5, v;(t))

for all (j,t) with ¢t —j > —A. As a consequence, there are some continuous bounded
functions ¢; defined for t € [(j — A)/c, +00) for all j € Z, such that

wi(t) = djprwi(t) + djw;-1(t) — (dj1 + dj)w;(t) + c;()w;(t) (2.13)

for all (j,t) with ¢t —j > —A.

Remember that w;(t) > 0if ¢t —j > —A, and w;(T) = 0, that is u; (T +7)+e* = u; (1),
withI'—J > —A. If —A < T'—J < —A+1, then ¢(T+7)—J > A (as already emphasized)
and

wy(T+71)+e" >us(T+7)>p> g > uy(T)

because of (2.9). Hence, ¢T'—J > —A+ 1 (> —A). As a consequence, w’;(T) = 0 and
wy1(T) = wy_1(T) = 0 because of (2.13) (and since ¢I'— (J —1) > T — (J+1) > —A).
By immediate induction, one gets wy_x(T) = 0 for all k£ € N. In other words,

UJ,]{<T—|— 7') +e* = UJ,]C<T> for all kK € N.
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Since ¢* > 0 and u;(t) — 1 as j — —oo, for each t € R, one reaches a contradiction as
k — 4o00.
As a consequence, ¢* = 0 and u;(t + 7) > u;(¢) for all (j,¢) such that ¢t — j > —A.
Eevntually,

w;(t 4+ 1) > u;(t) for all (4,t) € Z x R and for all 7 > max(T,2A4/c).
Step 3. Set
™ =inf {7 >0, u;(t +7') > u;j(7) for all (j,t) € Z x R and for all 7' > 7}. (2.14)
Because of Step 2, 7" is a nonnegative real number. One has immediately
vj(t) == u(t +77) —u;(t) > 0 for all (5,t) € Z x R.
Assume now that 7* > 0. Each function v; satisfies
VieR, vj(t)=djvj(t) + dwja(t) = (dja + dj)v(t) + b;(t)v; (1), (2.15)

where b; is a continuous function, and all b;’s are bounded in L*>°(R) norm by the Lipschitz
constant of f with respect to the variable s.

If there exists (J,T) € ZxR such that v;(T") = 0, then v/,(T) = 0, v;41(T) = v;_1(T) =0
and v;(T) = 0 for all j € Z by immediate induction. It follows from (2.15) that v;(t) =0
for all j € Z and ¢t > 0, and then for all (j,¢) € Z x R because of (1.3). In other words,
w;(t 4+ 7%) = u;(t), whence

w;(t+ k1) = (1)
for all (j,t) € Z x R and for all k € Z. But 7* is assumed to be positive, which yields
w;(t +k7*) — 1 as k — +oo and u;(t + k") — 0 as k — —oo, for each (j,t) (because of
Lemma 2.2). That leads to a contradiction.
Therefore, v;(t) > 0 for all (j,¢) € Z x R. By continuity of u;, one infers that

min v;(t) = min (u;(t+7") —u;(t) >0

j*?le _T*§t§j+12+l o ]’*124’1 _T*§t§j+f3+1 +r*
for each j € Z. Because of (1.3), one even has

min min (u;(t+77) —u;(t)) =: 6 > 0.

JEZ IZAEL ey bATL

The continuity of each u; and property (1.3) yield the existence of 7, € (0,7*) such that

V71 é€[n, 7], min min (uj(t +71)—u;(t)) > = >0.

jez ]‘*124’1 7T*§t§j+€+l 4

N n

Fix any 7 € [7,, 7*]. One then has

(—A+1—cr"<ct—j<A+1+cr") = (uj(t+7') > () +g > uj(t)> . (2.16)
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If (j,t) € Z x R is such that ¢t — j < —A+ 1 — ¢7*, then
cd—j<clt+7)—j<ct—jt+ecrr <-A+1,

whence u;(t + 7) > u;(t) because of (2.9).
On the other hand, if ¢t —j > A4+ c7* (> A), thenc(t+7)—j > Aand u;(t +7) > p
because of (2.9). Denote

e =1inf {e >0, u;(t+7)+ec>u;t) for all (j,t) with ct —j > A+cr"}.

As in Step 2, €* is a nonnegative real number and one shall prove that it is zero. Assume
that e* > 0. With the same arguments as in Step 2, there exists (J,T) € Z x R such that
cl'—J>A+cr* and
ug(T+71)+e" =uy(T),
whereas wu;(t +7) +¢* > u;(t) for all (j,¢) with ¢t —j > A+ c7*. The functions w;’s defined
by
w]<t> = u](t + T) + e — u](t)

satisfy
(ct —j > A+cr’) = (wi(t) > djrawja(t) + djwj1(t) = (djs1 + dj)w;(t) + d;(t)w;(t))

for some continuous functions d; which are uniformly bounded in L>®([(j + A)/c+ 7%, +00)).
Because of (2.16), one infers that

cI'—J>A+1+cm" (> A+cr"),

whence w',(T) = 0, wy_1(T) = wy1(T) = 0 and w;_,(T) = 0 for all £ € N by immediate
induction. In other words, uy_x(T + 7) +€* = u;_(T) for all k£ € N. Since €* is assumed to
be positive, the limit as k — +oo contradicts (1.4).

Therefore, * = 0, whence u;(t +7) > u;(t) for all (j,t) with ¢t —j > A+ c7™.

One just proved that w;(t 4+ 7) > u;(t) for all (j,t) € Z x R and for all 7 € [r,, 7*]. Since
T. < 7%, one gets a contradiction with the definition of 7%in (2.14). As a consequence, 7% = 0
and

w;(t 4+ 7) > wu;(t) for all (j,t) € Z x R and for all 7 > 0.

Step 4. Eventually, z;(t) := u/(t) > 0 for all (j,¢) € Z x R. But the functions z;’s satisfy
25(t) = djr1zj1(t) + djzj 1 (t) — (dja + dj)z(t) + fo(d, wi(t))z;(t).

As in Lemma 2.2, the existence of (J,T) € Z x R satistying z,(7") = 0 would yield z;(t) =0
for all (j,t) € Z x R. This is impossible because u;(t) — 1 as t — 400 and u;(t) — 0 as
t — —oo, for each j € Z.

As a conclusion, u}(t) > 0 for all (j,t) € Z x R.

