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Abstract
This article deals with the questions of the existence, of the uniqueness and of the qualitative prop-
erties of solutions of semilinear elliptic equations in JR". Three types of conical conditions at infinity
are successively emphasized. This defines three frameworks: the weak framework, the strong frame-
work and the framework of solutions with asymptots. The results are based on different kinds of
sliding methods and, following the ideas of Berestycki, Nirenberg and Vega, on comparison principles
in cones or in RYN.
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1 Introduction

1.1 General presentation

The starting point of this article is the paper of Bonnet and Hamel [12]. For any angle
a €]0,7/2], Bonnet and Hamel have proved the existence of solutions (¢, u) € IR x C?(IR?) for
the following semilinear elliptic equation

Au—cdu+ flu)=0, 0<u<1 in R? (1.1)

The functions u satisfy 0 < v < 1 and “conical” conditions at infinity:

Voeo,m—al, lim inf u(z,y) =
|(I7y)‘4>oo7 (I,y)EC+(0,5) (1 2)
Vo el0,al, lim sup u(z,y) =0 :

|(z,y)| =00, (z,y)€C~(0,9)



where, for any y, € IR and any 3 > 0, the lower and upper cones C*(yy, 3) are defined by
C*(yo, ) = {(w,9) = (0,30) + plcos p,sin ), p >0, |p F /2| < 8}

In other words, the level sets of the solutions u have two asymptotic directions as |z| — +o0,
both these directions (=4 sina, —cosa) make an angle o with the negative y-axis. Roughly
speaking, the functions u are asymptotically conical-shaped far away from the origin.

The notation d,u means the partial derivative of the function u with respect to the vari-
able y. The function f is lipschitz-continuous in [0, 1], continuously differentiable in a left
neighborhood of the point 1 and has the following profile:

360 €(0,1), f=00n[0,0]U{1l}, f>0o0n (1) and f'(1) <0 (1.3)

We extend f by 0 outside [0,1]. Hence, f is lipschitz-continuous on IR and from standard
elliptic estimates, any bounded solution u of (1.1) is of class C**(IR?) for any u € [0, 1].

Equation (1.1) arises in models of equidiffusional premixed Bunsen flames. The function u
is a normalized temperature and its level sets represent the profile of a conical-shaped Bunsen
flame coming out of a Bunsen burner (see Joulin [27], Sivashinsky [33], Williams [35]). The
temperature of the unburnt gases is close to 0 and that of the burnt gases is close to 1. The
hot zone is above the fresh zone. The real # is called an ignition temperature. The real c is
the speed of the gases at the exit of the burner.

In the onedimensional case, equation (1.1) and conditions at infinity (1.2) reduce to the
ordinary differential equation

ull — coufy + f(ug) =0
{uo(—oo) =0, wug(+oo)=1 (1.4)

From results of Aronson, Weinberger [3], Berestycki, Nicolaenko, Scheurer [9], Fife, McLeod
[17], there exists a unique solution (cg,ug) of (1.4) such that ug(0) = 0. The functions u
solutions of (1.4) are unique up to translation. Besides, the speed ¢y is positive and the
function uy is increasing.

For any angle a €]0, 7/2], Bonnet and Hamel have proved in [12] that there exists a solution
(c,u) of (1.1), (1.2) and that, for any solution (¢, u) of (1.1), (1.2), the speed ¢ is unique and

given by the formula
Co

C = —;
Sin «

This formula, which had already been used in several papers (see e.g. Sivashinsky [33]), is
very natural. Indeed, consider the corresponding evolution problem. The speed ¢y is now
nothing else than the projection on the directions (& cos «, — sin «v) of the vertical speed ¢ of
the curved flame moving downwards. The speed ¢ is the speed of two planar waves moving
in the directions (#+ cos e, — sin o) perpendicular to the half-lines making an angle o with the
vertical axis. Let us mention here that in experiments, if we know the speed ¢ of the gases at
the exit of a Bunsen burner, the measurement of the angle o of the flame is used to determine
the speed ¢, of planar flames (see Williams [35]).

Having recalled those results, a natural question to ask is to study the set of the solutions
(¢, u) of the same reaction-diffusion equation

Au—cOyu+ f(u)=0, 0<u<1 in RN ={z=(2/,y) € R"' x R} (1.5)
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in any dimension N > 2 (and especially in IR*), with asymptotic conditions like

Véelo,m—al, lim inf u(x,y) =
|(z,y)| =00, (z,y)EC(0,0) (1.6)
Vo el0,al, lim sup u(z,y) =0 '

|(z,y)| =00, (z,y)€C~(0,0)

where we set
C+(y0aﬁ) = {I’ = (anO) tpv, VE SN_I? pE R+a VN 2 COSﬁ}

C (yo,B) ={x = (0,y0) + pv, v € SVl pe RY, —uy > cos B}.

We will also study the question of the existence of solutions of (1.5), (1.6) when the angle « is
bigger than 7/2.

The purpose of this article is to prove various kinds of existence, nonexistence, uniqueness,
monotonicity or symmetry results for the solutions of the semilinear elliptic equation (1.5) with
the unusual conical conditions at infinity like (1.6) or other ones described later. The main
difficulties really come from the unboundedness of the open set IR where the reaction-diffusion
equation (1.5) is set, and from the type of boundary conditions at infinity like (1.6).

There are many works dealing with the uniqueness, symmetry, monotonicity properties
of solutions of semilinear elliptic equations in IR with uniform conditions at infinity like
u(z) — 0, or other decay conditions, as |z| — 0o (e.g. Chen, Li [14], Gidas, Ni, Nirenberg [20],
Gidas, Spruck [21], Li [30], Li, Ni [31], and also Amick, Fraenkel [2] for vortex rings). Other
properties, like convexity (see Kawohl [28]), have also been emphasized. As far as conical
conditions are concerned, results exist for semilinear elliptic equations set in cone-like domains
with Dirichlet conditions at the boundary (e.g. Bandle, Essen [4] and the literature cited
therein).

However, even for this single reaction-diffusion equation (1.5), problems which are set in
unbounded domains with conical conditions like (1.6) — or (1.8), (1.12) below — do not seem
to have been studied yet, as far as we know, but in [12]. We will set our results in different
frameworks which will be defined in succession in the next subsections: the weak framework,
the strong framework and the framework of solutions with asymptots. These different words
are related to the asymptotic conditions at infinity that the solutions of (1.5) are required to
satisty.

1.2 The weak framework

As far as the solutions of (1.5), (1.6) are concerned, only the situation in dimension 2 and for
angles o €]0, 7/2] is known: the solutions (¢, u) exist and the speed ¢ is unique. The following
theorem closes the question of the existence of solutions for angles a greater than 7/2, even
with the weak asymptotic conditions (1.6).

Theorem 1.1 In any dimension N > 2, there is no solution of (1.5), (1.6) with an angle
a € (m/2,m).



The physical meaning of this result is that there is no flame which is pointed inside the
Bunsen burner.

The question of the uniqueness of solutions of the reaction-diffusion equation (1.5) with
weak asymptotic conditions (1.6) (for angles o < 7/2) is very tricky. To illustrate the difficulty,
let us mention the conjecture of De Giorgi (1978, [23]) on a similar problem: if u is a solution
of Au = v® — u in IRY, fulfilling the simple limit lei_)niloo u(zy,---,xy) = £1 and such that

Oyxu > 0, then the level sets of u are hyperplanes. Notice that for the equation (1.5), this
conjecture is not true because, in dimension 2 and for all angles @ < /2, the solutions
of Bonnet and Hamel satisfy the same requirements but are not planar. The De Giorgi’s
conjecture was proved by Modica and Mortola in [32] in the case N = 2 if the level sets of u are
the graphs of an equilipschitzian family of functions and in any dimension N if there is a point
z € R" such that [Vu(z)]> = (1 — u(z)?)? (see Caffarelli, Garofalo, Segala [13]). Recently
Ghoussoub and Gui proved in [18] the conjecture in the case N = 2 without any additional
requirement. For this question, see also the work of Berestycki, Caffarelli and Nirenberg in
[7]. For N > 3, the conjecture is an open question. On the other hand, assuming a uniform
(instead of a so far simple) convergence in (zy,---,xy_1) of u towards +1 as zy — +o0,
Berestycki and the authors solved in [8] the question of the uniqueness in any dimension, using
the same technics as those in section 5 of this article. One of the tools is the sliding method
of Berestycki and Nirenberg [11].

This simple remark eventually shows the difficulty of emphasizing conditions at infinity
which are somehow only simple or not globally uniform. For instance, the limits (1.6) are only
uniform in cones which are strictly embedded in C~(0, «) or CT(0, 7 — «).

1.3 The strong framework

In order to define a “strong framework” related to the conical asymptotic conditions, let us
study more carefully, in dimension 2 and for angles o« < 7/2, what kind of asymptotic condi-
tions the solutions u* of (1.5), (1.6) built by Bonnet and Hamel satisfy: namely a uniformity
property far away from their level sets.

Theorem 1.2 In dimension N = 2 and for any o €]0,7/2], let u* be the solution of (1.5),
(1.6) in [12]. For any A € (0,1), let y = ¢\(z) be the level set {u*(x,y) = A}. The function
oy is of class C' and satisfies ¢\ (z) + cotaw — 0 as x — +oo. Set Q5 (yo) = {y < yo + da(z)}
and QO (yo) = {y > yo + da(2)}. Then

lim inf uw*=1
Y0=+2007 (yo)

lim sup u* =0

——00 . _
vo Q3 (o)

VA € (0,1), (1.7)

The conditions (1.7) are stronger than (1.6) and allow us to define naturally the strong
framework in any dimension N: we study the solutions (¢, u) of

Au — cdyu+ f(u) =0in RN

li inf =1
yoggoo Q}rr(lyo) Y (1.8)

lim sup u=0
YOm0 9 (yo)
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for which there exists a lipschitz-continuous function ¢(z'), of class C* far away from the origin
2’ = 0, and such that
xl
li Vo(z') + cota — ) =0, 1.9
i (Vo) + oot 2) (19)

where, for any yy € IR, we set Q% (y0) = {y > yo + ¢(2)} and Q (yo) = {y < yo + &(z') }.

Since the problem (1.8), (1.9) is clearly stronger than (1.5), (1.6), it has no solution if
« > /2, in any dimension N > 2. On the other hand, theorem 1.2 means that it has a
solution for any angle v < 7/2 in dimension N = 2, namely the solution of Bonnet and
Hamel. However, the question of the existence in any dimension N > 3 is still open.

The following theorem deals with properties of solutions (¢, u) in the strong framework:

Theorem 1.3 In any dimension N > 2, if (c,u) is a solution of (1.8), (1.9), then o < /2,

Co . . . . . .
c = — and w is nondecreasing in each nonzero direction of C*(0,a). Furthermore, if
sin «

a = 7/2, the functions u are unique and planar: up to a translation, they are equal to the
planar front uy(y) in RY.

Hence, as far as the uniqueness of the couples (¢, u) solutions of (1.8), (1.9) is concerned,
we can say more in the strong framework than in the weak framework (for which only the
uniqueness for the speed in dimension 2 is known [12]). Nevertheless, the question of the
uniqueness of the functions u (up to translation) remains very intricate because of the very
few informations about the function ¢.

