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Abstract. This paper deals with the questions of the existence and uniqueness of solutions to
a problem with a conical-shaped free boundary. It is also concerned with providing a complete
classification of the solutions to a more abstract Serrin type free boundary problem. These so-
lutions are proved to be either conical-shaped or planar. Such problems arise in the modelling
of premixed equidiffusional Bunsen flames in the limit of high activation energies.

Résumé. Ce papier traite des questions d’existence et d’unicité de solutions pour un probléeme
a frontiere libre de forme conique. Cet article donne également une classification complete de
toutes les solutions d’un probléeme de frontiere libre plus abstrait de type Serrin, les solutions
étant soit coniques soit planes. Les probléemes traités modélisent les lammes prémélangées
équidiffusionnelles de becs Bunsen dans la limite des hautes énergies d’activation.

1 Introduction and main results

The aim of this paper is to find the solutions (¢, u,2) of the following free boundary
problem

( Au—cdyu = 0 in QC R?
v = 1 in R?\Q,
0 <u < 1 inQ, (11)
Ohu = ¢g>0 onl =09,
limsup  u(X) = 0,
([ d(X.1)—+00, XEQ

*Part of this work was carried out when the second author was visiting the Department of Mathe-
matics of the Massachusetts Institute of Technology



where X = (z,y) is the generic notation for the points of IR?, ¢ € IR, u is a globally
Lipschitz-continuous function and €2 is a an open set. Here, n is the outward unit
normal to the set 2 and 9, u stands for the normal derivative on I' of the restriction
of the function u to the set €2, in the case where u is smooth enough in Q up to the
boundary. More precise statements on the regularity of u will be made later.

In some statements, we will assume moreover that €2 is a smooth sub-graph

Q={y < ()},
¢ being an unknown smooth function such that
¢'(x) = Feota as ¥ — +o0. (1.2)

The parameter o € (0,7) is a given angle. The unknown function u satisfies overde-
termined conditions on I' but the boundary I' = 0{u < 1} is unknown as well. The
unknown velocity ¢ can be seen as an eigenvalue and u as an eigenfunction to the non-
linear eigenvalue problem (1.1).

We prove the existence of solutions (¢, u,2) to (1.1)-(1.2). Under some more general
assumptions on € and I', we classify all the solutions of (1.1) and we prove in particular
that the solutions of (1.1)-(1.2) are unique.

Before stating our main results, we first explain the physical motivation of the prob-
lem we are interested in.

1.1 Physical motivation

Before going any further on the mathematical results, let us first describe the physi-
cal motivation of this problem, namely, a simple model for laminar and steady Bunsen
flames. At the mouth of a Bunsen burner, two flames can usually be seen: a conical-
shaped premixed flame and, beyond, a diffusion flame as drawn in Figure 1 (see Buck-
master, Ludford [16], [17], Joulin [30], Lewis, Von Elbe [35], Linan [36], Sivashinsky [45],
[46] or Williams [51]). We focus here on the study of the premixed flame. In the limit
of high activation energy for the chemical reaction rate, the reaction is located on an
infinitely thin zone, which is usually referred to as the flame front. The fresh mixture
(fuel and oxidizer) is located below the flame front and, there, the temperature is not
high enough for the reaction to ignite. Above the flame, there are only the burned gases
and the reaction cannot take place either, because of the lack of one of the reactants.
We stand within the framework of the thermal-diffusional model, with constant den-
sity ([8], [16], [17], [37], [52]). We consider a unit Lewis number, meaning that the coef-
ficients of thermal conductivity and molecular diffusion are identical — that is usually
a good approximation — and an overall one-step irreversible and exothermic chemical
reaction. We do not investigate here the profile of the flame near the burner rim. The
flame is assumed to be stabilized in a uniform and adiabatic stream coming from the
burner. Following Williams ([51], chapter 5), we deal with a two-dimensional geometry,
which is equivalent to considering a Bunsen burner with an elongated rectangular outlet.
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Figure 1: Bunsen flames, the premized flame

Mathematically speaking, the flame can be viewed as a conical-shaped free boundary
between two zones, a hot one and a relatively fresh one. In this paper, we will be
concerned with the rigorous derivation of the shape of these flames under that Dirac
approximation for the chemical reaction. Because of the invariance of the shape of the
flame with respect to the size of the burner, one consider the problem in the whole space
R* = {X = (z,y)} and one calls y the main direction of the stream and z the direction
orthogonal to y (see Figure 1). Under all the above assumptions, the temperature field
u(X), adimensionalized and renormalized in such a way that u ~ 0 far below the flame
and v = 1 on the flame and above it, solves the following equations

Au—coyu =0 in Q= {0 <u < 1},
u=1 in R?\Q,
limsup  u(X) =0,
d(X,I') =400, XEQ
u is continuous across [' := 09,

where the curve I', which we write as I' = {y = ¢(z)}, represents the flame front, Q is
the “fresh” zone and c is the normalized velocity of the underlying upward stream. Here,
d(X,T) is the distance between the point X = (z,y) and the curve I'. In this model,
the function 1 — u represents the relative concentration of one of the reactants. The
continuity of u across I' means that there is no jump of the temperature on the flame
front. Notice that despite its simplicity, this model retains the fundamental features
for the description of the premixed Bunsen flames: first, in the zone below the flame,
heat conduction and convection by the flow are taken into account; then, as we shall see
later, on the interface I' the chemical reaction (fuel/oxidizer consumption) is accounted
for under the form of an additional condition for u across I'.

In experiments ([16], [35], [51]), the flame front is seen to be almost planar far away
from the tip and to have two asymptotic directions making an angle o (0 < o < 7/2)
with respect to the vector —e, = (0, —1), as drawn in Figure 1). In other words, it is
reasonable to say that ¢ satisfies (1.2).



In the one-dimensional case, the free interface I' reduces to a single point, say {0},
and the problem reads

Ul — coU) =0 in {y < 0},
Up=1 in {y > 0},
Up(y) — 0 as y — —oo,
Uy is continuous at the point 0.

(1.3)

The function Uy(y) is then equal to Uy(y) = e if y < 0 and Uy(y) = 1 if y > 0. The
gradient of Uy necessarily satisfies the following jump condition at 0
Us(y) — Us(0)

(Up)"(0) := ylino — ;- Co- (1.4)

Such planar solutions exist for each given positive number ¢qy. In practice, this real
number only depends on some physical characteristics of the problem and it is referred
to as the planar burning velocity. In the sequel, ¢y is a given and arbitrary positive real
number.

Coming back to the multidimensional case and in regard of the one-dimensional
analysis, the following jump condition for the gradient of u is required at any point of
the free interface I' = {y = ¢(x)}:

ou

— =¢y onl, 1.5

on (1:5)
where n is the unit normal to I' pointing outside the zone Q = {u < 1} (we assume
for the time being that the curve I' is smooth), and where g—z stands for the normal

derivative on I' of the restriction of u to the set Q. This jump condition means that the
normal heat production and the burning velocity are constant over the wave surface (for
the derivation of (1.5), see also [15], [16], [17]). Formula (1.5) could also be obtained by
analogy with (1.4) and by formally thinking of the interface as almost flat and the flame
as almost planar in the vicinity of any point on I'. Note that interface conditions of the
type (1.5) have been used in many such combustion problems, e.g. [2], [12], [14], [19],
[20], [23], [29], [34].

It is now natural to wonder what could be the relation between the planar flame
speed ¢y and the vertical stream velocity ¢. Let us think of the flame front as a conical-
shaped reaction wave spreading at the vertical speed ¢ through a quiescent gaseous
premixture. Far away from the tip, say on the left as x — —oo, the flame is almost
planar and it should then move at the speed ¢ in the direction 7 = (cos«, —sin «),
which is asymptotically normal to the flame surface as drawn in Figure 1. Hence, ¢ is
the projection of the speed ¢ over the vector 7. That means that

p— (1.6)

sina’

This formula, which can also be found in [16], [35] or [46], especially implies that the
larger the intensity of the flow at the exit of the burner is, the sharper the flame is. In
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experiments, the planar burning velocity ¢y can be determined from the knowledge of
the flow velocity ¢ and from the measurement of the apex angle 2« of the flame cone
(see e.g. Williams [51]).

1.2 A brief overview of related results in the literature

The question of finding solutions to the free boundary problem (1.1), given the formula
(1.6), was first investigated by Buckmaster and Ludford [15], [16], [17] in the modeling
of near equidiffusional flame tips (they actually considered a system with two unknown
functions). They solved the problem in the formal limit of large flow intensity (¢ — +o0,
i.e. @ — 0) and they especially showed that, as ¢ — 400, the tip might then break open
for Lewis numbers smaller enough than 1. The limit  — 0 corresponds to slender flames,
a situation very different from the one we consider here. Mathematically speaking, the
original elliptic free boundary problem is formally replaced with a parabolic problem in
terms of the variables z and y' = y/c.

Other formal works had been devoted to the analysis of the premixed Bunsen flames
viewed as thin interfaces. From formal multiple-scale asymptotic expansions, Sivashinsky
[46] derived a first-order equation for the flame front in terms of the new variable 2/ =
xz/FE in the limit E — +4o00. Sivashinsky showed that the flame front was smooth if
the Lewis number was strictly greater than 1 and that, on the opposite, the tip was
wedge-shaped if the Lewis number was strictly less than 1 (for further results, including
the three-dimensional case, see [33], [35], [45], [46]).

Another approach was used by Michelson [38]. In the case of a unit Lewis number,
he considered the flame front {y = ¢*(z)} as a curve satisfying the slope condition (1.2)
at infinity and solving the fourth-order Kuramoto-Sivashinsky equation - an approach
which is different from the one used in this paper - (see [13], [22], [47] or [48] for a
derivation of this Kuramoto-Sivashinsky equation). Michelson proved the existence,
and also the uniqueness, of such solutions ¢ as soon as the angle a of the flame is not
too far from 0 (for three-dimensional results, see [39]). He also pointed out that the
uniqueness of the profile of the front was not expected for angles « close to m/2.

Conical fronts also arise in different frameworks. For instance, they can be used
to describe the propagation of curved interfaces in mean curvature flows with constant
driving force. Ninomiya and Taniguchi [41], [42] have studied the existence and the
dynamical aspects of such interfaces.

1.3 Main results of the paper

Our goal in this paper is to make a rigorous analysis of the conical shape of the premixed
Bunsen flame for the model described in section 1.1. Namely, we want to prove the
existence of a function u, a (free) domain Q with (free) boundary I' and a speed ¢
satisfying (1.1), the angle o and the speed ¢y being given. We also derive rigorously the
formula (1.6) for the speed c. In this paper, we moreover answer the questions of the
uniqueness and other qualitative properties of the solutions (monotonicity, smoothness,



asymptotic behaviour of the free boundary). Lastly, we classify all solutions of a related
Serrin type problem.

Let us first state the existence of a solution (¢*,u®, Q%) to (1.1-1.2) for each angle
0<a<m/2

Theorem 1.1 For each o € (0, 3], there exists a solution (¢, u®,2*) to the free boun-
dary problem (1.1)-(1.2) satisfying

c® = “

sina
The function u® s globally Lipchitz-continuous, it s symmetric with respect to the axis
{z =0} and it is nonincreasing in each direction of the “lower” cone
C (a)={Ar, A >0, ||7|| =1, 7, < —cosa}.
The set Q% is of the type
0% ={y < ¢"(x)}

and the function ¢~ is even, globally Lipschitz-continuous and it satisfies

do®

dz

Moreover the free boundary T'* = 00* is analytic with globally bounded curvature, the
restriction of u® to Q% is analytic up to I'* and I'* has two asymptots parallel to the
half-lines y = —|z| cot a, namely:

(x) <0 for all z > 0.

dL € R, ¢%(x)+ |z|cota — L as x — Fo0.

Remark 1.2 This result especially enables us to find a solution of the flame tip problem
of Buckmaster and Ludford [17], just by taking the function u® restricted on the half
plane {z > 0}.

Let us now turn to the question of the uniqueness of the solutions of the free boundary
problem (1.1)-(1.2). The following Theorem deals with some uniqueness properties and
it also answers the question of the nonexistence of solutions with angles a > /2.

Theorem 1.3 Let ¢y > 0 and 0 < a < 7w be given. Consider a solution (¢, u, <) to the
free boundary problem (1.1)-(1.2), where the restriction of u to 2 is C* on Q and Q is of
the type Q = {y < ¢(x)}. Assume that T = 0Q is globally CY' with bounded curvature,
and that ¢ 1s globally Lipschitz.

Then o < /2 and (c,u, ) is unique in the sense that

Co

C = —
Sin &

and there exists a vector (a,b) € IR? such that u(z,y) = u®(z+a, y+b) for all (z,y) € IR
and Q@ = {(z,y), (r + a,y + b) € Q*}.



It follows from Theorems 1.1 and 1.3 that the free boundary problem (1.1)-(1.2) is
well-posed for any angle o € (0,7/2] whereas no solution exists whenever « is larger
than 7/2 (i.e. ¢ smaller than ¢j). Note that despite its simplicity the model we have
used is robust enough to capture that the tip of the flame cannot point downwards, as
has been observed in experiments.

Remark 1.4 In the particular case @ = 7/2, any solution u of (1.1)-(1.2) has one-
dimensional symmetry, namely, it depends on y only, and €2 is a half space of the type

{y < h}.

Remark 1.5 The method we use to prove this theorem allows for additional a priori
estimates in RY = {(z,y), x € RN~',y € IR} for dimensions N > 3. Nevertheless,
the question of the existence of solutions with o < 7/2 is still open in dimensions 3 or
higher.

Let us now observe that the free boundary problem (1.1), without assuming any
slope condition at infinity like (1.2) for the free boundary T', can also be viewed as a
Serrin type problem. Indeed, the unknown function wu satisfies the elliptic equation

Au — cOyu =0

in the unknown set 2 = {u < 1}, and overdetermined conditions are required on the
boundary I' = 0€2:
u=1 and O,u =cy >0

as are uniform limiting conditions im sup;x 1 00, xen %(X) = 0 far away from the
free boundary T'.