This completes the proofs of Lemma 2.5 and Theorem 1. O
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3 Existence of fronts

This section is devoted to the proof of Theorem 2. It is divided into several steps : for any
given ¢ > ¢*, we first construct some suitable sub- and super-solutions of (1.2), we then
solve a sequence of Cauchy problems starting at times —n with n — 400, lastly we prove
a Liouville type result for time-global solutions which are trapped between the sub- and
super-solutions of the first part. For any ¢ > ¢*, that provides the existence of a travelling
front u solving (1.2)-(1.4). The case ¢ = ¢* is obtained by passing to the limit as ¢ — (¢*)*.

Step 1 : construction of sub- and super-solutions for any given ¢ > ¢*. We fix
a speed ¢ > ¢*, where ¢* > 0 is given by formula (1.6) of Theorem 1. Call g(\) = M(\)/A
for A > 0. Hence, ¢* = miny>og(\). Note that g(A\) — +o0o as A\ — 07,400 from the
arguments in Lemma 2.1. Hence there exists a unique \* € (0, 4+00) such that g(\*) = ¢*
and g(A\) > ¢* for all 0 < A < A*. Using the convexity of the function M, we can show that if
g(A1) = g(A2) = v > ¢ for some 0 < A; < Ay < \*, then M(\) > A for all A > Ay, whence
g(A*) >~ > ¢* and this is impossible. From this it can be easily deduced that the function
g is decreasing in (0, \*] (and non-decreasing in [\*, +00)).

For a fixed ¢ > ¢*, we choose the unique A such that 0 < A < A* and g(\) = ¢. Then we
can find p € (0, \*) such that

g(p) :M <cand A<p<Al+a), (3.1)

1

where a > 0 is given in (1.5).
Let (vi)iez € Kper solve (2.4) with the parameter A, and let (w;)icz € Kper solve (2.4)
with the parameter pu.

Lemma 3.1 The function © = (4;);ez defined by
V (j,t) €Z xR, w;(t) = min (M v, 1)
is a super-solution of (1.2).

Proof. Since the constant 1 is a solution of (1.2), it is enough to prove that 9;(t) = e\=9y,
satisfies

05(t) > dj101(t) + djvy 1 (t) — (djpa + dj)0(t) + £(5,0;(t))

for the (j,t)’s such that e*~)v; < 1. This is an immediate consequence of (2.4) and of the
inequality 0 < f(j,s) < fi(5,0)s for all (j,s) € Z x [0,1]. 0

Lemma 3.2 There exists A > 0 large enough so that the function u = (ﬂj)jez defined by
V (j,t) € Z xR, wu,(t)=max (e)‘(Ct_j)vj — Aetet=y,, 0)

is a sub-solution of (1.2).
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Proof. Since p > A > 0, there exists A > 0 large enough such that
(u;(t) >0) = (ct—j<0). (3.2)

Since both (v;) and (w;) are positive and periodic, even if it means increasing A, one can
assume without loss of generality that

v 7+ A [M(p) = eplw; <0,V j € Z,

where v > 0 was given in (1.5).

With A > 0 being given as above, let us check that the function u defined in Lemma 3.2
is a sub-solution of (1.2). Since the constant 0 is a solution of (1.2), it is enough to prove
that e*=y; — Aer@=Dw; is a sub-solution of (1.2) for the (j,t)’s such that u;(t) > 0. For
such (j,t)’s, it follows from (1.5), (2.4), (3.1), and (3.2) that

ﬂ;(t) - f(ﬂﬂj(ﬂ) - dj+1@j+1( ) — d; Uj (1) + (djﬁrl + dj)%‘(t) '
f1(4,0)eMet= J) — f(j,e (Ct*J)U Aeu(ctﬂ)wj)
FIM () — e — £105,0) Ae" i,

7)

<y (Mt — Aeret= wj)

1M () — ep] Aettet=u,
< yerita)(e—j) J1+a [M (1) — cp Aehlct— J)wj
< eplet- 7){72}”0‘ + A[M (p) — cplw; }.

One concludes from the choice of A that

w;(t) = djsa (1) = dju o (8) + (dj + di)uy () — £, u;(t) <0

for all (j,t) € Z x R such that u,(t) > 0. That completes the proof of Lemma 3.2. O

Step 2 : solving a sequence of Cauchy problems. For each n € N, let u" =
(u}(t))jez, t>—n solve (1.2) with the initial condition

VjeZ, ul(—n)=u,(-n).

Since 0 < w;(t) < w;(t) < 1 for all (j,t) € Z x R, and since u (resp. ) is a sub-solution
(resp. a super-solution) of (1.2), the maximum principle yields
VneN, VjeZ Vt>-n, 0<ut)<uf(t) <ut) <1

In particular, one has that u(—n +1) > u;(—n + 1) = u!~'(—n + 1) for all n € N\{0}
and j € Z. It resorts from the maximum pr1nc1ple that u}(t) > uj ~L(t) for all n € N\{0},
Jj€Zandt> —n+1. For each (j,t) € Z xR, the sequence (u} (t))neN, >t 1s nondecreasing
and bounded ; call u;(t) its limit as n — +oo. On the other hand, the functions uj(t) are
uniformly bounded between 0 and 1, and the derivatives (u})'(t) are then also uniformly
bounded. Therefore, the convergence u?(t) — wu;(t) as n — oo holds at least locally
uniformly in ¢ for each j € Z. For each n, we can integrate equation (1.2) in any given
interval of time, and then pass to the limit as n — 4-00. It follows that the functions u; are
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of class C' and solve (1.2) for all (j,t) € Z x R. Furthermore, the above estimates imply
that
V(i) €ZXR, 0<ut)<uy(t) <Tm(H) < L (3.3)

Note that by (3.3) it follows immediately that u;(¢t) — 0 uniformly as ¢t — j — —oc.

Step 3 : a Liouville type result for solutions trapped between u and w. This
step is devoted to the proof of the following

Proposition 3.3 Under the above notations, any C* solution u = (u;(t)) of (1.2) satisfying
(3.3) is a front, namely u solves (1.3) and (1.4). Furthermore, given u and u as above, u is
unique.

The proof itself is divided into several lemmas. Let us first observe that, by applying
Krein-Rutman theory as in Section 2, there exists a unique principal eigenvalue \*! and a
unique (up to multiplication) principal eigenfunction ¢** solving

;fj’l > 0, —k4+1+1<j<k+1-1 (34)
Pip = 0

for any given [ € Z and k € N\{0}.
Lemma 3.4 Under the above notations, \*' — 0 as k — 400, uniformly in | € Z.