Theorem 1.3 will be proved in section 3 thanks to the next two theorems 1.4 and 1.5,
which are related to the question: “if two functions are supersolution and a subsolution of
the same reaction-diffusion equation in a straight infinite cylinder, on which condition can the
supersolution be moved over the subsolution?” A first answer to this question in dimension
1, was given by Vega (see [34]): if @ and u are respectively a supersolution and a subsolution
of (1.4) with w(+00) = 1 and u(—o0) = 0, 0 < w,u < 1, then there exists t* € IR such
that @w(- + t*) = u(-). The following theorem deals with the multidimensional case in straight
cylinders 3. For the sake of simplicity, we only state the case where 3 = RY = {(z',y),2' =
(z1,---,on_1) € RN y € IR}, we have:

Theorem 1.4 (Comparison principle in IRY) Let ¢ : IRN"' — IR be a uniformly continuous
function and set
Q% (yo) ={y>wo+¢(a")}
Q7 (yo) ={y <wo+ ()}
L(y) ={y=yo+o(2')}

Consider the semilinear elliptic equation

I(u):= ¥ a;(z")0;u+ 5 bi(2)0u + f(2' u) =0 in RY (1.10)

1<i,j<N 1<i<
for functions u such that a < u <b and satisfying the boundary and asymptotic conditions:

lim inf w=20
Yo—>+00 Q+(y0)

lim sup u=a
Yo% 0~ (yo)

(1.11)
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with a < b € IR. We assume that equation (1.10) is elliptic in the sense that clé)* <

Y a(2)&E < Colél? for some 0 < ¢y < Cy and for any € € RN and ' € RN~
1<6,j<N

Besides, a;; € C*°, b; € C'. The function [ is continuous, bounded on IRN~" x [a,b] and
such that |f(3',a) — f(z',u)| < C(|F" — 2'|° + |@ — u]) for some constant C > 0. We assume
that there exist a < o' < b < b such that f is nonincreasing in u for u in [a,a'] or [V/,b]. For
any ¥’ € RNY, f(a!,-) is extended on IR by f(z',u) = f(2',a) if u < a and f(2',u) = f(a',b)
if u>b.

Letw and u be two lipschitz-continuous functions, respectively super- and subersolutions for
(1.10), (1.11), namely:

in RN and lim inf w="0
Yyo—+000+(yo)

b
I(w)>0in RN, a <u<bin RN and lim sup u=a,
Yo 790~ (o)

the inequalities I(w) < 0 < I(u) holding in the distribution sense. For any t € IR, set
(', y) = a2,y +t) and define u (') = lim inf u(a' ).
—00
Then the set I = {t € IR, Vs >t, ©* > u in RN} is not empty. Let t* := infI. We have
ut” > w in RN and, if t* > —oo, then Fi(nf) (@ —u) =0 for any yo € IR.
Yo

Notice that theorem 1.4 nolonger works if @ = —oo and b = +o00. For instance, consider the
equation u"” = 0 in IR with u(—o00) = —00, u(+00) = 400 and take u(r) = z and u(x) = 2z.
A consequence of theorem 1.4 is the monotonicity result:

Theorem 1.5 Under the assumptions of theorem 1.4, if u is a solution of (1.10), (1.11), then
U 1S tncreasing in y.

1.4 The framework of solutions with asymptots

In this subsection, we emphasize the solutions (¢, u) of (1.8), (1.9) for which there exists a

function ¢(z') such that sup |p(z') + cot o |2|| < oo. This is equivalent to look for the
z/€RN-1
solutions (¢, u) of
Au—cOypu+ f(u)=0, 0<u<1 in RY

I inf  u=1
Y450 C+(ym—a) (1.12)

lim sup u=0
Y770 ¢ (y,a)

This problem is then a particular case of the weak and strong frameworks described in the
previous sections. Hence, theorems 1.1 and 1.3 work. Furthermore, we have:

Theorem 1.6 If N > 3 and if o # /2, then (1.12) has no solution.

Theorem 1.7 In dimension N = 2 and for any o < 7/2, the solutions (c,u) of (1.12) are
unique, up to a translation in (x,y) for u. We have ¢ = ¢o/ sin «. Besides,
(i) there exists a real xq such that u is symmetric with respect to the vertical line {x = o},
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(ii) for any A € (0,1), the level set {u(x,y) = A} has two asymptots parallel to both half-
lines {y = —cotalz|, x > 0} and {y = —cotalz|, x < 0}; besides, (1.8) works for any
¢ = ¢)\7

(i) there exist two reals ty such that for any sequence x, — +o00, the functions u,(z,y) =
uw(x + xp,y — cota|zy,|) go to the planar fronts ug(£cosa z + sina y + ty) as x, — +oo,
uniformly on compact subsets of IR?,

(iv) up to some translation, any solution u of (1.12) is equal to the solution given in [12].

Part (iii) gives meaning to the expression “solutions with asymptots”. Eventually, the only
possible solutions of (1.12) occur if N = 2 and if « < 7/2 and turn out to be those of Bonnet
and Hamel. The price to pay as counterpart of this uniqueness result is that we do not know
a priori if (1.12) has a solution in dimension 2 and for angles o« < 7/2, whereas the functions
in [12] are solutions in the weak and strong frameworks.

The following theorems give two sufficient conditions for problem (1.12) to have solutions
in dimension 2.

Theorem 1.8 (Existence result for some angles « and for some functions f) Let f be a

function satisfying (1.3) and such that ¢ > 4/9 sup f'. Assume that the restriction of f is
[0,1]

C' on [0,1]. There exists ap € (0,7/2) such that for any angle o € (0, p), problem (1.12) in
dimension N = 2 has a solution u. Besides, for any ¢ > 0, there are some functions f such
that ay > m/2 — €.

The last assertion in theorem 1.8 implies that for any angle « € (0, 7/2), there are functions
f satisfying (1.3) and such that problem (1.12) has a solution. This existence result is in strong
contrast with the nonexistence result in dimension N > 3 (theorem 1.6).

Theorem 1.9 If N =2 and o €]0,7/2], if (¢, u) is solution of (1.5), (1.6) (necessarily with
c = ) such that

sin @

Jdye R, 3£ (0,1), u>§ ondC (y,a), (1.13)
3geR, 3€€(0,1), u<€inC (7,a), (1.14)
then (c,u) is also solution of (1.12).

As a consequence, in dimension N = 2, if two solutions u; and u, satisfy (1.5) with the
weak conditions (1.6) and the nondegeneracy assumptions (1.13), (1.14), with maybe different
values for y, £, 7 and &, then they are equal up to translation. The functions built in [12] satisfy
(1.14). Finally, a necessary and sufficient condition for the exitence of solutions of (1.12) in
dimension 2 with angles a < 7/2 is that the functions of Bonnet and Hamel solutions of (1.5),
(1.6) satisfy (1.13).

Theorem 1.9 is proved in section 4.1.3 by the construction of sub- and super-solutions de-
fined on sets rotating around a fixed point. Lastly, notice that the new conditions (1.13), (1.14)
are similar, for semilinear elliptic problems studied by Berestycki, Caffarelli and Nirenberg [5],
[6] or Esteban and Lions [16], to the Dirichlet condition « = 0 on the boundary of the domain.
For the case of a half-space, it was especially proved in [5] that the solutions of a certain class



of semilinear elliptic equations are unique and planar.

Summary. We present in the following table a summary of the existence, nonexistence,
uniqueness and monotonicity results concerning the solutions (¢, u) of the semilinear elliptic
equation (1.5) in the weak framework (1.6), in the strong (1.8), (1.9) and in the framework of
solutions with asymptots (1.12). In this table, the words existence and nonexistence mean the
existence and nonexistence of a couple (¢, u); uniqueness for the functions u is understood to
be uniqueness up to translation. The numbers in brackets refer to the sections in which the
results are proved. Lastly, theorems 1.4 and 1.5 are proved in section 5. The results of this
article, as well as further ones, have been announced in [25].

Solutions (¢, u) of: in IR in RN, N >3
Weak framework: | 7/2 < o < 7 || Nonexistence  (2)
(1.5), (1.6)
Existence  (3)
0<a<m/2
Strong framework: Uniqueness of ¢: ¢ = ¢y/sina,
(1.8), (1.9) monotonicity for u  (3)
a=1/2 Unique solution (co,ug)  (3)
Uniqueness  (4.1.1)
Solutions 0 < a < 7/2 || Existence Nonexistence
with asymptots: for some f  (4.1.2) (4.2)
(1.12) or under nondegeneracy
assumption  (4.1.3)
a=m/2 Unique solution (¢, up)  (4.1.1)

Conjectures. The nonexistence result in theorem 1.6 actually sheds some light on the diffi-
culty of the question of the existence of solutions of equation (1.5) in dimension N > 3 and
with angles o < 7/2. We conjecture the existence in the strong framework, for some functions



¢ such that sup |¢(x') +cot « |2'|| = 400 (a fortiori, this would imply the existence in the weak
framework). Moreover, we conjecture that the question of the uniqueness for the functions u
works in the strong framework and that, henceforth, equation (1.5) is well-posed in the strong
framework in any dimension N > 2 and for angles o < /2.
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for discussions and suggestions in the preparation of this work, especially for the monotonicity
result in theorem 1.5. The first author is indebted to the Massachusetts Institute of Technology
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2 Weak framework: nonexistence with angles o > 7/2

2.1 Dimension N =2

This section is devoted to proving that there is no solution (¢, u) of (1.5), (1.6) in dimension
N = 2 when the angle « is bigger than 7/2 (theorem 1.1 for N = 2). We divide the proof into
several steps.



Lemma 2.1 In any dimension N > 2, if /2 < a < 7 and if (¢,u) is a solution of (1.5),
(1.6), then ¢ < ¢y.

Proof. Let (¢, u) be a solution of (1.5), (1.6) with a € (7/2, 7). By using a suitable superso-
lution, we will prove that ¢ < ¢g.
Let us suppose that ¢ > ¢g. The function @(z,y) = ug(y) satisfies

AT — 0T + f(7) = (co — c)uy(y) <0 in RY

since wug is increasing. Besides, lim inf @ = 1. On the other hand, since a > 7/2 and
yo—+0o{y>yo}

u satisfies (1.6), it comes that llm sup u = 0. Hence, u and @ are respectively sub- and
Yo%y <yo}
supersolutions for (1.5) and (1.11) in the sense of theorem 1.4 applied in IR? with ¢(z) = 0.
By the comparison principle in theorem 1.4, there exists a real ¢ such that u* = u > w in

IR%. Besides, the infimum ¢* of such #’s is necessarily finite. Henceforth, we get inf (uo(yo +
xl

t*) — u(x’,y0)) = 0 for any yo € IR. Take yo = 0. The infimum cannot be attained at a
finite point, otherwise the functions ug(y + t*) and u(a2’,y) would be identical by the strong
maximum principle. There exists then a sequence x], — 400 such that ug(t*) —u(x],0) — 0 as
n — oo, that is to say u(z!,0) — ug(¢*) > 0. This is in contradiction with (1.6) and completes
the proof of lemma 2.1.

In dimension N = 2, let (¢,u) be a solution of (1.5), (1.6) for an angle @ > 7/2. Let us
choose a real ¢ € (0,1) and call 0" = (0’ +1)/2, 0" € (¢',1). Let us define o/ = 7 — « and fix
temporarily an angle 3 such that 0 < § < /.

By (1.6), we have u(z,y) — 1 as y — +oo and u(z,y) — 0 as y — —oo for any = € IR.
Since u is continuous, we can therefore define the functions ¢_(x) = min{y, u(z,y) = 6"} and

¢4 () = max{y, u(x,y) = 0"}.
Let us fix temporarily a integer n € IN. For any xy € IR, let us define the set

Azy = {zg —n <2 <30, y > ¢4(30) — cot(a’ — B)(z — w) }
U{zg <3 <m0 +n, y > dy(w0) — cot(a’ + B)(z — x0)}
Lemma 2.2 There exists a real x, < —n/2 such that for all (x,y) in A,,, u(z,y) > ¢’

Proof. Assume not. By (1.6) applied in C*(0,6) (for some 0 < § < '), there exists a real yj
such that

V—n/2<xz<n/2 Vy>y,—cot(a + )z, u(x,y)> 0" (2.1)
Besides, once again by (1.6) applied this time in C~ (0, a—3/2), we have u(z, yj,—cot(a/+5)z) —
0 as © — —oo. Hence, there exists a real xy < —n/2 such that ¢ (zo) > y; — cot(a’ + ).