Problems of this kind were investigated by Serrin [44]. Serrin proved that, if u is a
positive solution of an equation of the type Au+ f(u) = 0 in a smooth bounded domain
2, given overdetermined boundary conditions: v = 0 and J,u = a on 02, then, under
some assumptions on the function f, €2 is a ball and the function u is radially symmetric
with respect to the center of the ball (see also Henrot, Philippin [28] for similar results on
related eigenvalue problems). The same result as Serrin has been extended by Reichel
[43] and Aftalion and Busca [1] for exterior domains, under various assumptions on
the nonlinearity f. Similar free boundary problems in Lipschitz domains of the type
Q={z, < ¢(z'), v/ = (z1,- -, 2zn_1) € IR¥N 1} have been investigated by Berestycki,
Caffarelli and Nirenberg [5]. Under some conditions on the nonlinearity f and under a

flatness condition on the function ¢ at infinity (V7 € RN, | ‘lim o(z'+71)—p(2") = 0),
x| =00

then Q is a half-space, i.e. ¢ is constant, and the solution u only depends on z, ([5]).

Let us now try to classify all the solutions (u,c, 2) of the free boundary problem
(1.1), dropping the slope condition (1.2) for I'. Because of the term cOyu, one cannot
expect any radial symmetry property here. Under some smoothness assumptions for I',
we shall actually prove that, besides some trivial planar solutions, the solutions given in
Theorem 1.1 are the only solutions of (1.1). To be more precise, we show in this paper
the following theorem, which Theorem 1.3 is actually a consequence of:
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Theorem 1.6 Let (c,u,$2) be a solution of the free boundary problem (1.1), where Q
is an open set such that both Q and IR*\Q are not empty, and the restriction of u to
Q is C' in Q. Assume that the free boundary T' = 0 is globally C' with a bounded
curvature. Assume moreover that IR*\Q has no bounded connected components.

Then, even if it means changing (c,u,)) into (—c,u(—x,—y),—Q), one has ¢ > ¢
and, if a € (0,7/2] denotes the only solution of ¢ = ¢o/sina, the following three and
only three cases (up to translation) may occur:

— either Q) is the half-space {y < x cota} and

u(z,y) = Up(ysina — x cos «)

where Uy solves the one-dimensional free boundary problem (1.3)-(1.4),

— or the same conclusion holds up to symmetry in x: Q = {y < —xcota} and
u(z,y) = Up(ysin a + x cos o),

— or Q = Q% and u = u® where (u®, Q%) is the solution of (1.1)-(1.2) given in
Theorem 1.1.

Remark 1.7 In the particular case ¢ = ¢y, then, under the regularity and connexity
assumptions on €2, any solution (u,2) of (1.1) is planar: Q is a half-space of the type
Q = {+(y — h) < 0} for some h € IR and u only depends on the variable y, namely,
u(z, y) = eteolvy=h),

Remark 1.8 The solutions u in Theorem 1.6 eventually turn out to be much smoother
than the assumption of C'! regularity up to the boundary, which is enough in the proof.
The same theorem would be true if classical C? regularity up to the boundary was
assumed. On the other hand, the assumption of the boundedness of the curvature of
the free boundary plays a crucial role : together with classical a priori estimates for
the function w, it guarantees local uniform properties of the boundary (Proposition 3.7
below). As a consequence, compactness properties hold (Proposition 4.2 below). These
compactness properties hold for the solutions of a more general class of free boundary
problems, but, in order to avoid many technical definitions in the introduction, this more
general class of free boundary problems is defined in Section 3.

Let us however notice that the class of free boundary problems defined in Section 3
is stronger than the definitions in the sense of Caffarelli. A uniformity property of the
behaviour of the functions v in a neighbourhood of the boundary, which is satisfied from
the assumptions of Theorem 1.6 (see Proposition 3.7), is indeed used in our proofs and
especially in that of some compactness results.

Closely related to the above theorem are the following open question and conjecture:

Open question. Is Theorem 1.6 true if it is only assumed that |¢| > ¢y, without
assuming that IR*\( has no bounded connected components ?



Conjecture. In dimension N > 2, there exist non trivial solutions with IRV \Q bounded.

The main difficulties to deal with the above free boundary problems lie in the fact
that we are here concerned with a multidimensional problem in an unbounded domain
— the whole plane IR? — and that only few informations on the behavior at infinity
of the function u and of the free interface I' are available. Furthermore, because of
the first-order term 0yu, the problem is not put in the divergence form and there is no
natural variational formulation.

The strategy we adopt in Section 2 to prove the existence of solutions of (1.1) together
with the limiting conditions (1.2) consists in working with elliptic reaction-diffusion equa-
tions in the whole plane IR? which are regularizing approximations of the free boundary
problem (1.1). The existence of solutions of such reaction-diffusion equations with coni-
cal conditions at infinity has been obtained by Bonnet and Hamel [11]. Then, a solution
of the free boundary problem (1.1) is obtained as a singular limit of the solutions of these
reaction-diffusion equations, following the results of Berestycki, Caffarelli and Nirenberg
[4] on similar problems in straight infinite cylinders. The key-point in our framework is
to show that the conical limiting conditions (1.2) carry over after passing to the limit
with respect to the regularization parameter.

The Serrin type result (Theorem 1.6, including the uniqueness result of Theorem 1.3)
is proved in Section 5. To prove this, we state in sections 3 and 4 some monotonicity
properties and a general comparison principle for the solutions of a class of free boundary
problems. The proof of this comparison principle is given in section 6 and it is based on
the sliding method developped by Berestycki and Nirenberg [10].

2 Existence of a solution of the free boundary pro-
blem (1.1)-(1.2): proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. It is divided into two main steps.
The first step consists in stating some results of Bonnet and Hamel [11] about regu-
larizing approximations of the free boundary problem (1.1)-(1.2). The second step is
concerned with proving the existence of a solution to the free boundary problem by
passing to the limit as the regularization parameter approaches 0.

Step 1: regularizing approximations. Let a be a given angle a € (0,7/2] and let
co > 0 be given. We are now going to replace the underlying J-approximation for the
reaction rate by a sequence of nonlinear source terms approximating a Dirac mass at
the point 1.

In order to do so, let f be a given function defined on [0, 1] and satisfying:

f is Lipschitz-continuous on [0, 1],

{396(0,1), F=0on[0,0, f>00m(0,1), f(1)=0, fa)<0 D



together with

¢ = ,/2/01 £(5)ds. (2.2)

The real 0 is then referred to as the ignition temperature for the nonlinear source term
f. Without any loss of generality, we assume that f is extended by 0 outside the interval
[0,1]. Now let (f.)es0 be the sequence of functions defined by:

Vs e [0,1], fi(s)=—f (1- 1_5). (2.3)
€ €
The choice of the functions f. can be derived from Arrhenius kinetics. These functions
f- approximate the Dirac distribution at s = 1 with the mass fol f. Note that the limit
e — 0 is of physical interest since the quantity 1/¢ is a normalized activation energy. At
the limit, the chemical reaction cannot ignite below the temperature u = 1.
Before going any further, let us state the following results of Bonnet and the first
author about the regularized counterpart of the free boundary problem (1.1)-(1.2):

Theorem 2.1 (Bonnet, Hamel [11]) Let f be a function satisfying (2.1). For each
a € (0,7/2], there exists a solution (cf,u$) of the following problem:

( Auf — SOyuf + f(uf) =0 in R?
vre{lrl=1, 7 < —cosa}, lim uf(hr) =0,
vre{|r]| =1, 1, > —cosa}, lim uf(Ar)=1,

A——+o00
vre{llr| =1, 7, < —cosa}, d,ul <0,

U?(.Z‘,y) = U?(—I,y) in RZ:
Oyuf >0 in {z >0}

(2.4)

\

such that uf(0,0) = 0. The speed ¢ is unique and is given by

&

o
1=

- >0,
sin v

where ¢y is the unique speed for which there exists a one-dimensional solution Uy of

{ Ul — iUl + f(Uh) =0 in IR, (2.5)

Ul(—OO) =0< U < U1(+OO) =1.

Furthermore, there exists a positive constant C' — for instance, C = 3 works — such
that, if Xo = (o, y0) satisfies us(Xo) < 0, then

u®(zg,y) < C eWv0)ersing for all 5 < yp. (2.6)

Remark 2.2 The existence of one-dimensional travelling fronts solving (2.5) is well-
known ([3], [9], [21] or [31]). Furthermore, the speed ¢, of such fronts is unique, and the
front U; itself is unique up to translation.
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Remark 2.3 Results stronger than those in Theorem 2.1 have actually been proved in
[11]. In particular, the following inequality holds:

uf(z,y) < 20 e~C1lzolcosa cosh(epz cos ar) ecrly—vo)sina 4 g gerly—yo)/sina

for all (z,y) € {(z,y) € IR*, y < yo, y < yo+ (z — o) cotar, y < yo — (z + zg) cot a},
whenever zy < 0 and uf(zo,yo) < 0. It is easy to check that the latter yields (2.6) with
C = 3. Additional results have also been obtained in [26] and [27].

For each € > 0 small enough, the function f. defined in (2.3) satisfies (2.1) with the
ignition temperature 6. =1 —¢(1 —6) € (0,1). We can then apply Theorem 2.1 to it:
there exists a solution (¢2, u%) of (2.4) such that u%(0,0) = #.. The speed ¢ is given by
¢ = ¢./sina where ¢, is the unique speed for which problem (2.5) with f = f. has a
solution.

Step 2: passage to the limit ¢ — 0. This step is devoted to proving that the solutions
(¢, u®) of the regularizing approximations (2.4), defined in the whole plane IR?, converge
as € — 0 to a solution of (1.1-1.2). One first uses some general convergence results of
Berestycki, Caffarelli, Nirenberg [4] for similar problems in straight infinite cylinders and
one then proves that the function obtained at the limit is singular on a free boundary
and has conical-shaped level curves, as the solutions of the (2.4).

Consider a sequence ¢, — 07. From a result of Berestycki, Nicolaenko and Scheurer
9] (see also the pioneering paper of Zeldovich and Frank-Kamenetskii [53]), it is known

that

1
Ce, — Q/f:co as e, — 07,
0

whence c
0
cd == —.

" SIn &
The convergence of the functions u¢ will resort to some results of Berestycki, Caf-

farelli and Nirenberg [4] summarized in the following

Theorem 2.4 (Berestycki, Caffarelli, Nirenberg [4]) Let Br = Br(X) be an open ball
of radius R and center X € IR Let f satisfy (2.1)-(2.2) and let f. be the functions
defined by (2.8). Let (cc). be a sequence such that c. — ¢y as € — 0. Let (u.). be a
sequence of functions satisfying

Au, — c.0yu. + fo(u;) =0 in Bg.

Then, in Brj = BR/Q(X), the functions u. are uniformly Lipschitz-continuous with
Lipschitz constant depending only on sup, c., maxjy f and R.

Assume now that u is a function such that u. — u uniformly in Bgjs. LetI' = 0{u <
1} N Bgys. Then, on regular parts of T,

Onu = o, (2.7)

where n is the exterior normal to the set {u <1} on T.
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Remark 2.5 Similar one-dimensional results had already been obtained for systems of
two equations in [9] and for more general functions f. in [25]. Furthermore, results more
general than Theorem 2.4 on regularizing approximations of free boundary problems
with nonuniform velocity fields can be found in [4] (see also [19], [20], [34] for other
results in the elliptic or parabolic cases).

As for (1.5), the condition (2.7) in Theorem 2.4 says that the gradient of the function
obtained at the limit has a constant jump on the free boundary I". This condition can
then also be viewed as a memory of the strongly temperature-dependent reaction rate.

One can now move the center of By everywhere in IR? and it follows from the above
theorem that the functions u are globally Lipschitz in IR? with Lipschitz norms that
do not depend on ¢,. Up to extraction of a subsequence, they converge to a globally
Lipschitz function u® uniformly on the compact subsets of IR2. The function u® satisfies
0 <u®<1in R? Let

Q% = {u® <1} and I'* = 0Q°.
We now aim at proving that (¢*,u® Q%) is a solution of (1.1)-(1.2). Let us first

observe that f., =0 on [0,0. ] where 0., =1 —¢,(1 —0) — 1 as ¢, — 0. Therefore, by
passage to the limit £, — 0T, the function u® satisfies

Au® — c*Oyu® =0 in Q°
and u*(0,0) = 1. Similarly, the inequality (2.6) applied to u¢ implies that
u®(0,y) < C e¥s"® for all y < 0. (2.8)

Up to translation in the direction y, one can assume that «(0,y) < 1 for all y < 0.
It follows in particular that Q% # (). Notice also that u® > 0 in Q% from the strong
maximum principle.

From Theorem 2.1, u® is symmetric with respect to x and nondecreasing in x in the
half-space {z > 0}. Hence, u®(z,0) = 1 for all z € IR. Furthermore, the function u®
is nonincreasing in any direction 7 such that ||7|| = 1 and 7, < —cos a. Together with
(2.8), that yields

lim  sup u® =0, 2.9
b= e (ba) 29

where C~(b, ) = {(0,0) + A7, A >0, ||7]| =1, 7, < —cosa}. Moreover, one can define
the function ¢ as follows:

Vee R, ¢%(x)=inf {y, u*(z,y) =1}.
Since u® is nondecreasing in y, it follows that
Q% = {y < ¢%(2)}.

Proof of: limsupu®(X) =0 as d(X,I'*) — +oo, X € Q*. The function u® being
symmetric in x, the function ¢* is even. Furthermore, u“ is nondecreasing with respect
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tox in {x > 0}. As a consequence, r — ¢*(x) is nonincreasing for # > 0. Similarly, since
u® is nonincreasing in both directions (£ sin a, — cos @), it follows that ¢* is Lipschitz
and that Lip(¢*) < cot a.