Proof. Observe first that, by uniqueness and periodicity of the coefficients d;, the principal
eigenvalues \*! are periodic in [ with period N. It is then enough to prove that \*! — 0 as
k — +o00, for each given [ € Z.

Fix [ € Z. In the first equation of (3.4), choosing jy such that go?(;l = MaX_jyi<j<k+l @f’l
yields \¥! < 0. On the other hand, we claim that

Z (dj + dj+1)¢§ — dj+1¢j+1¢j - dj¢j¢j—1
i R((b), R(¢) =kl 1< <k

¢cE o Z ¢]2 ’

— k1< <k+I—1

(3.5)

where £ = {(¢;)_k+i<j<iti, ¢k =0, 3, ¢; # 0}. This formula is the classical variational
formulation of the first eigenvalue of self-adjoint operator. We check it here for the sake of
completeness.

First, it is immediate to check that R(¢) > —C for all ¢ € E, where C] = 2max;cz d;.
Let now (¢")nen = ((#%) —kti<j<k+i)nen be a sequence in E such that R(¢") — infgep R(e).
Since [¢"| = (|#7]) -rti<j<kt € E and R(¢") > R(|¢"|), one can assume that ¢7 > 0
foralln € Nand —k+ 1 < j < k+ 1. Up to normalization, one can also assume that

Zfil__k];rl H(gzﬁg?)? = 1. Up to extraction of some subsequence, one can assume that ¢ — ¢; >

0asn — ~+oo for all —=k-+1 < j < k+1, with S50 (¢5)? = 1and ¢ = (¢))—ri<j<ins € E-

Furthermore, R(¢") — R(¢), whence R(¢) = min,cp R(p).
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Let now ¢ = (¢j)_g+i<j<k+ be any test sequence in E. The sequence ¢ + t¢ is in E
for |t| small enough and R(¢ + t¢) > R(¢), whence £ R(¢ + t));—o = 0. A straightforward
calculation then gives that

k-1
Z 2(dj +dj1) 95005 — dj1 @1y — dja @by — djdj1py — djdjabj—1 — 2R(d)pab; = 0.
j=— ket

Choosing 1; = 1 for j = jy and ¢; = 0 for j # jo, and doing that for any j, € {—k + 1+
L,...,k+1—1} leads to

(dj +dj1)d; — djs1¢j41 — djd—1 = R(P);

forall je {—k+1+1,...,k+1—1}. Since¢p; >0forall je {-k+1+1,....k+1—-1}
and ¢ € F, the characterization of the principal eigenfunction for problem (3.4) implies that
R(¢) = —A\®! and, up to multiplication, ¢; = go?’l for all j € {—k+1,...,k+1}. That
completes the proof of the claim (3.5).

Choosing (¢;)—kti<j<i+s With ¢; =1forall j e {—k+1+1,...,k+1—1} and ¢y =0
as a test sequence in (3.5) implies that

Ak < d_pyip1 +d pyipe + dip1 + diy < 20, ‘
2k —1 2k — 1
Since M < 0, one concludes that \*! — 0 as k — +o0. O

Lemma 3.5 Let U = (Uj);ez be a solution of
Vi€, dinUp+dUi—(djpa+dj)U;+ f(5,U;) =0 (3.6)
such that 0 < U; <1 forall j € Z, and Uj, > 0 for some jo € Z. Then U; =1 for all j € Z.

Proof. Let us first prove that U; > 0 for all j € Z. Otherwise, there exists ¢ € Z such that
U; = 0. Then, di;1U;41 + d;U;—1 = 0 and since the real numbers U;’s are nonnegative and
the coefficients d;’s are positive, one gets that U;;; = U;—; = 0. By immediate induction, it
follows that U; = 0 for all j € Z, which contradicts the positivity of Uj;.

For all k£ € N\{0} and I € Z, let ¢*! be the unique principal eigenfunction of (3.4) such
that max_ji<j<pi gpf’l = 1. We set Lpf’l =0forj<—-k+l—1and j>k+1+ 1 Under
the notations of Lemma 3.4, let kg € N\{0} be such that

VIEZ, |\l <§/2, (3.7)

where 0 = min;ez f7(4,0) > 0. Let g9 > 0 be such that
VjeZ Ysel0,e], [f(js) > gs.
For all e € [0,e0), for alll € Z and j € {—ko+1+1,...,ky+ [ — 1}, one has
i1l + diegl™] — (djsr + dj)ed™ + f(j,e@l™) = Moleho! 4 £(j, epho!)

o
(Ako,l + 5) gspéﬁ_?o,l
0

v

v
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because 0 < 590?0’l < e <egpand [Nl < §/2. Furthermore, the same inequality

dj1e0i%) + die i) — (djgr + dj)egt™ + f(j, ') > 0 (3-8)

holds immediately for all j < —ko+ 1 and j > ko + 1.
Let now [ € Z be any integer. Since U; > 0 for all j € Z, and go?o’l =0forall j < —ko+1

and j > kg + [, there is 19 > 0 such that ngofo’l < U, for all j € Z and n € [0,7]. Call

" = sup{n € (0,0], ¥V j € Z, ng™' < U;}.

One then has 0 < min(ng,&9) < n* < g9 and n*@?o’l < Uj for all j € Z. Assume now
that n* < 9. There exists then j, € 7Z such that n*gpﬁ?’l = U, (> 0), whence j, €

{=ko+1+1,....kg+1—1}. Callv; =U; — n*gp?o’l for all j € Z. From (3.6) and the above
calculations for ep*!, one gets that

V€L, div;+dwi—y — (disr +dj)v; + F(5,U;) — fG.n"e5*) <0,
thus
\V/j € Z, dj+1Uj + dj?)j,1 — (dj+1 + dj)vj + bjUj < 0
for some coefficients b; such that sup,cz |b;| < +o0o. But v; > 0 for all j € Z, and vj, = 0.
Therefore, vjy—1 = vjo41 = 0, and v; = 0 for all j € Z by immediate induction. In other
words, U; = n*gp?o’l for all j € Z, whence U; = 0 for j < —ko + 1 and j > ko + [. But this is
impossible because U; > 0 for all j € Z.
Therefore, n* = gy and U; > 5090?(”[ for all j € Z and | € Z. In particular,

1>m:=inf U; > gginf 007
- ez 7= OjeZ(p]

By uniqueness of the principal eigenfunctions ¢*! solving (3.4) (with the normalization
MAX_ o4 < j< -+ gp?’l = 1), and by periodicity of the coefficients d; (with period V), it resorts

that the map j — gp?” is periodic with period N. Consequently, m > 0.