Set (0, y0) = (@0, 0+ (70))-

Since we have supposed that lemma 2.2 does not work, there exists a point (x,y}) in
Ay, such that u(zy,y]) < 0'. By definition of A,, and of ¢, (z1), it comes that the point
(z1,y1) = (21, ¢4 (21)) is in A,,. In particular, this point is in the set

E={z<uxzy, y>yo—cot(a —B)(x— )} U{zo <z, y>yo— cot(a + p)(x —xo)}

10



- X 4+n
X Xp n

Q Q
AR
b

Figure 1: The set A,,

= {y > max [ yo — cot(a’ — B)(z — x¢),yo — cot(a’ + B)(z — ) |, x € IR}

and A;, C E. Since |x; — zg| < n, (2.1) yields that 1 < —n/2.

On the other hand, since u(xg,y) > 0" > ' for any y > yo and since u is globally Lipschitz-
continuous (by standard elliptic estimates), it comes that there exists a constant n > 0 (not
depending on ), such that |zg — x1| > 7.

By induction, there exists a sequence of points (xy, yx) = (zk, ¢+ (xx)) such that (x,yx) €
As, s (@r,yk) € B, 2, < —n/2 and |zg — 1| > 1 for any k € IN*. Since |z — xg—1| > 1 >0
for any k, it comes that there is an infinite number of £’s such that xp < z,_;. For such k’s,
we actually have xp < x,_; —n and

Ye = Yp-1 — cot(a’ — B)(wg — zp—1)
> yr_1 + (cot(a/ + B) — cot(a/ — B))(xr — xp_1) — cot(a’ + B)(xy, — Tp_1)

Set ' = (cot(a/ — B) — cot(a/ + B))n, n' is positive because 0 < o/ —f < o'+ < 7. If
Ty < Tp_1, we get yp > yp_1 + 1’ — cot(a’ + B)(wx — wx—1). On the other hand, if z; > x4,
we have yi > yp_1 — cot(a’ + B)(x — xx_1) because (xy,yx) € Ay, _,. Call N(k) the number
of ’sin {1,---,k} such that z; < z;_;. By an immediate induction, we deduce that

Ye > Yo +n'N(k) — cot(a’ + B) (2 — x0)
> yo +1n'N(k) — cot(a/ + 5)(—n/2 — zo)

because z;, < —n/2 for any k. Hence, since we noticed that N(k) — +oo as k — 400,
it comes that y, — +oo as k — +oo. Besides, we recall that (xy,y;) € E, whence y, >
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Yo — cot(a/ — 3)(xx — o). These facts imply that the points (x, yx) are in CT (0, — 3/2) for k
large enough and satisfy u(zy,yx) = 0" < 1. This is in contradiction with (1.6) and completes
the proof of lemma 2.2.

Lemma 2.3 In dimension N = 2, if 7/2 < a < 7w and if (c,u) is solution of (1.5), (1.6),
then ¢ > ¢o/ sin .

Lemmas 2.1 and 2.3 clearly imply theorem 1.1 in dimension N = 2: there is no solution
(c,u) of (1.5), (1.6) if & > /2.

Proof of lemma 2.3. Let us assume that ¢ < ¢/ sina = ¢/ sino’. Let 8, > 0 be a sequence
such that £, — 0 as n — 4+o00. For any n € IN, by lemma 2.2, there exists a real x,, such that
u(z,y) > 0 for any (x,y) € A,,, where A, is defined with the angle f,. Set y, = ¢4 (x,).
We have u(z,,y,) = 6" for any n. Define the functions u,(z,y) = u(x + z,,y + y,) in R?. By
standard elliptic estimates and Sobolev injections, up to extraction of some subsequence, there
exists a function us, solution of (1.5) such that u, — s in W2P(IR?) for any 1 < p < co. We
have u.,(0,0) = 0".

Besides, by definition of (z,,y,), it is the case that u,(x,y) > ' for any (x,y) such that
—n<zx<0andy > —cot(a/ —F,) z,or 0 <z <nandy>—cot(a + 3,) x. Passing to the
limit n — +o00, we get

Uso(,y) 2 0, ¥V (7,y) € {y > —cota’ z, v € R}

Let us change the coordinates and call X =sina/ x —cosa’ y, Y = cosa’  +sina’ y: the
positive X-axis is in the direction of (sin o/, — cos ') and the positive Y-axis is in the direction
of (cosa/,sina’). Set u(X,Y) = ux(z,y). In the (X,Y") coordinates, the function u satisfies

I(@) := Al + ccosa’ Oxi — esina’ Oyi + f(i1) = 0 in IR? (2.2)

and w(0,0) = 0", u(X,Y) > ¢ if Y > 0. Let us finally define u(Y) = %g{a(X, Y). As an
infimum of lipschitz-continuous solutions of (2.2), this function u(Y") is lipschitz-continuous

and satisfies
u' —csind W'+ f(w) <0in R

Besides, it is the case that w(Y) > 6" if Y > 0 and ¢ <u(0) < 0".

For a real £ > 0 small enough, that will be chosen later, let (c.,u.) be the unique solution
of u — coul + f(u.) = 0 in R, u.(0) = ¢, and u.(—oc0) = —&, u.(+00) = 1 (the function
f has been extended by 0 outside the intervall [0, 1]). From [10], we know that ¢. < ¢y and
that ¢. — ¢y as € — 0. Since we have assumed that ¢y > csin o', we choose £ > 0 such that
c. > csina’.

Let us now define the function u(Y) = u.(Y"). Since wu. is increasing, this function u = u.
satisfies

u' —ecsina u' + f(u) = (c. — esind)u. > 0 in IR

Let us now use the following lemma:
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Lemma 2.4 Let [ be a lipschitz-continuous function such that f > 0 in (6,1) and f(1) = 0.
Let v be a lipschitz-continuous function defined in IRY such that

"+ M+ f(v) <0in RY
1>v>60 >0 i R"

for a real \. Then v is nondecreasing in IR™ and v(+o00) = 1.

In particular, taking v = @, we get u(+o00) = 1. On the other hand, u(—o0) = —e.
Since —¢ < u,u < 1 in IR and since @, u are respectively lipschitz-continuous super- and
subsolutions for the equation 2" — ¢sina’ 2/ + f(2) = 0, where the function f satisfies the
assumptions of theorem 1.4 (f is nonincreasing in a neighbourhood of —¢ and 1), the com-
parison principle in theorem 1.4, applied in IR, yields that there exists a real ¢ such that
w'(Y)=ulY +t) > u(Y) in IR (notice here that this result could have been obtained directly
by the results of Vega in [34]). The infimum #* of such ¢’s is necessarily finite, otherwise
1>0">mu0)> tl}r_noog(—t) = 1. Theorem 1.4 then yields furthermore that " = u in IR.

This is impossible because u(—o0) = —¢ < 0 and @ > 0 in JR. This completes the proof of
lemma 2.3.

Proof of lemma 2.4 Let zo > 0. Assume that there exists a real x; > =z, such that
v(z1) < v(zg). Then v < v(zy) on [xy, +00[, because, if it were not so, we obtain a contradiction
with the maximum principle (by considering the minimum of v on [z, z5] where xo > z; and

v(zy) > v(z1)). More generally, we get that v is nonincreasing in [z, +o0[. Set v = l}m v.

We get 0 < v < 1. Consider the new functions v,(x) = v(z + n). Then v, — v, = 7 and
Uso Vverifies v + Al + f(vs) < 0, that is to say f(y) < 0. This implies that v = 1, but this
is impossible because v < v(z;) < v(zy) < 1. Eventually, we conclude that Yz, > 0, Vz; >
xg, v(x1) > v(xg). This means that v is nondecreasing in IR*. As above, we also get that
f(v(+00)) <0 and v(+o00) = 1.

2.2 Dimension N > 3

Our aim in this section is to prove theorem 1.1 in dimensions N > 3. Let us fix an angle
7/2 < a < m and suppose that there is a solution (¢, u) of (1.5), (1.6). From lemma 2.1, we
know that ¢ < ¢o. The following lemma states that ¢ > ¢o/sina: this implies the desired
result.

Lemma 2.5 In any dimension N > 3, if 1/2 < a < 7 and if (¢, u) is solution of (1.5), (1.6),
then ¢ > ¢p/ sin a.

Proof. We will proceed as in section 2.1 and make a strong use of the comparison principles
stated in theorem 1.4. Let (c¢,u) be a solution of (1.5), (1.6) for an angle @ > 7/2. Let us
suppose that ¢ < ¢y/ sin a.

Let SO(N — 1) be the group of rotations in IRN~!. For any p € SO(N — 1), the function
u,(2',y) = u(p(x'),y) is also solution of Au, —cd,u,+ f(u,) = 0 in IR"N. Besides, by standard
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elliptic estimates, the function u is globally lipschitz-continuous in IR". Hence, the function

I o . I
v y) = _inf  uy(a,y)

is globally lipschitz-continuous and satisfies Av — d,v + f(v) < 0 in IRY in the distribution
sense. By definition of v, there exists then a globally lipschitz-continuous function v defined

in IR* x IR such that v(z',y) = v(r,y) where r = \/x% + -4 2d .
Define w(z,y) = 0(|z|,y) for (z,y) € R?. The function w is globally lipschitz-continuous
in IR? and is solution of

N -2
Aw+T8xw—cayw+f(w)§0in R x IR

in the distribution sense. Besides, since the function u fulfills the asymptotic conditions (1.6),
it is easy to see that the function w satisfies the analogous conditions (1.6) in IR?.

Henceforth, with the same notations as in section 2.1, lemma 2.2 does work, that is to say
that for any sequence 3, — 0, 3, > 0, there exists a point (z,,y,) such that x, < —n/2,
Un = 01 (xy), w(xy,y,) = 0" and w > 0" in A, where

Az, ={zn —n <3 <3y, y > yp — cot(a’ — By)(z — 2,)}

U {xn <x<x,+Mn, Y>yYp— COt(O/ + Bn)(‘r - xn)}

Since the function w is globally lipschitz-continuous in IR?, it comes from Arzela-Ascoli’s
theorem that the functions u,(z,y) = w(x+x,, y+y,) converge locally to a lipschitz-continuous
function u., up to extraction of some subsequence. We have u,(0,0) = 6" and uq(z,y) > 6’
if y > —cota x.

Since x, — —oo and w is globally lipschitz-continuous, the terms =29, w(x + T,y + yn)

T+Tn
converge locally to 0. Hence, in the distribution sense, the function u., satisfies

Aoy — Oylioe + f(Us) < 0 in IR?

With the same notations as in section 2.1, the remainder of the proof of lemma 2.3 works.
We get a contradiction by comparing, in a new system of cartesian coordinates (X,Y’), the
function u(Y) = )}ngR w(X,Y) — where 4(X,Y) = ux(x,y) — with a suitable subsolution

S

u(Y’), and eventually by using the comparison principle of theorem 1.4.

Remark 2.6 In any dimension N > 2, it is proved in [25] that if (c,u) is solution of (1.5),
(1.6) with an angle o < /2, then ¢ > ¢y/ sin a.

3 Strong framework

In this section we will prove theorems 1.2 and 1.3 dealing with the existence of solutions (c, u)
of (1.8), (1.9) in dimension N = 2 for angles o < 7/2, with the uniqueness of the speed ¢ and
with the monotonicity properties for the functions u in any dimension N > 2.
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3.1 Dimension N =2, angles o < 7/2: existence result

Our aim in this section is to prove that, in dimension N = 2 and for any angle o < 7/2, the
function «* built by Bonnet and Hamel in [12], solution of (1.5), (1.6) with the unique speed
¢ = ¢p/ sin v is actually also solution of (1.8), (1.9), where the graph {y = ¢(z)} can be any of
the level sets {y = ¢r(z)} (0 < A < 1). Let us fix a €]0,7/2]. We recall that the function u*

is solution of
Au* — edyu* + f(u*) =0 in [R?