We now claim that

u®(z,y) < C el @eosina for al] (2, y) € Q. (2.10)

Indeed, let x € IR be given and choose any yy < ¢*(x). Since u? (x,y) = u*(z,10) <1
as ¢, — 0, one has u? (z,y0) < 0., for €, small enough, whence

u® (z,y) < C eWwleansine for all 4y < yp.

€

Passing to the limit ¢,, — 0 and yo — ¢*(z) leads to (2.10).
Since ¢“ is globally Lipschitz, (2.10) yields that

lim sup u*(X) =0.
d(X,T)—+00, XEQ™

Regularity properties. From recent results of Berestycki, Caffarelli, Nirenberg [6], ge-
neralizing some results of Caffarelli [18], the Lipschitz free boundary I'* = {y = ¢%(z)}
is then globally C''*? for every 0 < 3 < 1. The restriction of the function u® to the set
Q< is then of class C'' up to the boundary I'*. From Theorem 2.4, the smoothness of ['®
implies that

Opu® = ¢y everywhere on I'?,

where n is the exterior normal to Q2% on I'*. From the general regularity theory of
Kinderlehrer, Nirenberg, Spruck [32], the free boundary T'* is of class C? and even
analytic, and the restriction of the function u® to the set Q2 is analytic up to the
boundary I'*. Moreover, the following Theorem, which directly follows from the methods
developped by Kinderlehrer, Nirenberg and Spruck, holds :

Theorem 2.6 (Kinderlehrer, Nirenberg, Spruck [32]) Under the previous assumptions,
and since I'* = {y = ¢*(x)} is smooth, for every a € IR and L > 0, there ezists a
constant C = C(¢, ¢y, L, Lip(u®), Lip(¢®)) > 0 such that

[(6)" (2.11)

<
L>®(a—L/2,a+L/2) —

In particular, because the constant in (2.11) does not depend on the parameter a,
we deduce that (¢®)” is globally bounded, i.e. T'* has a bounded curvature.

The boundary T'* has two asymptots as x — +oo. We shall use here a few auxiliary
lemmas. For the sake of simplicity, we drop the index « in the rest of this section. In
particular, ¢ denotes the function ¢°.

13



o(z)
Lemma 2.7 The function v(z) = / u(z,y) dy is of class C*(IR). Moreover, it

—00

V" (z) = c+ ¢" () — co\/1 + ¢ () (2.12)

and there ezists a constant C' > 0 such that ||v'|| < C.

satisfies

Proof. In this lemma, the partial derivatives of u stand for the partial derivatives of
the restriction of the function u to €.
From the inequality (2.10), namely

V(z,y) € Q, 0<u(z,y) <C bt@)eosna

the function v is well-defined. From the Harnack inequality [24] and standard elliptic
estimates, there exists then a positive constant C'; such that

|Vu(z,y)|| < Cy eW=¢@osina for all (2,5) such that y < ¢(x) — 1.
Since u is globally Lipschitz in IR?, one has
|Vu(z,y)|| < Co < Cf eW=¢@osina for al] (2,4) such that ¢(z) — 1 <y < ¢(x),

for some positive constants Cy and CY,. Therefore, there exists a positive number p; such
that
Viz,y) €Q, ||Vu(z,y)|| < p e ¢@eosine,

By induction and by the standard elliptic estimates up to the boundary, it follows
that - i
Vn € IN, V(z,y) € Q, ||[D™u(z,y)|| < pn(x) e¥-¢@)eosine (2.13)

where, for every n € IN, D"™u denotes any n-order partial derivative of w and p, is
a function which is locally bounded and depends on ¢ only. We repeat here that the
functions py and p; can be assumed to be globally bounded.

Since ||Vu|| < py(x)eV—¢@)eosine in the set Q and since the function ¢ is continuous,
it is straightforward to check, by distinguishing left neighbourhoods and right neigh-
bourhoods, that the function z — v(x) is continuous at any point x € IR. From (2.10),
we also have o

cosina

Vee R, 0<uw(x)<

By applying (2.13) to 0%,u and since the function ¢ is of class C', we similarily infer
that the function v is differentiable and that

o(z)
Ve e R, v'(z)=¢'(x)+ /_ Opu(z,y) dy. (2.14)

This function v’ is itself continuous. Since the function p; is bounded and since ¢ is
globally lipschitz-continuous, there then exists a constant C' > 0 such that ||v']|. < C.

14



The same arguments applied at any order yield that the function v is of class C*°(IR).
In particular, we have

Ve e R, o"(z) = o"(x) + ¢ (@)0ulz, bz / dy.

On the other hand, we know that Au — c¢d,u = 0 in the set Q = {y < ¢(z)}. Thus

[ 02 (e )y = lula )= Dyu(e )= = ¢ - Oyule. o(a).

—00

. . . T - _ I .
At any point (x, ¢(z)), the outside unit normal n to Q is n = W( ¢',1). Since

Vu = (9,u)n = con at any point (z, ¢(z)) (remember that Vu stands for the gradient
of the restriction of u to the set ), it follows that

Oyu(m, b)) = V- g = —— 0D
L+ ¢%(x)
and that .
) , —Vy-6, —— 9%
yu(@, ¢(x)) = Vu - ey o

Therefore, one obtains

n " Co Co ¢,2 ($ ) " 2
v'(x) = c+¢"(x) - - =c+¢"(x) — co\/1 + ¢ (),
Ji+62@)  J1+6°(@)

which completes the proof of Lemma 2.7. L

Let us now turn to the following

Lemma 2.8 The function ¢ satisfies cota + ¢'(x) > 0 in R and
+oo
0< / (cot o + @' () dx < +00. (2.15)
0
Proof. By integration of (2.12), we deduce that

V() = /(0 + (@) = 9(0)+ [ e = eo/1+ 07 (s))ds

Since u and ¢ are symmetric in z, the function v is even and v'(0) = ¢'(0) = 0. Therefore,

Vz € IR, /Ox(c—cm/l—i-gb’z(s))ds:v'(x) — ¢'(z).

Now consider the function
—c—eq/1+ &2 (z) = —2
z)=c—co\/1+ ¢ () 5

15
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It is nonnegative because ||¢'|| < cot «. Moreover, the function v'—¢’ is globally bounded
because both v' and ¢ are bounded. That implies that ¢ € L'(IR).
We know that —cot a < ¢'(x) < 0 for all x > 0. Hence,

1

Ve >0, 0<cota+d () = W(mt2 o — ¢ (x))
- Colt Q (sili2 a 11_ qf)'Zix)) 1 .
~ cota (sina_ ji+d (I)> (@+ 1+¢ (x))
= Co COS Qv la)
because m < 1/sina. Since ¢ € L'(IR), this gives (2.15). -

From Lemma 2.8, the function z — z cot a+¢@(x) is nondecreasing in IR and goes to

a finite limit L as x — 4-00. Therefore, since ¢ is even, it follows that the free boundary

[' = {y = ¢(x)} has the two half lines {y = Frcota+ L} as asymptots as x — +00, in
the sense that

() + |x|cota — L as z — +oo. (2.16)

Proof of (1.2). Theorem 2.6 and Lemma 2.8 imply that ¢'(z) — — cot o as & — +o0.
Since ¢ is even, this eventually yields (1.2).
This completes the proof of Theorem 1.1. r

3 Definition of a class of free boundary problems,
monotonicity and regularity results

The remaining part of this paper is devoted to the proof of Theorem 1.6. In order to
study the qualitative properties of the solutions of (1.1)-(1.2), we shall use a comparison
principle for sub- and supersolutions of such free boundary problems. This comparison
principle actually requires a uniformity condition on the free boundary. That is why we
define in this section a more adapted framework for the free boundary problems we shall
deal with.

From now on, u denotes a globally Lipschitz-continuous function on IR? such that
0 <u <1. We define

Qu) = {u < 1}

and

['(u) = 0Q(u).
We say that the boundary I'(u) is regular if it satisfies:

Definition 3.1 The boundary T'(u) is said to be regular if and only if there exists a
constant § > 0 such that for every point Xy € T'(u) there exist two open balls B* with
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radius § such that B~ C Q(u), 0B~ NIBT = {Xo} and Bt NC =0, where C~ is the
connected component of N Bys(Xo) containing B~ .

Remark 3.2 This regularity notion for the boundary is broad enough to include the
situation where an open ball B contains two disjoint connected components of (u) N B
separated by a thin piece in IR?\Q(u). This notion is also broad enough to be satisfied in
the case where I'(u) and the restriction of u to (u) are smooth enough (see Proposition
3.7 below). On the other hand, this notion is strong enough to allow for some mono-
tonicity, compactness results or comparison principles for the functions u (see Theorems
3.4, 4.5 and Proposition 4.2 below).

We shall also use the following notion of weak boundary condition on I'(u) (in the
following definition, I'(u) need not be regular):

Definition 3.3 We say that u satisfies

Ou _ co on I'(u)

on

if and only if there exist two continuous functions hy, hy : [0,+00) — [0,1] such that,
for each i = 1,2, h;(0) =0, 0 < h;(t) < 1 for allt > 0, h; is differentiable at 0 with
hi(0) = ¢o, and

VX € Qu), 1—hi(r) <u(X)<1-=hy(r), where r = d(X,T'(u)). (3.1)

The above condition (3.1) contains both local and global informations in the sense
that it says that the restriction of u to Q(u) has a uniform first-order Taylor expansion
near ['(u) with the slope ¢y on I'(u). Furthermore, u is bounded away from 0 and 1 at
any finite distance of I'(u). Therefore, the above definition is stronger than the weak
definitions of the boundary conditions in the sense of Caffarelli.

Let now ¢ : IR — IR be a given Lipschitz-continuous function, let ¢;,cy be two
given real numbers and, under the above two definitions, let us consider the globally

Lipschitz-continuous solutions u, 0 < u < 1, of the following free boundary problem

( ou ou

Lu := AU+CI%+ng_y = 0 inQu)={u<1},
% % = ¢o on ['(u) in the sense of Definition 3.3, (3.2)
lim sup v = 0,
Yo7 0 (yo)
| Sy ER u o= 1 onQ(y)

where

Q (o) = {y < d(z) + vo},
O (yo) = {y > d(z) + yo}-
Note that, from standard elliptic estimates, the equality Lu = 0 in Q(u) holds in the
classical sense and that, from the strong maximum principle, any u as above is positive
in Q(u).

Let us first state the following monotonicity result.

V?JOEZRa {
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Theorem 3.4 Let ¢ : IR — IR be a Lipschitz-continuous function. Let u be a Lipschitz-
continuous function such that 0 < u < 1 in IR* and solving (3.2) in the sense of Defini-
tions 3.1 and 3.5.

Then u is nondecreasing with respect to the variable y.

This theorem is proved in Section 4. From Theorem 3.4, a corollary follows immedi-
ately:

Corollary 3.5 Let ¢ : IR — IR be a Lipschitz-continuous function. Let u be a Lipschitz-
continuous function such that 0 < u < 1 in IR* and solving (3.2) in the sense of Defini-
tions 3.1 and 3.3. Assume moreover that Lip(¢) < cot 8 for some 0 < 3 < 7/2.

Then u is nonincreasing in all directions T belonging to the cone

C(B)={pv, p>0, V]| =1, v, < —cosf}.

Proof. It immediately follows from Theorem 3.4 in the case 7 = pr with p > 0 and
vy < —cos3: namely, this is done by rotating the frame and writting an equivalent
problem in a new orthonormal frame (e}, e;) with e, = v. The case v, = —cos 3 then
follows by continuity. r

Remark 3.6 Under the conditions of Theorem 3.4 and Corollary 3.5, the boundary I'(u)
is then a Lipschitz graph with respect to all directions 7 € (C~(3))°, and in particular
in the variable y. The latter was actually not a priori required in Definitions 3.1 and
3.3.

The above monotonicity results have natural extensions in higher dimensions.

The following proposition makes the link between the classical solutions of (1.1) with
smooth boundary and the solutions of (3.2) :

Proposition 3.7 Let u be a globally Lipschitz-continuous function in IR?* such that 0 <
u < 1, both Qu) and R*\Q(u) are not empty, and the restriction @ of u to Q(u) is
C' up to the boundary T'(u). Assume that T(u) is globally C'' with bounded curvature.
Assume that u solves (1.1), where %% = ¢q stands for 3¢ = ¢y on I'(u) (in the classical
sense) and n is the outward unit normal to Q(u) on T'(u).

Then I'(u) is regular in the sense of Definition 3.1 and 3% = co on I'(u) in the sense

of Definition 3.3.

Remark 3.8 Note in particular that, for each a € (0,7/2], the function u® given in
Theorem 1.1 is then a solution of a problem of the type (3.2) in the sense of Definitions
3.1 and 3.3, with (¢1,¢2) = (0, —¢p/sin @) and ¢ = ¢°.

The following proposition shows the role played by the same topological assumption
for IR*\Q(u) as in Theorem 1.6:
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Proposition 3.9 Given the assumptions of Proposition 3.7, assume moreover that
R*\Q(u) has no bounded connected components.

Then there ezists a Lipschitz-continuous function ¢ such that I'(u) = {y = ¢(x), = €
R}. As a consequence, even if it means changing (c,u, ) into (—c,u(—z,—y), —2),
then u satisfies (3.2) with (c1,c2) = (0, —c) and Q(u) = {y < ¢(x)}.

Let us now turn to the
Proof of Proposition 3.7. Step 1: the boundary T'(u) is reqular. First of all, it follows
from the assumptions of Proposition 3.7 that, at every point X, € I'(u), there exists a
(unique) outward unit normal ny, to (u) and, if B is an open ball such that X, € 0B
and B C Q(u), then ny, is the normal vector to B at Xj.