Let (jn)nez be a sequence of integers such that U;, — m as n — 4o00. For each n € N,
call i,, € NZ and J, € {0,..., N — 1} the integers such that j, = i, + J,. Up to extraction
of some subsequence, one can assume that J, = J for all n € N. Call U} = Uy, ;. Since
m < U < 1foralln € Nand j € Z, the diagonal extraction process implies that, up
to extraction of some subsequence, U — Vj as n — +oo for all j € Z. Furthermore,
m < V; < 1forall j €Z, and V; = m. On the other hand, since i, € NZ and the
coefficients d;’s have period N, the sequence (V});ez still satisfies (3.6). At the point J, one
has

0=djp1 Vipr+dy Vs —(dyj +dy)m + f(J,m) > f(J,m).
N~

>m >m

Since 0 < m < 1, one concludes from (1.5) that m = 1. Therefore, U; =1 for all j € Z and
the proof of Lemma 3.5 is complete. m

Lemma 3.6 Let (u;(t))jez solve (1.2) for t > 0, with an initial condition (u;(0));ez such
that 0 < u;(0) <1 for all j € Z and u;(0) > 0 for some J € Z. Then u;(t) — 1 ast — +0o0
for all j € Z.
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Proof. The maximum principle implies that 0 < w;(t) < 1 for all ¢ > 0 and j € Z.
Assume now that there exists to > 0 and jo € Z such that u,(to) = 0. Then v/ (t;) = 0,
and w;,—1(tg) = uj,+1(to) = 0. By immediate induction, u;(ty) = 0 for all j € Z. But
U;(t) > _(dj-i—l + d])u](t) > —C’lu](t) forallt > 0 andj S Z, where C] = 2max;cz dz
In particular, uy(ty) > uy(0)e=¢1% > 0, and one has reached a contradiction. Therefore,
uj(t) >0 for allt >0 and j € Z.

Choose kg € N large enough so that (3.7) holds and let ((p?o’o)_kogjgko solve (3.4) with

the normalization max_x,<;<k, 90;?0’0 = 1. As in the proof of Lemma 3.5, we set go?o’o =0 for
all |7] > ko + 1. Let g9 > 0 be small enough so that (3.8) holds especially for [ = 0, for all
J € Z and for all € € [0,¢0]. Since u;(1) > 0 for all j € Z, there exists € € (0,0 such that

ui(1) > 590?0’0 for all j € Z. Because of (3.8) and the maximum principle, one gets that

VEZ0, Y ED uylt 1) > () > g,

where (v;(t));ez solves (1.2) for ¢ > 0 with initial condition v;(0) = ap?o’o for all j € Z.

Since vj(h) > v;(0) for all h > 0 and j € Z, the maximum principle yields v;(t+h) > v;(t)
for all h > 0, ¢ > 0 and j € Z. Hence, v;(t) is nondecreasing in ¢ > 0 for all j € Z. But
0 < v;(t) < wuj(t+1) <1, whence v;(t) — V; € [0,1] as t — +oo, for all j € Z. By
integration of the equation (1.2) satisfied by v;(t), between ¢ = n and t = n + 1, and then
passing to the limit as n — o0, it follows that the family (V});ez solves (3.6). Furthermore,
V; > v;(0) = 8(,0?0’0 for all j € Z. In particular, Vy > eop®® > 0. Lemma 3.5 then yields
V; =1forall j € Z.

Therefore, for all j € Z,

fmint 1) 2l )=V, =1

Since u;(t) < 1 for all ¢t > 0 and j € Z, one concludes that u;(t) — 1 as t — 400 for all
Jj € Z. O

Lemma 3.7 Let u satisfy the assumptions of Proposition 3.3. Then u;(t) — 1 uniformly as
ct —j — +o00.

Proof. Owing to the definition of u in Lemma 3.2, there exists B > 0 such that
N

for all (j,t) € Z x R such that ¢t — j < —B, where v = min;czv; > 0 (remember that
(vi)iez € Kper solves (2.4)). Therefore, 1 > u,;((—=B+ j)/c) > ve P /2 for all j € Z. From
(3.3) and the maximum principle, it follows that

VieZ Yt>0,Vj€Z uj(t+ C+Z)>{L’.(t), (3.9)

where, for each i € Z, u'(t) = (u(t)) ez solves (1.2) for ¢ > 0 with initial condition

V XB ¢ _ -
ﬂ;(O) _ ] 3¢ if j =1,
0 if j #1.
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Lemma 3.6 implies that @ (t) — 1 ast — 400 for all (4, ) € Z*. Furthermore, by uniqueness,
ui(t) is periodic in i with period N for each ¢ > 0.

Let now € > 0 be fixed. From the above arguments, there exists Ty > 0 such that
ﬂi (t) > 1—cforall t > T, and for all j € Z. Let now (j,t) € Z x R be any couple such that
ct—j>cTy—B. Thent — (—B+j)/c > Ty > 0 and it follows from (3.9) that

B B g
uj(t):uj(t— LA H)zaf.(t— +J)21—s.

c c J c

Since 0 < w;(t) <1 for all (j,t) € Z x R, the conclusion of Lemma 3.7 follows. O

Lemma 3.8 Let u satisfy the assumptions of Proposition 3.53. Then

VK>0, inf u;(t) > 0. (3.10)
(j)EZXR, |ct—j|<K
Proof. Assume that the conclusion does not hold for some K > 0. Since u;(t) is always
nonnegative, there exists a sequence (j, tn)nen in Z x R such that w;, (¢,) — 0 as n — +oo,
and |ct, — jn| < K. Write j, as j, = I,, + J,, with I,, € NZ and J,, € {0,...,N —1}. Up to
extraction of some subsequence, one can assume that J, = J for all n. By periodicity of the
coefficients d; and of f with respect to j, the functions u” defined by

v (j, t) eZ xR, U?(t) = U]n+j(t + tn)

solve (1.2). Furthermore, 0 < u}(t) < 1 and the functions ¢ + (u})'(t) are uniformly

bounded. Therefore, up to extraction of some subsequence, one has u?(t) — U;(t) as n —

+o0 for all j € Z and locally uniformly in ¢. The functions t — U,(t) are continuous and, by
writing (1.2) in the integral form, it follows that the functions U; are of class C'! and solve
(1.2).