Véelo,m—al lim inf u*(z,y) =1
|(z,y)| =00, (z,y)€CT(0,0)
Vdelo,al lim sup u*(z,y) =0

|(z,y)| =00, (2,y)€C~(0,0)

where ¢ = ¢p/sina. Moreover we know that V7 € CT(0,)°, 9,u* > 0 in IR?. Fix a real
A € (0,1), the level set {u*(z,y) = A} is the graph {y = éx(z)} of a lipschitz-continuous
function ¢, with lipschitz-norm < cota. By the implicit function theorem, the function ¢,
is of class C''. Besides, it is proved in [12] that for any sequence x, — oo, the functions
ug(z,y) = u*(x + 24,y + da(7x)) go to the planar function ug(+cosa x +sina y +ug ' (A)) in
W2P(IR?) for any 1 < p < oo (and in particular in C}} ). This implies that ¢} () & cota — 0

as r — Foo.
Suppose that lim inf u* = £ < 1. Therefore, there exists a sequence (zy,yx) € IR?

Yo =190 (o)
such that y, — dr(zx) — +oo and u*(xy,yr) — € < 1. The reals x;, cannot be bounded
because, for any real A > 0, lim inf u* = 1 by (1.6). Hence, up to extraction

y—>r+00[—A, A]x[y,+oo]
of some subsequence, and by symmetry of v* in z, we may assume that x;, — —oco. Set
ui(z,y) = u*(zg + z,y + ¢a(zx)). From a result in [12], it is the case that:

ui(z,y) = ul (z,y) = ug(—cosa z +sina y + uy ' (\))

uniformly on compact subsets of IR*. Let yo be such that ug(sin a yo + uyt(\)) =E+6 < 1 for
some d > 0. Then for k large enough, we have both u},(0,ye) > €+2, ui (0, yr— da(zr)) < E+3
and yx — ¢r(x) > yo. This is impossible because u* is increasing in y.

This proves that lim inf «* = 1. Similarly we get lim sup u* = 0.
y0—>+OOQ;\"‘(y0) y0—>—ooQ+(

3.2 Dimension N > 2: monotonicity properties for the functions u

Fix an angle a < 7/2 and consider a solution (¢, u) of (1.8) for which there exists a function
/

¢ satisfying (1.9): Vé(z') + cot ai—,| — 0 as |2'| = 4o00. Let us fix a direction 7 in C*(0, a)°.
Choose a set of vectors (7',---,7V7!) such that (7',---, 77! 7) is a frame and define the
new cartesian coordinates X; = 7 (z/,y) (1 < i < N—1),Y = 7. (2',y). Let us note
X' = (Xy,--+,Xn_1). The function a(X",Y) = u(z',y) satisfies Ad — ¢7 - Va + f(a) = 0
in RY = {(X",Y)} where 7 is the constant vector 7 = (71,---,7y_1,7n). Besides, since u
is solution of (1.8) and the function ¢(z') satisfies (1.9), it is easy to see that there exists a
lipschitz-continuous function ¢(X') such that @ satisfies (1.8), (1.9) with the function ¢ (the
set. {Y = ¢(X’)} is not necessarily equal to the set {y = ¢(x)} but we can choose a real R
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large enough such that {Y = ¢(X’'), |X’| > R} is a subset of {y = ¢(z)}). Theorem 1.5
applied in IRY = IRN~! x IR implies that the function @ is increasing in Y. This means that
the function u is increasing in any direction 7 of the interior of C*(0,«). By continuity, u is
also nondecreasing in any nonzero direction of C* (0, «).

In particular, if (¢, u) is solution of (1.8), (1.9) with the angle a = 7/2, we get that u is both
nondecreasing and nonincreasing in any nonzero direction 7 in IR" such that 7y = 0. This
implies that the function u only depends on y and satisfies (1.4) with the speed ¢. Henceforth,
we deduce that u = u(y) = ue(y) (up to translation) and that ¢ = c.

3.3 Dimension N > 2: uniqueness of the speed

Let « be an angle in ]0, 7/2] and (¢, u) be a solution of (1.8) and (1.9) for some function ¢(z').
We want to prove that the speed ¢ is unique and given by the same formula as in dimension
N =2: ¢=c¢y/sina.

Let us consider the sequence (z),y,) = (—n,0,---,0,¢(z))) and define the functions
u (7', y) = u(@ + 2,y +y,) in IRY. By standard elliptic estimates and Sobolev injections,
up to extraction of some subsequence, the sequence (u,) converges in W 2*(IRN) (for any
1 < p < o0) to a function u., solution of (1.5). We now claim that

lim inf Uoo (2, ) =1
Yo—r+00 y>yptceota = oo( 7y)
(m2""’$N—1)€RN72 (3 1)
lim sup Uoo (2, y) = 0 '
Yo—r—00 y<yg+tcota zq
(m2""’$N—1)€RN72

Let us prove the formula for yy — +o00 (the proof of the other one is similar). Let £ > 0. Since
u satisfies the asymptotic conditions in (1.8), there exists a real yy such that u(z',y) > 1 —¢ if
y > yo + ¢(2). Fix any point (2, y) such that y > yo + 1+ cota zy, (v, -, xy_1) € RN 72
From the finite increment theorem, we have that ¢(x'+x) ) —d(x]) = Vo(a! +t,2")-2" with some
tn, € [0,1]. Hence, by (1.9) and since z/, = (—n,0,---,0), it comes that ¢(z' + z]) — ¢(x]) —
cota x; as n — +oo. This implies that y + v, = y + ¢(z},) > yo + é(2' + 2,) and that
un(z',y) > 1 — ¢ for n large enough. The limit n — +oo gives the desired result.

In the new coordinates X; = sina z; + cosa y, Xo = x9,---, Xny_1 = xn_1, ¥ =
—cosa 1 + sina y, the function a(X",Y) = u(z',y) satisfies the equation

Al — ccosa Ox, @ — csina Oy + (i) = 0 in IRY

and liminf & = 1, limsup @ = 0 by (3.1). With the same arguments as in the previous
Y—+too Y——o0

subsection, by using theorem 1.5, we get that the function @ is then increasing in any direction
7 such that 7y > 0. By continuity, u is constant in any direction 7 such that 7y = 0, that
is to say that « = @(Y) and that @(Y) is solution of @” — ¢sina @' + f(a) = 0 in IR and
u(—o00) = 0, u(+o0) = 1. By the uniqueness of the speed for the onedimensional equation
1.4), this eventually implies that ¢ = ¢y/ sin a.
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4 Solutions with asymptots.

4.1 Dimension N =2
4.1.1 Uniqueness of solutions with asymptots

In this section, we prove theorem 1.7 dealing with the uniqueness and the qualitative properties
of the solutions (¢, u) of (1.12) in dimension N = 2 for angles o < 7/2 (for angles a > 7/2,
there is no solution by theorem 1.1). Notice that the “planar” case a = 7/2 has already been
treated in section 3 concerning the strong framework. Let now (¢, u) be a solution of (1.12) for
an angle v < m/2. Hence, (¢, u) is solution in the weak and strong frameworks. In particular,
¢ = ¢y/sina ([12]) and u is nondecreasing in any nonzero direction of C* (0, «) (theorem 1.3).

Asymptotic planar behaviour in the directions y = —cota |z|, x — £oo. Consider a
sequence x,, — —oo and define

un(2,y) = w(z + n,y — cota |z,])

From standard elliptic estimates, up to extraction of some subsequence, the sequence (u,)
converges in W;2¥ norms to some function u~. From (1.12), this function u™~ is a solution of

Au™ — cdyu™ + f(u™) =0 in IR?

lim inf u (z,y)=1
Yyo—+oo{y>yo+cot a x}
lim sup u(x,y) =0

YOOy <yo+cot a a}

In the new coordinates
{ X =sinaz+cosay

Y = —cosaz+sina y,
(the positive X -axis is in the direction of (sin «, cos ) and the positive Y-axis is in the direction

of (= cosa,sin «v)) the function @~ (X,Y) = u™ (x,y) satisfies

AU~ — cpdyt™ — cpcot a Oxu~ + f(a7) = 0 in IR?
lim inf o (X,Y) =1

Y <400 X (41)
lim sup 27 (X,Y) =0
Y—=—00 x
In a similar way, we can define a function u* for any sequence x, — +oo and write a
similar problem involving the new coordinates X = —sina x +cosa y, Y = cosa x +sina y.
The asymptotic behaviour of w in the directions {y = —cot v |z|, * — +oo} is given by the

following proposition, which corresponds to part (iv) of theorem 1.7:

Proposition 4.1 There exist two reals t= such that u*(z,y) = up(Ecosa z+sina y +t*) =
up(Y + t%). Besides, the reals t* do not depend on the sequences x,, — oo and are equal to
t+ = uy lim u(z, — cot a |z|))

T o0
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Proof. The fact that the functions @*(X,Y’) only depend on Y can be done with the same
device as in section 3.2: for instance, by using theorem 1.5, we deduce that 4~ is increasing
in any direction 7 such that 7v > 0. Then, it only depends on Y and satisfies (1.4), whence
4 (X,Y) = uo(Y +1t). On the other hand, the function u is nondecreasing in both directions
(£sina,cosa). We can therefore define the limits im u(z, —cot o |z|) = 0F € [0, 1]. Now,

for any sequences (z,,) — %00, the functions u(z+z,, y—cot « |z,,|) locally converge to the pla-
nar fronts uo (& cos a z +sin o y+ug '(6%)). Thus, the reals t* do not depend on the sequences
(z,,) and are then equal to ug '(6%). Notice that this especially proves that §* cannot be 0 or 1.

Proof of theorem 1.7. Let a be any fixed angle in (0,7/2) and w any solution of (1.12) in
dimension N = 2. For any zy € IR, the shifted function

Ugo (7, y) = u(z + 30, Y)

is also solution of (1.12). From proposition 4.1, we know that the functions (ug,), = u(x+zo+
Ty, y — cota |z,|) go to the planar fronts ug(+ cosa x +sina y + (t,,)*) for some (t,,)* € IR
and for any sequences x,, — +o00. It is easy to check that (t,,)* =t £ cosa xy where t* are
defined in proposition 4.1 for the function u. Taking zq = (¢~ — t7)/(2 cos ), we get

(twoy = (two )+

We will use the following definition: for any solution u of (1.12), we say that u is “asymptotically
symmetric in x” if the reals t* defined in proposition 4.1 are equal.

Now consider another solution «’ for (1.12). According to the preceding arguments, there
exists a real z{, such that the function ufB,O (x,y) = u/(x + z{,y) is asymptotically symmetric in
x.

Both functions u,, and u! v, are solutions of problem (1.12), which is of the same kind as
(1.10), (1.11) with ¢(z) = ~cota |z|. Henceforth, theorem 1.4 can be applied with (7,u) =
(Uzg, u;fb) and with (u,u) = (u%, Ug,). There exist two reals ¢t < 7 such that uf < Uy < ul
Define t* = sup{t, ul, < Uy in IR?} and T = inf{¢t, ul > Uy in IR*}. These reals are finite
since 1., (0,t) — 1 or 0 as t — +oo and 0 < u’%((),O) < 1. We have

t* < ! < o R?
Uy < Ugy < Ugy in
-k
The strong maximum principle ylelds that either u— <u 2, OF u— = u!,, and either u!, < u}
0 0 0

or u! o, = u . Let us suppose that ul , < U zy < umo in IR%. Frorn the last assertion in theorem

1.4 and since ux, and ug, are asymptotlcally symmetric in z, it follows that:

(4.2)

{ xnll)niloo u /(x—l—xn,y cota [z,]) — ub (z + @0,y — cot & |z,])

,lim u’, (x—ir:vn,y—cota |Tn]) — Uy (T + T,y — cOt @ |2,])

From our choice of z, the functions u,, (z+x,, y—cot a |z, |) go to the planar front u(— cos o z+
sin «v y + t) as x, — —oo, where t = ¢, = t} . From (4.2), we deduce that sina t* +1¢ =

sina t* 4 t. This means that t* =% and that ul, = ul,o in IR?. Finally, we always have

u'(z + 2h,y) = u(z + 20,y + 1) in IR?
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where t* is equal to t* or £ (actually, we then have t* = #"). This proves that the solutions of
(1.12) are unique up to translation.

