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Abstract

In this paper, we derive exact asymptotic estimates of the spreading speeds

of solutions of some reaction-diffusion models in periodic environments with very

large periods. Contrarily to the other limiting case of rapidly oscillating environ-

ments, there was previously no explicit formula in the case of slowly oscillating

environments. The knowledge of these two extremes permits to quantify the ef-

fect of environmental fragmentation on the spreading speeds. On the one hand,

our analytical estimates and numerical simulations reveal speeds which are higher

than expected for Shigesada-Kawasaki-Teramoto models with Fisher-KPP reaction

terms in slowly oscillating environments. On the other hand, spreading speeds in

very slowly oscillating environments are proved to be 0 in the case of models with

strong Allee effects; such an unfavorable effect of aggregation is merely seen in

reaction-diffusion models.

Keywords. Spreading speeds; Reaction-diffusion; Fragmentation; Periodic environ-

ment; Allee effect.

1 Introduction

In this paper, we are concerned with quantitative estimates of the spreading speeds

of solutions of some reaction-diffusion models in heterogeneous and slowly oscillating
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environments. More precisely, we study models of the type

∂u

∂t
= D

∂2u

∂x2
+ fL(x, u), t > 0, x ∈ R, (1.1)

where the diffusion coefficient D is a given positive constant and the reaction term fL

is L-periodic in x. In this limit as L→ +∞, we are interested in the large-time speed

of propagation of the region where the solutions of the Cauchy problem with compactly

supported initial data are away from 0.

For reaction terms of the type fL(x, u) = u(µL(x) − γL(x)u), this equation cor-

responds to the Shigesada-Kawasaki-Teramoto (SKT) model (Shigesada et al., 1986),

which is a natural extension of the classical Fisher and Kolmogorov-Petrovsky-Piskunov

model (Fisher, 1937; Kolmogorov et al., 1937) to heterogeneous environments. In this

context, u can be interpreted as a population density, while µL and γL respectively

correspond to intrinsic growth rate and intraspecific competition coefficients. Some

spreading properties of the solutions of such space-periodic equations have been stud-

ied, since the work of Freidlin and Gärtner (1979). In particular, if µL is nonnegative

and not identically zero, there is a spreading speed w∗
L ≥ 0, such that, if the initial

population density is compactly supported and not identically equal to 0, any observer

who travels with a speed larger than w∗
L will see the population density go to 0, whereas

any observer traveling with a speed smaller than w∗
L will see the density approach a

positive state, which is in general heterogeneous (see formula (2.5) below for the precise

statements).

For the SKT model, the homogenization limit of rapidly oscillating media – cor-

responding to small values of L – has been fully investigated (El Smaily et al., 2009;

Kinezaki et al., 2006). The spreading speed has been proved to converge to the spread-

ing speed in an averaged environment, with the growth rate µL being replaced by its

average value µL. The dependence of the spreading speed on the parameter L has also

been recently analyzed: the speed was found to be an increasing function of the period

L, first numerically for some specific examples in Kinezaki et al. (2003); Shigesada and

Kawasaki (1997), and then analytically for the general case in Nadin (2009a).

In the present paper, we derive, in the case of SKT patch models1, an explicit

formula for the limit of the spreading speed as L becomes very large. The limiting

case that we consider here, that of slowly oscillating media, should be at least as

interesting as the limit of rapidly oscillating media. Indeed, the precise knowledge of

these two extreme cases enables us to estimate whether the spatial structure of the

environment has a significant effect on the spreading speeds. Though propagation

in slowly varying media has been studied through probabilistic arguments in Freidlin

(1985), under assumptions more general than periodicity of the coefficients, previous

1In patch models, one assumes a mosaic of differentiated environments, each of which having a

relatively well defined structure which one might consider as homogeneous. This involves an equation

with piecewise constant coefficients, see hypothesis (H3) below.
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theoretical studies do not offer explicit formulae for the limiting spreading speeds.

They do not either focus on the dependence of the spreading speeds with respect to

the oscillations of the medium.

The analytical results of Section 2 reveal significant increase of the spreading speeds

in slowly oscillating environments for the SKT model (see formula (2.7) below and

the particular cases stated after Theorem 2.1). To understand this, we numerically

compute in Section 3 the solution of the SKT model in such environments. These

computations suggest that this speed enhancement is linked to the “infinite speed of

propagation” of the solutions of reaction-diffusion equations. The numerical results

also tend to confirm that the high spreading speeds found in slowly oscillating media

are caused by the growth of the tail of the solution, sent by diffusion far from the

leading edge of the solution. To counterbalance the effects caused by this infinite speed

of propagation, we consider reaction terms taking into account the Allee effect. In

the case of a strong Allee effect, numerical computations then show a very different

pattern of dependence between the spreading speeds and the period L. We even prove

rigorously a result of independent interest, namely that, under a general condition on

the Allee effect, propagation may be blocked when the period L is large enough (see

Theorem 3.2 below). Lastly, in Section 4, we prove the analytical results which are

stated in Sections 2 and 3 for the SKT model and the one with a strong Allee effect.

2 An explicit formula for the spreading speed in slowly

oscillating media for the SKT model

For the derivation of the limit of the spreading speed as L → +∞, we place ourselves

under hypotheses slightly more general than those of the SKT model. We set fL(x, ·) =

f(x/L, ·), where f : R × R+ → R, (x, s) 7→ f(x, s) is a function which is 1-periodic in

x (thus fL is L-periodic in x). Moreover, we assume that



















∀ x ∈ R, f(x, 0) = 0,

∃ M ≥ 0, ∀ s ≥M, ∀ x ∈ R, f(x, s) ≤ 0, (H1)

∀ x ∈ R, s 7→ f(x, s)

s
is decreasing in s > 0.

By analogy with the SKT model, we set

µ(x) := lim
s→0+

f(x, s)

s
and µL(x) := µ

( x

L

)

.

It is worth noticing that the growth rate µ is not assumed to be nonnegative, it may

actually change sign. But we always assume that µ is bounded.

Under hypothesis (H1), and assuming that f was of class C1,δ in (x, s) and C2 in

s, it was proved by Berestycki et al. (2005a) that a necessary and sufficient condition
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for the existence of a positive and bounded stationary solution pL of (1.1) was the

negativity of the principal eigenvalue ρ1,L of the linear operator

L0 : Φ 7→ −DΦ′′ − µL(x)Φ,

with periodicity conditions. The principal eigenvalue ρ1,L is characterized by the ex-

istence and uniqueness (up to multiplication) of a positive and L-periodic function φL

solving L0φL = ρ1,LφL in R. In this case, the solution pL was also proved to be unique,

and therefore L-periodic. Moreover, the solution u(t, x) of (1.1) was proved to converge

to pL, uniformly on all compact subsets of R, as t→ +∞, given any bounded and con-

tinuous initial condition u(0, ·) = u0 ≥ 0, with u0 6≡ 0. In the sequel, we may therefore

assume that

ρ1,L < 0. (H2a)

In fact, a comparison with the Dirichlet-Laplace eigenvalue (see e.g. Roques and Hamel,

2007, Appendix E) shows that for large enough periods L, (H2a) is automatically ful-

filled provided that µ is positive somewhere. Thus, for our analysis in slowly oscillating

media, we may assume, instead of (H2a):

µ+ := esssupx∈[0,1]µ(x) > 0. (H2b)