Now suppose that I'(u) is not regular in the sense of Definition 3.1. Then there exist
two sequences ¢, — 07 and X,, € I'(u) such that either 1) the open ball B, of radius
en and center X, — e,ny, is not included in Q(u), or 2) B, C Q(u) and the connected
component of Q(u) N By, (X,) meets the ball B of radius £, and center X,, + ¢,nx, .
Case 2) cannot occur for an infinite subsequence &,, — 0 since I'(u) is assumed to have
a bounded curvature.

Therefore, for n large enough, case 1) occurs and, by using again that I'(u) has
a bounded curvature, it follows that, if we denote by ~, the connected component of
I'(u) N By, (X,,) containing X,, and by C, the connected component of By, (X,)NQ(u)
containing X,,, then

0 < d(X,, (0C)\ V) < en-

Let Y, be a point which realizes the minimum of that distance and call

1 —u(X, + X, — Y,|X) Qu) — X,
n X = ) n = T~ ~
! ( ) |Xn_Yn| |Xn_Yn|
Since the curvature of I'(u) is bounded, the scalar product ny,, - |§Z:§:| — —1 and the

curvature of 0€2,,, which is less that |X,, — Y},| times the curvature of I'(u), goes to 0 as
n — +oo. On the other hand, since u,(0) = 0 and since the Lipschitz bound of each u,,
is not greater than that of u, the functions u,, are locally bounded and converge locally,
up to extraction of some subsequence, to a Lipschitz-continuous function ug. Up to a
rotation of the frame and by still calling uy the rotation of ug, one then has

AUU = 0in D,(Qo),
Uy = 0 on 890,
Ug Z 0 in ]RQ,

where Qy = {(z,y) € R*, 0 < y < 1}. The Lipschitz-continuous function v(y) :=
SUP,cr o, y) then satisfies

" > 0in D'(0,1),
v(0) = (1) = 0,
v > 0in IR.

1
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Therefore, v = 0 in [0, 1] and uy = 0 in Q.

Now, say in By 5(0), the functions u, are Lipschitz-continuous and 02, (where u,, =
0) is CY') with norms independent of n. Thus, since u,(0) = 0, the functions u,
are uniformly bounded in B, 5(0). It follows then from standard estimates up to the
boundary (see Morrey [40]) that the functions w, are in W*?(Q, N By/2(0)) for every
p € [1,+00) and that ||ua|lwe2s@,.ns,,0) < C(p) where C(p) does not depend on n.
From Sobolev injections,

||un||cl,5(gnm31/2(0)) < C'(B)

for each § € [0,1). Choose a 3 € (0,1). From the assumptions of Proposition 3.7, the
restrictions %, of the functions w, on Q, satisfy O,i, = —cy on 9, in the classical
sense. Therefore, there exists a constant C' such that, for all n large enough and for all
re (0,1/2),

—rnx, € Q, and |u,(—rny,) — cor| < Cri*P,

Since ny,, Dg"’ﬁ"‘ — —1, the passage to the limit n — 400 in the above inequality

contradicts the fact that ug = 0 in €.
As a consequence, the boundary I'(u) is regular in the sense of Definition 3.1.

Step 2: u satisfies % = ¢y in the sense of Definition 3.3. Let us define the functions
h1 and h2 by

hi(t) = e 0 (1 —u(X)),
ha(t) = inf (1— u(X)) (3.3)

XeQ(u), d(X,I(w)=t
and let us prove that both h; and h, satisfy the requirements of Definition 3.3.
First of all, one immediately has 0 < hy < hy < 1 since 0 < u < 1. Moreover, (3.1)
follows from the definitions of h; and hs.
Next, let us observe that, from step 1 - namely, the free boundary T'(u) is regular -,
there exists 0 > 0 such that

VX, € T(u), Vr € 10,8], d(Xo—rnx,, [(u)) =r.

Furthermore, if X € Q(u) is such that d(X,'(u)) = r € [0,0], then there exists X, €
['(u) such that X = Xy — rny,. Therefore,

hy(r) = sulz | (1 —u(Xo—rny,))
v relo,d], Kol (u 3.4
[ ] hQ(T) = XolenI‘f(u) (]_ - U(XO — TTLXO)). ( )
On the other hand, since I'(u) is globally C'*! by hypothesis and since u is globally
bounded, it follows as above from regularity theory for elliptic equations [40] that the
restriction @ of u in Q(u) is actually globally C%* in Q(u) for every 3 € [0,1). Choose
an arbitrary 3 € (0,1). Since 0,4 = ¢o on I'(u) in the classical sense, there exist then

two positive constants ry and C' such that

VO <7 <ry, VYXoeT(u), [1—cor—u(Xy—rny) <Crt’.
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From (3.4), it is then found that

hy(r) — cor
r

ho(r) — cor < P

)

r

for r small enough. Eventually, A (0) = h}(0) = ¢o. Since hy > hy and hy(0) = hy(0) = 0,
that especially yields the existence of a dy > 0 such that

inf hy > inf hy >0 for all 0 < n <4y,
[77750] [77’60]
1> sup hy > sup ho.

[0,d0] [0,d0]

(3.5)

Lastly, one shall show that infj,; ho > 0 and SUPJq.p] hi <lforall) <a<b< +00.
Assuming that has been proved, then, even if it means changing the functions h; and
hy (increasing h; and decreasing hs), hy and hy can be assumed to be continuous on
[0, 400) and to satisfy all other requirements of Definition 3.3.

To begin with, let us prove that

[inlg hy >0forall0<a<b< +o0.

Without loss of generality we can assume that a > dy because of (3.5). Suppose now by
contradiction that infl,j hy = 0 for some 0 < g < a < b < +oo. There exist then a
sequence t, — t € [a,b] and a sequence of points Xy € Q(u) such that d(X, ['(u)) =
and u(Xy) — 1 as k — +o0. Let Yj be on 0By, (X;) NT'(u). One has Xy =Y, — tyny,.
Up to extraction of some subsequence, one can assume that ny, — n., and, since u is
globally bounded and Lipschitz-continuous in IR?, one can assume that the functions
up(X) = u(Xy + X) converge locally uniformly in IR? to a globally Lipschitz-continuous
function u., such that

0 in D'(B(0)),
1 in IR?
1.

At — cOylUoo
uOO

Uoo (0)

A

The strong maximum principle then yields u,, = 1 in By(0). On the other hand, the
points Z; = Yj, — dony, are in By, (X)) C Q(u) (because t > a > 6y and &y < 2t for k
large enough) and these points are such that d(Zy,T'(u)) = dp. Hence,
1 — up((te — So)ny,) = 1 —u(Z) > ho(d(Zk, T'(u))) = ha(dp) > 0
from (3.5). The passage to the limit £ — +o00 yields
1-— Uoo((t - 60)'”00) 2 hz((S()) > 0,

whence uq ((t — dp)neo) < 1. Since (t — dg)ne € By(0), one has reached a contradiction.
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Similarly, suppose by contradiction that sup;,; hi =1 for some 0 < a < b < +o0.
After a change of the origin and a passage to the limit, one is led as above to the existence
of a globally Lipschitz-continuous function v, in IR? such that

0 in D/(Bi(0)),
0 in IR?,
0,

Avge — OyUsg
Uso

Voo (0)

vl

where 0 < t < +o0o. From the strong maximum principle, the function v, is then
identically equal to 0 in T@) Under the notation of the previous paragraph, one has
Yy € ['(u), whence uy(tgny,) = 1 and vy (tns) = 1 at the limit (the functions wy are
uniformly and globally Lipschitz-continuous and locally converge to v.,). The latter is
in contradiction with the fact that v, = 0 in By(0).

That completes the proof of Proposition 3.7. C

To complete this section, let us turn to the
Proof of Proposition 3.9. For the sake of clarity, the proof is divided into several
lemmas. In what follows, one makes the assumptions of Propositions 3.9.

Lemma 3.10 If ¢ > 0 and if there exist an open ball B and a function ¢ such that
v={y=¢(x)}NB CI'(u) and the outward unit normal to Q(u) on vy has a nonpositive
y-component, then the set {y < ¢(x)} N B is conver.

Proof. Let us first notice that the function u is actually of class C* in Q(u), and, from
regularity results of Kinderlehrer, Nirenberg and Spruck [32], the boundary I'(u) is even
analytic and the restriction @ of w in (u) is analytic.

Since Au — cOyu = 0 in Q(u), it is found that

A(Vul?) = ed,(|Vul?) = 2[(8%,u)> + 2(8%,u)* + (8%,u)?] = 2Dl > 0 in Qu).

Moreover u — 0 as d(X,'(u)) — +oo and X € Q(u), whence |Vu| — 0 as d(X,T'(u)) —
+00. From the maximum principle, the maximum of |Va|? is reached on the boundary
[(u), i.e. [Va| < ¢ in Q(u), and the strong Hopf lemma yields that

D2 i >0 on T'(u), (3.6)

where n is the outward unit normal to Q(u) and, for any unit vector o = (0,,0,) € S*
and any point (z,y) € Q(u),

D?_i(z,y) := 0202 a(x, y) + 2axay8§ya(x, y) + azazy@(x, ).

Therefore, calling 7 = —n* = (n,, —n,), it follows that

D2 i =coyu— D2, <0 on-vy
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since ¢ > 0 and d,u < 0 on 7 (the latter follows from Vi = ¢on and n, < 0 on 7 by

assumption). Then, the curvature K = %}lﬁ of v is negative (with the convention that
the curvature of the boundary of a disk is positive). The conclusion of Lemma 3.10
follows. :

Remark 3.11 The assumption n, < 0 on v means that Q(u) is locally above . Note
however that Q(u) may also meet the set {y < ¢(z)}.

Lemma 3.12 If ¢ > 0 and if there exists a connected graph v = {y = ¢(x), a < z < b}
with —oo < a < b < 400 such that v C T'(u) and the outward unit normal to Q(u) on vy
has a nonpositive y-component, then a # —oo and b # +o00.

Proof. Suppose by contradiction that, say, « = —oc (the case b = +o00 can be treated
similarly). Then there exist a sequence z; — —oo and some open balls By, of radius k
such that

By C {y < ¢(x)} and Xy = (xy, d(xx)) € OBk N 7.

Note that since v is connected, each ball By, can be defined for k£ large enough such that
—k < b as the ball of radius £ and center (—2k, ), where

ty = sup {t, Be(=2k,1) C {y < ¢(z)}}

and By (—2k,t) is the open ball of radius k and center (—2k, t).

Up to extraction of some subsequence, the functions ugx(X) = u(Xy + X) locally
converge to a globally Lipschitz-continuous function .. Since 9,4 = ¢o > 0 on ['(u), it
immediately follows that u.,, as u, satisfies

Altsy — €Oytiog < 0 in D'(IR?)

and 0 < uy < 1in IR% One can also assume that the unit outward normals n; to Q(u)
at (xk, ¢(xy)) converge to a unit vector v = (1, 1,). Since the y-component of ny is
nonpositive, it follows that v, <0.

On the other hand, it resorts to Proposition 3.7 that I'(u) is regular in the sense of
Definition 3.1. Let § > 0 be as in Definition 3.1. Let X € IR? be any point such that
—0 < X -v < 0. Lemma 3.10 yields that

v C {(zx + z, p(xx) + y) such that (z,y)-nk >0, v < b— x4}

Since |b— x| — 400 and BN~y = 0, it then follows that there are some points Y} € IR?
such that

Xp+Ye€w, Vi = X+ |X vy and ny, 4y, = v as k — +oo.

From Definition 3.1, the ball of radius § and center Y; — dnx, v, is included in Q(u).
Therefore,
d(Xg+ X, ['(u)) = | X -v| as k — +o0.
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It also follows from Proposition 3.7 that u satisfies d,u = ¢y on I'(u) in the sense of
Definition 3.3. Thus,

1—h(d(Xp+ X, T(v) <u(Xp+X) <1—h(d( Xy + X, T(u))
and
L= ([X - v]) Suse(X) < 1= ho(]X - v])

at the limit. That especially implies that u. (X) = 1 for all X € IR? such that X -v = 0.
Eventually, the function

A i [
v(y') == 11615{uoo(yy+azl/ )

I,

is globally Lipschitz-continuous on /R and satisfies

0 <v < 1,
v(0) = 1,
v(y) < 1T—hy(ly]) < 1 forall —d <y <0,
v — vy’ < 0 in D'(IR).

Choose a barrier subsolution like
w(y') = (1 +¢)e? —¢in (—o0,0],
with € > 0. We can check immediately that
w” — cvyw' = (14 ¢)(e? — eyye)e™ > 0 in (—o0, 0]

since ¢ > 0 and v, < 0. The maximum principle and the passage to the limit ¢ — 07
imply that v > 1 in (—o0,0]. This contradicts the fact that v is less than 1 in a left
neighborhood of 0, which completes the proof of Lemma 3.12. L

The analogue of the convexity result of Lemma 3.10, in the case where I'(u) has a
vertical tangent, is the following

Lemma 3.13 (i) If ¢ > 0 and if I'(u) has a vertical tangent at a point X, = (xg, yo)
with nx, = (1,0), then I'(u) N B,.(Xy) C {x > zo} U{Xo} for all r small enough.

(it) If ¢ > 0 and if T'(u) has a vertical tangent at a point Xo = (x9,yo) with nx, =
(—1,0), then I'(u) N B,(Xo) C {z <z} U{Xo} for all r small enough.

Proof. Up to translation and symmetry with respect to z, it is sufficient to prove part
(i) with X, = 0.

In a neighborhood of 0, the free boundary I'(u) can be written as a graph {z =
Y (y)} where v is analytic and ¢(0) = ¢'(0) = 0. Since the connected components of
['(u) cannot have finite endpoints, it follows that if ¢» = 0 locally then the whole line
v := {z = 0} is included in I'(u) with n = (1,0) on 7. As in the proof Lemma 3.12, one
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can prove that the function v(z) := infyck u(z,y) is globally Lipschitz-continuous and

satisfies
0

r\‘EI/\

V\_/

VANANI IR VAN

(
2(||

Ul

v(z) <1

A

1
1,
1 forall —6d<z<0,
0 in D'(IR).