Let us now prove that any solution u of (1.12) is symmetric with respect to some line
{z = z0}, that is part (i) of theorem 1.7. Indeed, for any solution u of (1.12), the function
u'(z,y) = u(—=z,y) is itself solution of (1.12). Hence, there exists a couple (t1,t5) € IR? such
that u(—xz,y) = u(z + t1,y + to) in IR% At the point (—t,/2,0), it comes that u(t;/2,0) =
u(t1/2,t). Since u is increasing in y, we deduce that t, = 0 and finally that u is symmetric
with respect to the line {z = t,/2}.

Let us now study the level sets of u and prove part (ii) of theorem 1.7. For any A € (0,1),
the level set {u(x,y) = A} is a curve y = ¢, (z) since u(z, y) is strictly increasing in y and goes
to 0 and 1 as y — 400, for any z € IR. From the behaviour of v in the asymptotic directions
y = — cot a |x| (proposition 4.1) and since uy is strictly increasing, there exists a unique real ¢
such that u(z,t — cot a |z]|) — A as £ — —oo. Besides, the level set {u(z,y) = A} is below the
line y = t + cot v x since w is increasing in the direction (sin o, cosa). From the asymptotic
behaviour of u, it also comes that lim wu(x,t —¢ — cota |z]) < A for any € > 0. We deduce

T——00
that the level set {u(z,y) = A} is above the line y = t — ¢ + cot a x for —z large enough. With
the same arguments as x — -+o00, this proves that the level set {u(z,y) = A} is asymptotic to
the half-line y = —cota ||+t as v — —oo (resp. y = —cota |x| + ¢ as x — 400. As in
the proof of theorem 1.2 in section 3, the function u is solution of (1.8), (1.9) for any function
¢ = ¢a.

Let us now prove that w is equal, up to some translation, to the function u* built in [12]
and solution of (1.5), (1.6). First of all, we know that there exists a real ¢; such that the
function u;, = wu(z + t1,y) is symmetric in z. Since u* is nonincreasing in both directions
(£sina, — cosa), the level set {u* = u*(0,0)} is not below 9C~ (0, ). Hence, theorem 1.2

yields that Em sup u* = 0. Apply theorem 1.4 with @ = u;, and u = u*: there exists a
Y%= (y,0)

real ¢ such that uj > u* in JR?. The infimum ¢* of such t’s is finite because u(t1,t) — 0 as
t — —oo and u*(0,0) > 0. Henceforth, theorem 1.4 yields that

inf (uf, —u*) = 4,
Yyo € IR, acl?yo,a)(“tl u) =0 (4.3)

From the strong maximum principle, we have either uj = u* or uj > u* in IR, In any case,
and since both u;, and u* are symmetric in z, (4.3) implies that

xnlgriloo(uil (Tp,y +cota |z| — cot v |z,|) — u* (2, y + cot o |z| — cot v |z,|)) =0

for any (z,y) € IR%. On the one hand, u* is nondecreasing in both directions (+ sin «, cos cv),

hence u*(z,y) > lim u*(Tn,y + cota |z| — cota |z,]). On the other hand, since uy, is
Tn 00

solution of (1.12), proposition 4.1 implies that lim uy (Tn,y + cota |z] — cotar |z,]) =
Tn )

up(sina y + cos a |x| +ty) for some real ty. Eventually, u*(x,y) > ug(sina y+cosa |z| +tp) in
IR?. Thus, the function u* verifies both asymptotic conditions in (1.12). Since the solutions of
(1.12) are unique modulo translation, we conclude that v and u* are equal up to a translation.
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4.1.2 Existence of solutions with asymptots for angles o < 7/2 and for some
functions f

In this section, our purpose is to build, in dimension N = 2, a solution u of (1.12) which is over

a given subsolution v fulfilling lim inf . v = 1. To do that, we consider a sequence of
y—rtoo Ct(y,m—a)

solutions wu,, over v in bounded domains 2,, covering the plane IR?. For some functions f and
some angles a < /2, this process leads to a solution of (1.12). We recall that ¢ = ¢y/sin« is
the unique possible speed solution of (1.12).

Define ¢(z) = —

, In(cosh(co cos o z)) and
Co Sin «

v(w,y) = uo(sina (y — ¢(x)))

where wug(z) is the solution of the onedimensional equation (1.4). An easy calculation shows
that

I(v) :=Av—cov+ f(v)
= [cosin® o (1 + ¢'%) — sina ¢ — colul(sina (y — ¢(z))) + [1 — sin® a (1 + ¢'%)] f(v)
= cos?acosh™(cocosa z) f(v) =: fi(z,y)
>0

Consider two sequences of positive reals a,, b,. Set Q4. 5 = {(z,y), (z,y — ¢(z)) €
(—an,an) X (=by,b,)} and let ©, be a smooth domain embedded in €, 4, in such a way that
Qap b\ C Y B(C’,, r) where C;, i = 1,---,4 are the four corners of Q,, 4, and B(C;,r)

are the balls Wlth centers C; and radius r > 0 fixed.
The function v < 1 satisfies I(v) > 0 = I(1) and the function f is lipschitz-continuous.
Hence, by a classical iterative method, there exists a unique function u,, in €2, solution of:

I(uy) = Aup — cOyup + f(up) =0 in Q,
v<u, <1 in Q, (4.4)
Up =V on 02,

Furthermore, since v is not a solution of (1.5) in Q,, (f(v) # 0), the strong maximum principle
yields that u, > v in £2,.
For some given reals p; and ps which will be chosen later, set

wy(z,y) = (un(z,y) — v(z,y)) etyti29@) 5 () in Q,,

By a straightforward calculation, this function w, > 0 is solution of

I(wy) = Awy, — (21 + €)Oywy, — 2p0¢" (1) 0pwy, + (Kn(x,y) + MN2))w, = —fo(z,y)  (4.5)

&

£

s
I

f(v 1 e Hy—h20(@)y, ) f(v)
e—H1y—n29(z) g

Me) = i+ o+ B0/ (@)” = pad(@)
Folm,y) = filz,y)emvtneo@
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Besides, from standard elliptic estimates, we have ||w,||w22(q,) < C, for some constant C,.
Let us multiply equation (4.5) by w, and integrate in €2,,. We get:

A Aw,, wy, — (201 + ¢)Oywy, wy, — 2p0¢" (1) Opwy, wy, + (K (x,y) + Mz))w? = —/Q fown,

By integrating by parts over this smooth domain §2,,, and using the fact that w, = 0 on 0€2,,
we eventually get

S IVl + (M) = Ku(ew)u? = [ fow, (16)

where A(2) = —A(z) — p2¢" () = =} — e — 3¢ (2)”.

Proposition 4.2 If there exist reals j1, po and Ay such that py <0, py 4+ o < 0, Ag > 0,
Vn, Alx)— Ky(z,y) > Ao > 0 in Q,

and if fo € L*(IR?), then there exists a solution of (1.12).

Proof. Assume that all the requirements of proposition 4.2 are satisfied. From (4.6), we have
|wallwiz@.) < Cllf2llr2(rz) where C' = min(Ag, 1) /2. Taking the limit a,, b, — +oc and 7y,
constant, up to extraction of some subsequence, the functions w,’s go locally to some function
w > 0 in L?. By (4.5) and the definition of K,,, this function w satisfies, in the distribution
sense:

Aw = (2413 + )0, — 246 () Dyw + M)

+(f(v+ €u1y+uz¢(9ﬂ)w) _ f(v))€u1y+uz¢(fv) = —folz,y)

Besides, we have ||w|lw12r2) < C||fal2(m2)-

Set u = v + e #¥=#29@)y; The functions u,’s defined in the previous section go to u in
L? .(IR*). The function u is such that 0 < v < u < 1in JR? and is solution of (1.5) in IR*. From
standard elliptic estimates, the function v is a classical solution of (1.5) and has a bounded

norm in C''(IR?). We also have:
(= 0)et 20 o2y < C| follp2m2) (4.7)
Since u > v, it comes that lim inf  u = 1. To prove that u is actually solution of

y=+00 C+(y,m—a)

(1.12), the only thing that remains to be proved is that li)m . i{lf ) u = 0. If this is not the
Y——00C~ (y,x

case and since the function u is globally lipschitz-continuous, there exist two reals £, » > 0
and a sequence of points (z,,y,) such that y, + cota |z,| - —oo and u(z,y) > e > 0 in
the ball B, = B((xy,yn),r) of center (x,,y,) and fixed radius r > 0. By definition of ¢,
it also comes that y, — ¢(z,) — —oo. For any point (z,y) € B,, we have et1¥tr2e@) —
et =@ el tu2)é@) > emy=4@) gince py + pe < 0 and ¢ < 0. Lastly, since v — 0 uniformly
in B, and pu; < 0, it comes that (u — v)e*¥+#29@) uniformly goes to 4+oo in B,. This is
contradiction with (4.7).

We conclude that the function w satisfies the conical conditions in (1.12). It is then a
solution of (1.12).

In the following lemmas, we prove that the requirements in proposition 4.2 are satisfied for
some ranges of functions f and of angles a.
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2 i _
Lemma 4.3 Remember that py = w and that 1 — ug(y) ~ Coe Y as y — 400

for some positive constant Cy (see Fife, McLeod [17]). We have:

2(IR2)) < < posina
(fQGL(lR)) {u1+u2+2cosina>0
Proof. Let us remember that fy(x, 1) = cos? acosh ?(cy cos a ) f (ug(sin a(y—¢(x)))) ey 1)
and cosh ?(cycosa ) = e205n2¥(®)  Setting § = y — ¢(x), we get by using a straightforward
calculation:

/ fi= Cos4a/ f*(uo(sin agj))emlgdgj/ 2 (2o sin actpa+p2)$(@) 7
R? R R

For the first integral in ¢, since f =0 on [0, 6] and uy(y) < 6 for y < 0, we only have to study
the behaviour as § — +00. As § — 400, we have f2(ug(sin af))e?19 ~ CZ f'(1)?e2m—Hosina)j,
Hence, the integral in § converges if and only if p; < g sin a.

On the other hand, ¢(x) = —cota |z| + In2/¢ysina + o(1) as x — Foo. It follows that

the integral / 2 (2eosinat+2)8(@) g0 converges if and only if py + pe + 2¢o sina > 0.
R

Lemma 4.4 There is a continuous decreasing function k :)0,7/2] — [1/4,9/4] such that for
any angle « in 10,7/2], there exists a pair (ui, po) such that py < 0, py + pio + 2¢osina > 0
and A(z) > Ak(a) for any z € IR.

Proof. From the definition of ¢(x), we have h(uy, po) := inf, A(z) = —p? — cuy — i cot? a.
In order that A satisfy the requirement of proposition 4.2, we will maximize this function A in
the set H = {1 <0, py + p2 + 2cosina > 0}. It is easy to see that this maximum is equal to

max h = max (H1<H§%3(sina(—u% —cpp — (p1 + 2¢osin a)? cot? @), e sﬁr&%}émgo(—uf - cm))

After some easy calculations, we find that if 7/6 < o < 7/2, then maxy h = ¢2/(4sin*a) > 0
and is reached for (u}, pu3) = (—co/(2sin),0), and if 0 < o < 7/6, then maxy h = (3 —
4sin*@)?/4 > 0 and this maximum is reached for (ui,u;) = (—cosina (5 — 4sin®a)/2,
cosina (1 — 4sin?a)/2). The function g(a) = —pui — pj is that defined in theorem 1.8.
For any angle «, we can see that uj > 0.

Lastly, it is easy to check that the function k(«) := maxy h /c is decreasing and ranges
within [1/4,9/4[ as « is in |0, 7/2].