The notion of spreading speeds is closely related to the existence of pulsating travel-

ing fronts of the reaction-diffusion equation (1.1). The definition of pulsating traveling

fronts, which is recalled below, has been introduced in Shigesada et al. (1986) (it has

also been extended in higher dimensions in Berestycki and Hamel, 2002; Berestycki

et al., 2005b; Xin, 1991). More precisely, a function u : R × R → R, (t, x) 7→ u(t, x),

defined for all time t ∈ R, is called a pulsating traveling front propagating from left to

right with an effective speed c 6= 0 for problem (1.1) if it satisfies






















∀ z ∈ Z, ∀ (t, x) ∈ R × R, u

(

t+
zL

c
, x

)

= u(t, x− zL),

∀ (t, x) ∈ R × R, 0 ≤ u(t, x) ≤ pL(x),

lim
x→−∞

u(t, x) − pL(x) = 0 and lim
x→+∞

u(t, x) = 0,

(2.2)

where the above limits hold locally in t. Under the above assumptions (H1) and (H2a),

it follows from Berestycki et al. (2005b) that there exists a minimal speed c∗L > 0 such

that pulsating traveling fronts satisfying (2.2) with a speed of propagation c exist if

and only if c ≥ c∗L. Moreover, c∗L is characterized by the following formula:

c∗L = min
λ>0

kL(λ)

λ
, (2.3)

where kL(λ) is defined as the unique real number such that it exists a positive L-periodic

function ψ satisfying:

Dψ′′ + 2λDψ′ + λ2Dψ + µL(x)ψ = kL(λ)ψ in R. (2.4)
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Uniqueness (up to shifts in time) of the fronts with any given speed c ≥ c∗L has been

proved recently (Hamel and Roques, 2010). We refer to Bages et al. (2008); Berestycki

et al. (2005a,b); El Smaily (2008); Heinze (2005); Liang et al. (2009); Ryzhik and

Zlatos (2007); Xin (2000); Zlatos (2009), for further results and asymptotic and stability

properties of such pulsating fronts, and to Nadin (2009b); Nolen et al. (2005); Nolen

and Xin (2005), for the study of pulsating traveling fronts in time-periodic media.

The minimal speed of pulsating traveling fronts does not immediately appear as

a fundamental notion in population ecology, but it turns out to be closely related to

the more intuitive notion of spreading speed. Indeed, it is known (Berestycki et al.,

2008; Freidlin and Gärtner, 1979; Weinberger, 2002) that, under assumptions (H1) and

(H2a), there exists a spreading speed, w∗
L ≥ 0 such that, given any nonzero compactly

supported and nonnegative initial density u(0, x), the solution u of (1.1) satisfies







u(t, x+ ct) −→
t→+∞

0, for all x ∈ R and |c| > w∗
L,

u(t, x+ ct) −→
t→+∞

pL(x), for all x ∈ R and c ∈ (−w∗
L, w

∗
L).

(2.5)

In the one-dimensional case considered here, this spreading speed w∗
L is precisely equal

to the minimal speed c∗L, that is

w∗
L = c∗L.

This result is not true in general in higher dimensions (Berestycki et al., 2005b) (see

also Berestycki et al., 2008, for further spreading properties in non-periodic media).

As above mentioned, the homogenization limit as L → 0 has been investigated by

El Smaily et al. (2009). More precisely, under the assumption that µ =
∫ 1
0 µ(x)dx ≥ 0

and µ is not constant, it is known that ρ1,L < 0 for each L > 0 and that

c∗0 := lim
L→0+

c∗L = 2
√

Dµ. (2.6)

In this paper, we are interested in the limit of slowly oscillating media, that is the limit

of the spreading speeds w∗
L = c∗L as L → +∞. This limit exists and is finite since the

speeds c∗L are known to be bounded and nondecreasing with respect to the period L

(Nadin, 2009a). We denote this limit by c∗∞, that is

c∗L −→
L→+∞

c∗∞.

For the first result of this paper, we restrict our analysis to the case of a patch

model, where the function µ(x) = ∂f/∂s(x, 0) takes only two values µ+ and µ− with

µ+ ≥ µ− and µ+ > 0. Namely, we assume that:

{

µ(x) = µ+ if x ∈ [0, θ),

µ(x) = µ− if x ∈ [θ, 1),
(H3)
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for some θ ∈ (0, 1), which corresponds to the proportion of favorable patches in the

environment.2 The assumption µ+ > 0, that is (H2b), implies that ρ1,L < 0 for large

L, whence the positive spreading speeds w∗
L = c∗L are well-defined for large L. Though

simple, models with this type of growth rate function have aroused much interest in the

recent literature (Cantrell and Cosner, 2003; Kawasaki and Shigesada, 2007; Kinezaki

et al., 2003; Shigesada and Kawasaki, 1997; Shigesada et al., 1986).

Our first mathematical result, the proof of which is given in Section 4, is the fol-

lowing

Theorem 2.1. Under hypotheses (H1), (H2b) and (H3), the limit c∗∞ of c∗L as L→ +∞
is given by

c∗∞ =
√
D min

λ≥(1−θ)
√

µ+−µ−

j−1(λ)

λ
, (2.7)

where the function j : [µ+,+∞) → [(1 − θ)
√

µ+ − µ−,+∞) is defined by

∀m ≥ µ+, j(m) = θ
√

m− µ+ + (1 − θ)
√

m− µ−

and j−1 : [(1 − θ)
√

µ+ − µ−,+∞) → [µ+,+∞) denotes the reciprocal of the function

j.

Let us now comment and give some applications of Theorem 2.1. Notice first that if

µ+ = µ− =: µ0 > 0 is constant, then j(m) =
√
m− µ0 for all m ≥ µ0 and formula (2.7)

reduces to the classical homogeneous Fisher-KPP formula c∗∞ = 2
√
Dµ0 = c∗L, which

holds for all L > 0. It is also noteworthy that, in the heterogeneous case, Theorem 2.1

leads to an explicit formula for c∗∞, in terms of the parameters µ+, µ− and θ. For

general values of θ, this explicit formula is very lengthy, and thus not presented here.

In some particular cases, however, Theorem 2.1 leads to simple formulae for c∗∞. For

instance, when

θ =
1

2
,

that is when the ratio between the length of the favorable region and that of the

unfavorable region is unitary in each periodicity cell, we get:

c∗∞ = 4
√
D × (µ+)2 + (µ−)2 + (µ+ + µ−)

√△
(µ+ + µ− + 2

√△)
3
2

, (2.8)

with △ = (µ+)2 + (µ−)2 − µ+µ−. If, in addition to θ = 1/2, we also assume that

µ− = −µ+, we simply get

c∗∞ =

(

2√
3

)
3
2 √

Dµ+,

2Here, the functions µL do not satisfy the regularity assumptions µL ∈ C0,δ used in the abovemen-

tioned references. However, c∗L can still be interpreted as the minimal speed of propagation of weak

solutions of (1.1) and (2.2), whose existence can be obtained by approaching µL with regular functions.

6



whereas c∗L → c∗0 = 2
√
Dµ = 0 as L → 0 (compare also with a homogeneous environ-

ment, with µ ≡ µ+, which leads to c∗L = c∗∞ = 2
√

Dµ+ > (2/
√

3)3/2 ×
√

Dµ+). On

the other hand, if we set µ− = −nµ+ in (2.8), we get

c∗∞ = 2

√

Dµ+

n
+O

(

1

n3/2

)

as n→ +∞.

Lastly, in the case µ− = 0, formula (2.8) reduces to:

c∗∞ =
8

9

√

3Dµ+.

In this last case, we have c∗0 = 2
√
Dµ =

√

2Dµ+, whence c∗∞ = (4
√

6/9) × c∗0,

independently of µ+.