One is then led to a contradiction as above in Lemma 3.12.

Therefore, near 0, ¥(y) = a y?(1 + o(y)) for some p > 2 and a # 0. After a simple
computation, it is found that

- (04 _

0 = —cg———= = —coap y? (1 +0(y)),

! J1+ 0
w/

T (W)

on I'(u) near 0. Under the notation of Lemma 3.10, (3.6) yields 0% 4 = D2 @ > 0 at 0.
Since Jyu = 0 at 0, one gets that

= ap(p—1) y¥»*(1 +o(y))

D2 i = 82i = Oyt — 0,0 < 0 at 0.

Eventually, K < 0 at 0, whence p = 2 and « > 0. That completes the proof of Lemma
3.13. i

Lemma 3.14 Under the assumptions of Lemma 3.12, the set IR*\Q(u) has a bounded
connected component.

Proof. Let (a,b) the maximal interval such that v = {y = ¢(x), a < x < b} C I'(u) is
a graph with Q(u) locally above 7. Lemma 3.10 implies that ¢ is concave and Lemma
3.12 yields that —oo < a < b < 400. Therefore, near each point a and b, ¢ is either
locally bounded or goes to —oo (as x — a™ or z — b7).

If, say, ¢(x) — —oco as ¥ — a™, then, as in the proof of Lemma 3.12 and after a
change of the origin and a passage to the limit, there would exist a globally Lipschitz-
continuous function 0 < uy < 1 such that

Aty — cdytis, < 0 in D'(IR?),

U (0,y) = 1 for all y € IR and uy(x,y) <1 — he(|z]) for all z € [—0,0] and y € IR. An
application of the maximum principle to the function v(x) = inf,c g v (7, y) then leads
to a contradiction as in Lemmas 3.12 and 3.13.

Similarly, one can prove that the case ¢(x) — —oo as © — b~ is impossible. There-
fore, the concave function ¢ can be extended by continuity at a and b. From the
maximality of the interval (a,b) and the concavity of the function ¢, it follows that
v={y = ¢(x), a < x < b} has two vertical tangents at A = (a, #(a)) and B = (b, #(b))
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and that ¢ is greater than ¢(a) (resp. ¢(b)) in an open right (resp. left) neighborhood
of a (resp. b). Since the connected components of I'(u) cannot have finite endpoints,
one concludes from Lemma 3.13 that there are two curves 7, and =, included in I'(u),
which respectively have A and B as endpoints and which are respectively included in
{z>a}N{y < d(a)} and {x < b} N {y < ¢(b)}, respectively near A and B.

Let Iy, and T', be the connected components of IT'(u)\7 containing -, and ~,. Since
the connected components of I'(u) cannot have finite endpoints, the curves 7, and 7, can
then be parametrized by C' functions X,(t) = (74(t),y.(t)) and Xy(t) = (z4(t), ys(t))
respectively, defined on (0,1) and such that

X,(t) = A and X(t) - Bast— 07,

From the definition of +,, there exists 7 > 0 such that z,(¢) > a for ¢t € (0,7). Since T,
cannot cross 7 and since the connected components of I'(u) cannot have finite endpoints,
one of the following situations necessarily occurs:

i) there exists ¢y € (0,1) such that z,(to) = a, y.(to) < ¢(a), and a < z,(t) < b,
Ya(t) < d(x4(t)) for all t € (0, ty),

i) a < 24(t) < b, yo(t) < d(za(t)) forall t € (0,1) and y,(t) - —cc ast — 17,

iii) there exists o € (0,1) such that x,(tg) = b, ya(to) < &(b), and a < z,(t) < b,
Ya(t) < d(z4(t)) for all t € (0,1y),

V) a < 24(t) < b, yo(t) < ¢(z4(t)) for all t € (0,1) and X,(t) > Bast — 1.

One shall now prove that only case iv) may occur. If case i) occurs, there exists
t1 € (0,%) such that nx,,) = (1,0) and T, is locally included in {z < x,(t;)} near
Xa(t1) (t1 can be chosen such that x,(t)) = maxyc(o,4,) a(t)). That contradicts Lemma
3.13.

If case ii) occurs, the same argument as in case i) implies that

zo(t) = M := sup x,(t) € (a,b] ast — 1".
te(0,1)

Therefore, X,(t) — (M, —o00) ast — 1~. Choose any sequence t,, — 1~. As in the proof
of Lemma 3.12, the functions u, (X) = u(X,(t,) + X) converge locally, up to extraction
of some subsequence, to a globally Lipschitz-continuous function u.(z,y) such that

Aty — cdytis, < 0 in D'(IR?),

0 <t <1, ux(0,y) =1 for all y € IR and u(x,y) < 1 — ho(|z]) for all z € [-4,0] and
y € IR. Applying the maximum principle to the function v(z) = infyer uw(x,y) leads
to a contradiction as in Lemma 3.13.

If case iii) occurs, then there exists ¢; € (0, 1) such that nx,q,) = (—1,0) and Iy is
locally included in {x > z(t1)} near X,(¢;). That contradicts Lemma 3.13.

Therefore, only case iv) may occur, which means that ', = T', and UL, is a bounded
connected component of I'(u). Since Q(u) is locally above v = {y = ¢(z), a < z < b}
and I, C {y < ¢(x), a < z < b}, one concludes that ??\Q(u) has a bounded connected
component. r
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Lemma 3.15 If ¢ > 0 and R*\Q(u) has no bounded connected components, then there
exists a Lipschitz-continuous ¢ : IR — IR such that Q(u) = {y < ¢(x)}. Moreover u
satisfies (3.2) with (c1,ce) = (0, —c).

Proof. From Lemmas 3.13 and 3.14, we deduce that Q(u) is a subgraph Q(u) = {y <
P(x), a <z < b} where —oo < a < b < 400 and ¢ is a continuous function on (a, b);
furthermore, I'(u) = {y = ¢(z), a < z < b} has no vertical tangent.

We now claim that

sup |6(x) — p(2")| < +oo.
|z—2'|<1, a<wz,z’<b

Otherwise, for each n > 1, there are some a < 21, < x4, < b such that
1'4,“ - xl,n S 1 and |¢(x1,n) - ¢(x4,n)| Z TLZ.
Therefore, there are some xs, < x5, € [T1,,T4,] such that

x?),n - 1'2,“ S 1/” and |¢(x2,n) - ¢(x3,n)| Z n.

There then exists a sequence of points X,, = (z,, ¢(z,)) € ['(u) such that

Ty € [Tom, T3n] and d(z,) = (A(T2n) + G(73,0))/2.

As in the proof of Lemma 3.14 case ii) and since I'(u) is globally C™!, it follows that,
at least for some subsequence and up to a symmetry x — —z, the functions u(X, + X)
locally converge to a globally Lipschitz-continuous function u., such that

At — cOytis, < 0 in D'(IR?),

0 <o <1, u0(0,y) =1 forall y € IR and upo(z,y) < 1—hy(|z|) for all x € [-6,0] and
y € IR. By considering the function v(z) = infyer uso(z,y), one reaches a contradiction
as in Lemma 3.13.

Therefore,
sup |6(z) — p(2")| < +o0
|z—2'|<1, a<z,x'<b
and, since the graph of ¢ cannot have finite endpoints, it follows that ¢« = —oo and

b = 400. There then exists a globally Lipschitz-continuous function v : IR — IR and
two real numbers 7y < 7y such that

P(z) + 10 < ¢o(x) < ¢Y(x) + 7 forall z € R.

Moreover, because lim Supyx r(u))—+o00, xea@) “(X) =0 (remember that u solves (1.1)),
we deduce that

lim sup u =0, where Q (yo) = {y < ¥(z) + vo}-
YO0 9= (o)
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The function u then satisfies a problem of the type (3.2) with (c1, c2) = (0, —c). Lastly,
since the function ¢ is Lipschitz-continuous with, say, Lip(¢) < cot § and 3 € (0,7/2],
Corollary 3.5 implies that u is nonincreasing in all directions of the cone C~(3). As a
consequence, the function ¢ itself is globally Lipschitz-continuous and Lip(¢) < cot 3.1

Finally, Lemma 3.15 completes the proof of Proposition 3.9. L

4 Comparison principle for sub- and super-solutions
of a class of free boundary problems

In order to prove the uniqueness results of Theorems 1.3 and 1.6, we will use a sliding
method and we need a comparison principle for sub- and supersolutions of free boundary
problems of the type (3.2).

Namely, under the notation in (3.2) and given a Lipschitz-continuous function ¢ :
IR — IR, we say that a globally Lipschitz-continuous function @ (resp. u) such that
0<m <1 (resp. 0 <u<1)in IR?is a supersolution (resp. subsolution) of problem
(3.2) if

Lu < 0 inD'(Qm)),

e
a—u = ¢p on ['(@) in the sense of Definition 3.3, (4.1)
n
JyppeR, uw = 1 inQF(y)
(resp.
( Lu > 0  inD'(Q(u)),
0
a—u = ¢y on ['(u) in the sense of Definition 3.3,
n
lim sup u = 0, (4.2)
Yo% 0= (yo)
lim sup u = 0).
L d(X,D(w)—>+00, XEN(u)

In particular, we see that u is a solution of (3.2) if and only if it is both a sub- and a
supersolution.

Remark 4.1 We could have defined weaker notions of solution, subsolution or superso-
lution of (3.2) by assuming less regularity for the Neumann conditions on the boundary
" (see Caffarelli [18], Ton [49], [50]), but the uniformity of the behaviour of the functions
near the free boundary will be used in the proofs, especially in the following proposition.

A nice property of the solutions (resp. supersolutions, subsolutions) of problem of
the type (3.2) is the following compactness result:

Proposition 4.2 Let ¢ : IR — IR be a Lipschitz-continuous function and let ci,co €
R. Let u (resp. @, u) be a globally Lipschitz-continuous solution (resp. supersolution,
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subsolution) of problem (3.2) such that 0 < u <1 (resp. 0 <uw <1, 0<u<1)in
IR%. Assume that T'(u) (resp. T'(w), T'(uw)) is reqular in the sense of Definition 3.1. Let
(xk)kemv be a sequence of real numbers and define

uk(z,y) = ulzy, + x, ¢(zk) +y)

(resp. Ug(x,y) = Uz + @, o(xx) + ), we(r,y) = wlwr + =, ¢(zk) +y)) and ¢p(z) =
¢(z + ) — p(x).

Then, up to extraction of some subsequence, the functions ¢, converge uniformly
locally in IR to a function ¢o, and the functions uy (resp. U, w,) converge uniformly
locally in IR* to us (T€sp. Tso, Us). Furthermore, us (resp. Tso, Us) 8 a solution
(resp. supersolution, subsolution) of (3.2) with ¢ in place of ¢, namely,

( Lue = 0 inQus),
Ouoo = ¢y onI'(uy) in the sense of Definition 3.3,
% ‘ on (4.3)
lim sup u, = 0,
YT 02 (o)
\ Use = 1 in QL (y1), with the same y; as in (3.2)

(resp. either d((zg, d(xy)),['(W)) — 400 and Uy = 1 in R2, or d((zy, ¢(xr)), L(7)) is
bounded, both Q(Us) and IR*\Q(Us) are not empty and
Li, < 0 inD'(QU)),
Gaﬂ_;o = ¢g onT'(Ux) in the sense of Definition 3.3, (4.4)
U = 1 in QL (y1), with the same y; as in (4.1),

resp. either d((zy, ¢(zr)), T(w)) — 400 and u., = 0 in IR?, or d((zg, d(xy)), ['(u)) is
bounded, both Q(uy) and IR*\Q(u.,) are not empty and

Luy, > 0 in D'(Rux)),
0
% = ¢y onI(uy) in the sense of Definition 3.3,
n
lim sup u,, = 0, (4.5)
Y00 0% (wo)
limsup wu,, = 0),
d(X,D(uy)) = +00
\ X€EQ(uy,)

where
QL (v0) = {y < do() + 0},
V& B, { QL (yo) = {y > doo(T) + 10}

Moreover, I'(us) (resp. T'(Ts), ['(uy)) is regular in the sense of Definition 3.1 and
lim Q(ug) = Queo)

k—+o00

(resp. kliT Q) = UUso), klirf Quy,) = Quy) ), where for any sequence of sets Ej,
—+00 — 100
limka‘koo Ek = {X € RZ, HX]C € Ek, X = llmk*)+(x) Xk}
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Proof. It is done only in the case where u is a solution of (3.2). The proofs in the
cases of sub- and supersolutions are similar and use some parts of the proof below (see
Remark 4.3).

Let then u be a globally Lipschitz-continuous solution of (3.2). For the sake of clarity,
one divides the proof into four main steps.

Step 1: Existence of uy and ¢. Under the assumption of Proposition 4.2, the fam-
ily of functions (uy) is equi-Lipschitz-continuous and globally bounded between 0 and
1. From Ascoli’s theorem, the functions u;, converge locally uniformly in IR?, up to ex-
traction of some subsequence, to a globally Lipschitz-continuous function u., such that
0 < Uy < 1in IR% Furthermore,

Lus =0 in D'(Q(uy)) where Q(us) = {0 < uyp < 1}

From standard elliptic estimates, Lus, = 0 actually holds in the classical sense in Q(u).
Similarly, the functions ¢, converge, up to extraction of some subsequence, locally
uniformly in IR to a globally Lipschitz continuous function ¢.
The limiting condition
lim sup s =0
YT Az (vo)

follows from l_i)m sup u = 0 and from the definition of ¢,. Indeed, take any ¢ > 0
Yo% 0 (yo)

and let yo be such that u(z,y) < e for all y < ¢(x) + yo. Now choose any point (z,y)
such that y < ¢o(z) + yo. For k large enough, one then has y < ¢r(x) + vo, i.e.
Y+ é(zk) < ¢(xr + ) + yo. Therefore,

u(zy + 2,y + o(ag)) <e.