Proof of theorem 1.8. Let us first recall that the speed ¢y of the planar wave solution of
(1.4) only depends on f and let us note it ¢o(f). We first claim that

sup /'
c5(f)

Indeed, let f be the restriction of f in the interval [0,1]. From the classical results of Kolo-
mogorov, Petrovskii, Piskunov [29], or later Aronson, Weinberger [3] and Fife, McLeod [17],

<

i (4.8)
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there exists a positive real ¢* such that for any ¢ > ¢, there is a unique solution u of
u" — cu' + f(u) = 0, u(—o0) = 60, u(+o0) = 1, and there is no solution for ¢ < ¢*. Be-
sides, it is the case that

0/ f1(0) < ¢ <2 sup f( )0 (4.9)

(see also Hadeler and Rothe [24]). Since f(8) = f(0) = 0, for any u € (0,1), there exists

s € (6,u) such that Lu)e = f'(s) < sup f'. Consequently, we get ¢* < 2 fsup f’. On the
U — [0,1] [0,1]

other hand, from Berestycki, Nirenberg [10], it is the case that ¢o(f) < ¢* (this could also be

done with the comparison principle in thereom 1.4). This finally gives the inequality (4.8).

Let us now assume that the function f satisfies

sup /'
c5(f)

and define oy = sup{a €]0,7/2], k(a) > supf’ /c3(f)}; this angle oy exists and is positive
[0,1]

2
1

since sup k(a) = 9/4; besides, oy < /2 by (4.8) and since k(7/2) = 1/4.

Let now « be in (0, o). By the standard elliptic estimates and Sobolev injections, it is the
case that the functions u, defined by (4.4) converge in the spaces W,.”(IR?), up to extraction
of some subsequence, to a function u > v and solution of (1.5).

From lemma 4.4, we get c2k(a) > sup f'. By continuity of the function h(juq, uo), there
exists a pair (u1, p2) such that py < 0(< posina), py + pe + 2¢psina > 0, gy > 0 and
A(z) > sup f' + ¢ for some £ > 0 and for any € IR. From lemma 4.3, the function f, is in
L?*(IR?). Furthermore, for any n, we have

f(U+wn)_f(U)

Wy,

Ky (z,y) =

<sup f'in Q,
[0,1]

since wy, > 0 in €,. Hence, A(x) — K,(z,y) > & > 0 in ©,. All the assumptions of proposition
4.2 are satisfied, therefore the function u is solution of (1.12).

Let us now prove that ag can be taken as close to 7/2 as possible if the function f is
well-chosen. Having (4.8) in mind, we will actually prove that for any n > 0, there exists a
function f5 such that

L fi
cs(f. 6)

Owing to the definition of « and since k(mw/2) = 1/4, this will give the last assertion in
theorem 1.8.

To do that, let us consider the functions f5 defined by f; = 0 in [0,4] and f5(u) = (u —
6)(1 — u) in [6,1]. This function satisfies (1.3) with # = ¢ and is C' in [§,1]. Let co5 be
the unique speed solution of (1.4) for the function fs5 and let ¢ be the minimal speed for the
solutions of u” — cu’ + fs(u) = 0, u(—o0) = 0, u(+o00) = 1. From the results above, we know
that ¢y < ¢;. Besides, by (4.9) and since the restriction fs of f5 on [0,1] is concave, we have

;=2 f(;,(é) =21 —6 < 2. Let 6§, be a sequence converging to 0 and let us, be the unique

— + n (4.10)
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function solution of (1.4) with f5 (and the speed c¢pg,) such that us, (0) = 1/2. Since the
speeds ¢4, are in [0,2], up to extraction of some subsequence, there exists a real ¢ € [0, 2]
and a nondecreasing function u in IR solution of u” — cu' + u(l — u) = 0, u(0) = 1/2. It
then comes that u(—o0) = 0, u(+00) = 1 and that c is greater than or equal to the minimal
speed corresponding to the nonlinearity u(1 —u), namely 2 by (4.9). Finally, we conclude that
cos — 2 as § — 0 (the limit does not depend on the sequence &, — 0). On the other hand,

we have sup f; =1 — . Hence, (4.10) is true when § > 0 is small enough. This completes the
[0,1]
proof of theorem 1.8.

4.1.3 Existence of solutions with asymptots under a nondegeneracy assumption

The aim of this section is to prove theorem 1.9, that is to say that if u is solution of (1.5),
(1.6), (1.13), (1.14) in dimension 2 and with an angle oo < 7/2, then u is also solution of (1.12).
Notice that the speed is necessarily equal to ¢ = ¢y/sina. The proof is divided into several
lemmas.

Lemma 4.5 Let u be a supersolution of (1.5) such that u > 0 in IR? and define

v(y) = inf u
(y) 0C— (y/sina,a)

The function v is nondecreasing, lipschitz-continuous and verifies v" — cov' + f(v) < 0 in IR.

Proof. Let us suppose for the time being that the function v is proved to be nondecreasing.
The function

w(z,y) = inf (/\12}% u(z + Ay + Acot ), )}2‘% u(x—i—)\,y—)\cota))

is then equal to the function v(sina y + cosa |z|). Since the functions inside the infimum are
uniformly lipschitz-continuous and supersolutions of (1.5) in IR?, the function w is lipschitz-
continuous and satisfies Aw — ¢dyw + f(w) < 0 in IR? in the distribution sense. This yields
that the function v is also lipschitz-continuous and satisfies v" — ¢ov” + f(v) < 0 in IR.

To prove that v is nondecreasing, it is enough to prove, because of the invariance of the
problem by translation, that if u > £ on 9C™ (0,a) = 0C* (0,7 — ), then u > £ in C*(0, 7 — ),
for any fixed but arbitrary £ € (0,1).

Fix any N € IN*, a > % >0and 0 <e <& Sete = %G_N and g, — % and consider
the function

Z(:L’,y) = (§ — 6) COS(SlzL’) l{glme(,%’g)} (1 — 662y)+
In the set {z > 0}, we have:

I(z) = Az—cOyz+ f(2)
—e22 + (€ — &) cos(e1)(—£3 + ceq)e Y

>
> (£ —¢)cos(err) K(y)

where .
K(y) = sl — 22) + e — & > T o)
a
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owing to the choice of € and £,. Hence, I(2) > 0in {—a <y < 0}N{z > 0}. For any t € [0, al,
the function 2'(z,y) = 2(z,y + 55 cot a — t) satisfies 1(2') > 0 in {2' > 0} NC* (0,7 — ). On
the other hand, we get by construction:

Vie[0,a], 2'<f-e<&<uondCt0,m—a) (4.11)

We will now apply a sliding method. We first observe that 2° = 0 < u in C*(0, 7 — «).
Let us define t* = sup {t € [0,a],2' < uwin C*(0,7 — a)}. We immediately get 2" < u in
C*t(0,m—a). If t* < a, then there are two sequences a > t, \,t* and P, € C*(0, 7—«) such that
z!n(P,) > u(P,). By definition of 2! and of z, the points P, are bounded. Up to extraction of a
subsequence, we can assume that P,, — P.. It then follows that 2(Ps) = u(Ps) > 0, whence
t* > 0. By (4.11), the point P, cannot be on 9C* (0,7 — «). Hence, from the strong maximum

principle and since u is a supersolution of (1.5), it comes that z° = wu in the connected
component  of {z" > 0} NCH(0, 7 —a) = (=&, &) X (—o0,t* — £ cota) NCT(0, 7 — )
e1? 2¢eq 2eq

containing P,,. This is impossible because on 9Q C {2 =0} UAC* (0,7 — «).
This finally yields that t* = a. This means that

+
N N x,/2elN o —a .
2% = (é— 5) CoS ( QGGC]V:E) 1{|x|<£ T (1 — e (y+3/ "N cot )) < in C+(0,7T _ a)
2

Nc

By successively taking the limits ¢ — 400, N = 400 and ¢ = 0, we find u > {in C* (0,7 — ).
This completes the proof of the lemma.

Consider now any £ € (0,1). For any reals ny, 7, with |7;] < min(#, ) and |ne| < min(1 —
0,1 — &), define the functions

[ (u) : ) if u €] — 00, 1 — 2|ns|]
14+m—u) .
(y) = 1—-2 ——=—— ifuell—=2nl,1+
f ( ) f( |772|) 772+2|772| [ |772| 772]
0 if u € [1+ np, +00]

These functions are lipschitz-continuous and satisfy (1.3) on [y, 1 + 72]. Hence, there exists a
unique pair (¢, ul""") € IR x C*(IR) solution of

(ugl,ﬂz)// _ 081,772 (ug1,772)/ + fng (ugl,ﬂz) =0on IR
ug""™ (—o00) = ny, ug"" (+o0) =141 (4.12)
uf (o) =¢

Besides, ¢{'"” > 0. These solutions also depend on y, and £ but we do not mention these items
in the notations. Since f is C! in a left neighborhood of 1 and f'(1) < 0, it is easy to check

that the functions f” are nondecreasing in 1, for |n,| small enough.

Lemma 4.6 There exist two intervals (—ry,r1), (—rae,r2) with ry < min(#,§), ro < min(1 —
0,1 — &) and which do not depend on yy, such that:

(i) the function (ny,m2) — cg=™ is continuous and increasing in 1, and 1,

(ii) for any compact set K in IR, the function (n1,m2) — ud™™ is continuous in W*?(K) for
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any 1 < p < +o0,
(iii) there exists a continuous and decreasing function g, which is a bijection from (—ry,r1)

into (—r4,12) and such that g(0) = 0 and "*™) = ¢,.

This lemma states natural properties fulfilled by the speeds ¢ and the functions u
The proof is straightforward and done in [25], we do not give it here. In a few words, it is based
on results of Berestycki and Nirenberg [10] and on the onedimensional version of theorem 1.4.

n,mn2
0 .

Let now u be a solution of (1.5) fulfilling (1.6), (1.13) and (1.14). In the new system of
cartesian coordinates X =sina x + cosa y, Y = —cosa x + sin« y, the function a(X,Y) =
u(z,y) satisfies:

Al — ¢oOyil — cocot adx i + () = 0 in IR?

and the conical conditions

Ve (0,7 — «), lim inf u=1
||| o0, veC(—(r—2a)+d,m—0) (4 13)
Vs € (0, ), lim sup u=0 '

[|v|| =00, veC(—m+6d,—(m—2a)—0)
where we define C(8, ) = {(X,Y) = p(cos 6,sin 6), p>0, ¢ €[4, F]}.

Lemma 4.7 With the notations of lemma 4.6, for any m € (0,71) and any ny € (g(m),0),
there exists a real t such that

a(X,Y) > ug"™ (Y + 1) in the quadrant {Y > ysina, X < ycosa}
where ug""™ is solution of (4.12) with § = §/2.

Lemma 4.8 With the notations of lemma 4.6, for any n; € (0,71) and any no € (=12, g(m)),
there exists a real t such that

w(X,Y) <ul""™(Y +1) in the cone {Y <7ysina, x <0}
where ul"™ is solution of (4.12) with € = (1 +£)/2.

We will only prove lemma 4.7, by comparing @ with suitable subsolutions in cones rotating
around a fixed point. The proof of lemma 4.8 can be done with the same kind of arguments,
by using this time super-solutions.

Proof of lemma 4.7. By hypothesis, we have @ > £ > 0 on the half-line {Y = ysina, X <
ycosa}. Set ¥ = ysina and X = ycosa. By a translation of the origin in the direction y, we
can always assume that y =Y = X = 0. From the monotonicity lemma 4.5, we have

@ > £ in the half-plane {Y > 0}

(and also in {X > Y cot2a}). We divide the proof of lemma 4.7 into three steps and use a
sliding method by rotation around a fixed point.
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a X

Figure 2: The quadrant Q

Step 1: construction of a subsolution in the quadrant @ = {Y >0, X < 0}. Set £ = £/2. Let
ry > 0 be given in lemma 4.6. For any fixed 0 < 1, < ry and g(1;) < 12 < 0 (the function ¢
was defined in lemma 4.6), note u; = ul""™. This function u,; satisfies (4.12).