Thus, as already emphasized and as illustrated in the above examples, the lim-

iting spreading speed c∗∞ involves an explicit and in general lengthy dependence on

the parameters µ+, µ− and θ. What is more surprising is that formula (2.7) and the

subsequent ones are not the ones which one could have had in mind at first sight.

Indeed, under hypotheses (H1) and (H3), one could have expected c∗∞ to be close to

an harmonic mean of the two speeds corresponding to the two homogeneous environ-

ments, respectively with µ ≡ µ+ and µ ≡ µ−, whenever these speeds exist (i.e. when

µ+ ≥ µ− > 0). Indeed, for large values of L, we could have expected the solution to

spread approximately at the constant speeds 2
√

Dµ+ and 2
√

Dµ− in the favorable and

unfavorable patches, respectively. Thus, the average spreading speed would have been

approximately equal to h = L/(T+
L + T−

L ), where T+
L and T−

L respectively correspond

to the required times to cross the distances θL and (1 − θ)L at speeds 2
√

Dµ+ and

2
√

Dµ−, respectively. This would have led to:

h =
2
√

Dµ+ µ−

θ
√

µ− + (1 − θ)
√

µ+
,

that is the harmonic mean between the speeds 2
√

Dµ+ and 2
√

Dµ− with coefficients

θ and 1 − θ. However, it turns out that this value is even smaller than the spreading

speed in the homogenization limit as L→ 0, namely

h < c∗0 = 2
√

Dµ = 2
√

D (θµ+ + (1 − θ)µ−)

as soon as µ− < µ+, as follows from Jensen’s inequality, together with the convexity of

the function x 7→ 1/
√
x and h is therefore far lower than c∗∞. Actually, the reason for

the increase of the spreading speeds in slowly oscillating media can be easily understood

from the numerical simulations and interpretations given in the next section.

We also mention that a result of Freidlin (1985), obtained through probabilistic

arguments and under some technical assumptions, leads to the following formula for

c∗∞ :

c∗∞ = lim
t→+∞

X(t)

t
,
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where X(t) is defined by

sup
φ∈Et,X(t)

{
∫ t

0

[

µ(φ(s)) − 1

4D
(φ′(s))2

]

ds

}

= 0,

and, for every t ≥ and Y ∈ R,

Et,Y = {φ ∈ C([0, t] : R), with φ(0) = Y and φ(t) = 0}.

This formula bears on a variational equation which gives X(t) in an implicit manner,

and thus it is more difficult to use, both analytically and numerically, than formulae of

type (2.7).

Theorem 2.1 corresponds to the case of patchy environments, that is hypothe-

sis (H3). However, formula (2.7) leads us to formulate the following conjecture in

the case of general heterogeneous environments:

Conjecture 2.2. For any bounded and periodic function µ, such that (H1) and (H2b)

are satisfied, we have

c∗∞ =
√
D min

λ≥
R 1
0

√
M−µ(x) dx

j−1(λ)

λ
, (2.9)

where M = esssupx∈Rµ(x) and the function j : [M,+∞) →
[ ∫ 1

0

√

M − µ(x) dx,+∞
)

is defined by

∀m ≥M, j(m) =

∫ 1

0

√

m− µ(x) dx.

This conjecture was successfully checked numerically on several examples: µ(x) =

sin(2πx), µ(x) = 2 sin(2πx), µ(x) = sin2(2πx), µ(x) = 1 + sin(2πx), µ(x) = 1 +

cos(2πx) sin(2πx), with D = 1. Both the numerical simulations and formula (2.9) lead

to the following values of c∗∞, respectively: 1.11, 1.57, 1.49, 2.11 and 2.03. On the

other hand, in rapidly oscillating environments, the speeds c∗L converge as L → 0 to

2
√
Dµ = 0, 0,

√
2, 2 and 2 respectively.

Conjecture 2.2 for heterogeneous reaction-diffusion-advection equations will be stud-

ied in the forthcoming paper by Hamel et al. (2009), with an approach based on viscosity

solutions for some Hamilton-Jacobi equations.

An important by-product of the analysis of the limit of large oscillating media is the

study of spreading speeds in media with large reaction terms. More precisely, replace

the reaction term f with B f in (1.1), that is consider the reaction-diffusion equation

∂u

∂t
= D

∂2u

∂x2
+B f(x, u), t > 0, x ∈ R, (2.10)

where B is a positive parameter. Let c∗(B) denote the minimal speed of pulsating

traveling fronts propagating from left to right for problem (2.10), in the same sense

as (2.2) with L = 1 and pL being replaced with the unique positive 1-periodic stationary

state of (2.10), when it exists (the existence is guaranteed for all B > 0 if µ ≥ 0 and
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µ 6≡ 0). The speeds c∗(B) are also the large-time spreading speeds, in the sense of

(2.5), of all solutions of (2.10) with nonnegative and nonzero compactly supported

initial data. In Berestycki et al. (2005b), the limit of large reactions B f as B → +∞
was considered and it was proved there that, under the hypotheses µ ≥ 0 and (H2b),

the spreading speeds c∗(B) satisfy:

1

2

√

Dµ+ ≤ lim inf
B→+∞

c∗(B)√
B

≤ lim sup
B→+∞

c∗(B)√
B

≤ 2
√

Dµ+, (2.11)

where µ+ = esssupRµ. One could therefore legitimately ask whether, in the limit of

large amplitudes, the normalized speeds c∗(B)/
√
B depend only on µ+. In fact, this is

not true in general, as the following result shows:

Proposition 2.3. Under hypotheses (H1), (H2b), there holds

lim
B→+∞

c∗(B)√
B

= c∗∞. (2.12)

Notice that this result, which is proved in Section 4, works in the general case of a

growth rate µ which may not be of the patch type (H3). As already observed from the

above examples in the case of the patch model (H3), we clearly see that c∗∞ in general

depends not only on µ+, but also on θ and µ− (see also Conjecture 2.2 above for general

non-patchy environments). In other words, the limit of c∗(B)/
√
B for problem (2.10)

does not depend only on µ+. Nevertheless, an interesting consequence of (2.11) and

(2.12) is that, under the additional assumption µ ≥ 0, the inequality

c∗∞ ≥ 1

2

√

Dµ+

holds true automatically. This explains why, in the above numerical examples, the

difference c∗∞ − c∗0 was higher for high values of µ+, especially when µ = 0.

Remark 2.4. To complete this section, we mention that formulae closely related

to (2.7) or (2.9) can be derived for other types of models. For instance, Kawasaki

and Shigesada (2007) considered the integro-difference model:

Nt+1(x) =

∫ +∞

−∞
J(x− y)gL(y,Nt(y))dy, t ∈ N, x ∈ R, (2.13)

where the dispersal kernel J is an exponential damping function J(s) = 1
2e

−|s|, and the

growth function is

gL(x,N) = NµL(x)e−N .

Assuming that the linear conjecture (Mollison, 1991; van den Bosch et al., 1990) held,

that is that the propagation speed v∗L (which is defined in Kawasaki and Shigesada,

2007, as an average speed of range expansion, see (3.17) below) was the same as that

of the linear model where gL is replaced by its derivative at N = 0, they obtained a
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variational formula for this speed v∗L. Using arguments similar to those of Section 4,

we conjecture that the limit as L → +∞ of the spreading speed in the case of model

(2.13) is given by the following formula:

v∗L −→
L→+∞

v∗∞ = min
λ∈

h

(1−θ)
√

1−µ−/µ+,1
”

− ln
(

j−1(λ)
)

λ
,

where the function j : [0, 1/µ+] → [(1 − θ)
√

1 − µ−/µ+, 1] is defined by

∀m ∈
[

0,
1

µ+

]

, j(m) = θ
√

1 −mµ+ + (1 − θ)
√

1 −mµ−.