On the other hand, 0 < U;(¢) < 1 for all (j,¢) € Z x R and U;(0) = 0. Therefore,
U%(0) =0 and U;_1(0) = U;41(0) = 0. By immediate induction, one gets that

VjezZ Uj0)=0. (3.11)
The bounds (3.3) imply that
V(n,j) € NXZ, ui(0) = ur,4;(tn) > up, ;(t,) > M=)y i — AehCtn=In =0y,
But |ct, — I,] < K + J for all n € N, whence
V (n,j) €N X Z, u}(0) > v e MEHH) — Ay B+,

where v = min ez v; € (0,+00) and w = max;ez w; € (0,+00). Thus, there exists j, € Z
such that inf,en uf > 0 for all j > jo, whence U; > 0 for all j > jo. This contradicts (3.11).
Therefore, (3.10) holds for all K > 0. O

Remark 3.1 The same arguments as the ones used in the proof of Lemma 3.8 imply that,
for any u satisfying the assumptions of Proposition 3.3,

vV K >0, sup u;(t) < 1.
(J£)EZXR, |ct—j|<K
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Lemma 3.9 Let u satisfy the assumptions of Proposition 3.3. Then there exists 79 € R such
that
V72>,V (t)€ZxR, wui(t):=u;t+7)>uin(t).

Proof. From (3.3) and Lemma 3.7, there exists By > 0 such that, for all (j,¢) € Z x R,

(ct =35 = Bi) = (u(t) =2 p),

1 , .
—eM Dy <uy(t) < My, < p)

(t—j<-Bi+1) = (2 .
and (éeA(Ct_ﬂN)vj <y y(t) < eMATItN)y, < p)

Y

where p € (0,1) is given in (1.5). From Lemma 3.8, there exists then 6 > 0 such that
uj(t) > o for all (j,t) € Z x R such that |c¢t — j| < B;. Let now By > B; be such that
uj_n(t) < min(d, p) as soon as ct — j < —Bs.

Let 75 > 0 be such that c¢ry > By + B; and e’ /2 > e and let us check that the
conclusion of Lemma 3.9 follows with this choice of 7y. Fix any 7 > 7.

If ct—j > —By, then ¢(t+7)—j > —By+cr > By > By, whence u;(t) > p. Furthermore,
if —By <ct—j<—By+1,then u;_y(t) < p. With the same arguments as in the proof of
Lemma 2.5, it then follows that u}(¢) > u;_n(t) for all (j,¢) such that ct —j > —B;.

If =By <ct—j < —By, then u;_n(t) < pand c¢(t +7) — j > —By + ¢ > By, whence
uf(t) > p and uj(t) > u;_n(t).

If ct —j < =By and c(t +7) — j > — By, then u}(t) > min(d, p) > u;_n(t).

Lastly, if ¢t — j < —By and ¢(t + 1) — 7 < — By, then

u;’(t) Z eA(c(t—i_T)_j)fU' 2 e)\NeA(Ct—j),Uj Z U]_N(t)

J

DO | —

Eventually, u7 (t) > u;_n(t

~—

for all (j,t) € Z x R and for all 7 > 7. 0

Let us now turn to the
Proof of Proposition 3.3. With the notations of Lemma 3.9, one shall now decrease 7
and call
o=inf {TeER, V7' >71, V (j,t) € Z xR, u;/(t) > u;_n(t)}

One has that 7, < 75 and 7. € R (because u;(t) — 0 as t — —oo for all j € Z from (3.3),
and wu;(t) > 0 for all (j,¢) from Lemma 3.7). By continuity,

v (j, t) €7 x R, U;* (t) > Uj_N<t>.

Let us now assume that N
Te > —.
c

Call 7, = (N/e+7.)/2 € (N/e, 7). One claims that there exists D > 0 such that
V7€, V({,t) EZXR, (ct—j<—D) = (uj(t) > u;_n(t)). (3.12)
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Assume not. Then there are some sequences (7y,, ty, jn)nen With 7, € [Tus, Ti], (n, tn) € ZXR,
Ctn — Jn — —00 as n — +o0 and u}"(t,) < u;, n(t,) for all n € N. The bounds (3.3) then
give

Nty Aty < (t) < g, (t) < NI

Thus,
e)\crnvj . Ae(,uf/\)(ctnfjn)ﬁum'nwjn S eANUj

Since 1 > A, ct, — j, — —00, since the 7,,’s are bounded and the v;’s and w;’s are bounded
from above and below by positive constants, the passage to the limit as n — +oo in the
above inequality yields that e*” < e where 7 € [T.x, 7] is the limit of some subsequence
of the sequence (7,). That is impossible since A > 0, ¢ > 0 and 7., > N/c¢ by assumption.
Consequently, claim (3.12) is proved.

On the other hand, as in Lemma 3.9, there is By > 0 such that u;(t) > p for all
(j,t) € Z x R such that ¢t — j > By.

With B; and D as above, two and only two cases may occur :

Case 1: inf(jezxr, —D<ct—j<Bi+1 (u; (t) —u;—n(t)) > 0. Since the functions t — u;(¢)
are globally Lipschitz continuous, uniformly with respect to j, it follows in this case that
there exists n € (0, 7. — Tui such that

V7en—nrl V() €ZxR, (=D <c—j<Bi+1)= () >u n(t). (3.13)

Let 7 be any shift in [r, — 7, 7] (whence 7 > 7. — 9 > 7. > 0). If ¢t — 5 > By, then
c(t +7)—j = By and uj(t) > p (where p € (0,1) is given in (1.5)). Furthermore, if
By <ct—j < By + 1, then uj(t) > u;_n(t) from (3.13). It then follows as in Step 2 of the
proof of Lemma 2.5 that u}(¢) > u;_n(t) for all (j,¢) € Z x R such that ct — j > B.

Lastly, since 7 € [r. — 1, 7] C [7w, 7], (3.12) implies that u}(t) > u; n(t) for all
(7,t) € Z x R such that ¢t — j < —D.

One concludes that u}(t) > u;_n(t) for all (j,t) € Z x R and for all 7 € [, — 7, 7.] with
1 > 0. This contradicts the minimality of 7,. Thus, case 1 is ruled out.

Case 2 : inf(jnezxr, —D<ct—j<Bi+1 (U] (t) —u;—n(t)) = 0. There exists then a sequence
(Jnstn)nen in Z x R such that —D < ct, — j, < By + 1 and uj’ (t,) — uj,—n(t,) — 0 as
n — +oo. Write j, as j, = I, + J, with I,, € NZ and J,, € {0,..., N —1}. Up to extraction
of some subsequence, one can assume that J, = J € {0,..., N —1} for all n. As in the proof
of Lemma 3.8, the functions ¢ + u}(t) = uy, ;(t+1,) converge as n — +o0, up to extraction
of some subsequence, locally uniformly in ¢ and for all j € Z, to some functions ¢ — U;(t)
solving (1.2). Furthermore, 0 < U;(t) < 1 and U;*(t) > U;_n(t) for all (j,¢) € Z x R, and
U3 (0) = Uj-n(0).