First of all, since %(0,Y) > {if Y > 0, 4(0,Y) — 1l as ¥ — 400, and uy(Y) — 1 < £
(resp. u1(Y) = 1+4+m <1)asY — —oo (resp. Y — +o0), there exists a real t, > 0 large
enough such that u (Y —t) < (0,Y) if Y > 0.

For any g > 0 small enough, let us define a family of planar functions

ug(X,Y) =ui(sin B X +cos B Y —tp)
whose level sets are lines parallel to {Y = —tan 8 X} (see the joint figure). We have:

I(ug) := Aug — cyOyup — cycot a Oxug + f(up)
= ("™ — ¢ycos B — cgeot asin B)uy + fluy) — f™(uq)

We know that f > f™ and u} > 0. Since 7o € (g(m1),0), lemma 4.6 yields ¢g"™ > ¢y. Hence,
for 0 < 8 < B small enough, we get I(ug) > 0 in IR%.

Let us compare ug and @ on 0Q. Since u; is increasing, for any X < 0, ug(X,0) =
ui(sin 8 X —tg) < uy(0) = £/2 < u(X,0). Besides, for any Y > 0, u(0,Y) = uy(cos 8 (Y —
to) < u(Y —t9) < @(0,Y) by our choice of t.

Hence, I(ug) > 0= I(u) in Q and ug < @ on 0Q.

Step 2: sliding method. We now want to prove, by a sliding method, that for any 8 € (0, 3)
we have ug < @ in Q. We first slide ug to the right (in X-direction), and define, for any ¢ <0,

ug (X, Y) =ug(X +6,Y) =u(sin 8 (X +t) +cos Y —tp)

27



Since u; is increasing, we have ug; < ug in IR? for any ¢ < 0.

The function 4 satisfies (4.13) and 1+ 1, < 1. Hence, there exists a real ¢ > 0 such that
> 1+mnintheset @ = {(X,Y) € C(n/2,7—f), Y > a}. Now Q can be divided into three
regions: Qp, Q@ = C(m — 3, m) and the triangle

T={(X,Y)e C(n/2,m—8), 0<Y < a}

In the closed set Qy, we have @(X,Y) > 14 ny > ug, since vy < 1+ 1. In Qy, we have
ug(X,Y) < ug(X,Y) <ui(sinfg X +cosfBY) <wuy(0) =§/2since sinff X +cosff Y <0
in Q,. But @ > £ in Q, whence @(X,Y) > ug, in the closed set Q, for any ¢ < 0. Lastly, as
t — —o00, ug, goes to n; < & uniformly in the bounded set 7. Then, there exists a real —t;
large enough such that @ > ug,, in T.

Let us now slide ug,, to the left (in —X-direction), and define t* = sup{t <0, 4 > ug, in
Q}. Let us assume t* < 0. We have @ > ug 4 in Q. By the strong maximum principle, either
U > ugy O U = ugy- in the interior of 7. But @ > ugs on the three edges of the triangle 1™
this is true for the 2 edges lying on Q; and Qs from the arguments above, and it is also true
on the edge {(0,Y), 0 <Y < a} by definition of ¢, in step 1. Hence, this yields @& > ug,~ in
T, and even, by continuity, @ > ug 4. for some ¢ € (0, —t*) small enough. We eventually get
U > ug 4. in @ which is in contradiction with the definition of t*. We therefore conclude that
t* =0and u(X,Y) > ug in Q.

Step 3: conclusion. From step 2, we get
w(X,Y) > ui(sin8 X +cosf Y —tp) in Q

Remember that ¢, was choosen once and for all at the beginning of step 1, and does not depend
on 3. The passage to the limit § — 0 gives the result of lemma 4.7 with t = —t,.

Proof of theorem 1.9. Let us first notice that similar resylts as those of lemmas 4.7~and

4.8 can be stated in the system of cartesian coordinates X = —sina x 4+ cosa y, YV =
cosa x +sina y.
Since lim inf u(v) = 1 and from the result in lemma 4.7 — and the same one

[|[¥||—=+00, veCT(0,m—a)

in variables (X,Y) —, we then deduce lim inf w > 1+ g(;). Since this is true for
Y=ot (y,m—a)

any 11 € (0,71) and g(m) — 0 as g — 0, we get the conical condition in (1.12) on upper
cones. Similarly, from the result in lemma 4.8 and the same one in variables (X,Y’), we get

lim sup w < for any n € (0,71). Finally, u satisfies both conical conditions in (1.12).
v (g

4.2 Dimension N > 3: nonexistence of solutions with asymptots if
o #7/2

This section is devoted to the proof of theorem 1.6: in dimension N > 3 and for any angle
« # /2, there is no solution (¢, u) of (1.12). From theorem 1.1, there is no solution if o > /2.
From theorem 1.3, if & = 7/2, the couple (¢, ug) is the unique solution.
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Let N > 3 and a < 7/2 be fixed and suppose that there is a solution (¢, u) of (1.12). Since
(¢, u) is then also solution of (1.8), (1.9) (strong framework with ¢(z') = — cot a |2'|), theorem
1.3 implies that the speed ¢ is equal to ¢y/ sin .

In section 4.1.2, we proved the existence of solutions with asymptots in dimension 2 by
considering a subsolution v(x,y) of the type v(z,y) = up(sina (y — ¢(z))) where ¢ was even

and given by ¢(z) = — —— In cosh(cy cos o ). In dimension N > 3, consider

v(a,y) = wp(sina (y — ¢(r))), r=Ia] (4.14)

where ¢ is a given function of class C? in IR™ such that ¢(0) = ¢'(0) = 0. A straightforward
calculation shows that

N -2
r

Av — cOyv + f(v) =sina [co sin a1+ ¢ (r)) — ¢"(r) — @' (r) —c| ug(sina (y — ¢(r)))

+[1=sin*a (1+¢%(r)] f(v) in RY

We now require that the function v be a subsolution of (1.12). Since ¢ = ¢¢/ sin «, it suffices
that |¢'| < cot e, ¢'(+00) = — cot v and

N -2
{ ¢+ "¢ —cpsina ¢+ cycosacota =0 in R (4.15)

6(0) = ¢(0) = 0

Let us notice that, in the case N = 2, the function ¢(r) = —

In cosh(eg cos v r) is

Cp Sin «
the unique solution of (4.15) such that —cota < ¢ < 0 in IR*. Besides, it is asymptotic to
In 2
the line y = ——— —cota r as r — +oo and [, |cot a + ¢'(r)|dr < +oo.
co sin

The situation is very different for the dimensions N > 3. Indeed, we have:

Lemma 4.9 For N >3 and 0 < « < /2, there ezists a solution ¢ of (4.15) in IRY such that
—cota < @'(r) <0 for anyr >0, and ¢"(r) < 0 for any r > 0. Moreover, ¢ is analytic in r*

+00
and/ |cot o+ @' ()| dr = +oo. In particular, the function ¢ has no asymptot as r — +00.
0
Postponing the proof of lemma 4.9, the function v defined by (4.14) verifies

lim sup v=0
Y70 C(y,a)

because ¢(r) > —cot« r for any r > 0. From the comparison principle (theorem 1.4), the set

I ={t, Vs >t, u' > v}isnot empty. Besides, since 1tlim u(0,t) = 0, we have t* = inf [ > —o0.
——00

Then theorem 1.4 also yields that

Yyo € IR, ) inf (u” —v)=0

C~ (yo,)
Since ¢(r) + cota r — +o0 as r — +o0, we have lim sup v = 0 for any
ATER @ )2, (o) €0C (yo,0)
Yo € IR. On the other hand, lim inf u'” > 1/2 for y, large enough by the

A—r+ool(z!y)|> A, (a',y)€8C (yo,c)
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uniform asymptotic conditions in (1.12). Let us fix yo (large enough). There is then a point
Py € C~ (yo, @) such that u’ (Py) = v(P,). The strong maximum principle yields that u!” = v
in IRY. This is impossible on C~(y, ). Hence, there is no solution (c,u) to (1.12) if N > 3
and o < /2.

Proof of lemma 4.9. In RV !, for any R > 0, let By be the open ball centered at the origin
and with radius R. Let wg be the unique solution of the Dirichlet problem

{AwR— czcos’a wp =0, 2’ in By
wr =1 on OBR

Since the constants 0 and 1 are respectively strict sub- and supersolutions of this problem, we
have 0 < wr < 1 in Bg. By the device of moving planes, as Gidas, Ni and Nirenberg did in
[19], we can prove that the function wg is radial, wp = wg(r), r = |2'|, and that w)y(r) > 0
for any r > 0.
wr(r
Let us now define the function zp(z') = R(O; in Bg. This function zp = zg(r) satisfies
Wr
zr > zr(0) = 1 in Bg, 23(0) = 0 and zk(r) > 0 for any r > 0. From Harnack inequality,
standard elliptic estimates and Sobolev injections, there exists a radial function z = z(r)
defined in RN~ such that 2z — 2 locally in IR¥~'. The function z satisfies z > 2(0) = 1,

2'(0) =0, 2'(r) > 0in IRT and

N -2
2"+ 2 —chcos’a z=0in R*
r
Define the function ¢(r) = ——— In z. Since z satisfies Az —¢fcos®a z =0in R™ ) it
Co Sin «

is analytic in 2’ and radial. Hence, the function ¢ is analytic in 72. Besides, ¢(0) = ¢'(0) = 0,
d(r) <0, ¢'(r) <0in IRT and ¢ satisfies

N -2
" + Tqﬁ’ — ¢ sin « ¢'2+cocosacota =0in R,

that is to say equation (4.15).

Let us now prove the other assertions stated in lemma 4.9. Let us suppose that there
exists a real 7 such that ¢” > 0 in [ry, +oo[. By (4.15), the function ¢” cannot be identically
0 in [rp, +oo| (otherwise, ¢’ should be a nonzero constant, this is impossible because of the

N -2
term —— ¢'). Hence, the function ¢' has a limit ¢'(+00) such that ¢'(rg) < ¢'(+00) <

0. By (5.15), the function ¢” has a limit ¢”(4o00), which turns out to be 0 since ¢'(400)
exists. Finally, equation (4.15) at 400 gives ¢'(+00) = —cota. Since ¢'(ry) < ¢'(+00) and
#'(0) = 0, there exists then a real r; > 0 such that ¢'(r;) < —cot @ and ¢"(r;) = 0. This is in
contradiction with equation (4.15) at the point r;. Hence, at this stage, we conclude that for
any o > 0, there exists a real > ry such that ¢”(r;) < 0.
Let us now assume that there exists a real 1y > 0 such that ¢"(ry) > 0. First ;)f all, from
Cop COS* @

equation (4.15) at the point 0 and since ¢'(0) = 0, we have ¢"(0) = (N —1)sina < 0.
—1)sina
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In particular, we have ry > 0. From the previous paragraph, there exists r; > ry such that
¢"(r1) < 0. Hence, there exists a real 7, > 0 such that ¢"(ry) > 0 and ¢"'(r3) = 0. On the
other hand, we have ¢"" + ¥¢” - %qﬁ’ —2¢ysina ¢'¢" = 0in (0, 400). At the point ry, we
have ¢"(ry) > 0 and ¢'(ry) < 0 (by definition of z and ¢), and both ¢”(r3) and ¢'(ry) cannot
be 0 by (4.15). Hence, ¢"'(r) = 0 is impossible. This proves that ¢” < 0 in IR*, whence
—cota < ¢ <0in R*.