In the particular case µ+ = 2, µ− = 1, and θ = 1/2, we obtain, for this model,

v∗∞ ≃ 1.36 × v∗0 . In this case, as for model (1.1), slowly oscillating environments thus

lead to significantly higher speeds than rapidly oscillating ones.

3 Numerical computations and comparison with models

taking into account the Allee effect

In this section, we present some numerical simulations which have been carried out on

the SKT model with large periods and we compare them to other models with Allee

effect.

3.1 Shigesada-Kawasaki-Teramoto model

What are the reasons for such an increasing behavior of the spreading speed with

respect to the period L, leading to significantly increased speeds in very slowly oscil-

lating environments, compared to rapidly oscillating ones? Is this reasonable from an

ecological viewpoint?

We could expect that for most individual based models (IBMs) (Gross et al., 1992;

Kareiva and Shigesada, 1983; Marsh and Jones, 1988; Turchin, 1998) in such a periodic

environment, too large unfavorable regions should be associated with reduced spreading

speeds. Indeed, imagine the case of very unfavorable regions, where no individual can

reproduce, and where the death rate is very high. The probability that an individual

manages to cross such regions without dying is very low, especially for large L. If the

mean time required for this region to be crossed by some individual increases super-

linearly with L, the spreading speed should decrease with L, and even converge to 0 as

L→ +∞.

Even if the diffusion part
∂u

∂t
= D

∂2u

∂x2

of equation (1.1) can be obtained as the macroscopic limit of uncorrelated random

walks (see e.g. Okubo and Levin, 2002; Turchin, 1998), this model, and more gener-

ally reaction-diffusion models with non-degenerate diffusion, behave quite differently,
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(a) t = 580 (b) t = 600

Figure 1: Profile of the solution u(t, x), at two successive times, t = 580 and t = 600,

starting from a compactly supported initial condition u(0, x) and with µ+ = 1, µ− =

0.1, D = 1, θ = 1/2 and L = 500.

compared to IBMs. Indeed, because of strong parabolic maximum principle, even with

compactly supported initial population density u(0, x) which is not identically equal

to 0, the solution u(t, x) of (1.1) becomes strictly positive at all points x ∈ R as soon

as t > 0. This phenomenon, sometimes referred to as “infinite speed of propagation”,

may have an important impact on the dependence of c∗L with respect to L, especially

for large L.

Figure 1 depicts the profile of the solution u(t, x) at two successive times, starting

with a compactly supported initial condition, and for L = 500. We observe that the

favorable patch beginning at x = 1000 becomes invaded before the full invasion of the

preceding unfavorable patch [750, 1000). This phenomenon emphasizes the key role

played by infinite speed of propagation in such a slowly oscillating environment, and

the pulled nature of SKT solutions (Stokes, 1976; van Saarloos, 2003): the very low

population density “sent” by diffusion in the favorable patch starting at x = 1000 reacts

and becomes significant before the leading edge of the front-like solution attains this

region.

Moreover, another effect, which may seem a bit paradoxal, makes the spreading

speeds larger in very slowly environments, at least under some appropriate conditions

on the coefficients µ±. Namely, we have computed, for a large value of L, the value

of the mean speed cf inside a favorable patch, that is the ratio between the distance

θ L and the time spent by the solution to cross this favorable region (see Remark 3.1

for more details on the way this speed was computed). One could then wonder if this

speed is reduced or increased compared to a homogeneous favorable environment (with

µ ≡ µ+). The result of these computations, with the reaction term

fL(x, u) = u(µL(x) − u)
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are presented in Fig. 2. We can observe that, in the case presented here, the speed

cf is larger than 2
√

Dµ+. Therefore, the presence of unfavorable regions, though it

decreases the (global) asymptotic spreading speed c∗L, increases the speed of propagation

in the remaining favorable regions, compared to a homogeneous environment. Let us

give a mathematical interpretation of this observation in the case when θ = 1/2. At

large time, the solution u of (1.1) behaves like a pulsating traveling front ϕ∗
L(x− c∗Lt+

o(t), x) with minimal speed c∗L, around the position c∗Lt− o(t) as t→ +∞ (Weinberger,

2002). This pulsating traveling front ϕ∗
L(s, x) converges to 0 like

ϕ∗
L(s, x) ∼ s e−λ∗

L
s φ∗L(x) as s→ +∞,

where φ∗L is positive and L-periodic (Hamel, 2008). It actually follows from (2.7) that

λ∗L −→
L→+∞

λ∗∞ =
1

2

√

D × (µ+ + µ− + 2
√

△),

where △ = (µ+)2 + (µ−)2 − µ+µ− is as in (2.8). On the other hand, the front ϕ∗
+(s)

with minimal speed c∗+ = 2
√

Dµ+ in the homogeneous environment with µ ≡ µ+

in R behaves like ϕ∗
+(s) ∼ C s e−λ∗

+s as s → +∞, where C is a positive constant, and

λ∗+ =
√

Dµ+. But 0 < λ∗∞ < λ∗+ as soon as µ+ > µ− > −5µ+/3. Therefore, under this

condition, in the heterogeneous environment with large period L, the limiting pulsating

front ϕ∗
L has an exponential behavior which decays slower than that of the homogeneous

traveling front in the homogeneous environment with µ ≡ µ+. But it is well-known

(Bramson, 1983) that in a homogeneous environment a solution with an exponential

decay slower than that of the minimal front moves at a larger speed at large time. As

a consequence, when the period L of the heterogeneous environment is very large, the

solution u of (1.1) eventually moves in the favorable region at a faster speed than the

minimal speed 2
√

Dµ+ of the homogeneous front, provided that µ+ > µ− > −5µ+/3.

Remark 3.1. For the computation of cf , the average speed in the favorable part

of the environment for the SKT model, we placed ourselves in the favorable patch

C+ = [600, 700), and we defined

cf :=
length(C+)

t2 − t1
, (3.14)

where

t1 = inf
{

t ≥ 0, sup
x∈C+

u(t, x) ≥ µ−

2

}

and t2 = inf
{

t, inf
x∈C+

u(t, x) ≥ µ−

2

}

.

Thus t2 − t1 corresponds to the time required for C+ to be filled by a density at least

equal to µ−/2. This duration t2 − t1 is known to be finite since uL(t, x) → pL(x) ≥ µ−

as t→ +∞, uniformly on compact sets (Berestycki et al., 2005a).
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Figure 2: Solid line: average speed of propagation cf in the favorable patch [600, 700),

for values of µ+ in [0.5, 1.5]. Dashed line: spreading speed c∗ = 2
√

Dµ+ in a homo-

geneous favorable environment with µ ≡ µ+. We fixed L = 200, µ− = 0.5, D = 1,

θ = 1/2.

3.2 Model with Allee effect

To counterbalance the effects caused by the infinite speed of propagation, common to

all models of the type (1.1), we may assume that the growth term fL(x, u) is negative

at low densities u. This corresponds to an Allee effect.

Allee effect occurs when, for each x, the per capita growth rate, f(x, u)/u, reaches

its peak at a strictly positive population density. At low densities, the per capita

growth rate may then become negative (strong Allee effect). Allee effect is known

in many species (Allee, 1938; Dennis, 1989; Veit and Lewis, 1996), and results from

several processes which can co-occur (Berec et al., 2007), such as diminished chances of

finding mates at low densities (Mccarthy, 1997), fitness decrease due to consanguinity

or decreased visitation rates by pollinators for some plant species (Groom, 1998).