The nonnegative functions ¢ — z;(t) = UJ*(t) — U;_n(t) solve

25(t) = djpa2z41(t) + djzj 1 (t) — (djga + d;)z;(t) +b;()2(t),

with sup; yezxr [0j(t)| < +oo. Furthermore, 2;(0) = 0, whence 25(0) = 0 and z;,(0) =
27+1(0) = 0. By immediate induction, one gets that

VieZ, UF0)—U;n(0)=2z(0)=0. (3.14)
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On the other hand, the bounds (3.3) imply that

e/\(C(tthn)—In—j)Uj — Aeu(€(t+tn)—1n—j)wj < ulM(t) = up,45(t +t,) < ek(c(t+tn)—ln—j)vj
for all (j,t) € Z xR. Since =D+ J <ct, — I, = ct, — jo+J < By + 1+ J, one can assume
up to extraction of some subsequence that ct,, — I,, — 0 € R as n — +o0o. The passage to
the limit as n — 400 in the above inequalities leads to

e)\(ct*j+0')vj . Ae,u(ctfjJra)wj < Uj(f) < ek(ctfj+o)vj

for all (j,t). In particular, together with (3.14), one gets that

e/\(cT**j#U)Uj o Ae,u(cnfj+cr)wj < UJT* (0) — Uj,N(O) < eA(ijJra)vj

for all j € Z. Therefore,

vj c Z, 6/\07-*1)]' _ Ae(,uf)\)(ofj)Jrucr*wj < GANU]'
and the passage to the limit as j — 400 leads to c¢7, < N. That contradicts our assumption
and case 2 is then ruled out too.

One concludes that the assumption 7, > N/c¢ can not hold. Thus, 7, < N/¢ and

N
V(j,t) €Z xR, U (t—i-?) zuj,N(t).

The same type of proof (defining 7 = sup{r € R, V7' < 7, V (j,t) € Zx R, u;(t +71') <
uj_n(t)}, and proving that 7 > —oo and 7 > N/c¢) leads to the opposite inequality.
Therefore, (1.3) is proved, namely

N
4 (],t) eZ xR, U (t—f—?) ZUj_N(t>.

Together with Lemma 3.7 and the bounds (3.3), (1.4) follows as well.

Lastly, the same arguments as above imply that, given two solutions u and v satisfying
the assumptions of Proposition 3.3, one can slide in time u with respect to v, and v with
respect to u, to prove that u;(t) > v;(t) and v;(t) > wu;(t) for all (j,t) € Z x R.

That completes the proof of Proposition 3.3. O

Step 4 : conclusion of the proof of Theorem 2. It follows from the previous steps
that, for any ¢ > ¢*, there exists a solution u = (u;(t))(j1ezxr of (1.2)-(1.4). It only remains
to prove here that there is a solution for the limiting case ¢ = ¢* as well.

Let (¢n)nen be a sequence of real numbers such that ¢, > ¢* and ¢, — ¢* as n — +o0.
For each n, there exists a solution u" = (u}(t))(nezxr of (1.2)-(1.4) with the speed c,.

Furthermore, 0 < u?(t) < 1 and, from Theorem 1, each function ¢ +— u’(t) is increasing.

As in the proof of Lemma 3.8, one can assume, up to extraction of some subsequence, that
u"

*(t) — u;(t) as n — +o0, locally uniformly in ¢ for each j € Z. The functions ¢ — u;(t) are
of class C* and solve (1.2). Furthermore, 0 < u;(t) < 1 and /(t) > 0 for all (j,t) € Z x R.
The equality (1.3) also follows by passage to the limit, since ¢, — ¢*.
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On the other hand, because of (1.3)-(1.4) and ¢, > ¢* > 0, each (continuous) function
t — ul(t) satisfies ul'(t) — 1 (resp. 0) as t — 400 (resp. t — —o0). One could then have
assumed, up to normalization, that u{(0) = 1/2. Thus, uy(0) = 1/2.

Lastly, since 0 < u;(t) < 1 and w}(t) > 0 for all (j,¢) € Z x R, one has u;(t) — UjjE as
t — o0, where (Uji)jez solve (3.6) with 0 < U < 1 for all j € Z. Moreover, Uy” > uo(0) =
1/2 > Uy . Lemma 3.5 implies then that U” = 1 and U; = 0 for all j € Z. In other words,
u;(t) — 1 (resp. 0) as t — 400 (resp. t — —o0). The limits (1.4) then follow from (1.3)
and the positivity of ¢*.

The proof of Theorem 2 is now complete. |

4 Convergence to the minimal continuous speed for
problems (1.9)

This section is devoted to the
Proof of Theorem 3. Let N € N\{0} and call h = L/N. Under the notations of Section

1, Theorem 1 asserts that
LM"
hc; = min —(H) > 0,
u>0 7]

where, for each p, M" (1) is the unique real number such that there exists u = (u;)jez € Kper
solving

VjeZ, —(dj+dj)uy+ d?ﬂe_“/N“jH + d?e“/N“j—l + ("), 0)uy = M (n)u;. (4.1)

Lemma 4.1 One has

limsup  hcj, < +oo.
N—+o0, h=L/N

Proof. Set

do =mind(z) >0, D=maxd(z), D =max|d(z)], G= mag@sg(x,O).
TE

z€R zeR z€R

For given h = L/N and p > 0, let jo € Z be such that u;, = max;ez u;, where (u;)jez € Kper
solves (4.1). By choosing jj in (4.1) and dividing by u;, > 0, one gets that

M (1) < max [d} ("™ =1) +dj (e = 1)] + G.

But, for each j € Z, one has

e =)+ i -1 = {6 - 9 - )] @ -

IA
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For each p > 0, there holds he; < LM"(u)/p, whence

L
limsup hc, < = x  limsup M"(u)
N—s+o0, h=L/N N N—o+oo, h=L/N
L (uD"  u?D Duy  GL
< — G|=D .
< u( Tt +

Since this holds for all i > 0, one gets that

D GL
limsup  hcj;, < min (D’ + =R ) D'"+2vD
0

N—+o00, h=L/N n>0 L

and the proof of Lemma 4.1 is complete. O

Call now
= liminf  hAcf.
i N_.Jrlorg, li?:L/N “h
One has 0 < v < limsupy_ 4o, pop/n bc;, < +0o. Let (Np)ren be a sequence of integers
such that N, — +oo and hkczk — 7y as k — 400, where hy = L/Ny. For each k, let puy >0
be such that hyc, = LM" () /pg. Therefore,

LM" (pg)/pe — 7 as k — +o0.