In other words, ug(z,y) < € for k large enough, whence u..(z,y) < &, which is what was
to be proved.
Similarly, it is esay to check that u., =1 in QF (y;) with the same y; as in (3.2).

Step 2: Proof of the Neumann condition on I'(uy,). Let us now prove that the Neu-

Oloo

mann condition %= = ¢y holds on I'(u) in the sense of Definition 3.3. First, since the
Oou

function u itself satisfies 5% on I'(u), there exist two functions h; and h; fulfilling the
requirements of Definition 3.3. To prove that u., also satisfies this Neumann condition

on I'(us), it is sufficient to show that

VX € Qus), 1—=hi(r) <ue(X) <1 —hy(r), where r = d(X, '(uw))- (4.6)

To prove (4.6), choose an arbitrary point X = (z,y) € Q(uy) (i.6. ux(X) < 1). For
k large enough, one has ux(X) < 1, whence

1-— hl(Tk) S U(Xk) S 1-— hg(?”k)
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Xk ¢ (x )+y)

Zk= (xk ,0 (xk ) + Y

Figure 2: The ball of radius r, and center Xj

where Xy = (x + z,¢(zx) + y) and 1y = d(Xy, '(u)) (see Figure 2). On the other
hand, one has u(xg, ¢(xx) + y1) = 1. Therefore, the segment S between the points X
and (xg, ¢(x) + y1) meets ['(u). As a consequence, 7 is not larger than the length
of S, which is independent of k. Eventually, the sequence (ry) is bounded. Let now
Zy, = (xk, ¢(xg)) + Yy be a point on I'(u) such that

|Xk—Zk| = |X—Yk| =T

(such a point exists because I'(u) is closed). Up to extraction of some subsequence,
one has YV, — Y, € R? and 1, — 1o = |X — Y| € [0,+00). Since the functions uy,
are equi-Lipschitz-continuous and converge to us, and since uy(Yy;) = 1, it follows that
Uoo(Yoo) = 1. Since uq(X) < 1, one gets 7o, > 0.

Now choose any point X = (Z,7) such that |X — X| < ro and set X, = (z; +
%, ¢(xx) + 7). For k large enough, one has | X — X| < 4. Since I'(u) C IR?\B(X, 1)
(where B(Xg,r) denotes the open ball with center X}, and radius r) and since r, =
d(Xg, ['(u)), it follows that

d(Xy, T(w) > 1y — | Xp — Xi| = — | X — X].
On the other hand, d(X;,T'(u)) < d(Xy, Z1) < 2r;. Eventually, (3.3) yields

1- sup hy < u(Xy) =up(X) <1-— _inf he. (4.7)
[r =X =X, 1 Xk —Z] [Pk =X =X, X —Zg ]

For k large enough, one has

rh— X = X[ > (re — | X = X[)/2>0
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and, since | X — Z| is bounded and hy is continuous and positive on (0, +00), the passage

to the limit & — 400 leads to ux(X) < 1. As a consequence, B(X,7s) C Q(tis). But

Uoo(Yoo) = 1 and |V, — X| = ro. Therefore, it follows that ro = d(X, T ().
Applying (4.7) to X = X leads to

1— hl(rk) S ’LLk(X) S 1— hg(’l“k)

and the limit £ — 400 yields (4.6). That means that u, satisfies the Neumann condi-

tion 24 = ¢, on I'(us) in the sense of Definition 3.3.

Step 3: Convergence of Q(uy) to Q(us). First of all, any point X € Q(uy) is such
that X € Q(uy) for k large enough. Next, let us prove that any point on I'(us) = 0Q(u)
is the limit of a sequence of points in Q(ux). Choose any Yo, € I'(u). Let us first prove
the existence of a sequence of points Y, € I'(uy) such that YV, — Y, as k — +oc.
Indeed, if not, there exists an open ball B, (Y,,) centered at Y., with positive radius r,
such that, for a sequence k — +o0,

either B, (Ys) C {ur = 1}° or B,(Ya) C {ug < 1}

The first case is clearly impossible, otherwise 1., = 1 in B,.(Y,,) and Y, cannot be on
I['(uoo). If the second case occurs, call r, = d(Yoo, ['(ug)) > r. As in Step 2, the sequence
(r) is bounded and, up to extraction of some subsequence, ry — ro > r and

Uoo(Yoo) <1 — ha(re) < 1.

The latter is in contradiction with Y, € I'(us) and this second case is ruled out too.
Therefore, Q (o) C limy_ 10 Q(ug)-

Let us now prove the reverse inclusion. Take a sequence X € Q(uy) such that
Xy - X as k — +oo. Let rp = d(Xg,['(ug)). As in Step 2, the sequence (ry) is
bounded and, up to extraction of some subsequence, one has either r, — roo > 0 or
rr — 0. In the first case, it follows as in Step 2 that

Uoo(X) <1 —ho(rs) <1,

whence X € Q(u). If the second case occurs, there then exists a sequence of points
Yy € T'(uy) such that | Xy — Yi| = r, — 0, whence Y, — X. Since I'(u) is regular in the
sense of Definition 3.1 and since each I'(uy) is just a translation of I'(u), there exists for
each k a ball B, C Q(ug) of radius 0 and center Wy, and such that Y, € 0B, . Since
Yy, — Wi| = and Y, — X, one can assume, up to extraction of some subsequence,
that Wy — W with | X — W/| = 4. As in step 2, it follows that the open ball Bs(WV) is
included in Q(uy). Since | X — W/| =4, one concludes that X € Q(uy).
Eventually, limg_, 4o Q(ur) = Q(too)-

Step 4: The free boundary I'(uy,) is regular. Choose any Yy, € I'(uy). From step 3,
there exists a sequence of points Yy € I'(uy) such that Y, — Y, as k — +oo. Since the
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boundary I'(u) is regular in the sense of Definition 3.1, there exists then § > 0 and two
sequences of points X,;t such that

Bs(X,) € Qug), 0Bs(X,)NdBs;(X;) ={Yx} and Bs;(X;)NC, =0,

where C; is the connected component of Q(ug) N Bas(Y)) which contains Bs(X, ). Up
to extraction of some subsequence, one has Xi — XZI together with dB;(XZ) N
0Bs(X1) ={Y%x}. The same arguments as in step 2 show that Bs(X) C Q(two)-

On the other hand, let vy be the function defined in Bys(Y%) by

up(X) in Gy,
vR(X) = { 1 in Bas(Yi)\Cy -

These functions are equi-Lipschitz-continuous in Bys(Y%) and, up to extraction of some
subsequence, they converge locally in Bys(Yy) to a Lipschitz-continuous function v.
Call E = limy_, 1 C; . By definition of C,, the set E contains Bs(X ). One also has
Uso = U in E and, from the arguments of steps 2 and 3, it follows that

Voo = Uso = 1 in OE N Bos(Y)-

Furthermore, C;, N B;(X,;") = () implies that EN Bs(XL) = (. Eventually, the connected
component of Q(us) N Bas(Ya) containing Bs(X ) does not meet Bs(X1).

Since ¢ is independent of Yo, € I'(uw), that means that I'(us) is regular in the sense
of Definition 3.1 and the proof of Proposition 4.2 is complete. L

Remark 4.3 In the case of solution u, the arguments in step 1 yield that I'(us) # 0.

In the case of subsolution u, two cases may occur: up to extraction of some sub-
sequence, either d((xy, ¢(xy)),'(w)) is bounded, or d((zg, ¢(zx)), [(u)) — +oo. If the
first case occurs, the same arguments as used in steps 1 to 4 mentioned above guarantee
that both Q(uy) and IR*\Q(us) are not empty, whence ['(uy,) # 0, and that, under
the same notations as above, all sequences (r;) that have been used remain bounded.
If d((xg, p(xy)),[(w)) — +o0, then it is easy to see that (v, d(zr)) € Q(w) for k large
enough and that u,, = 0 in IR2.

In the case of supersolution w, it also follows easily that if d((xy, ¢(z)), (7)) — +oo,
then Ty, = 1 and Q(Uy) = T'(Uso) = 0, while if d((xg, ¢(2x)), (7)) is bounded then both
Q(Uy) and T'(TUs) are not empty.

Remark 4.4 If u is a solution of (3.2) such that Q(u) = {y < ¢(x)}, then we can check
immediately that, under the notations of Proposition 4.2,

Qus) = {y < doo() }.

Let us now state one of the main results in this paper, namely a comparison principle
between super- and subsolutions of problems of the type (3.2). This result which we will
make constant use of in the course of the proof of Theorem 1.6 says especially that given
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a Lipschitz-continuous function ¢, a supersolution % and a subsolution u of problem
(3.2) in the sense of (4.1)-(4.2), then @ can be slid in the y-direction in order to be above
u everywhere in IR?.

In what follows, for any function w : IR?> — IR and any t € IR, w' denotes the
function defined by w'(x,y) = w(z,y + t).

Theorem 4.5 (Comparison principle) Let ¢ : IR — IR be a given Lipschitz-continuous
function. Let @ (resp. w) be a Lipschitz supersolution of (4.1) (resp. Lipschitz subsolu-
tion of (4.2)) such that 0 <u <1 (resp. 0 < u < 1) in IR* and assume that T'(u) (resp.
['(u)) is regular in the sense of Definition 3.1. Then the set

I={te R, Ys>t, @ > u}

is not empty. Furthermore, if t* :=inf I > —oo, then @" > u and

i) if T ) NT(u) # 0, then ut = u in Q@"),

i) if C(u)NT(u) =0, then u’” > u in Q(u) and there exists a sequence |zg| — +00
such that the sequences d((zg, ¢(xx)), (@) and d((zk, ¢(xk)), [ (w)) are bounded and,
under the notation of Proposition 4.2, the functions W, , u, converge to some functions
UL, U, which are not identically equal to 1 and 0 respectively and which satisfy U, = u,

Moreover, if @ and u are nondecreasing with respect to the variable y, then @ = u
in IR? in case i) and W, = u., in IR? in case ).

Remark 4.6 Similar results hold in IR" for any dimension N.

Postponing the proof of Theorem 4.5 in Section 6, let us now turn to the
Proof of Theorem 3.4. Apply Theorem 4.5 with @ = u = u. The set I = {t €
IR, Vs >t, u®* > u in IR?} is not empty. Furthermore, t* = inf I > —oo because on the
one hand there exists y; € IR such that « = 1 in Q% (y;) and on the other hand

yol—l)riloo Qs}?zll)o) u = 0. (4.8)

In order to prove that u is nondecreasing with respect to the variable y, it is sufficient
to show that t* < 0. Assume on the contrary that ¢* > 0. Under the notation of Theorem
4.5, if case i) occurs, then u'” = u in Q(u’") = Q(u)—(0,t*). Take a point (x,y) € Q(u’).
Since u(z,y + t*) = u(z,y), it follows that (z,y) € Q(u), i.e. (z,y —t*) € Qu"). As a
consequence, u(z,y) = u(x,y — t*). An immediate induction yields

u(z,y) = u(x,y — nt*) for all n € IN.

The limit n — 400 gives u(z,y) = 0 thanks to (4.8). This is impossible since u is
assumed to be positive in IR

Therefore, under the notation of Theorem 4.5, case ii) occurs and u’, = uy in
Q(u')). From Proposition 4.2, the function u, is Lipschitz-continuous and solves (4.3).
The strong maximum principle implies that wus, is positive in JR%. One is then led to a
contradiction as in case i).

Consequently, t* < 0 (one could also prove with similar arguments that t* > 0) and
the proof of Theorem 3.4 is complete. r
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5 Proof of the Serrin type result (Theorem 1.6)

This section is devoted to the proof of Theorem 1.6. We repeat that this theorem
includes the result of Theorem 1.3. We shall here use the comparison principle and the
monotonicity results stated in the previous sections. For the sake of clarity, the proof of
Theorem 1.6 is divided into several steps.

Let (¢, u, Q) be a solution of (1.1), where € is open, both Q and IR*\) are not empty,
the free boundary I' = 9 is globally C'*! with bounded curvature and the restriction
@ of win Qis C' up to I'. We assume moreover that IR*\(2 has no bounded connected
components.

First of all, it follows from standard elliptic estimates up to the boundary [40] that
@ is globally C%#(Q) for each 3 € [0,1). Hence, the function u is globally Lipschitz-
continuous in IR?. Next, Proposition 3.7 and 3.9 imply that, up to changing (c,u, Q)
into (—c,u(—xz, —y), —), the real ¢ is nonnegative,

d ¢ : IR — IR globally Lipschitz-continuous such that
Q={y <o(x)} and I' = {y = o(x)}

and the function u is a solution of (3.2) in the sense of the Definitions 3.1 and 3.3, with
(¢1,¢2) = (0,—c).
Let o € (0,7/2] be the unique angle such that

cot a = Lip(¢) := sup M
ata |7 — @

(5.1)

From Corollary 3.5, one immediately has the following

Corollary 5.1 (i) The function u is nonincreasing in all the directions T such that
|7l =1 and 7, < —cosa.

(it) |p(x) — p(2")| < cota |z — 2’| for all z,2" € IR.

(1ii) For any point (z,y) € T', C(x,y) C 2 where

Cz,y) ={(z,y) + Acosp,sinp), A\ >0, —7/2 —a < ¢ < —7/2+ a}.
Step 1: proof of the formula ¢ = ¢/ sin . For each A > 0, let a, € (0,7/2] be de-

fined by
cot vy := sup |¢((p+ 1)>‘) - QZS(p)\)| ) (52)

pel A

Note that cot ay < Lip(¢) for all A > 0.
We then have the following

Lemma 5.2 For all A > 0, cot ay, = Lip(¢).
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Proof. For each A > 0, let ¢, : IR — IR be the Lipschitz-continuous function whose
graph links the points (pA, qﬁ(p)\))pez. Then Lip(1)) = cota;y and we can immediately
see that there exist a,b € IR such that

Ve € R, ¢a(z)+a < o) <a(z)+0.