In reaction-diffusion models, Allee effects are generally modeled by equations of

bistable type (Fife, 1979; Turchin, 1998):

∂u

∂t
= D

∂2u

∂x2
+ u(1 − u)(u− ρ), t > 0, x ∈ R. (3.15)

In order to study the effects of an oscillating environment, we study an extension of

(3.15) to a heterogeneous environment, proposed by Roques et al. (2008):

∂u

∂t
= D

∂2u

∂x2
+ u [(1 − u)(u− ρ) + νL(x)] , t > 0, x ∈ R. (3.16)

In this situation, the per capita growth rate, (1 − u)(u− ρ) + νL(x) depends on u and

on the location x, and is negative at low densities if esssupx∈RνL(x) < ρ. We assume

that νL(x) = ν(x/L), where ν is a 1-periodic function defined by:
{

ν(x) = ν+ if x ∈ [0, θ),

ν(x) = ν− if x ∈ [θ, 1),
(H4)
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Figure 3: a) Average speed of range expansion v∗L of the solution of the model (3.16)

with Allee effect, in terms of the period L. The dotted line corresponds to the spreading

speed in an averaged environment, where ν has been replaced by ν. We fixed ν+ = 0,

ν− = −0.3, ρ = 10−2, D = 1 and θ = 1/2, and a threshold u∗ = 0.1. b) Spreading

speed c∗L of the solution of (1.1), under hypotheses (H1-H3), as a function of L. The

bottom dotted line corresponds to the homogenization limit (2.6). The top dotted line

corresponds to the limit (2.8). We fixed µ+ = 1, µ− = 0.1, D = 1 and θ = 1/2.

and the parameters θ ∈ (0, 1) and ν− ≤ ν+ < ρ are given.

Starting from a compactly supported initial condition u0, we have computed the

average speed v∗L of range expansion, defined by

v∗L = lim
t→+∞

x∗(t)
t

, (3.17)

where

x∗(t) = max
(

0, sup
{

x ∈ R such that u(t, x) > u∗
})

, (3.18)

for some fixed small threshold u∗ > 0. Notice that for problem (3.16), the existence of

pulsating traveling front and the existence of a spreading speed, in the sense of (2.5)

and independently of u0 (provided that spreading occurs), are still open questions.

However, if such a spreading speed exists, then it has to be equal to v∗L.

This speed v∗L was numerically computed (see Remark 3.1 below) for increasing

values of L. The results of the simulations are presented in Fig. 3 a), together with the

SKT speed c∗L (Fig. 3 b). As in the SKT case, the homogenization limit v∗0 = limL→0 v
∗
L

seems to be equal to the spreading speed in an averaged environment (existence of a

spreading speed is known in the homogeneous case, see Aronson and Weinberger, 1975),

where ν is replaced with its arithmetic mean ν. Moreover, for small values of L, v∗L
is increasing, denoting a detrimental effect of very rapidly oscillating environments on

the propagation speeds. On the other hand, contrarily to the SKT case, the speed v∗L
is a decreasing function of L, for L large enough. Too large values of L even lead to
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propagation failure irrespectively of the size of the supports of the initial conditions,

and in this case v∗L = 0.

As a matter of fact, this blocking phenomenon can also be viewed as a consequence

of the following result which is of independent interest and which holds in a more

general setting.

Theorem 3.2. Let f : R × R+ → R, (x, s) 7→ f(x, s) be a function which is locally

bounded in R+×R, locally Lipschitz-continuous with respect to s uniformly with respect

to x, 1-periodic in x and satisfies







































































∀x ∈ R, f(x, 0) = 0,

∃M ≥ 0, ∀ s ≥M, ∀x ∈ R, f(x, s) ≤ 0,

∃α > 0, β ∈ (0,M), ∀ (x, s) ∈ R × [0, β], f(x, s) ≤ −αs,
∃ 0 ≤ a < b ≤ 1, ∃ ξ ∈ (0,M), ∃ g ∈ C1([0,M ]; R) such that

g(0) = g(ξ) = g(M) = 0, g′(0) < 0, g′(M) < 0,

g < 0 on (0, ξ), g > 0 on (ξ,M),

∫ M

0
g(s) ds < 0,

∀ (x, s) ∈ [a, b] × [0,M ], f(x, s) ≤ g(s).

(3.19)

Set fL(x, s) = f(x/L, s). Then, there exists L∗ > 0 large enough such that, for any

L ≥ L∗ and for any nonnegative bounded compactly supported function u0, the solution

u of






∂u

∂t
= D

∂2u

∂x2
+ fL(x, u) t > 0, x ∈ R,

u(0, x) = u0(x)

(3.20)

satisfies v∗L = 0, irrespectively of the choice of u∗ > 0 in (3.18).

Roughly speaking Theorem 3.2 means that if fL has a steady state 0 which is strictly

stable uniformly with respect to x and if fL is bounded from above on a sufficiently large

space interval by a space-independent bistable function g for which 0 is the most stable

zero, then propagation fails. Of course, the same conclusion holds for the spreading

speed to the left, which is defined by replacing the maximum and supremum in (3.18)

with minimum and infimum. It is immediate to see that assumption (3.19) is satisfied

for the model (3.16) under hypotheses (H4) with the choice of parameters ν± and ρ

given in Fig. 3 b).

Remark 3.3. To compute the solutions u of the SKT model and of the model (3.16)

with Allee effect, which are necessary for the computation of the speeds cf and v∗L,

we used a second-order finite elements method. The estimation of the position x∗(t),

defined in (3.18), and of the times t2 and t1 in (3.14), depend on the accuracy of

this numerical method (observe the lack of smoothness of the curves in Fig. 3 a) and

Fig. 2). On the other hand, in the SKT case, the speed c∗L was directly computed
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through formula (2.3). This was made possible thanks to formula (4.28) below. This

method was observed to be very accurate. Furthermore, compared to other methods

(Kinezaki et al., 2006; Shigesada and Kawasaki, 1997), it has the great advantage of

being adaptable to any type of growth rate µ (and not necessarily step functions).

4 Proofs of the results

In this section, we prove the mathematical results announced in this paper. We begin

with the SKT model and we then deal with the model taking into account a strong

Allee effect.

4.1 Slowly oscillating media and the case of large reaction for the

SKT model

This subsection is devoted to the proof of Theorem 2.1 and Proposition 2.3 on the lim-

iting spreading speeds in environments with very slow oscillations or very large reaction

terms.

Proof of Theorem 2.1. Assume that hypotheses (H1), (H2b) and (H3) with µ− < µ+

are satisfied. Let L0 > 0 be such that, for all L ≥ L0, the hypothesis (H2a) is fulfilled,

that is ρ1,L < 0 (we recall that, because of (H2b), such a L0 exists). Hence, the spreading

speeds c∗L = w∗
L for (1.1) are well-defined for all L ≥ L0. Remember that c∗L is equal to

c∗L = minλ>0 kL(λ)/λ from (2.3), where kL(λ) is the principal eigenvalue of (2.4). We

shall then establish some estimates on kL(λ) for large values of L.

Let us first collect some general properties of the function (λ,L) 7→ kL(λ), which

can actually be defined over R × (0,+∞).

Proposition 4.1. The function (λ,L) 7→ kL(λ) is analytic in R× (0,+∞), convex and

even with respect to the variable λ ∈ R, and nondecreasing with respect to the variable

L > 0. Furthermore, kL(0) = −ρ1,L and

µ+Dλ2 < kL(λ) < µ+ +Dλ2 (4.21)

for all (λ,L) ∈ R × (0,+∞). Lastly, for each L > 0, there exists a unique γL > 0 such

that

kL(γL) = µ+, kL(λ) < µ+ for all λ ∈ [0, γL), kL(λ) > µ+ for all λ ∈ (γL,+∞),

and the map L 7→ γL is nonincreasing in (0,+∞).