+oo
Let us now prove that the integral / (¢’ +cot a)dr is infinite. We recall that ¢'+cot o > 0
0

+o0
is IR* and suppose that / (¢ + cot a)dr < +o00. By (4.15), we get
0

+o0 N
0 / [d)"%—iqﬁ—cosmaqﬁ + cocosacot | dr
T

- {¢"+ =2 (¢ + cota) —
—cosina (¢ + cot a)® + 2¢p cos a (¢ + cot )] dr

cot

+
In the right hand side, all the integrals converge but / cot a dr. This gives a contra-
1

+00
diction and finally proves that the integral / (¢' + cot a)dr is infinite.
0

5 Appendix: comparison principles in R"

This section is devoted to the proof theorems 1.4 and 1.5. With the notations and assumptions
of theorem 1.4, let us define the elliptic operator L(z'") = a;;(2")0;; + b;(2')0;. We are given a
function ¢ : IRN~' — IR, uniformly continuous in JRV ! and we recall that

Q (o) = {y > yo + ¢(2'), 2" € RN~'}
Q (yo) = {y <o+ ¢(2), 2" € RN~'}
(o) = {y =wo + o(a'), 2" € RV}

For any t € IR, we use the notation w'(z',y) = w(z’,y +t) and wt>(z') := limsup w(z',y),

Y—r—+00
—00 () — Timn i ' ' N-1
w®(2') = l;gljgofw(x,y) for ' € RY.

Consider first two lipschitz-continuous functions, u and @, respectively sub- and supersolu-
tions of (1.10), but only in a subset Q C IRN: L(x)u+ f(2',u) > 0in Q, and L(2")u+ f(2', 1) <
0 in . We assume that a <u <b, a <u <bin Q.

Lemma 5.1 Let Q = Q (y;) for some y; € IR and assume that
wu<ada inQ (y1) and lim sup u=a,
) (5.1)
u <w on T(y)

Let I = {t € R~, Vs € [t,0], @& > wonT(y)}. We have 0 € I and Vt € I;, u' >
win Q (y1). Let t* = infI,. It is the case that @ > w in QO (yy). Furthermore, if t* # —oo,
then infrg,,) (@' —u) = 0.
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Lemma 5.2 Let Q = Q" (y3) for some yo € IR and assume that

u>bin Q" (ys) and lim inf w=b,
Y=o+ (y) (5.2)

u <@ on I'(ys)

Let I, = {t € R", Vs € [0,t], w > u® onT(y2)}. We have 0 € I, and ¥Vt € I,, uw >
ul in QF (yp). Let t* = sup Iy. It is the case that w > u'" in QF (yo). Furthermore, if t* # +oo,
then lnfp(y2)(ﬂ — Qt*) = 0.

Proof. We only prove lemma 5.2 (lemma 5.1 is equivalent to it by changing y in —y). We will
use an argument developped by Vega [34].

Let I be defined as in lemma 5.2. By (5.2), we have 0 € I,. Consider now any ¢t € I,.
We want to prove that @ > u' in Q = Q%(y;). During the proof of this lemma, we use the
notations

U =U+¢€

for any ¢ > 0. Let us set
e* =inf{e >0, w. > u" in Q" (y2)}

We have £* < +o0o because U.—, , > u'. Furthermore, T > u' in Q7 (y).
Let us suppose that £* > 0. We can then find a sequence ¢, ' €* and points (z},yx) €
Q7% (yo) such that
Ue, (@ yi) = T, yu) + e < ' (2, yi) (5.3)

Hence @(z}, yx) < b—¢g. Since g, — €* > 0 and by (5.2), there exists a real y, > y» such that,
for k£ large enough, (2}, yx) € Q7 (y2)\Q1(v5), that is to say

Y2 + o(x) < yi < yh + d(a},) (5.4)

Let Qp = QT (y2)\Q*(y5+1). We now move the origin to (z},yx) and consider the limit
problem as k — 4o00. To do this, we define the sets Qp = Q¢ — (2}, yx). We also define
(2’ y) = alxy, + o'y +v), we(2',y) = ulr, + 2", yx + y), Li(2') = Lz}, + 2'), fi(2',-) =
flzy +2',) and 7 (2") = 7(x}, + 2').
Remember that we have
L(z"Ya+ f(2',w) < 0in Qp

On the other hand, u.,, = u+ ¢, > u > b in Q" (y9). Since f is nonincreasing in u over
[, +oo], we get f(2',u) > f(a',7.,) in QT (y2) and consequently:

Lk(:v')(ﬂk —+ Sk) + fk(ﬁl,ﬂk + Sk) <0in Qk

where Q = Qy — (2}, yx) = {(2",vy), Yo+ o(z}, +2") —yp <y < yh+ 1+ Pp(x) +2') — yx }

For any compact set K in IR¥~! containing 0, by (5.4) and the uniform continuity of ¢ in
IRN -1, the functions 2’ — ¢(2'*+a") —y* are bounded and uniformly continuous in the compact
set K. By Ascoli’s theorem we can then assume that, up to extraction of some subsequence,
p(z™ + 2') — y*¥ — ¢ (2') uniformly in the compact subsets of IRN~!; the function ¢ is
uniformly continuous in RN ~!.
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Similarly, we can assume that @; and wu;, converge to two lipschitz-continuous functions %,
and u,, locally in the set

Qoo = {y2 + oo (2') <y <ys + 1+ doo(2')}

Both these functions %, and u., can be lipschitz-continuously extended in Q.. We can also
assume that Ly (z") (T + k) = Loo(2')(Uso + %), Li(a)(ul) = Loo(2')(ul,) in the distribution
sense in 2. The limit operator Lo, can be written as Lo (") = @400 (") 0ij + b 00 (2")0; where
Aij,00 and b; o, have the same regularity as a;; and b; in IRN-!. In the same way, the functions
fe(@,up + er) and fi(2',u!) converge locally in Q. to two uniformly continuous functions
fool@,y) and f_(2',y). These functions can be extended in Qy and satisfy

[foo = foo| < COlfioo + " —ul | in Qo (5.5)

where the constant C' > 0 is defined in theorem 1.4.
By summarizing all the previous facts, we get that

Loo(3")(Too + ) + foo (2, y) <0 in Qu
Loo(2")uby + f(2',y) > 0in Qy
Too +* > ul_ in Oy

Moreover we have 0 € Q. By (5.3), we have that ;(0,0) + g, < u!(0,0), and passing to the
limit & — +o00, we get that T (0,0) + c* < u! (0,0). On the other hand, since uw + ¢* > u'
in RY, it immediately comes that Uy, +¢* > ul in RY. Finally, 17 (0,0) +c* = u!_(0,0).
Besides, we observe that s, +&* > ul, +&* > ul, on Iw(y2) = {y = y2 + doo(z')} and that
0 < yh + ¢(0) by passage to the limit in (5.4). Hence, the point (0,0) cannot be on the
bottom or on the top boundary of Q. that is to say that (0,0) € Q.

The function 2z = Ty, + &* — v, verifies

Loo(2')z 4+ doo(2',y)z < 0 in Qy
2> 0in O, 2(0,0) =0, (0,0) € O

(=)

where doo(2,y) = = is a bounded function by (5.5). The strong maximum

principle implies z = 0 in . This is in contradiction with the fact that z > ¢* > 0 on

Lo (y2)
This finally shows that ¢* = 0, that is to say:

Vtel,, u>uin QF(y)

Define now t* = sup I,. We have @ > u' in Q*(y,) and especially on T'(y3). Let us consider
the case t* < +o0o and assume that @ — u?” > m > 0 on ['(y2) for some m > 0. Since u
is lipschitz-continuous, there exists 7y > 0 such that @ — u 7 > m/2 > 0 on ['(y,) for any

n € [0,m0]. This would be in contradiction with the definition of ¢*. Thus, Fi(nf) (@ —u") =0.
Y2
This completes the proof of lemma 5.2.
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Proof of theorem 1.4. Under the assumptions of theorem 1.4, there exist y; < yo € IR such
that

Let tg = yo — y1. For any ¢ > to, we have @* > 0 > o/ > w on I'(y;). From lemmas 5.1 and 5.2
we get that
YVt > ty, > wuin RY

Define t* = inf{t € IR, u* > w in IRY}. It comes that ' > w in IRY. Let us consider the
case t* # —oo and suppose that

Jyo € IR, inf (@ —u) >8>0 (5.6)

(o)
On the other hand, there exist y; < yo < y; such that

> (b+b')/2in QF (y3)
u < a' in Q7 (y;)

If m = info- (- (@ —u) = 0, then there exists a sequence (z},yx) in Q(y3)\Q (y7)
such that u'" (2%, y*) — u(2™, y*¥) — 0. With the same notations and arguments as in the proof
of lemma 5.2, up to extraction of some subsequence, the functions ¢(xy + ') — yp converge
to some uniformly continuous function ¢ (') in the compact subsets of IR¥ 1. Similarly, the
functions 2z, (2',y) = u' (v}, + 2',yr + v) — u(x}, + 2, yr, + y) converge to a function z,, > 0,
locally in IRY. On the one hand, we have 2,,(0,0) = 0 and conclude that z = 0 in RY. On
the other hand, by (5.6), we have 24 (0, ¢(x}) + yo — yx) > 6 > 0; by passage to the limit, it
comes that 2. (0, ¢oo(0) + yo) > d. This is impossible.
Consequently m > 0, that is to say:

+*

inf (@ —u)>0

Q= (y3)\2~ (y7)

Since both @ and u are lipschitz-continuous, this property is still true with t* — 7 instead of ¢*
for any n € [0, 9], 7o > 0 small enough. From our choice of y, we can also choose 7, in such
a way that u' 7 > V' in Q*(y3) for any n € [0, 7). From lemmas 5.1 and 5.2, we deduce that
a1 —u > 0in RN for any 5 € [0,10]. This contradicts the definition of #*.

Finally, this proves that if t* > —o0, then:

Vy € R, inf (@ —u)=0
I'(y)

Proof of theorem 1.5. This theorem asserts that every solution u of (1.10), (1.11) is in-
creasing in y. We are very grateful to H. Berestycki for a simple version of its proof.

Let u be a solution of (1.10), (1.11). By standard elliptic estimates, this function is class
C' in RN. Take u = u = u. By theorem 1.4, the set I = {t € IR*, Vs > t, u® > u in RV} is
not empty. Set t* = inf [ and suppose that t* > 0.

Fix a real yp € R. By theorem 1.4, infp(,)(u"" —u) = 0. There exists then a sequence
(2, yx) € [(yo) such that u' (2}, yr) — w(@},yr) < 0. As in the proof of theorem 1.4, the
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functions ¢(z), + ') — y and wy, = u(zry + 2, yx + y) go respectively to goo(7') and us (7', y)
locally in IRN~! and IRY. We have u!, > uy, in IRY and u?_(0,0) = uy(0,0). We conclude
similarly that u%, = u., in R".

For any y1 € IR, set QL (y1) = {y > 1 + ¢o(2')}, Qo(y1) = {y < 1 + ¢oo(2')} and
I'w(y1) = {y = 11 + do(2')}. By definition, we have (0,0) € ['(yp) and, from the uniform
limits (1.11), it also comes that

lim inf us =0
Y=o od (y)

lim sup u, =a
——00
v Qoo (y)

This is in contradiction with the t*-periodicity of us in the direction (0,---,0,1). This yields
that t* = 0. For any ¢t > 0, we have u* > u in IRY. With the strong maximum principle, we
conclude as above that u’ > u in IRN. In other words, u is increasing in y.

In [25], with similar arguments, the following Liouville theorem is proved:

Theorem 5.3 ([25]) Under the assumptions of theorem 1.4, but without any reference to a
function ¢, if u is a lipschitz-continuous function solution of (1.10) such that a < u < b and
if f(2',u) is nondecreasing in u € [a,b] for any 2’ € RN, then u = u(z').

Remark 5.4 Theorems 1.4, 1.5, 5.3 also work in infinite straight cylinders ¥ = w X IR,
where w is a smooth bounded or unbounded subset of IRN ', with Neumann or Dirichlet type
conditions on 0% (see [25] for more details).
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