Consequently v is a solution of (3.2) with v, in place of ¢ in the definition of (3.2).
Thus Corollary 3.5 can be applied and proves that the function u is nonincreasing in all
directions of the cone C~(«y). Now assume that Lip(in) < Lip(¢) and take two real
numbers z, 2’ € IR such that z < 2’ and

|6(x) — ()]

cot ay = Lip(hy) <
| — a'|

< Lip(¢).

Suppose that ¢(z) > ¢(2’) (the case ¢(x) < ¢(z') can be treated similarly). Therefore,

(' — z) cot ay < P(x) — Pp(a") < Lip(p)(z' — x).

From Corollary 5.1, one has u(z, ¢(z) — ) < 1 for all £ > 0. Since u is nonincreasing in
all directions of the cone C~ (), it follows that

Ve >0, u(z,é(x)—e— (2" —x)cotay) <ulx, o(x) —e) < 1.

Choosing ¢ = ¢(z)—p(z')— (2" —x) cot ay > 0 yields u(a’, #(z')) < 1, which is impossible.
Therefore, Lip(1y) > Lip(¢) and formula (5.2) leads to cot oy = Lip(¢). That com-
pletes the proof of lemma 5.2. \

From Lemma 5.2, for each A > 0, there exists a sequence of integers (py)x such that

[0((x + DA) = ¢(pe)]
A

Let xr = (pr+1/2)A, ¢p(x) = d(xp+x)—@(xx) and ug(z,y) = u(xp+z, ¢(xx)+y). From
Proposition 4.2 and Remark 4.4, it follows that, up to extraction of some subsequence,
the functions ¢ () and uy(z, y) converge locally in IR and IR? respectively to two globally
Lipschitz-continuous functions ¢ (z) and u2 (z,y) solving

— Lip(¢) = cota as k — +o0.

g Au), — o), = 0 in Q= {ud <1} ={y < A(2)},
wd = 1 in IR?\Q),
auéo 5.3
2 = ¢ on D(ud) = 00, = {y = (1520(37)}’ (53)
lim sup uﬁo(% y) = 0
(Y0770 ycyo+d, (x)

in the sense of Definitions 3.1 and 3.3. Moreover

|65.(A/2) — ¢35, (=A/2)]
)

= cot «v
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and Lip(¢),) < cot . Then, there exists €5 = +1 such that ¢ (z) = e z cot a for all
T €[=N/2,)/2].

We then pass to the limit for a sequence A\, — +00. Up to extraction of some sub-
sequence, the functions ¢ (x) and u" (z,y) converge locally in IR and IR? respectively
to two functions @ueeo () and Useeo (T, y), Where uqoo satisfies (5.3) with ¢us in place
of ¢ . Furthermore, there exists € = +1 such that

Gooso () =excotar for all x € IR.

Let us assume that ¢ooeo(z) = x cot o for all z € IR (the case doooo(r) = —2 cot o can be
treated similarly). In the new coordinates (X,Y") = (z cos @ — ysin «, z sin o + y cos «),
the function v(X,Y) = Useo(Z, y) satisfies

Av+esinadxv —ccosadyv = 0 in {v<1}={X >0},
v = 1 in {X <0},
S—Z = ¢ on {X =0},
lim sup  v(X,Y) = 0,
Xo—=+00 x> Xy, YER

in the sense of Definitions 3.1 and 3.3. By rotating the (X,Y) frame clockwise or
counterclockwise by any angle less than /2 and by applying Theorem 3.4, it follows
that the function v is nonincreasing in any direction 7 such that 7x > 0. By continuity,
one gets that v is nondecreasing in both directions Y and —Y". In other words, v = v(X)
and it satisfies the one-dimensional problem:

v" + csinav’ =0 for X >0, v'(07) = —¢y and wv(+00) = 0.

The function 1. being globally Lipschitz-continuous in IR?, the function v is Lipschitz
in IR and in particular it is continuous at X = 0. Therefore, v(X) = e~ X" for X > 0
and the gradient condition at X = 0 yields that ¢y = csina.

Step 2: behaviour of u along the lines y = —|x| cot a as & — +00. We here state and
prove the following lemma, dealing with the behaviour of the functions

uk(z,y) = u(r + zg, y — k| cot @)
where the sequence () approaches either —oo (“left” side) or +o0o (“right” side):

Lemma 5.3 The behaviour of the functions uy “on the left side” is given by either

(a1) ¢(z)+|x| cota — 400 asx — —oo and ux, — 0 locally in (x,y) for any sequence
Ty — —00, or

(a2) ¢(x) + |x|cota — L~ € IR as v — —oo and, for any sequence xj; — —o0,
ug(x,y) = Up(—z cosa+ysina — L~ sina) locally in (x,y), where Uy(€) = e if € <0
and Up(&) =1 if € > 0.

The behaviour of the functions ux “on the right side” is given by either
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(b1) p(x)+|z| cot @ — +00 as x — +o00 and up — 0 locally in (z,y) for any sequence
Ty — +00, or

(02) ¢(z) + |z|cota — LT € IR as x — +oo and, for any sequence xp — +00,
ur(z,y) = Up(x cosa + ysina — LT sina) locally in (z,y).

Proof. We only prove part (a), part (b) being similar up to the change z — —x.
From Corollary 5.1 (ii), we know that the function z — @(z) + || cot « is nonincreasing
for ¥ < 0. Therefore, one has as x — —oo: either ¢(z) + |z|cota — +oo (al), or
() + |z|cota — L~ € IR (a2).

Let us first consider the case (al). Choose any sequence xy — —oo. Since ¢ is
Lipschitz-continuous and ¢(xy) + |xg|cotaw — +oo, it follows that, for any compact
subset K C IR?, the set Ej, := (zy, —|zx| cot @) + K is included in Q for k large enough.
Moreover, d(Ey, ') — 400 as k — +oo. Therefore, the functions wu(z,y) approach 0
locally as k — +o0.

Let us now turn to the second case (a2). As it was done in the step 1, one can
prove that the (Lipschitz) functions ug(x,y) = u(z + x, y + ¢(zx)) locally converge to
the (Lipschitz) function us (7, y) defined by: uy(x,y) = e-Teosatysing) if g cosq +
ysina < 0 and ue(z,y) = 1 otherwise. Using this fact and writing

ug(z,y) =u(x + g,y — |z cot o)
= u(@ + zk, y — (d(zk) + |zk| cot ) + d(xx))
leads to the conclusion of Lemma 5.3 in case (a2). L

As far as the function u® given in Theorem 1.1 is concerned, it follows from Theorem
1.1 and Proposition 3.7 that u® fulfills all the assumptions satisfied by the function w.
Furthermore, the function ¢* defined by {y = ¢*(z), * € R} = 0{u® < 1} satisfies
¢*(x) + |x|cotaw — L € IR as x — £00o (see Theorem 1.1). Hence, the previous lemma
implies the following corollary:

Corollary 5.4 The functions u® and ¢“ given in Theorem 1.1 satisfy the properties
(a2) and (b2) of Lemma 5.3 with L~ = Lt = L.

Step 3: sliding u® with respect to u and end of the proof of Theorem 1.6. Let us now
slide the function u® given in Theorem 1.1 with respect to the function u, in the initial
system of coordinates (z,y).

Because of the formula (1.6) for ¢, and from Theorem 1.1 and Proposition 3.7, the
functions v and u® satisfy:

Au—cou=0 inQ={u<1}={y <)},
Ohwu=coy onT =00={y=0¢(zx), v € R}
and
Au® —copu® =0 in Q* ={u* <1} = {y < ¢*(2)},
Ohu® =cy onI'*=00%={y=¢%z), x € R}
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in the sense of Definitions 3.1 and 3.3. For any v, let us set

{ Q% (yo) = {y > vo + ¢*(2)},
Q (yo) ={y <wo+¢%(x)}.

One has u* = 1 in Q7 (0). Lastly, since the graph I'* of the function ¢* has asymptots
in the sense that
¢*(z) + |z|cota — L as x — +o0

(see Theorem 1.1) and since the Lipschitz norm of ¢* is less than or equal to cot a, one
has ¢*(x) < —|z|cota+ L for all z € IR. On the other hand, the Lipschitz norm of the
function ¢ is not greater than cot a either. Therefore, there exists a real number h € IR
such that ¢*(x) < ¢(x)+h for all z € IR. That means that Q™ (yo) C {y < yo+é(x)+h}
for all yy € IR. Thus, one has
lim sup u=0.
Y0790 0= (yo)

As a conclusion, the functions u® and u are respectively super- and sub-solutions of
a same free boundary problem of the type (3.2), in the sense of section 4. Moreover,
the same fact holds if one replaces the functions u® or u with u®(x + hy,y + h2) and
w(z + hg,y + hy) for any hy,---, hy € IR.

We shall now consider four cases (given by Lemma 5.3) and apply the compari-
son principle stated in Theorem 4.5. Remember here that I' = d{u < 1} is equal to

I'={y=9¢(), € R}

First case: ¢(x) + |x|cota — 400 as x — +oo (cases (al) and (b1) of Lemma
5.3). We will see that this case is ruled out. Indeed, applying the comparison principle
(Theorem 4.5) to u® and u leads to the existence of a (necessarily finite) real number ¢*
such that (u®)" (z,y) == u®(z,y + t*) > u(z,y) in IR? and

(i) either (u®)" = u in IR?,

(ii) or there exists a sequence of points 2, = (g, yx) € (2% = Q% — (0,t*) such
that

|zk] — 400, supd(z, ['*) < 400
k

and both functions vy (x,y) = u*(x + x4,y + Yk + t*) and wp(z,y) = w(r + o4, ¥ + Yk)
converge to the same limit v, = Uso.

Case (i) is clearly impossible because (I'%)!" := 3{(u®)"" < 1} has asymptots parallel
to the two half-lines y = —|z| cot @ as x — +oo, while I' = 9{u < 1} does not.

If case (ii) occurs, then, up to extraction of a subsequence, one has

Y + |zk| cota = d € R and xp — +o0.

Hence, Lemma 5.3 (cases (al) or (bl)) implies that us = 0. On the other hand, Corol-
lary 5.4 yields that v., is not zero. This case (ii) is then ruled out too.
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Second case: ¢(x) + |x|cota = L~ as v — —oo and ¢(z) + |x|cota — 400 as
r — +oo (cases (a2) and (b1) of Lemma 5.3). We shall prove here that the function
u is planar and that its level sets are parallel to the line {y = zcota}. As in the first
case, by applying Theorem 4.5, there exists a real number ¢* such that (u®)" > u in IR?
and such that either (i) or (ii) occurs. Because of (bl), the behaviours of I'* and T are
asymptotically different as  — 400 and we then see that case (i) cannot occur.

Consequently only case (ii) may occur. With the same notations and arguments as
above, the case x;, — +oc is ruled out. Hence, up to extraction of some subsequence,
xr — —oo. Furthermore, from Lemma 5.3 and Corollary 5.4, we can immediately check
that

Voo (7,y) = Up(—zcosa+ysina + (d +t* — L) sin a),

where d = lim yj, + || cot o, and
Uono(2,y) = Up(—zcosa+ysina+ (d — L7) sin ).

As a consequence, t* = L — L.
Now take any real number n € IR and apply Theorem 4.5 to the functions

Uy (z,y) = u™(z +n,y +ncot @)

and u (the function uj is obtained by translating u® with a shift —n/sin o in the direction
(sin @, cos ). There then exists a real number 7* such that (u)™ > u and either (i) or
(ii) occurs. As above, only case (ii) may occur and, owing to the choice of the function
Uy, it is found that 7" = L — L™ = t*. Therefore, it follows that

Vn € R, Y(z,y) € R?, wu(x,y) < (uq‘;‘)T(x, y) =u*(x+ny+ncota+ L —L").
By using Corollary 5.4 for the function u®, the limit  — —oo yields
V(z,y) € R*, u(z,y) < Up(—zcosa+ysina — L sina). (5.4)

On the other hand, since the function w is nonincreasing in the direction
(—sin o, — cos a), one has

u(z,y) > u(x 4+ A\ y+ |\ cota) forall A <0 and (z,y) € IR

By using Lemma 5.3 for u, namely case (a2), the limit A\, — —oo in the previous
inequality leads to:

V(z,y) € R?, wu(r,y) > Up(—wcosa+ysina — L~ sina).
Together with (5.4), that means that

uw(z,y) = Up(—zcosa + ysina — L™ sin ).
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In other words, the function w is planar and its level sets are parallel to the line
{y = xcota}, which corresponds to the first case in the conclusion of Theorem 1.6.

Third case: ¢(z) + |r|cota — 400 as & — —oo and ¢(x) + |z|cota — LT as
T — 400 (cases (al) and (b2) of Lemma 5.3). Like the second case, this case leads to

u(z,y) = Up(zcosa + ysina — LT sina),
which corresponds to the second case in the conclusion of Theorem 1.6.

Fourth case: ¢(x)+ |x|cota — L* € IR as & — Foo (cases (a2) and (b2) of Lemma
5.3). We shall now prove that u = u®, up to translation. That will then complete the
proof of Theorem 1.6.

Let us first define h = tana (LY — L7)/2 and u,(z,y) = u(x + h,y). From Lemma
5.3 applied to uy, it then follows that

b
ug(z,y) == up(x + x5,y — |zg| cot o) = Uy <j:x cos o + ysin o — # sin a> (5.5)
for any sequence z; — £o0o. Roughly speaking, the function w; is then asymptotically
symmetric in z along the half-lines {y = —|z| cot o} as z — +oo.