Proof. The analyticity of kL(λ) follows from the simplicity of the principal eigenvalue

of (2.4) (see El Smaily et al., 2009; Kato, 1984). The evenness with respect to λ holds

because kL(−λ) is the principal eigenvalue of the adjoint operator. The convexity in λ
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has been proved in Berestycki et al. (2005b), Section 3. The monotonicity with respect

to L follows from Nadin (2009a) and the formula kL(0) = −ρ1,L holds by definition

of ρ1,L.

Let us now establish (4.21). To do so, divide equation (2.4) by ψ and integrate by

parts over [0, L]. Using the L-periodicity of ψ, we obtain:

D

∫ L

0

|ψ′|2
ψ2

+ LDλ2 +

∫ L

0
µL(x)dx = LkL(λ).

Thus µ+Dλ2 < kL(λ) since ψ is not constant (because µ is not constant either). Next,

integrating (2.4) by parts over [0, L], we easily get kL(λ) < µ+ + λ2D.

The existence and uniqueness of γL > 0 such that kL(γL) = µ+ follows from (4.21)

applied at λ = 0 and +∞, and from the convexity of the kL(λ) with respect to λ. Fur-

thermore, kL(λ) < µ+ for all λ ∈ [0, γL) and kL(λ) > µ+ for all λ ∈ (γL,+∞). Lastly,

since L 7→ kL(λ) is nondecreasing for each λ ∈ R, one gets that the map L 7→ γL is

nonincreasing over (0,+∞). �

From formula (2.3) and the monotonicity of kL(λ) with respect to L, as already

noticed by Nadin (2009a), it follows that the function [L0,+∞) ∋ L 7→ c∗L is nonde-

creasing. Moreover, formulae (2.3) and (4.21) also imply that c∗L is bounded from above

by 2
√

Dµ+, for all L ≥ L0. Thus we can define the real number

c∗∞ := lim
L→+∞

c∗L > 0. (4.22)

Similarly, for each λ ∈ R, we can define the real numbers

k∞(λ) := lim
L→+∞

kL(λ) ∈ [µ+Dλ2, µ+ +Dλ2]

and

γ∞ := lim
L→+∞

γL ≥ 0. (4.23)

Let us now set, for all λ > 0 and L > 0,

cL(λ) =
kL(λ)

λ
and c∞(λ) =

k∞(λ)

λ
.

The following two lemmas deal with the properties of the functions c∞ and k∞.

Lemma 4.2. There exists

λ∗∞ ∈ (0,+∞) ∩
[

√

µ+ −
√

µ+ − µ√
D

,

√

µ+ +
√

µ+ − µ√
D

]

(4.24)

such that the continuous function λ 7→ c∞(λ) is nonincreasing in (0, λ∗∞] and non-

decreasing in [λ∗∞,+∞). Moreover, c∞(0+) = c∞(+∞) = +∞ and c∞(λ∗∞) = c∗∞.
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Proof. From Proposition 4.1, we can write

c′L(λ) =
k′L(λ)

λ
− kL(λ)

λ2

for all L ≥ L0. Thus, limλ→0+ c′L(λ) = −∞ for all L ≥ L0, from hypothesis (H2a). Let

λ∗L be defined by

λ∗L = sup
{

λ > 0 such that cL is decreasing in (0, λ)
}

.

We also have

cL(0+) = lim
λ→0+

kL(λ)

λ
= +∞ (4.25)

because of hypothesis (H2a), for L ≥ L0. Furthermore, using (4.21), we get that

lim
λ→+∞

cL(λ) = +∞. (4.26)

Thus, λ∗L ∈ (0,+∞), and c′L(λ∗L) = 0. Moreover, for all λ > 0,

c′′L(λ) =
k′′L(λ)

λ
− 2

c′L(λ)

λ
≥ −2

c′L(λ)

λ

from the convexity of kL(λ) with respect to λ. Thus, it follows that c′L(λ) ≥ 0 for all

λ ∈ [λ∗L,+∞). Hence, the map λ 7→ cL(λ) is decreasing in (0, λ∗L), and nondecreasing

in [λ∗L,+∞). From formula (2.3), we obtain

cL(λ∗L) = c∗L. (4.27)

On the other hand, using (4.21), and since c∗L ≤ 2
√

Dµ+, we obtain

D (λ∗L)2 + µ ≤ kL(λ∗L) ≤ 2λ∗L
√

Dµ+.

As a consequence,

λ∗L ∈
[

√

µ+ −
√

µ+ − µ√
D

,

√

µ+ +
√

µ+ − µ√
D

]

. (4.28)

Furthermore, since cL0(λ) ≤ cL(λ) ≤ µ+/λ + Dλ for all L ≥ L0 and λ > 0, with

cL0(0
+) = +∞, it follows that lim infL→+∞ λ∗L > 0. Indeed, choose any λ > 0 such

that

∀λ′ ∈ (0, λ], cL0(λ
′) > 2

√

Dµ+ = min
λ>0

(

µ+

λ
+Dλ

)

.

Since cL(λ) ≥ cL0(λ) for all λ > 0 and L ≥ L0, it follows from the above properties of

λ∗L that λ∗L ≥ λ for all L ≥ L0.

Thus, there exists an increasing sequence (Ln)n∈N of positive real numbers such

that limn→+∞Ln = +∞ and λ∗Ln
→ λ∗∞ as n → +∞, where λ∗∞ satisfies (4.24).

Moreover, the function λ 7→ c∞(λ) is nonincreasing in (0, λ∗∞) and nondecreasing in

(λ∗∞,+∞). Lastly, all functions λ 7→ kL(λ) are convex, and so is the function λ 7→
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k∞(λ). Hence, it is continuous in R and so is the function λ 7→ c∞(λ) in (0,+∞).

Since cLn(λ) → c∞(λ) as n → +∞ in a monotone way for each λ > 0, Dini’s theorem

implies that the convergence of cLn(λ) to c∞(λ) as n → +∞ is local uniform with

respect to λ ∈ (0,+∞). Thus,

c∞(λ∗∞) = lim
n→+∞

cLn(λ∗Ln
)

and therefore, from (4.27) and the definition (4.22), one concludes that c∞(λ∗∞) = c∗∞.

Lastly, the equalities c∞(0+) = c∞(+∞) = +∞ follow from (4.25) and (4.26) satisfied

for each L ≥ L0, and from the monotonicity with respect to L. �

We shall now use the structure of equation (2.4) with the patch model (H3) in order

to derive the key-equation fulfilled by k∞(λ) for all λ > γ∞, where γ∞ ∈ [0,+∞) has

been defined in (4.23).

Lemma 4.3. For each λ > γ∞, there holds k∞(λ) > µ+ and k∞(λ) satisfies the

equation

θ
√

k∞(λ) − µ+ + (1 − θ)
√

k∞(λ) − µ− = λ
√
D. (4.29)

Proof. First, for any λ ∈ R, setting ϕ(x) = eλxψ(x), the equation (2.4), with the

periodicity conditions, becomes equivalent to:


























Dϕ′′ + µL(x)ϕ = kL(λ)ϕ in R,

ϕ(L) = eλLϕ(0),

ϕ′(L) = eλLϕ′(0),

ϕ > 0 in R,

(4.30)

which therefore admits a unique solution (ϕ, kL(λ)) with ϕ > 0 satisfying the normal-

ization condition ϕ(0) = 1. The function ϕ is of class C1(R) and of class C2 on the

intervals (0, θL) and (θL,L) and their integer shifts. Because of (H3), system (4.30),

together with the normalization condition ϕ(0) = 1, is equivalent to:






































Dϕ′′ = (k − µ+)ϕ on (0, θL),

Dϕ′′ = (k − µ−)ϕ on (θL,L),

ϕ(0) = 1, ϕ(L) = eλLϕ(0),

ϕ′(L) = eλLϕ′(0)

ϕ > 0 in R,

(4.31)

with k = kL(λ).