Lemma 4.2 The sequence (ug)ren s bounded from below and above by two positive con-
stants, namely
0 < liminf gy, < limsup pg < +00.
k—+o00 k—+4o00

Proof. From the arguments of Lemma 2.1, it follows that

M" () > M"(0) > min (f™).(45,0) > min d,g(x,0) > 0.
JE T€E
Since th<,uk>/:uk — /L € Ry as k — +o0, it follows then that liminfy_ 4. px > 0.
Define m = limsup,_,, . px/Ni € [0,+00]. Let u* € K., (with period Nj) be the
solution (unique up to multiplication) of (4.1) with u = p,k, h = hy and N = Nk By

choosing in (4.1) an integer i € Z such that u”-C = minez u¥ > 0 and dividing by UW one
gets that
M (1) 2 dit (e — 1)l (N 1) (42)
Hence,
L2M"™ (113, 1. L 1. L
> d — )Y (e Ne —q d —me/Ne _ 1Y
T 2 (i = ) = 1)+ (i 55 )

Since the function d is periodic, continuous and positive, one can assume, up to extraction
of some subsequence, that d((ix — 1/2)L/Ny) — 6 > 0 and d((ix, + 1/2)L/Ny) — 0. If
m € (0, +00) and assuming, up to extraction of some subsequence, that p /Ny — m, then

2 rhi
N i ()

im inf N2 > 26 (coshm — 1) > 0.
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But
LAM" () _ LPM" () 1
2 = " NXEHLfymeO—OaSk—H—oo
Therefore, the case m € (0, +00) is ruled out. If m = 400 and assuming, up to extraction
of some subsequence, that py /N, — +o0o, then

L>M"™ ()
N

>0 >0.

But

LEM™ () _ LPM™(pi) - o 1
— IR o=pie/Nk o~ —
N N2 = " xNke k ’“xNk—>L7><0><O—OaSk—>+oo.
Therefore, the case m = +o00 is ruled out too. One concludes that m = 0. In other words,
tr/Ny — 0 as k — +oo.

Let € € (0,1/2) be fixed. With the same notations as above, and since ug/Np — 0 as
k — +o0, it follows from (4.2) that, for k large enough,

1 HE \2
W T (§ G- o)

N 5 1, L Ik 1 Hik \2
kg Ll AT G Vi3

F o+ )0 (R + G - )

L[ D, doli- 2}

Mk L L? .

But the left-hand side of the above inequality is bounded as k — +o0o, whence

>

lim sup p < +00.
k—-+o00

That completes the proof of Lemma 4.2. O

From Lemma 4.2, one can then assume, up to extraction of some subsequence, that

. — A € (0,400) as k — +o0. (4.3)
For each k € N, call now u* = (u});ez € Kper the unique solution of (4.1) with h = hy,
N = Nj and pu = py, assuming, up to normalization, that maxjezu = 1. Namely, u*
satisfies
—(d* + di ) + e N die Nl g (PG, 0)uf = M (u)ul (4.4)
for all j € Z. Let ¢ : R — R be the piecewise linear function defined by:
L
op(r) = u¥ ifx:j—, Jj € Z,
N jL i G+1)L (4.5)
k ky -
gok(m)—anLT( Nk>(j+1 u;) 1fm<x<Tk, J € Z.

Therefore, 0 < pp(z) < 1 for all x € R, and each function ¢}, belongs to H' ., where H}

per? per
denotes the space of H.  functions which are periodic with period L, equiped with the usual
H' norm in (0, L).
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Lemma 4.3 The sequence (@g)ken is bounded in H),,.

Proof. Multiply equation (4.4) by Lu;?/Nk and sum over j = 1, ..., Nj. Since the coefficients
d;”“ and uf are periodic in j with period N, one gets that

Ny
L
> [—cz’?k((u’?ﬂ + (b)) + diruful (e N 4 eI 0,9 (jhg, 0) (uf)?

i [ < 3 [ a6 )
" =17 (G=1)L/N i
L&,
=
=1
L N
- ¥ [d?ku;?u?_l(e—uk/zvk e o)

+(Dag (b, 0) — M () (uk)?]

where 0 < dy = minger d(z). Since N, — +o0, pur, — A € (0,+00) (whence 0 < M" () —
yA/L) as k — 400, there exists a constant C' such that 0 < e=#/Ne 4 eme/Ne — 2 < O'/(N,)?
for all £ € N. Remember also that 0 < ugf < 1 for all j. Therefore,

L
D
do/ () (x))*dz < OT + LG.
0

Since each function ¢y ranges in [0, 1], the conclusion of Lemma 4.3 follows. 0

Up to extraction of some subsequence, one can then assume that ¢, — ¢ € H;er weak,
and o — @ in CO(R) for all 0 <7 < 1/2 as k — +oo0.

Lemma 4.4 The function ¢ is of class C*P(R) (where 3 > 0 is such that d € CP(R)),
and it satisfies

(d¢') — 2Xdy’ — Ad'¢ + Osg9(,0) + N2dp = yAp in R, (4.6)

where A = AJL > 0 and A is given in (4.3). Furthermore, 0 < p(z) <1 for all x € R and
maxg ¢ = 1.