Let us now apply the comparison principle (Theorem 4.5) to the functions u® (super-
solution) and wu, (sub-solution). Under the same notations as above, there then exists
a real number ¢* such that (u®)!" > wy, in IR? and either case (i) or (ii) occurs, with u
being replaced with uy,.

If case (i) occurs, that corresponds to the third situation in the conclusion of Theorem
1.6.

Now assume that case (ii) occurs. because of (5.5), one concludes as above that
t* —L = —(L" + L7)/2 (in each of the cases x;, — —o0 or z; — +00). On the other
hand, because the conditions (a2) and (b2) are fulfilled, one has

sup |¢(x) + |z| cot a| < 0.
z€IR

One can then change the role of u* and w;, namely, u, and u® are respectively super-
and sub-solution of a problem of the type (3.2). Therefore, there exists a real number
7* such that u]” > u® in IR? and either case (i) or (ii) occurs (with 7%, uy, u®, € in place
of t*, u®, u and Q%). If case (i) occurs, then u® and u are equal up to translation and
the conclusion of Theorem 1.6 is reached. Otherwise, case (ii) occurs and it is found as
above that 7 — (Lt +L7)/2 = —L, i.e. 7" = —t*.

As a consequence, if u® and u were not equal up to translation, then one would have

(u*)" >y and uj > u®
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with t* = —7*. The latter yields that

As a conclusion, the functions u® and u are then equal up to translation.
This completes the proof of Theorem 1.6. r

6 Proof of the comparison principle (Theorem 4.5)

This section is devoted to the proof of Theorem 4.5. The proof is based on the sliding
method which has been developped by Berestycki and Nirenberg [10] and on some ver-
sions of the maximum principle in unbounded domains. Comparison principles similar
to Theorem 4.5 had been obtained using the same device, in [7] and [27].

For the sake of clarity, the proof of Theorem 4.5 is divided into several steps. Let us
start with the following version of the maximum principle.

Lemma 6.1 Let ¢ : IR — IR be a globally Lipschitz-continuous function and let D =
Q (yo) = {y < é(x) + yo}, where yo € IR. Let @ (resp. wu) be a Lipschitz-continous

function defined in D and such that 0 <7 <1 (resp. 0 <u <1) and
Lu<0in Q@) ={X €D, u(X) <1}

(resp.
Lu>0in Qu) ={X € D, u(X) <1}),

where
Lu = Au + ¢;0,u + c20,u.

Assume that lim,_, SUPg - () U = 0 and that

{

Proof. For all ¢ > 0, set u.(r) = u(xr) — ¢ in D. One shall prove that u. <% in D for
all € > 0. Since both @ and u are bounded by 0 and 1, one immediately has u; < @ in
D. Define

§<1 inD,
[

<
< on 0D.

= I

Then u <@ in D.

e* =inf {& >0, u. <uin D}.

Argue by contradiction and assume that ¢* > 0. By continuity, one has u.. =u—e* <7
in D. On the other hand, since lim,_,  supg-(,, u = 0, it follows that

U, < —£%/2 <0 in Q(yp)

g*
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for some y; < yo. Since @ > 0, the minimality of ¢* yields

sup (u.- —u) =0.
D\O~(yp)

Two cases can occur:
Case 1 : there exists X € D\Q~(y;) such that

u.- (X) (= u(X) - &) = u(X).

In particular, w(X) < 1 and X € D since u <@ on dD. Since u < § < 1in D, one has
Lu > 0, whence Lu.. > 0 in D. The nonpositive function w = u_. — u satisfies Lw > 0
in Q(w) and vanishes at the point X which lies in the interior of this domain. From
the strong maximum principle, it follows then that u.. = @ in the connected component
of Q(7) containing X. In this connected component, 7 = u —e* < 1—¢* < 1. As a
consequence, this component is equal to the whole set D, whence

U =u in D.

That is in contradiction with u <7 on 0D.
Case 2 : u.- < @ in D\Q (yp). There exists then a sequence of points (g, yx) €
D\Q~(yg) such that

U (T Yi) — Tk, yp) — 0 as k — +o00.

On the other hand, the functions ¢y (z) = ¢(xy + x) — ¢(xx) converge locally uniformly,
up to extraction of some subsequence, to a Lipschitz-continuous function ¢,, and the
functions

Ui (7,y) = Uz + 2, ¢(z1) +y) and w(z,y) = u(zy + 7, d(z1) + y)

converge locally uniformly in Dy, = {y < ¢oo + o} to two functions Ty, and u.,. These
functions are bounded between 0 and 1 (actually u,, < § < 1 in D,,) and they satisfy
Ly < 0 (resp. Luy, > 0) in D'(Do N Q(TUs)) (resp. D'(Ds)). Furthermore, since @
and u are globally Lipschitz, the functions 7., and u., are also Lipschitz; they can then
be extended by continuity on 0D, and they satisfy u,, < Uy on 0D.,. Lastly, one has

lim sup U (z,y) =0.
Y770 {y<poo(z)+y'}

The passage to the limit k& — +oo leads to u,, — ¢* < Uy Whereas
up (0, yx — d(zx)) — & — W (0, y, — ¢(xx)) — 0.

Since (z,yx) € D\Q™(y}), one has ¢(zx) + vy < yr < d(wx) + yo. Up to extraction of
some subsequence, one can then assume that yx — ¢(Tr) = Yoo € [Yh, Yo] as k — +oc.
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It then follows that u,, (0, Yoo) — €* = Tso(0, Yso) and one is led to a contradiction as in
case 1.

Both cases 1 and 2 are ruled out. The assumption €* > 0 cannot hold and the proof
of Lemma 6.1 is complete. !

Let us now turn to the
Proof of Theorem 4.5. Under the assumptions of Theorem 4.5, there exists yo € IR
such that u < 1/2 in D = Q7 (yy). Remember that @ = 1 in Q" (y;). Therefore, for all
$ > y1 — Yo, one has ©* = 1 in QF (yp) and, in particular, ©* > u on dD. The functions
u* and u meet the assumptions of Lemma 6.1 in D. As a consequence, u° > u in D, and
then in IR? (since w* = 1 in IR?\D) for all s > y; — yp.

Therefore, the set I = {t € IR, u* > w in IR? for all s > t} is not empty. Assume
from now on that t* = inf I > —oco. By continuity, one has 7' > w in IR?.

Two cases can occur:

Case i). There exists Xy € ['(u"") NT'(u). Since 7' > u in IR?, it follows that I'(a'")
and I'(u) have the same normal at X;. Since I'(@'") is regular in the sense of Definition
3.1, there exists an open ball B of radius ¢ > 0 such that

B C Q@) and X, € 0B.

In this ball, u < @ < 1, whence B C Q(u) and Lz < 0 in B where z = u’ — u.
Furthermore, owing to the choice of Xy, one has z(X() = 0. The nonnegative function
z reaches its minimum 0 at the point X, € dB. On the other hand, since both 7' and
u satisfy the same Neumann boundary condition in the sense of Definition 3.3 on I'(u!")
and I'(u), it follows that 0,2(X,) = 0 where n is the outward normal to B. The strong
Hopf lemma yields @*" = u in the whole ball B.

Call C~ the connected component of Q(u'") containing B. One has

* . —_—
7 =uin C-.

In order to complete the proof of Theorem 4.5 in case i), let us now prove that C~ =
Q@@").

Let us first observe that, if (a,b) € C~, then (a,c¢) € C~ for all ¢ < b. Otherwise,
there would exist ¢ < b such that (a,y) € C~ for all y € (¢,b] and (a,¢) € 0C~.
Therefore, ' (a,c) = u(a,c¢) = 1 and u" (a,y) = u(a,y) < 1 for all y € (c, b]. Hence,

7 *(a,c) <1 =u(a,c) for ¢ > 0 small enough.

That contradicts the fact @’ > w in IR? for all ¢ > ¢* (from the definition of ¢*).
Eventually, X; + IR"e, C C~ whenever X; € C~. As a consequence, C~ N Q™ (yp)

is not empty. Since u < 1/2 in Q7 (y) whereas u"" = u = 1 on C~, one concludes that

C~ D Q (yp). Now assume that there exists a point (z,y) € Q@ )\C~. One knows
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that (x,y') € C~ for —y' large enough. Therefore, there exists a point (z,7) € 9C~
such that 7 < y. One has
@ (2,7) = u(r,7) = Land 7" 7 V(2,7) =7 (2,y) < 1 = u(,7).
Since y > 7, this contradicts the fact that @’ > u in IR? for all ¢ > t*.
To sum up, C~ = Q(u!"), whence " = u in Q(@').

Case ii). Assume that T'(m" ) NT(u) = (). In that case, one necessarily has u'° > u
in Q(@""). Otherwise, there would exist a point X; € Q") such that @' (X;) =
u(X;). The strong maximum principle would then imply that 7" = u in the connected
component C~ of Q(@"") containing X;. The set C~ is not the whole plane IR? because
there are some points where @' is equal to 1. Therefore, 9C~ is not empty. But any
point X, € 0C'~ satisfies

" (Xo) = u(Xo) =1,

while 7" = u < 1 in C~. Eventually, T'(@"") N ['(u) contains the nonempty set 9C .
This is impossible.

At this stage, one knows that @ > u in Q(u'"). Remember now that " = 1 in
QF(y; —t*) and w < 1/2 in Q (yp). Even if it means increasing y; or decreasing yg, one
can assume that the set

E:= (2 (y1+1—t)\Q (o)) NQa")

is not empty.
In case the nonnegative real number

—inf (T —
m—1%f (@ —u)

is positive, then there exists 1y > 0 such that infp (@ ~"—u) > m/2 > 0 for all n € [0, 1),
since the function w is globally Lipschitz. Take any n € [0, n]. It follows that

7" " > min(1,u) = win Q (y; +1 — t)\Q (o)
and in particular on 02~ (yy) while u < 1/2 in Q7 (yo). Lemma 6.1 yields that
" " > win Q= (yo).

in Q" (y; + 1) as soon

On the other hand, @ =1 > u in Q*(y,), whence @' "7=1>u
). This contradicts the

1
as 7 < 1. Eventually, @ ~" > u in IR? for all 0 < 7 < min(, 1
minimality of t*.
Therefore,
m = iIElf (@ —u) =0.

There then exists a sequence (zy,yr) € E such that u' (wy,yr) — w(wg, yx) — 0 as
k — +o0.
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Up to extraction of some subsequence, one can assume that |z;| — +o0o. Otherwise,
T — Too and Yr — Yoo (the boundedness of () implies the boundedness of (y)). Since
(zk, y&) € Q@) and u < W', it would then follow that

u(zy, yk) < T (T, yr) < 1.

By passage to the limit, one would get w(Zs0, Yoo) = U (Too, Yoo) and either (2, yoo) €
Q@) or (Too, Yoo) € (@) N (). One has proved that u'" > w in Q(u'"), whence the
first case is impossible. The second case is impossible by hypothesis. As a conclusion,
|zk| = +o0.

Let us now prove that both d((x, ¢(x;)),[(@")) and d((zx, ¢(z1)),'(u)) remain
bounded. Since

(@r,yk) € E = (Q (31 + 1 =)\ () N Q2(a")

and " (wg, d(wp) + y1 — t*) = 1, it follows that d((xy,d(xr)),[(@")) as well as
d((zg,yx), T(@")) and d((z, yx), (7)) are bounded. In particular, Definition 3.3 then
yvields that liminfy_, o @ (x4, y) > 0.

On the other hand, assume by contradiction that d((zx, ¢(zx)), ['(w)) — +oo. Since
u<1/21in Q (yo) and |yx — ()| is bounded, it would then follow that (zx,yx) € Q(w)
for k large enough, whence u(zg, yx) — 0 because

lim sup u=0.
d(X,I(uw))—+oo, XEQ(u)

Since liminfy,_, o @ (zg, %) > 0 and @ (x4, yx) — u(zk,yx) — 0, one has reached a
contradiction. Eventually, the sequence d((xg, yx),'(z)) is also bounded.

From Proposition 4.2, the functions ¢x(z) = ¢(xr + x) — ¢(xx) converge, up to
extraction of some subsequence, to a Lipschitz function ¢, and the functions

Uk(z,y) = Uk + 7, ¢(7x) +y) and w(z,y) = w(re + 2, (%) + y)

converge to two functions %, and u.,, such that I'(7) and I'(u.,) are not empty, and
solving (4.4) and (4.5). Furthermore,

ﬂfx) > U, in R? for all t > t*.

Since yi — ¢(xy) is bounded, one can also assume that yx — () — Yoo € IR as k — +o0.
Therefore, T (Xo) = too(Xoo) where Xoo = (0,9). Lastly, since (0,yx — ¢(x1)) €
Q@) and limg_,, o Q(@t ) = Q(ut,) from Proposition 4.2, one gets that X, € Q(ul).

Two subcases may now occur:

Subcase ii-a): Xo € L(ul,). Then Ul (Xs) = 1, whence u,(Xo) = 1 and X, €
[ (ts) U {us =130 If X € {uy =139, then 1 > u', > u,, = 1 in a neighborhood of
X, contradicting the fact that X, € '(ul,). Hence, X, € T'(u,) N T (). One then
concludes as in case i) above that

T, = u., in Q7). (6.1)

o0
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Subcase ii-b): Xo € Q(ul,). Then the strong maximum principle implies that u’
U, in the connected component C of Q(wl,) containing X,. The boundary of C'_ is
not empty and it is then included in T'(@.,) N ['(uy,). We then fall within case ii-a) and
(6.1) holds.

Therefore, the conclusion of Theorem 4.5 holds in case ii).

Lastly, consider the case where both 7 and w are nondecreasing with respect to the
variable y. Under the same notation as above, if case i) occurs, then @™ and u are
nondecreasing in y and since 7' and u are equal in the set Q(u@"") which contains the
set {y < ¢(x) + yo}, it easily follows that @ = u in the whole plane IR?. Similarly, if
case ii) occurs, then u’, = u., in IR?. That completes the proof of Theorem 4.5. L
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