Now, a straightforward but lengthy computation shows that, for each λ ∈ R and

L > 0,
[

∃ k > µ+ and ϕ ∈ C1(R) satisfying (4.31)
]

⇔
[

F (λ,L, k) = 0
]

, (4.32)
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where the function F : R × (0,+∞) × (µ+,+∞), (λ,L, k) 7→ F (λ,L, k) is defined by

F (λ,L, k) = (µ+ + µ− − 2k) sinh

(

θL
√

k−µ+

D

)

sinh

(

(1 − θ)L
√

k−µ−

D

)

+2
√

k − µ+
√

k − µ−×

×
[

cosh(λL) − cosh

(

θL
√

k−µ+

D

)

cosh

(

(1 − θ)L
√

k−µ−

D

)]

.

(4.33)

Fix now any real number λ such that λ > γ∞. It follows from Proposition 4.1 that,

for all L large enough, kL(λ) > µ+. Since kL(λ) is nondecreasing with respect to L,

one gets that k∞(λ) > µ+. Moreover,

F (λ,L, kL(λ)) = 0. (4.34)

If θ
√

k∞(λ) − µ+ + (1 − θ)
√

k∞(λ) − µ− < λ
√
D, then, by comparing the expo-

nentially large terms in (4.34) and passing to the limit as L→ ∞, we obtain

√

k∞(λ) − µ+
√

k∞(λ) − µ− = 0,

which is impossible. On the other hand, if θ
√

k∞(λ) − µ+ + (1 − θ)
√

k∞(λ) − µ− >

λ
√
D, then we get that

(µ+ + µ− − 2k∞(λ)) − 2
√

k∞(λ) − µ+
√

k∞(λ) − µ− = 0,

which is impossible since the left-hand side is negative.

Finally, we therefore have θ
√

k∞(λ) − µ+ + (1 − θ)
√

k∞(λ) − µ− = λ
√
D. �

It remains to identify the real number γ∞ and to show that λ∗∞, given in Lemma

4.2, is larger than γ∞:

Lemma 4.4. There holds

0 < γ∞ = (1 − θ)

√

µ+ − µ−

D
< λ∗∞.

Proof. Remember that kL(γL) = µ+ and that γL → γ∞ ≥ 0 as L → +∞. Since

kL(λ) → k∞(λ) as L→ +∞ in a monotone way for each λ ∈ R and since the function

k∞ is convex whence continuous, Dini’s theorem implies that the convergence kL(λ) →
k∞(λ) as L→ +∞ is local uniform with respect to λ ∈ R. Thus,

k∞(γ∞) = µ+.

But since equation (4.29) is also satisfied at λ = γ∞ by continuity of k∞, it follows that

γ∞ = (1 − θ)

√

µ+ − µ−

D
> 0.
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On the other hand, since formula (4.29) holds for all λ ≥ γ∞, one gets that the

right-derivative k′∞(γ+
∞) of the convex function k∞ at γ∞ is equal to k′∞(γ+

∞) = 0.

Therefore, the map λ 7→ c∞(λ) = k∞(λ)/λ has a right-derivative at γ∞ and

c′∞(γ+
∞) = −k∞(γ∞)

γ2∞
= −µ

+

γ2∞
< 0.

Since the function λ 7→ c∞(λ) is nondecreasing in [λ∗∞,+∞) from Lemma 4.2, one gets

that γ∞ < λ∗∞. �

Remark 4.5. Since the function k∞ is convex and k∞(0) ≤ µ+ from Proposition 4.1,

it follows again from the convexity of k∞ that k∞(λ) = µ+ for all λ ∈ [0, γ∞], whence

c∞(λ) = µ+/λ in the interval [0, γ∞].

Conclusion of the proof of Theorem 2.1. From Lemmata 4.2 and 4.4, we have

c∗∞ = min
Λ>0

k∞(Λ)

Λ
= min

Λ≥γ∞=(1−θ)
√

(µ+−µ−)/D

k∞(Λ)

Λ
,

where k∞(Λ) is defined by (4.29) for all Λ ≥ γ∞ from Lemma 4.3 and the continuity

of k∞. Therefore, by setting λ = Λ
√
D, it follows that

c∗∞ =
√
D min

λ≥(1−θ)
√

µ+−µ−

j−1(λ)

λ
,

where j(m) = θ
√

m− µ+ +(1−θ)
√

m− µ− for all m ≥ µ+. The proof of Theorem 2.1

is thereby complete. �

Proof of Proposition 2.3. The proof bears on a classical rescaling argument (see

e.g. Nadin, 2009a). Indeed, consider equation (2.4) with any L > 0 and λ ∈ R, and set

φ(x) = ψ(Lx). Let us make explicit the relationship between kL(λ) and µ by writing

kL(λ, µ) instead of kL(λ). We get that

Dφ′′ + 2LλDφ′ + L2 λ2Dφ+ L2 µφ = L2 kL(λ, µ)φ, x ∈ R

and φ is 1-periodic and positive in R. We deduce that k1(Lλ,L
2µ) = L2kL(λ, µ), and

therefore
kL(λ, µ)

λ
=

1

L
× k1(Lλ,L

2µ)

Lλ
.

From formula (2.3), it follows that

c∗(B) = min
λ′>0

k1(λ
′, Bµ)

λ′
=

√
B × min

λ>0

k√B(λ, µ)

λ
=

√
B × c∗√

B
.

Thus, we obtain that c∗(B)/
√
B converges to c∗∞ as B → +∞. �
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4.2 Propagation failure in the case of strong Allee effect

This subsection is devoted to the

Proof of Theorem 3.2. Let f , M , α, β, a, b, ξ and g be as in (3.19). Thus, there

exists a function h ∈ C1([0,M + 2]; R) which is larger than f(x, ·) around 0 and larger

than g on [0,M ], and which is bistable on [0,M + 2] with zero mass, that is



































h(0) = h(ξ) = h(M + 2) = 0, h′(0) < 0, h′(M + 2) < 0,

h < 0 on (0, ξ), h > 0 on (ξ,M + 2),

∫ M+2

0
h(s) ds = 0,

∃ β′ ∈ (0, β], ∀ s ∈ [0, β′], −αs ≤ h(s),

∀ s ∈ [0,M ], g(s) ≤ h(s).

In particular, it follows from (3.19) that

{

∀ (x, s) ∈ [a, b] × [0,M + 2], f(x, s) ≤ h(s),

∀ (x, s) ∈ R × [0, β′], f(x, s) ≤ h(s).
(4.35)

It is then well-known (Aronson and Weinberger, 1975; Fife, 1979) that there exists a

stationary front connecting 0 to M + 2 for problem (1.1) with nonlinearity h, namely

there exists a unique C2 function φ : R → (0,M + 2) such that

{

Dφ′′ + h(φ) = 0 on R,

φ(−∞) = M + 2, φ(0) = M + 1, φ(+∞) = 0, φ′ < 0 on R.

The condition φ(0) = M +1 is a normalization condition which guarantees the unique-

ness of φ. Since 0 < β′ ≤M < M+1, there exists a unique A > 0 such that φ(A) = β′.