Proof. Since each function ¢y, is L-periodic and the convergence of the functions ¢y to ¢ is
uniform in R, and since 0 < ming ¢, < maxg ¢ = 1 by definition, it follows that 0 < ¢ <1
and maxg ¢ = 1.
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Let now 9 be any function in H;er (without loss of generality, one can then assume that
¥ is continuous). Multiply (4.4) by L (jL/Ny) /Ny = hxtp(jhg) and sum over j = 1,..., Ng.
Since uf = @r(jhx), one gets that

Ny
—th(d?k + d?iﬁ%(jhkwuhk)
=

Ny,

£ (et ae e oG D) (i) + hadi e Voo (( = Dheyiihe)) (A7)
Jj=1
N

k N
+_x0eg (e, 0 (i) (ihw) = heM™ (u)pr (e ().
j=1 j=1

L
Since M" (uy) — vA/L = ~\, the right-hand side converges to ’7)‘/ o(x)p(x)dr as k —
0

L
+o00o. Similarly, the last term of the left-hand side converges to / 0sg(z,0)p(x)(x)dx as
0

k — +o0.
Call now [j the sum of the first two terms of the left-hand side of (4.7). Because of the
Ny-periodicity of all the coefficients involved in (4.7), one can write I}, = I I}, + 111 with

(

e = =3 (@it — ol — D)@ ~ 0(0 ~ 1h)

I = ) hedi (N = Doy ((5 = 1))t (jh)

i=1

+Zkhkd?k(€“’“m’“ = Depr(jhu) (5 = 1)hi).-

\ Jj=1

Since ¢}, is constant in each interval ((j — 1)hy, jht) and is equal to h, ' (¢r(hs) — wre((G —
1)hg)), and since d?k = h,2d((j — 1/2)h), the term I} can be written

Nk 1 Jhi
I, == d((j— 5)h (@) (x)dz.
= = = | A

But ¢}, — ¢’ in L?(0, L) weak, and d is (at least) uniformly continuous. Therefore,
L
11, — —/ d(z)¢' (x)yY (z)dx as k — +oo.
0

Moreover, one knows that pp — A € (0, +00), and Ny — 400 as k — +00. Remember also
that the functions ¢y are uniformly bounded (by 1), and note that ¢ is bounded as well.
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Therefore, the term I11; can be written as

I, = Zh Y((j - = hk)N (r((F = D) () — or(he) V(5 — 1))

1 2

+Zh;§1d((j - 5)%)%’%(%((1 = Dl )v(Ghe) + ox(Ghi) (G — 1)hy))
+5(Nk 1) as k — 400

X[(ee((7 = Dhi) = @r(3h) )0 () + (i) (¥ () — (= 1)hi))]
+572 thd J— _)hk)(‘Pk((] = Dhi)b(jhi) + (i) ((G — 1)hy))
+O(N, ) as k — +oo0.

Since the functions ¢y, d and ¢ are uniformly equi-continous, and since ¢}, — ¢’ in L?(0, L)
weak, one concludes that

115 =2 [ d@) (=4 @)0(w) + @)/ (@)da + 3 [ de)e(@piade as k= +oo,

Eventually,

L L L L L L
/ o — A / A+ A / doi! + N2 / dov + [ D9z, 0w = A / o
0 0 0 0 0 0

for all ¢ € H),,. Elliptic regularity theory and the fact that d is of class C*#(R) imply that
¢ € C*P(R) and satisfies (4.6). Since 0 < ¢ and maxg ¢ = 1, the strong maximum principle
then implies that ¢ > 0 in R. That completes the proof of Lemma 4.4. O

Lemma 4.5 There holds

liminf  he =~y >~*
N—+o0, h=L/N h 7=

where v* > 0 is the minimal speed for the pulsating traveling fronts of (1.7).

Proof. It follows from Lemma 4.4 that ¢ is the first eigenfunction of the operator defined
by the left-hand side of (4.6), whence k(A) = A (the first eigenvalue of this operator). Since
A > 0, one concludes that v = k(\)/A > ~* because of (1.8). O

Lemma 4.6 There holds
[':= limsup hc, <7
N—+o0, h=L/N
Proof. From Lemma 4.1, one knows that T" is finite. Let now (N)ren be a sequence of

integers such that N, — 400 and hkc;‘”c — ' as k — +o0, with hy = L/Ny.
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Let X be any arbitrary positive real number and call 4 = XL > 0. One knows from
Theorem 1 that
LM" ()

14
for all £ € N. With the same arguments as in the proof of Lemma 4.1, one can prove that
the nonnegative sequence (M"(11))ren is bounded. Up to extraction of some subsequence,
one can then assume that LM" (u)/p — o € Ry as k — +o0.

For each k € N, let now u* = (u?)jeN € Kper solve (4.1) with h = hy and N = Ny,
assuming that max;ecz uf‘ = 1. Then, define ¢* as in (4.5). With the same arguments as
in Lemmas 4.3 and 4.4, one can prove that the functions ¢, are bounded in HI} and that

hici, < (4.8)

EeT

they converge, up to extraction of some subsequence, in H},, weak and in CY"(R) for all
0 <71 < 1/2, to a positive and L-periodic function ¢ solving (4.6) with X" and +'. In other
words, one concludes that v\ = k()\).

Passing to the limit as k — 400 in (4.8) yields
k(N)
N
But X was any arbitrary positive number. One then concludes from (1.8) that I' < ~*. hfillo

<+ =

The above Lemmas 4.5 and 4.6 complete the proof of Theorem 3.

Remark 4.1 Fix any speed ¢ > ~* and let (Ng)gen be a sequence of integers such that
Ny — 400 as k — +o0. Set hy = L/Ny. Because of Theorem 3, one knows that ¢/hy > Ch,
for k large enough, and assume that this is true for all £ without loss of generality. For each
k€N, let (uf(t))(nezxr solve (1.9) with the periodicity and limiting conditions (1.3)-(1.4),
and with the speed ¢/hy. In particular,

YV (j.t) € Zx R, ub(t+ Ny/(e/hi)) = ub(t + L) = ub_y, (b). (4.9)

Up to shift in time, assume that uf(0) = 1/2. One also knows from Theorem 1 that each

function uf is increasing in ¢, and that 0 < uf(t) < 1.

Define now U*(t,z), for all (t,x) € R?, as follows

i L
Uk(t, z) = ub(t) ifr =22 jez,
j NN
A ) j+)L

Up to extraction of some subsequence, and from parabolic regularity, one can assume that the
functions U* converge locally uniformly in R? to a classical solution U of (1.7). Furthermore,
0 < U(t,z) <1forall (t,2) € R* and U(t + L/c,x) = U(t,x — L) by passage to the limit
in (4.9). Lastly, U(0,0) = 1/2 and U is nondecreasing in time. Therefore, U(t,z) — Uy (z)
as t — zoo, where Uy solve (dUL) + g(z,U+) = 0in R, and 0 < U_ < Uy < 1. Since
0<U_(0) <1/2<U.(0) <1, one concludes with the results in [3] that U_ = 0 and U, = 1.
As a consequence, U(+o00,z) = 1 and U(—oo,z) = 0 for all z € R, whence U(t, —o0) =1
and U(t,+o0) = 0 for all t € R. In other words, U is a pulsating traveling front with the
effective speed ¢ for equation (1.7).
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