Now, set

L∗ =
A

b− a
> 0,

and let us check that the conclusion of Theorem 3.2 holds with this value L∗.

To do so, let L be any positive real number such that L ≥ L∗, let u0 be any

bounded nonnegative and compactly supported function, let u denote the solution of

the Cauchy problem (3.20) and let us prove that u cannot move to the right too far at

large time because it is blocked from above by a suitable stationary supersolution in a

neighborhood of +∞.

Notice first that, since fL(x, s) ≤ 0 for all (x, s) ∈ R × [M,+∞), the maximum

principle implies that u(t, x) ≤ v(t, x) for all t ≥ 0 and x ∈ R, where v denotes the

solution of the heat equation
∂v

∂t
= D

∂2v

∂x2
(4.36)

with initial condition v0(x) = max(u0(x),M). But v0 −M is bounded and compactly

supported. Hence there exists a time T ≥ 0 such that v(t, x) −M ≤ 1 for all (t, x) ∈
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[T,+∞) × R. Therefore,

∀ (t, x) ∈ [T,+∞) × R, u(t, x) ≤M + 1. (4.37)

Define

M ′ = max(‖u0‖L∞(R),M)

and observe that the constant M ′ is a supersolution for the problem (3.20), since

fL(x,M ′) ≤ 0 for all x ∈ R. Therefore, u ≤M ′ in [0,+∞)×R. Remember also that u

is everywhere nonnegative since it is at initial time and since fL(x, 0) = 0 for all x ∈ R.

Since fL(x, s) is locally Lipschitz-continuous with respect s uniformly in x, there exists

a constant k > 0 such that fL(x, s) ≤ k s for all (x, s) ∈ R × [0,M ′]. The maximum

principle yields

∀ (t, x) ∈ [0,+∞) × R, u(t, x) ≤ ektw(t, x),

where w is the solution of the heat equation (4.36) with initial condition w0 = u0. But

since w0 is bounded and compactly supported, there exists B > 0 such that

∀ (t, x) ∈ [0, T ] × [B,+∞), w(t, x) ≤ e−kT × (M + 1).

It follows that

∀ (t, x) ∈ [0, T ] × [B,+∞), u(t, x) ≤M + 1.

Together with (4.37), one gets that

∀ (t, x) ∈ [0,+∞) × [B,+∞), u(t, x) ≤M + 1. (4.38)

Fix now N ∈ N such that

(a+N)L ≥ B and supp(u0) ∩ [(a+N)L,+∞) = ∅,

where supp(u0) denotes the support of u0. Set

∀x ∈ R, φ(x) = φ(x− (a+N)L).

Let us show that φ is a supersolution for the Cauchy problem (3.20) for (t, x) ∈
[0,+∞) × [(a + N)L,+∞). Notice first that φ > 0 = u0 in [(a + N)L,+∞) due

to the choice of N . Furthermore, for all t ≥ 0,

u(t, (a +N)L) ≤M + 1 = φ(0) = φ((a+N)L)

because of (4.38) and (a+N)L ≥ B. On the other hand, for all x ∈ [(a+N)L, (b+N)L],

there holds

Dφ
′′
(x) + fL(x, φ(x)) = Dφ

′′
(x) + f

( x

L
, φ(x)

)

≤ Dφ
′′
(x) + h(φ(x)) = 0
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from the definition of φ, from the first property of (4.35) and since f is 1-periodic in x.

Lastly, for all x ∈ [(b+N)L,+∞), one has

x− (a+N)L ≥ (b− a)L ≥ (b− a)L∗ = A

from the choice of L∗, whence

0 < φ(x) = φ(x− (a+N)L) ≤ φ(A) = β′

since φ is decreasing. Thus, for all x ∈ [(b+N)L,+∞),

fL(x, φ(x)) = f
(x

L
, φ(x)

)

≤ h(φ(x))

from the second property of (4.35), whence

Dφ
′′
(x) + fL(x, φ(x)) ≤ Dφ

′′
(x) + h(φ(x)) = 0.

Eventually, Dφ
′′
(x)+ fL(x, φ(x)) ≤ 0 for all x ≥ (a+N)L and the maximum principle

implies that

∀ (t, x) ∈ [0,+∞) × [(a+N)L,+∞), 0 ≤ u(t, x) ≤ φ(x) = φ(x− (a+N)L).

Since φ(+∞) = 0, one concludes that v∗L = 0, where v∗L is defined in (3.17), irrespec-

tively of the value u∗ > 0 used in (3.18). The proof of Theorem 3.2 is thereby complete.

�

5 Concluding remarks

We derived in Theorem 2.1 an exact formula for the spreading speed c∗∞ of the solution

to the SKT patch model, in the limit of slowly oscillating environments. This formula

enables explicit computation of c∗∞, and comparison with rapidly oscillating environ-

ments. For several examples, under the hypotheses of the patch model, and under

more general hypotheses, or for an integro-difference model introduced by Kawasaki

and Shigesada (2007), we found significantly increased speeds in slowly varying envi-

ronments, especially when the growth term has a large amplitude and a low average.

The numerical computations of Section 3.1 show that, for the SKT model, this pat-

tern of dependence of the spreading speed with respect to the spatial period is strongly

related to the infinite speed of propagation, common to models of the type (1.1) and

to integro-difference models of the type (2.13) with non-compactly supported disper-

sal kernels. Indeed, we observed that very low population densities sent by diffusion

in the favorable patches far from the leading edge of the front-like solution react and

become significant before the leading edge of the solution attains this region (Fig. 1),

emphasizing the pulled nature of the solutions of the SKT model.
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Such a phenomenon should not appear for pushed solutions, and especially if the

growth term remains negative whenever the population density is below a certain

threshold, i.e. when a strong Allee effect occurs. Indeed, the density sent by diffu-

sion too far from the leading edge of the solution will stay below this threshold, and

will thereby not contribute to the progression of the invasion. In such case, the com-

putations of Section 3.2 and Theorem 3.2 show that, when the period increases too

much, the average speed of range expansion of the solution decreases and eventually

becomes equal to 0. To our knowledge, the example presented here is the first one to

show a decreasing relationship between aggregation of patches and propagation speeds,

for reaction-diffusion models. Moreover, it reinforces our belief that, in the SKT model,

a key element to explain the increase of the spreading speed in slowly oscillating envi-

ronments is the infinite speed of propagation of the solution.

Reaction-diffusion models like (1.1) are often interpreted as if they were hydro-

dynamic limits of individual based models (IBMs). And this can indeed be proved

rigourously, for instance in the simple case f ≡ 0. However, by nature, IBMs cannot

exhibit infinite speed of propagation. We can therefore expect them to behave quite

differently. For instance, in many situations, as discussed in Section 3.1, we could ex-

pect the spreading speed (to be defined rigorously for this kind of model) to decrease

with L, and to converge to 0 as L→ +∞.

The solutions of the SKT model exhibit other interesting spreading properties,

which should not appear in IBMs. For instance, the unfavorable regions lead to an

overall decreased speed compared to a homogeneous favorable environment, but to

an increased speed in the favorable regions, compared to the homogeneous entirely

favorable medium (Fig. 2).

Is it a strength or a weakness of this type of model to be able to exhibit growth of the

very low population density which is dispersed by diffusion at long distance? Shall this

be compensated systematically by assuming an Allee effect, by considering degenerate

diffusion (which may lead to compactly supported solutions see e.g. Vázquez, 2007),

or by using telegraph equation (see e.g. Turchin, 1998, for a biological interpretation),

wave equations or other hyperbolic equations, when one wants to study the effects of

the spatial heterogeneities on the spreading speed? We believe that the answer depends

on the organisms we want to model.
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